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We develop a stochastic Galerkin finite element method for nonlinear elasticity and apply it to reinforced concrete

members with random material properties. The strategy is based on the modified Newton-Raphson method, which

consists of an incremental loading process and a linearization scheme applied at each load increment. We consider

that the material properties are given by a stochastic expansion in the so-called generalized polynomial chaos (gPC)

framework. We search the gPC expansion of the displacement, which is then used to update the gPC expansions of the

stress, strain, and internal forces. The proposed method is applied to a reinforced concrete beam with uncertain initial

concrete modulus of elasticity and a shear wall with uncertain maximum compressive stress of concrete, and the results

are compared to those of stochastic collocation and Monte Carlo methods. Since the systems of equations obtained in the

linearization scheme using the stochastic Galerkin method are very large, and there are typically many load increments,

we also studied iterative solution using preconditioned conjugate gradients. The efficiency of the proposed method is

illustrated by a set of numerical experiments.
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1. INTRODUCTION

Reinforced concrete is one of the most popular materials in construction. Therefore predicting the behavior of re-

inforced concrete members and structures is very important. However, development of the analytical models for

reinforced concrete is complicated by several factors. Reinforced concrete is composed of concrete and steel, which

are two materials with different nonlinear properties. In particular, concrete exhibits a nonlinear softening behavior

in compression and a linear brittle behavior in tension, and its combination with steel makes the behavior of rein-

forced concrete members even more complex. The computational analysis is commonly performed using the finite

element method. To this end, a considerable number of constitutive models was developed to characterize the nonlin-

ear behavior and stress-strain relationship of concrete and its reinforcement. In traditional approaches, the physical

characteristics of reinforced concrete are considered to be known and the problem is deterministic. However, in prac-

tice the structural properties of these materials typically show variability, which usually result from the manufacturing

process, natural variability in microstructure, and possibly also from aging. Additional factors, such as uncertainty

in external loading, may also contribute to the uncertainty in the predicted response. Propagation and quantification

of uncertainty using numerical simulations for risk and reliability analysis as well as design of reinforced concrete

members and structures is therefore a critical task of engineering research.

The most widely applied technique for approximating quantities of interest for problems with random inputs

is the Monte Carlo method [1,2]. It is simple to implement, but the main weakness is relatively slow convergence.
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Another important class is given by perturbation methods [3,4], which are, however, limited to problems with small

variability of uncertainty. An alternative that gained significant attention in the last two decades is the stochastic finite

element method [5,6]. The assumption is that a parametric uncertainty is described in terms of polynomials of random

variables using the so-called generalized polynomial chaos (gPC) framework [7] and one searches for gPC expansions

of solutions. There are two main approaches: the stochastic collocation method (SC), which is based on sampling that

translates the problem into a set of uncoupled deterministic problems cf., e.g., [8–10], and the stochastic Galerkin

method (SG), which by means of the Galerkin projection couples the physical and probabilistic degrees of freedom

into a single large system of equations; cf. also, e.g., [10–12]. Both approaches have been used in various applica-

tions in structural engineering [13]; see also [14]. Due to the large size of the linear systems arising in the stochastic

Galerkin method, iterative solution may be the preferred choice since use of direct solvers may be prohibitive. When

the finite element discretization of the underlying deterministic problem leads to a symmetric, positive definite matrix,

the global stochastic Galerkin matrix is typically also positive definite [15]. Then the corresponding linear system can

be solved using the conjugate gradient method, and its preconditioning is often a vital component enabling one to

speed up convergence and reduce computational time. The most simple, yet often surprisingly effective method is

the mean-based, block-diagonal preconditioner proposed by Pellissetti and Ghanem [16] and analyzed by Powell and

Elman [17]. Other preconditioners use either more terms from the gPC expansion of the coefficient matrix or imitate

the structure of the stochastic Galerkin matrix [18–21], or use advanced solvers as their components such as domain

decomposition [22–25] or multigrid [26–28]; see also [29–31]. One of the most recent advancements includes the

truncation preconditioners [21,32,33], which we also use in our numerical experiments. We note that a study similar to

ours was recently presented by [34], but here we focus on a more complex nonlinear model that includes crack devel-

opment, and we also study efficient solution of the linear systems obtained by use of the stochastic Galerkin method.

In this paper, we develop the stochastic Galerkin finite element method for propagation of uncertainty in a non-

linear elasticity model and apply it to reinforced concrete members with random material properties. In particular,

we consider uncertainty in the modulus of elasticity, which (nonlinearly) depends on the strain (deformation). We

describe a linearization scheme based on the modified Newton-Raphson method formulated in the context of the

stochastic Galerkin framework. The method consists of an incremental loading process and a linearization scheme

applied at each load increment. The tangent stiffness matrix is updated after each load increment, and each increment

is further subdivided into a number of steps. In each such step, the structural response is translated into the vector

of internal forces, which then modifies the right-hand sides of the linearized problems. The whole process continues

until the full load is applied and the displacement increment vector is smaller than a given tolerance. We consider

that the material properties (stiffness) are given by a stochastic expansion, in the so-called generalized polynomial

chaos (gPC) framework. We search the gPC expansion of the displacement, which is then used to update the gPC

expansions of the stress, strain, and internal forces between each step of a load increment. Stochastic tangent stiffness

matrices are updated at the first step of each load increment. The method is applied to a reinforced concrete beam

with uncertain initial concrete modulus of elasticity and a shear wall with uncertain maximum compressive stress of

concrete under deterministic concentrated loading and the results are compared to that of Monte Carlo and stochastic

collocation methods. Next, since the size of the linear systems in the stochastic Galerkin method is usually large, we

also study iterative solution using preconditioned conjugate gradients.

The paper is organized as follows. In Section 2 we recall the general implementation of deterministic nonlinear

finite element method (FEM), in Section 3.1 we formulate the stochastic Galerkin finite element method that ac-

counts for a nonlinearity in the material properties, in Section 3.2 we discuss the sampling methods (Monte Carlo

and stochastic collocation), in Section 3.3 we present the application of the proposed procedure to a simply supported

beam and in Section 3.4 to a shear wall with random material properties, in Section 4 we study iterative solution of

the linear systems arising in the stochastic Galerkin method, and finally in Section 5 we summarize and conclude our

work.

2. DETERMINISTIC NONLINEAR MODEL

We recall the deterministic nonlinear finite element formulation for reinforced concrete members based on [35]. We

consider that the response is mainly caused by nonlinearity in stress-strain relations, due to cracking of concrete
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and due to yielding of steel reinforcement. In general, the structure of concrete is very complex because it is a

composite made up of hydrated cement, sand, and coarse aggregates. In addition, it contains numerous flaws and

microcracks, and the rapid propagation of microcracks under applied loads contributes to the nonlinear properties of

concrete as well. Numerical simulation of reinforced concrete members requires realistic stress-strain relations of the

plain concrete as an input. Such formulations are thus nonlinear and rely on a number of experimentally determined

material constants.

For the concrete, we will use the representation by the nonlinear elasticity model based on the limiting tensile

strain failure criterion that covers the prepeak and postpeak regimes from [36]. This model is expressed in terms of

tangent stiffness formulation. It is assumed that stresses in the principal directions can be calculated independently of

each other, based on uniaxial stress-strain relationships. The biaxial effect was assumed to be due to the interaction

of the two principal directions through the Poisson’s ratio effect. Therefore, the concept of equivalent uniaxial strain

should be introduced in order to separate the Poisson effect from the cumulative strain [37]. In addition, equivalent

uniaxial strain can make a contribution to keep track of the degradation of stiffness and strength of plain concrete

and to allow actual biaxial stress-strain curves to be derived from uniaxial curves. The uniaxial curves selected for

compressive loading in this study are based on an equation suggested by the International Federation for Structural

Concrete (FIB) model code [38] as

σc

fcm
= −

kη − η2

1 + (k − 2)η
for |ǫc| < |ǫc,lim|, (1)

where σc is the compressive stress in MPa, fcm = f́c + 8 is the actual compressive strength of concrete at an age

of 28 days in MPa (here f́c is the specific compressive strength of concrete in MPa), k = Eci/Ec1 is the plasticity

number (here Eci is the tangent modulus of elasticity in MPa, and Ec1 is the secant modulus from the origin to the

peak compressive stress), and η = ǫc/ǫc1 (here ǫc is the compressive strain and ǫc1 is the strain at the maximum

compressive stress). Then, a complete stress-strain curve of concrete in uniaxial tension can be treated based on an

equation suggested by FIB model code [38] as

σct =





Eci ǫct for σct ≤ 0.9fctm

fctm

(
1 − 0.1

0.00015 − ǫct

0.00015 − 0.9fctm/Eci

)
for 0.9fctm < σct ≤ fctm

, (2)

where σct is the tensile stress in MPa, Eci is the tangent modulus of elasticity in MPa, ǫct is the tensile strain, and

fctm is the tensile strength in MPa.

In contrast with concrete, the mechanical properties of steel reinforcement are well known. The reinforcing

steel bars are assumed to be only transmitting axial compressive or tensile forces. Thus, an uniaxial stress-strain

relationship is sufficient. Under monotonic loading, it is generally assumed that the steel behavior is identical in

tension and compression. In this study, a bilinear stress-strain relation suggested by FIB model code [38] is used as

σs =

{
Es ǫs for ǫs < ǫsy

fy + Esh (ǫs − ǫsy) for ǫsy ≤ ǫs ≤ ǫsu

, (3)

where σs is the stress, Es is the initial modulus of elasticity, ǫs is the strain, ǫsy is the yielding strain, fy is the

yielding stress, Esh is the modulus of strain hardening, and ǫsu is the ultimate strain.

The phenomenon of concrete cracking is extremely important in the behavior of reinforced concrete structures.

The maximum stress and strain theories are frequently used to determine whether tensile cracking has occurred in the

concrete [39]. If the maximum principal stress or strain in a point of the structure reaches the uniaxial tensile strength

or tensile strain limit, cracking is assumed to form perpendicular to the direction of the maximum tensile stress

or strain. The stress in that direction is subsequently reduced to zero. The limiting tensile stress value that causes

the crack is not a well-defined quantity. For specimens cast from the same concrete, the flexural tensile strength

determined from a modulus of rupture test is higher than the tensile strength of a split cylinder, which is in turn higher

than the tensile strength obtained from a direct tension test. Furthermore, for each type of test there is significant
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scatter in the results. For concrete structures subjected to rapid loading, the maximum strain criterion is more realistic,

since uniaxial dynamic tensile tests indicate that an almost constant failure strain is observed irrespective of the strain

rate or loading rate [40]. The limiting tensile strain criterion has been employed with success to represent the tensile

cracking of concrete under static loading [41]. In this study, we use a smeared crack approach proposed in [42]. It is

based on the limiting tensile strain criterion, and it allows the concrete to crack in one or two directions. In fact, it

offers complete generality in possible crack direction. This representation is also popular since it allows for automatic

generation of cracks without redefinition of the finite element topology. Instead of redefining the finite element mesh

and nodal connectivities, cracking is accounted for by modifying the material properties within elements. After the

crack has occurred in an element, the concrete becomes an orthotropic material with one of the material axes being

oriented along the direction of cracking, and the elasticity modulus in the direction perpendicular to the cracking

plane is reduced to zero. Next, a reduced shear modulus is assumed on the cracked plane to account for aggregate

interlocking. Shear transmission due to aggregate interlock can be simply accounted for in the smeared crack model

by the introduction of a reduced value of concrete shear modulus. In this study, we used a model proposed in [43]. The

tension stiffening effect of cracked concrete is also incorporated into this model by including a descending branch in

the stress-strain curve of concrete under tension. In this study, we use a linear descending branch in the stress-strain

curve of concrete under tension for considering tension stiffening effect, and other nonlinear effects such as crushing

of concrete in compression and yielding or strain hardening of steel reinforcement are also taken into account, as

suggested by FIB model code [38].

We combine the constitutive equations with the compatibility and equilibrium equations, compute the weak form

of the equilibrium equations, and replace the displacement field by its finite element approximation. This yields a

discrete nonlinear equilibrium system, which may be formally written as

K(u) = f, (4)

where K(u) is the nonlinear operator that depends on the model parameters but also on the displacement vector u,

and f is the vector of external load. We now formulate the modified Newton-Raphson method to solve system (4).

The method is based on linearization of the nonlinear operator and incremental application of the external load.

The tangent stiffness matrix is updated after each load increment, and the system is assumed linear during a load

increment. Each load increment is further subdivided into several steps, during which only the right-hand side is

updated. The system of linearized equations at step i of the nth load increment can be written as

Kn∆un,i = fn − g
(
un,i−1

)
, (5)

where Kn is the corresponding tangent stiffness matrix of size nx × nx, ∆un,i is the increment of displacement

vector, fn is the external load vector, and g
(
un,i−1

)
is the internal force vector at the (i − 1)th step of the nth load

increment. The matrix Kn is obtained by assembly of finite element matrices. The matrix of the eth element at the

nth load increment is computed as

Kn
e =

∫

ve

BT
e Dn

e Be dve, (6)

where Be is the element shape function derivative matrix and Dn
e is the element stress-strain matrix computed as

Dn
e = Dn

c,e + Dn
s,e, (7)

where Dn
c,e and Dn

s,e are concrete and steel rebar stress-strain matrices, respectively. For the first load increment, the

concrete stress-strain matrix is computed as

D1
c,e =




Eci

1 − ν2
c

Eciνc

1 − ν2
c

0

Eciνc

1 − ν2
c

Eci

1 − ν2
c

0

0 0
Eci

2(1 + νc)



, (8)
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where Eci is the initial concrete modulus of elasticity and νc is the Poisson coefficient of concrete. For the first load

increment, the steel rebar stress-strain matrix is computed as

D1
s,e = Esi




ρx 0 0

0 ρy 0

0 0 0


, (9)

where Esi is the initial steel rebar modulus of elasticity and ρx and ρy are the steel rebar percentages in the x and y
directions, respectively. For other load increments, Dn

c,e and Dn
s,e are computed using the material constitutive models

and the corresponding stress level [35]. Applying numerical integration to Eq. (6), we get

Kn
e =

m1∑

q1=1

m2∑

q2=1

ωq1
ωq2

[Be(ζq1
,ηq2

)]
T
Dn

e Be(ζq1
,ηq2

) det J(ζq1
, ηq2

) t, (10)

where m1, m2 are the numbers of quadrature points ζq1
, ηq2

with weights ωq1, ωq2, respectively; detJ(ζq1, ηq2) is

the determinant of the Jacobian matrix; and t is the thickness of the element. The internal force vector ge(u
n,i−1) is

computed for each element in Eq. (5) as

ge(u
n,i−1) =

∫

ve

BT
e σn,i−1

e dve, (11)

where σn,i−1
e is the stress vector for the eth element. Applying numerical integration to Eq. (11), we get

ge(u
n,i−1) =

m1∑

q1=1

m2∑

q2=1

ωq1
ωq2

[Be(ζq1
, ηq2

)]T σn,i−1
e detJ(ζq1

,ηq2
) t. (12)

The stress vector σn,i−1
e is computed as

σn,i−1
e = σn,i−2

e + ∆σn,i−1
e , (13)

where ∆σn,i−1
e is the stress vector increment,

∆σn,i−1
e = Dn

e ∆ǫn,i−1
e , (14)

and ∆ǫn,i−1
e is the strain vector increment,

∆ǫn,i−1
e = Be ∆un,i−1

e . (15)

Above, ∆un,i−1
e is the displacement increment at step i− 1 of the nth load increment for the eth element. At the first

step of the first load increment, the deformation vector u1,0 = 0, and so the internal force vector g(un,i−1) = 0. After

Eq. (5) is solved for the displacement increment ∆un,i, a new approximate solution is obtained as

un,i = un,i−1 + ∆un,i. (16)

This process continues until the displacement increment vector is smaller than a given tolerance.

3. STOCHASTIC FINITE ELEMENT METHOD

3.1 The Stochastic Galerkin Method

We assume that the uncertainty is induced in the model by a vector ξ of independent, identically distributed (i.i.d.)

random variables ξi, i = 1, . . . , mξ. Specifically, we let the uncertainty enter the model through some of the parame-

ters; more details are given in Section 3.3. Then, the nonlinear system (4) becomes stochastic, and in this study we use
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the stochastic Galerkin finite element framework to extend the Newton-Raphson method from Section 2 to this case.

This framework entails use of a space spanned by a set of multivariate polynomials {ψℓ(ξ)}
nξ

ℓ=1, which is known in

the literature as a generalized polynomial chaos (gPC) basis [44,45]. The polynomials are orthonormal with respect

to the density function associated with the distribution of ξ, and we will in particular assume that

ψ1 = 1, and E[ψkψℓ] = 〈ψkψℓ〉 = δkℓ, (17)

where E is the mathematical expectation, and δkℓ denotes the Kronecker delta function.

Suppose we are given a stochastic expansion of the tangent stiffness matrix at the nth load increment as

K(ξ)n =

nK∑

ℓ=1

Kn
ℓ ψℓ(ξ), (18)

where Kn
ℓ is for each ℓ a (deterministic) matrix of size nx × nx. Let us further suppose that the external load vector

at the nth load increment f(ξ)n and the internal force vector at the (i− 1)th step of nth load increment g(ξ)n,i−1 are

also given as stochastic expansions,

f(ξ)n =

nξ∑

m=1

fn
m ψm(ξ), (19)

g(ξ)n,i−1 =

nξ∑

m=1

gn,i−1
m ψm(ξ), (20)

where both fn
m and gn,i−1

m are vectors of length nx for all m. Forming the stochastic counterpart of system (5), we

will search for the increment of the displacement vector at the ith step of the nth load increment in the form

∆u(ξ)n,i =

nξ∑

k=1

∆un,i
k ψk(ξ). (21)

Specifically, substituting expansions (18)–(21) into Eq. (5) and performing a stochastic Galerkin projection, i.e., by

orthogonalizing the residual to the gPC basis {ψm}
nξ

m=1, yields a system of linear deterministic equations:

Kn∆un,i = fn − gn,i−1, Kn ∈ R
nxnξ×nxnξ , ∆un,i, fn,gn,i−1 ∈ R

nxnξ . (22)

Denoting cℓkm = 〈ψℓψkψm〉, the stochastic Galerkin matrix Kn can be written as

Kn =




Kn
(1,1) · · · Kn

(nξ,1)
...

. . .
...

Kn
(1,nξ) · · · Kn

(nξ,nξ)


, with Kn

(k,m) =

nK∑

ℓ=1

cℓkm Kn
ℓ , (23)

and the vectors in Eq. (22) are concatenations of nξ subvectors of size nx, cf. Eqs. (19)–(21), as

∆un,i =
[

∆un,i
1

... ∆un,i
nξ

]
, fn =

[
fn

1

... fn
nξ

]
, gn,i−1 =

[
gn,i−1

1

... gn,i−1
nξ

]
. (24)

For the first step of the first load increment g1,0 = 0 since u1,0(ξ) = 0. After solving Eq. (22), the approximate

solution is updated as

un,i = un,i−1 + ∆un,i. (25)

For the next steps, the gPC expansion of internal load vector gn,i−1 is computed using numerical integration as

gn,i−1
m =

〈
g(ξ)n,i−1 ψm

〉
=

nq∑

q=1

g(ξ(q))n,i−1 ψm(ξ(q))ω(q), (26)
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where ξ(q) are quadrature points, ω(q) are quadrature weights, nq is the number of quadrature points, and g(ξ(q))n,i−1

is a realization of expansion (20) at ξ(q), which is obtained by assembly of finite element internal load vectors,

cf. Eq. (12),

g(ξ(q))n,i−1
e =

m1∑

q1=1

m2∑

q2=1

ωq1
ωq2

[B(ζq1
,ηq2

)]T σ(ξ(q))n,i−1
e detJ(ζq1

,ηq2
) t. (27)

The realizations of the element internal load vectors in Eq. (27) depend on the realizations of the stress vector

σ(ξ(q))n,i−1
e , which in turn depend on the realizations of the stress and strain increments and are computed from

the realizations of the displacement increment ∆u(ξ(q))n,i−1
e in the same way as the calculations in Eqs. (13)–(15).

The terms in expansion of the tangent stiffness matrix (18) are also obtained using numerical integration as

Kn
j = 〈K(ξ)n ψj(ξ)〉 =

nq∑

q=1

K(ξ(q))n ψj(ξ
(q)) ω(q), (28)

where the realizations of K(ξ(q))n are computed using realizations of the model parameters, with more details given

in Section 3.3, and using the realizations of the displacement vector u(ξ(q))n,0 from its gPC expansion. This process is

repeated until the ∆un,i is smaller than a given tolerance. Statistics of the solution, such as mean, standard deviation,

and probability density function, can be estimated in the postprocessing phase by sampling the gPC expansions.

3.2 Sampling Methods

In numerical experiments described in Section 3.3, we compare results from the stochastic Galerkin method to those

obtained using two sampling methods: Monte Carlo and stochastic collocation. The sampling entails solving a number

of mutually independent deterministic problems. In the Monte Carlo method, the sample points ξ(q), q = 1, ..., nMC

are generated randomly following the distribution of the underlying random variables, and moments of the solution

are computed by ensemble averaging. For stochastic collocation, which is used here in the form of the so-called

nonintrusive (or pseudospectral) stochastic Galerkin method, the sample points ξ(q), q = 1, ..., nq are given as a set

of predetermined collocation points. This method derives from a sparse grid for performing interpolation or quadra-

ture using a small number of points in multidimensional space [46,47]. There are two procedures to implement the

stochastic collocation method to obtain the coefficient in Eq. (21); the first way is constructing Lagrange interpolating

polynomials and the second way is performing a discrete projection using the so-called pseudospectral approach [45].

In this study we use the second approach for a direct comparison with the stochastic Galerkin method. The coeffi-

cients of the displacement vector at the nth load increment are computed using numerical quadrature as

un
k = 〈u(ξ)n ψk(ξ)〉 =

nq∑

q=1

u(ξ(q))n ψk(ξ(q)) ω(q). (29)

This, in particular, means that instead of forming and solving Eq. (22), the increments of the displacement vector

∆u(ξ(q))n,i are found for each sample point ξ(q) independently from

K(ξ(q))n,i ∆u(ξ(q))n,i = fn − g(ξ(q))n,i−1, (30)

where K(ξ(q))n,i and g(ξ(q))n,i−1 are the realization of the stochastic tangent stiffness matrix and internal forces

vector at quadrature points, respectively, and fn is the external load vector.

3.3 Example 1: Simply Supported Reinforced Concrete Beam

We applied the proposed method to a simply supported reinforced concrete beam. For the model problem we used

specimen A-1 tested in [48], which is a simply supported beam subject to a concentrated load at the center. A detailed

drawing is shown in Fig. 1. Due to the symmetry, only half of the beam is considered in this study. The spatial

discretization uses a two-dimensional mesh with 60 finite elements and 160 degrees of freedom under plane stress

conditions. Material properties of the beam are set as follows: the maximum compressive stress of the concrete
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f́c = 24.1 MPa, yield stress of the bottom longitudinal reinforcement fsy1 = 555 MPa, yield stress of the top

longitudinal reinforcement fsy2 = 345 MPa, and yield stress of the stirrups fsy3 = 325 MPa. First, we implemented

the deterministic nonlinear finite element procedure, as discussed in Section 2, in MATLAB. A comparison of the

load-vertical displacement curves from the deterministic model with the experiment [48] can be seen in Fig. 2. Good

agreement between numerical and experimental results can be seen throughout the entire load-displacement range.

In order to set up a stochastic model, we considered the initial concrete modulus of elasticity, which is one

of the parameters that have a significant effect on the response of a reinforced concrete member. There are many

parametrizations proposed in the literature. In this study, we used a formula from the FIB model code [38], which is

Eci = Ec0αE

(
fcm

10

)1/3

, (31)

where Eci is the initial modulus of elasticity in MPa at the concrete age of 28 days, Ec0 = 21.5 GPa, αE is a

parameter that depend on the types of aggregate, for example, equal to 0.7 for sandstone aggregate and 0.9 for

FIG. 1: Technical drawing of the beam
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FIG. 2: Load-displacement curve from the analytical model of the beam versus experimental data from [48]
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limestone aggregate; fcm is the actual compressive strength of concrete at an age of 28 days in MPa. In Eq. (31), we

considered αE as a random input parameter with uniform distribution and the mean value 0.8. Two coefficients of

variation (CoV) are considered for the random input parameter that equal 5.77% and 10%. That is, the value of αE

is uniformly distributed in the intervals (0.72–0.88) and (0.66–0.94), respectively. The initial concrete modulus of

elasticity thus becomes stochastic; that is, Eci ≡ Eci(ξ).
Our goal in the setup is to find the stochastic expansion of the tangent stiffness matrix (18) via Eq. (28). This

calculation uses an expansion of the the tangent modulus of elasticity and is repeated after every load increment. Based

on the uniaxial stress-strain relationship in compression [see Eq. (1)] the tangent concrete modulus of elasticity is

EcT =
dσc

dǫc
= Ec1

(k − 2η) − (k − 2)η2

(1 + (k − 2)η)2
. (32)

Because EcT depends on Eci, they are both stochastic, and, in particular,

EcT (ξ) = Ec1

[(Eci(ξ)/Ec1) − 2(ǫc/ǫc1)] − [(Eci(ξ)/Ec1) − 2](ǫc/ǫc1)
2

{1 + [(Eci(ξ)/Ec1) − 2]ǫc/ǫc1}
2

. (33)

Then, using also the values of ǫc corresponding to the nth load increment, we project Eq. (33) on the gPC basis

using numerical quadrature to calculate the expansion of the tangent concrete modulus of elasticity at the nth load

increment:

En
cT (ξ) =

nK∑

i=1

En
cTiψi(ξ). (34)

Expansion (34) is then used to calculate expansion (18). In general, while by [12] when considering the expansion of

the displacement (25) using gPC polynomials of degree p it would be possible to use gPC polynomials of degree up

to 2p in expansion (34), in the numerical experiments we used expansions of the same degree and we set nK = nξ.

In particular, we did not observe with nK > nξ any improvement of results in our numerical experiments.

In the numerical experiments, we show estimated probability density functions (PDFs) of the EcT , and then we

particularly focus on the vertical displacement at the center of the beam u, for which we also tabulate several other

statistical estimates. We note that EcT is pertinent to one element. We also compare the results of the stochastic

Galerkin method (SG) to those obtained by the stochastic collocation (SC) and Monte Carlo (MC) methods. For the

two spectral stochastic finite element methods, SC and SG, we used gPC polynomials of degree 4 and 8 and the

Smolyak sparse grid. The results of the MC simulation are based on 106 samples. As the validation criterion, we used

the root mean square error (RMSE) of the vertical displacement at the center of the beam u, defined as

RMSE =

√√√√ 1

nMC

nMC∑

i=1

(
u⋆

(
ξ(i)

)
− uMC

(
ξ(i)

))2
, (35)

where ⋆ indicates either the SC or SG method. We also report in tables estimates of the mean µ, standard deviation σ,

and probability Pr(u − kum ≥ 0), where um is the vertical displacement at the center of the beam corresponding to

the deterministic problem (the parameters are set to the mean values), and values of k are specified in the tables.

Figure 3 shows the estimated PDFs of the EcT and the vertical displacement at the center of the beam for the

case with CoV = 5.77% at load increments 10, 20, and 87, which is the final load increment in this case. A crack

starts to propagate between the load increments 10 and 20 (specifically at the increment 14). Correspondingly, it can

be observed that at the load increment 10 all PDF estimates are smooth and coincide, but at the increment 20 the

PDF obtained by MC is oscillatory and the SC and SG methods provide a smooth interpolant. We also observe that

the gPC polynomial with degree p = 8 is relatively more oscillatory than the gPC polynomial with degree p = 4.

From the plots we anticipate that a polynomial of a very high degree, unfeasible for practical computations, would

be needed in order to match the results of the MC simulation. Nevertheless, it turns out that even the low-degree

gPC approximation provides an accurate quantitative insight into the response of the beam to loading. Such insight is
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FIG. 3: Estimated PDFs of EcT and the displacement at the center of the beam during the loading, CoV = 5.77%. EcT at load

increments (a) 10, (c) 20, and (e) 87. Displacement at load increments (b) 10, (d) 20, and (f) 87.

provided by Table 1, which compares estimated values of the mean µ and standard deviation σ for the displacement

at the center of the beam with CoV = 5.77% using the Monte Carlo (MC), stochastic Galerkin (SG) and stochastic

collocation (SC), methods with gPC degrees p = 4 and 8, and an assessment of the methods using both the RMSE

values (35). Table 2 then provides estimates of probability Pr(u − ũ ≥ 0), where u is the displacement at the center

of the beam from the stochastic problem and a different setting of ũ, in which um is the displacement at the center of

the beam from the deterministic problem with the mean value parameters. We see good agreement of all methods in

all indicators µ, σ, and Pr. In fact, from the results we cannot discern any improvement by increasing the gPC degree.

Figure 4 and Tables 3 and 4 then show results corresponding to CoV = 10%. Comparing to the case with

CoV = 5.77%, we see that all PDFs have larger support, but the qualitative behavior of the solutions is similar
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TABLE 1: Displacement at the center of the beam with CoV = 5.77%: estimated values of the mean µ

and standard deviation σ by Monte Carlo (MC), stochastic Galerkin (SG), and stochastic collocation (SC)

methods with gPC degrees p = 4 and 8, comparison of the methods using root mean square error (RMSE);

see Eq. (35)

Method µ σ RMSE

Load increment 10

MC 7.9414 × 10−1 3.8566 × 10−2 —

SG, p = 4 7.9415 × 10−1 3.8567 × 10−2 4.7201 × 10−2

SG, p = 8 7.9415 × 10−1 3.8567 × 10−2 4.7201 × 10−2

SC, p = 4 7.9414 × 10−1 3.8566 × 10−2 4.7201 × 10−2

SC, p = 8 7.9415 × 10−1 3.8567 × 10−2 4.7201 × 10−2

Load increment 20

MC 1.7267 9.8225 × 10−2 —

SG, p = 4 1.7261 9.8658 × 10−2 1.2050 × 10−1

SG, p = 8 1.7260 9.7058 × 10−2 1.1952 × 10−1

SC, p = 4 1.7263 9.8590 × 10−2 1.2046 × 10−1

SC, p = 8 1.7260 9.7035 × 10−2 1.1951 × 10−1

Load increment 87

MC 13.6311 6.1582 × 10−1 —

SG, p = 4 13.6280 6.1808 × 10−1 7.5516 × 10−1

SG, p = 8 13.6401 6.2000 × 10−1 7.5639 × 10−1

SC, p = 4 13.6275 6.1693 × 10−1 7.5445 × 10−1

SC, p = 8 13.6309 6.1700 × 10−1 7.5449 × 10−1

TABLE 2: Estimated probability Pr(u − ũ ≥ 0) in %, where u is the displacement at the center of the beam

from the stochastic problem with CoV = 5.77% and different setting of ũ, in which um is the displacement

at the center of the beam from the deterministic problem with the mean value parameters

Method ũ = um ũ = 1.02um ũ = 1.04um ũ = 1.06um ũ = 1.08um ũ = 1.10um

Load increment 10

MC 48.56% 36.93% 25.75% 14.97% 4.56% 0%

SG, p = 4 48.57% 36.95% 25.74% 14.95% 4.55% 0%

SG, p = 8 48.57% 36.95% 25.74% 14.95% 4.55% 0%

SC, p = 4 48.57% 36.95% 25.74% 14.95% 4.55% 0%

SC, p = 8 48.57% 36.95% 25.74% 14.95% 4.55% 0%

Load increment 20

MC 49.22% 38.79% 28.11% 20.98% 9.57% 1.87%

SG, p = 4 49.17% 38.73% 28.49% 18.83% 10.14% 2.44%

SG, p = 8 48.24% 37.34% 28.34% 19.94% 9.70% 1.44%

SC, p = 4 49.27% 38.84% 28.64% 18.97% 10.15% 2.25%

SC, p = 8 48.30% 37.43% 28.35% 19.88% 9.67% 1.51%

Load increment 87

MC 47.09% 34.33% 24.16% 12.54% 3.81% 0%

SG, p = 4 46.98% 34.50% 23.24% 13.12% 3.84% 0%

SG, p = 8 46.87% 34.68% 24.90% 14.35% 3.34% 0%

SC, p = 4 47.21% 34.50% 23.04% 12.89% 3.84% 0%

SC, p = 8 46.83% 34.71% 24.39% 13.77% 3.25% 0%
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FIG. 4: Estimated PDFs of EcT and the displacement at the center of the beam during the loading, CoV = 10%. EcT at load

increments (a) 10, (c) 20, and (e) 86. Displacement at load increments (b) 10, (d) 20, and (f) 86.

to the previous case. In particular, at the load increment 10, the results of all methods match, and after the crack

starts to propagate at higher load increments, the gPC methods provide a smooth interpolation to the MC solution.

Nevertheless, in all cases the statistical indicators µ, σ, and Pr reported in Tables 3 and 4 are again in good agreement

with Monte Carlo simulation.

3.4 Example 2: Reinforced Concrete Shear Wall

We also consider a reinforced concrete shear wall as specimen SH-L tested in [49]. A detailed drawing is shown in

Fig. 5. The spatial discretization uses a two-dimensional mesh with 72 finite elements and 182 degrees of freedom

under plane stress conditions. Material properties of the shear wall are set as follows: the maximum compressive stress
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TABLE 3: Displacement at the center of the beam with CoV = 10%: the headers are the same as in Table 1

Method µ σ RMSE

Load increment 10

MC 7.9804 × 10−1 6.7548 × 10−2 —

SG, p = 4 7.9804 × 10−1 6.7548 × 10−2 2.5263 × 10−6

SG, p = 8 7.9804 × 10−1 6.7548 × 10−2 0.0332 × 10−6

SC, p = 4 7.9804 × 10−1 6.7548 × 10−2 2.5284 × 10−6

SC, p = 8 7.9804 × 10−1 6.7548 × 10−2 0.0331 × 10−6

Load increment 20

MC 1.7365 1.7224 × 10−1 —

SG, p = 4 1.7367 1.7247 × 10−1 3.3543 × 10−3

SG, p = 8 1.7363 1.7242 × 10−1 3.4802 × 10−3

SC, p = 4 1.7365 1.7255 × 10−1 3.0136 × 10−3

SC, p = 8 1.7365 1.7247 × 10−1 3.3217 × 10−3

Load increment 86

MC 13.4660 1.0815 × 100 —

SG, p = 4 13.4496 1.0789 × 100 5.6684 × 10−2

SG, p = 8 13.4615 1.1007 × 100 5.2660 × 10−2

SC, p = 4 13.4568 1.0911 × 100 4.9047 × 10−2

SC, p = 8 13.4565 1.0907 × 100 5.0035 × 10−2

TABLE 4: Estimated probability Pr(u− ũ ≥ 0) in %, where u is the displacement at the center of the beam

from the stochastic problem with CoV = 10% and different setting of ũ, in which um is the displacement at

the center of the beam from the deterministic problem with the mean value parameters

Method ũ = um ũ = 1.04um ũ = 1.08um ũ = 1.12um ũ = 1.16um ũ = 1.20um

Load increment 10

MC 47.51% 34.40% 22.26% 11.00% 0.52% 0%

SG, p = 4 47.51% 34.40% 22.26% 11.00% 0.52% 0%

SG, p = 8 47.51% 34.40% 22.26% 11.00% 0.52% 0%

SC, p = 4 47.51% 34.40% 22.26% 11.00% 0.52% 0%

SC, p = 8 47.51% 34.40% 22.26% 11.00% 0.52% 0%

Load increment 20

MC 47.47% 36.35% 24.72% 15.96% 6.52% 0%

SG, p = 4 47.68% 36.67% 26.21% 16.12% 6.15% 0%

SG, p = 8 47.96% 35.72% 25.45% 16.17% 6.29% 0%

SC, p = 4 47.64% 36.53% 25.98% 15.97% 6.37% 0%

SC, p = 8 47.99% 35.91% 25.47% 16.08% 6.46% 0%

Load increment 86

MC 44.69% 31.16% 20.26% 10.91% 2.70% 0%

SG, p = 4 44.91% 31.53% 20.09% 10.13% 1.20% 0%

SG, p = 8 44.79% 30.48% 19.82% 11.26% 3.47% 0%

SC, p = 4 44.94% 31.23% 19.92% 10.58% 2.66% 0%

SC, p = 8 44.70% 30.49% 19.89% 10.86% 2.73% 0%

of the concrete f́c = 44.7 MPa; yield stress of the horizontal and vertical reinforcement fsy1 = 460 MPa. The wall

is first subjected to a vertical load of 357 KN; then the lateral load is applied incrementally. First, we implemented

the deterministic nonlinear finite element procedure, as discussed in Section 3.1, in MATLAB. A comparison of the
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FIG. 5: Technical drawing of the shear wall

load-horizontal displacement curves from the deterministic model with the experiment [49] can be seen in Fig. 6.

Good agreement between numerical and experimental results can be seen throughout the entire load-displacement

range.

For the stochastic model, we considered the maximum compressive stress of the concrete f́c, as a random input

parameter with uniform distribution. To consider the spatial variability of the random parameter, we assume that the

mean of the maximum compressive stress of the concrete changes linearly from (44.7 + 1.5) MPa in the lowest mesh

row to (44.7− 1.5) MPa in the uppermost mesh row. The coefficients of variation (CoV) are considered equal to 5%.
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FIG. 6: Load-displacement curve from the analytical model of the shear wall versus experimental data from [49]
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In the numerical experiments we show estimated the probability density function (PDF) of the displacement u
at the location of the applied lateral load, and we also tabulate several other statistical estimates including RMSE

from Eq. (35). We compare the results of the stochastic Galerkin method (SG) to those obtained by the stochastic

collocation (SC) and Monte Carlo (MC) methods. For the two spectral stochastic finite element methods, SC and SG,

we used gPC polynomials of degree 4 and 8 and the Smolyak sparse grid. The results of the MC simulation are based

on 106 samples.

Figure 7 shows the estimated PDFs of the displacement at the location of the lateral load at the top of the shear

wall at load increments 5, 10, 20, and 50, which is the final load increment. A crack starts to propagate between

the load increments 10 and 20 since that is when the PDF obtained by MC becomes oscillatory. It can also be seen,

similarly as for the beam, that both the SC and SG methods provide a smooth interpolant with degree p = 8 relatively

more oscillatory than with degree p = 4. Table 5 then compares estimated values of the mean µ and standard

deviation σ for the displacement at the location of the lateral load at the top of the shear wall using the MC, SG,

and SC methods and an assessment of the methods using both the RMSE and probability estimates. It can be seen

again that all methods are in quite good agreement with Monte Carlo simulation, and this holds in particular for the

probability estimates.

4. ITERATIVE SOLUTION OF THE LINEARIZED SYSTEMS

The solution of the linearized stochastic Galerkin systems of equations (22) may be a computationally expensive task

due to its size, and also with respect to the large number of load increments and steps, use of direct methods may be

prohibitive. Therefore, we also studied the problem of solving the stochastic Galerkin systems of equations by iterative

methods. Since the associated matrices are symmetric and positive definite, we used the conjugate gradient (CG)
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FIG. 7: Estimated PDFs of the displacement at the location of the lateral load at the top of the shear wall during the loading.

Displacement at load increments (a) 5, (b) 10, (c) 20, and (d) 50.
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TABLE 5: Displacement at the location of the lateral load at top of the shear wall: values of the mean µ and

standard deviation σ by Monte Carlo (MC), stochastic Galerkin (SG), and stochastic collocation (SC) methods

with gPC degrees p = 4 and 8, comparison of the methods using root mean square error (RMSE), and estimated

probability Pr(u − ũ ≥ 0) in %, where u is the displacement from the stochastic problem and different setting of

ũ, in which um is the displacement from the deterministic problem with the mean value parameters

Method µ σ RMSE ũ = um ũ = 1.01um ũ = 1.02um

Load increment 5

MC 2.1876 × 10−1 3.3858 × 10−3 — 48.56% 30.76% 13.27%

SG, p = 4 2.1875 × 10−1 3.3860 × 10−3 4.7847 × 10−3 48.98% 30.70% 13.23%

SG, p = 8 2.1875 × 10−1 3.3860 × 10−3 4.7847 × 10−3 48.98% 30.70% 13.23%

SC, p = 4 2.1875 × 10−1 3.3860 × 10−3 4.7847 × 10−3 48.98% 30.70% 13.23%

SC, p = 8 2.1875 × 10−1 3.3860 × 10−3 4.7847 × 10−3 48.98% 30.70% 13.23%

Load increment 10

MC 4.3994 × 10−1 6.8147 × 10−3 — 49.09% 30.77% 13.30%

SG, p = 4 4.3993 × 10−1 6.8147 × 10−3 9.6302 × 10−3 48.99% 30.71% 13.25%

SG, p = 8 4.3993 × 10−1 6.8153 × 10−3 9.6305 × 10−3 48.99% 30.71% 13.26%

SC, p = 4 4.3993 × 10−1 6.8148 × 10−3 9.6302 × 10−3 48.99% 30.71% 13.25%

SC, p = 8 4.3993 × 10−1 6.8153 × 10−3 9.6305 × 10−3 48.99% 30.71% 13.26%

Load increment 20

MC 9.2863 × 10−1 1.4732 × 10−2 — 48.43% 29.91% 12.25%

SG, p = 4 9.2851 × 10−1 1.4604 × 10−2 2.0728 × 10−2 48.56% 29.07% 13.15%

SG, p = 8 9.2861 × 10−1 1.4755 × 10−2 2.0835 × 10−2 48.31% 29.77% 13.25%

SC, p = 4 9.2853 × 10−1 1.4648 × 10−2 2.0759 × 10−2 48.65% 28.95% 13.18%

SC, p = 8 9.2862 × 10−1 1.4763 × 10−2 2.0840 × 10−2 48.28% 29.78% 13.31%

Load increment 50

MC 6.6636 × 100 3.0779 × 10−1 — 55.07% 45.23% 31.54%

SG, p = 4 6.7119 × 100 0.8756 × 10−1 3.2090 × 10−1 53.02% 43.04% 33.91%

SG, p = 8 6.7216 × 100 0.9085 × 10−1 3.2220 × 10−1 56.25% 46.38% 34.91%

SC, p = 4 6.7130 × 100 0.8872 × 10−1 3.2127 × 10−1 53.42% 43.17% 33.69%

SC, p = 8 6.7212 × 100 0.9071 × 10−1 3.2215 × 10−1 56.47% 46.41% 34.24%

method [50]. However, the matrices are typically also ill-conditioned, and construction of efficient preconditioners

becomes an important task for a practical implementation. In this study, we use two preconditioners; the first one is

the mean-based preconditioner [16,17] and the second one is the hierarchical Gauss-Seidel preconditioner [21].

4.1 Mean-Based Preconditioner

The stiffness matrix derived from the stochastic Galerkin FEM (SGFEM) formulation has a particular structure that

can be exploited during the process of solving the algebraic system of equations. In general, the matrix Kn
1 in Eq. (18)

corresponds to the mean properties of the system, and it has a much more considerable contribution than the other

Kn
i ’s that represent random fluctuations of the system from the mean, especially for smaller values of CoV. Since the

submatrix Kn
1 contributes only to the block-diagonal of the stochastic Galerkin matrix, the resulting system of linear

equations exhibits a strong block-diagonal dominance if the random properties represent only small fluctuations

from the mean values. Then, the mean-based preconditioner, given in a matrix form as Inξ
⊗ Kn

1 , will be a good

approximation to the stochastic Galerkin matrix Kn. This block-diagonal matrix has a great advantage because it

can be inverted by inverting each block along the block-diagonal independently. On the other hand, in systems with

large random fluctuations, the off-diagonal blocks make a much stronger contribution. For these cases the mean-based

preconditioner may not improve the convergence rate, because it does not approximate the system matrix sufficiently.
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4.2 Hierarchical Gauss-Seidel Preconditioner

The block structure of the global stochastic stiffness Galerkin matrix (23) depends on the tensor given by the

values cjkm. We will now consider that the stochastic Galerkin matrix Kn in Eq. (23) has a hierarchical structure, cf.

Fig. 8, given as

Kn =




A1 B1

. . .

Cl Al Bl

. . .

Cp+1 Ap+1



, (36)

where A1 = Kn
1 is the matrix of the mean. The decomposition (36) is used to formulate the hierarchical Gauss-

Seidel preconditioner [21]. A matrix-vector multiplication by the stochastic Galerkin matrix is in an iterative solver

performed using Kn
(k,m) =

∑nξ

j=1 cjkmKn
j , so we use only the constants cjkm and matrices Kn

j . The same strategy is

used in the preconditioner for multiplications by the submatrices Bl and Cl [see Eq. (36)], and the solutions with the

diagonal submatrices are approximated by the block-diagonal solves with the mean matrix, that is, Al ≈ Ãl = I⊗A1

of the appropriate size. Finally, let us introduce the following notation for a vector xl, where l = 1, . . . , p + 1, cf.

Fig. 8, as

xl = x(1:l) =




x(1)

x(2)

...

x(l)


. (37)

The hierarchical Gauss-Seidel preconditioner (ahGS): rp+1 7−→ υp+1 for system (22) is defined as follows [21]:

Set the initial solution vp+1 = 0 and update it in the following steps,

υ(1) = A−1
1 (r(1) − B1υ(2:p+1)), (38)
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FIG. 8: The hierarchical structure of the stochastic Galerkin matrix
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for l = 2, · · · , p,

υ(l) = Ã−1
l (r(l) − Clυ(1:l−1) − Blυ(l+1:p+1)), (39)

end

υ(p+1) = Ã−1
p+1(r(p+1) − Cpυ(1:p)), (40)

for l = p, · · · , 2,

υ(l) = Ã−1
l (r(l) − Clυ(1:l−1) − Blυ(l+1:p+1)), (41)

end

υ(1) = A−1
1 (r(1) − B1υ(2:p+1)). (42)

Since we initialize vp = 0, the multiplications by Bl, l = 1, . . . , p, vanish from Eqs. (38) and (39).

4.3 Numerical Experiments

We tested the solvers using both the beam and the shear wall. For solving the system of equations (22), we used the

CG method with the mean-based (MB) and hierarchical Gauss-Seidel (ahGS) preconditioners from Sections 4.1

and 4.2, respectively. As the stopping criterion we used a reduction of the 2-norm of the residual by a factor

10−8.

For the beam, Fig. 9 shows the numbers of iterations in each load increment. We see that for all load increments

the ahGS preconditioner reduces the iteration count to approximately one-half compared to the MB preconditioner.

For both preconditioners, the iteration count increases slightly for the higher degree of the gPC polynomial, but the

increase is less pronounced for the ahGS preconditioner. The same observation can be made for an increase of CoV by

comparing the left and right panels in Fig. 9. We can also easily deduce from Fig. 9 that the crack starts to develop in

load increment 14. In particular, the number of iterations is quite small and constant during the initial load increments,

but the character of the problem changes and becomes challenging for the iterative solvers once the crack starts to

develop. The numbers of iterations slowly increase as the loading progresses, but the overall growth of the iteration

count is somewhat slower for the ahGS preconditioner. Figure 10 then shows residual history at load increment 10 and

at the last load increments for the two choices of CoV. This further illustrates the discussion above, and in particular

the efficiency gained due to the use of the ahGS preconditioner throughout the entire loading process.

For the shear wall, Fig. 11 shows the numbers of iterations in each load increment. We see, similarly as for the

beam, that for all load increments the ahGS preconditioner reduces the iteration count compared to the MB precon-

ditioner to approximately one-half. In a similar observation for both preconditioners, the iteration count increases

slightly for the higher degree of the gPC polynomial, but the increase is less pronounced for the ahGS preconditioner.

Figure 12 then shows residual history at load increments 5, 10, 20, and 50, which is the last load increment. The plots

further illustrate the discussion above, and in particular the efficiency gained due to the use of the ahGS preconditioner

throughout the entire loading process.
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FIG. 9: Iteration count for the beam at load increments with different preconditioners for CoV = 5.77% (left) and 10% (right)
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FIG. 10: Residual norm at each iteration for the beam with CoV = 5.77% (top) and 10% (bottom). Increments (a) and (c) 10, (b)

87, and (d) 86.
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FIG. 11: Iteration count at load increments with different preconditioners for the shear wall

5. CONCLUSION

A new methodology for the extension of the stochastic Galerkin finite element method (SGFEM) is presented to effi-

ciently propagate the uncertainty in nonlinear elasticity problems. It can be applied, in general, to models of reinforced

concrete members with random material properties. In the nonlinear SGFEM, the linearization scheme is based on the

modified Newton-Raphson method. By directly updating the gPC expansions of the strain and stress vectors between

each loading step and updating the stiffness matrix at the first step of load increments, the stochastic displacements

at each level of loading are obtained. The performance of the nonlinear SGFEM is tested using a reinforced concrete
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FIG. 12: Residual norm at each iteration for the shear wall. Incrementa (a) 5, (b) 10, (c) 20, and (d) 50.

beam with random initial concrete modulus of elasticity and a shear wall with random maximum compressive stress

of concrete. We illustrate by numerical experiments that even a low-degree gPC polynomial provides a smooth in-

terpolant to the full solution provided by Monte Carlo simulation, and it provides an accurate estimate of several

statistical indicators associated with the probability distribution of the response of the structure. Since the linear sys-

tems associated with the use of the stochastic Galerkin method may be very large and many of them need to be solved

due to the incremental loading, we also studied their iterative solution using the preconditioned conjugate gradient

method with mean-based (MB) and hierarchical Gauss-Seidel (ahGS) preconditioners. Numerical experiments show

that the ahGS preconditioner reduces the number of iterations to approximately one-half of iterations needed using the

MB preconditioner. Using the proposed methodology, it becomes practical to accurately approximate the distribution

of the structural response, which could be used for risk assessment and more efficient engineering design of nonlinear

structures that include uncertainty in the material properties.
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