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We study the time-dependent Navier–Stokes equations in the context of stochastic finite 
element discretizations. Specifically, we assume that the viscosity is a random field given in 
the form of a generalized polynomial chaos expansion, and we use the stochastic Galerkin 
method to extend the methodology from Kay et al. (2010) [21] into this framework. For the 
resulting stochastic problem, we explore the properties of the resulting stochastic solutions, 
and we also compare the results with that of Monte Carlo and stochastic collocation. Since 
the time-stepping scheme is fully implicit, we also propose strategies for efficient solution 
of the stochastic Galerkin linear systems using a preconditioned Krylov subspace method. 
The effectiveness of the stochastic Galerkin method is illustrated by numerical experiments.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Models of mathematical physics are commonly based on partial differential equations (PDEs). In this study, we focus 
on the most popular PDE model in fluid mechanics, which is the Navier–Stokes equation [7,23]. We consider a stochastic 
version of the model: we assume that the viscosity is given by a generalized polynomial chaos (gPC) expansion, we discretize 
the problem using spectral stochastic finite elements see, e.g., [13,23,25,39], and we wish to find the gPC expansion of the 
solution. The steady-state version of this problem was studied in [24,31,37], and our focus here is on the time-dependent 
counterpart. Our approach to time discretization is built on the fully implicit scheme with adaptive time-stepping strategy, 
which was developed for the deterministic Navier–Stokes equation by Kay et al. [21], see also [15]. We extend their scheme 
in the stochastic Galerkin framework, and in particular we show that the physics inspired time-stepping strategy can be also 
adapted to this framework. The scheme is fully implicit, and so each time step entails a solve with the stochastic Galerkin 
matrix. This typically leads to very large systems of linear equations, for which use of direct solvers may be prohibitive, and 
therefore the method could potentially be quite computationally expensive. There are other approaches to time stepping see, 
e.g., [1,7,20] which may appear more appealing. Nevertheless, finally we also show that the iterative solvers by Sousedík 
and Elman [37], which are based on preconditioned Krylov subspace methods, are quite effective for the implicit time 
discretizations of the time-dependent Navier–Stokes problem as well.
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Some aspects of the gPC methods for time-dependent problems were studied in literature see, e.g., [16,41,42]. In particu-
lar, long-term integration was addressed by Gerritsma et al. [10], Heuveline, Schick and Song [19,34,36], Wilkins [38], Özen 
and Bal [29,30], and most recently by Esquivel et al. [9], among others. Methods for flows exhibiting uncertain periodic 
dynamics were proposed, e.g., by Bonnaire et al. [2], Lacour et al. [22] and Schick et al. [33]. These methods typically entail 
time-dependent or other variants of gPC expansions that are tailored to the changing character of the solution. Nevertheless, 
here we use a time-independent gPC basis, which turns out to be sufficient for the transient problems considered in our 
numerical experiments. Therefore, all these techniques can be viewed as complementary to the present study. We also note 
that Elman and Su [8] proposed a low-rank stochastic Galerkin solver based on monolithic (all-at-once) time discretization 
of the Navier–Stokes problem, however their scheme is based on a constant timestep.

Finally, we remark on possible interpretations of the Navier–Stokes problem with stochastic viscosity. In such case, the 
Reynolds number defined as

Re(ξ) = U L

ν(ξ)
,

where ν > 0 is the viscosity, U is the characteristic velocity and L is the characteristic length, is also stochastic. The possible 
interpretations of such setup are discussed by Powell and Silvester in [31]: for example, assuming fixed geometry, the 
stochastic viscosity is equivalent to Reynolds number being stochastic, which may correspond to a scenario when the volume 
of fluid moving into the channel is uncertain.

The paper is organized as follows. In Section 2 we recall the algorithm for the deterministic problem, in Section 3 we 
formulate the algorithm for the stochastic problem using both the stochastic Galerkin and sampling methods, in Section 4
we report results of numerical experiments and provide details about the preconditioning of the Oseen problem, and finally 
in Section 5 we summarize and conclude our work.

2. Algorithm for the deterministic problem

We first recall the algorithm for the deterministic problem following Kay et al. [21]. Let D ⊂ R2 be a physical domain, 
and let T > 0 denote a stopping time. We wish to solve the time-dependent Navier–Stokes equation in D × [0, T ], where (�u, p

)
denote the fluid velocity and pressure, and ν ≡ ν(x) > 01 is the viscosity parameter, written as

∂ �u
∂t

= f (ν, �u, p), f (ν, �u, p) = ν∇2�u − �u · ∇�u − ∇p, (2.1)

−∇ · �u = 0, (2.2)

with boundary and initial conditions given on ∂ D = �D ∪ �N as

�u = �g, on �D × [0, T ], (2.3)

ν∇�u · �n − p�n = �0, on �N × [0, T ], (2.4)

�u(�x,0) = �u0(�x), in D. (2.5)

The initial velocity field is assumed to satisfy the incompressibility constraint, that is ∇ · �u0 = 0. We also assume that �N has 
nonzero measure so that the pressure is uniquely specified, and to this end we will use the outflow (do-nothing) boundary 
condition. We begin by recalling the implicit trapezoid rule (TR) as

�ut ≈ �un+1 − �un

kn+1
= 1

2
[ fn+1 + fn] ,

where kn+1 = tn+1 − tn . Then 2�ut ≈ 2 
(�un+1 − �un

)
/kn+1 = fn+1 + fn and (2.1)–(2.2) can be written as

2

kn+1
�un+1 − ν∇2�un+1 + �un+1 · ∇�un+1 + ∇pn+1 = 2

kn+1
�un + ∂ �un

∂t
, (2.6)

−∇ · �un+1 = 0. (2.7)

The nonlinear term is linearized as �un+1 · ∇�un+1 ≈ �wn+1 · ∇�un+1. The linearization is based on extrapolation 
( �wn+1 − �un

)
/

kn+1 = (�un − �un−1
)
/kn , from which we find

�wn+1 = (1 + kn+1/kn) �un − (kn+1/kn) �un−1. (2.8)

1 The assumption ν(x) 	= const is the only difference from the setup in [21] in this section.
2
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Next, let (V D , Q D) denote a pair of spaces satisfying the inf-sup condition and let V E be an extension of V D containing 
velocity vectors that satisfy the Dirichlet boundary conditions [4,7,14]. The mixed variational formulation of (2.6)–(2.7) is: 
find (�un+1, pn+1) ∈ V E × Q D , for a given pair (�un, pn), such that

2

kn+1

∫
D

�un+1�v +
∫
D

ν ∇�un+1 : ∇�v +
∫
D

( �wn+1 · ∇�un+1) �v −
∫
D

pn+1 (∇ · �v) (2.9)

= 2

kn+1

∫
D

�un �v +
∫
D

∂ �un

∂t
�v,

−
∫
D

q
(∇ · �un+1)= 0, (2.10)

for all (�v, q) ∈ V D × Q D . We note that pn+1 is not needed for subsequent time steps. Next, we recall the three ingredients 
of the algorithm as discussed in [21]: time integration, time-step selection and stabilization of the integrator.

Time integration Substituting �un+1 = �un + kn+1�dn into (2.9)–(2.10), rearranging and using 
∫

D q 
(∇ · �un

) = 0, we get the 
so-called discrete Oseen problem: given �un , ∂ �un/∂t and the boundary update �g := (�gn+1 − �gn)/kn+1, we first compute (�dn, pn+1

)
∈ V E × Q D such that

2
∫
D

�dn �v + kn+1

∫
D

ν ∇�dn : ∇v + kn+1

∫
D

(
�wn+1 · ∇�dn

)
v −

∫
D

pn+1 (∇ · �v) (2.11)

=
∫
D

∂ �un

∂t
�v −

∫
D

ν ∇�un : ∇�v −
∫
D

( �wn+1 · ∇�un) �v,

∫
D

q
(
∇ · �dn

)
= 0, (2.12)

for all (�v, q) ∈ V D × Q D , and the TR velocity and acceleration are updated as

�un+1 = �un + kn+1�dn,
∂ �un+1

∂t
= 2�dn − ∂ �un

∂t
. (2.13)

Time-step selection The time step size is driven by the heuristic formula

kn+2 = kn+1
(
ε/
∥∥�en+1

∥∥)1/3
. (2.14)

The local truncation error �en+1 is estimated by

�en+1 = (�un+1 − �un+1∗
)
/ [3 (1 + kn/kn+1)] , (2.15)

where the TR velocity �un+1 is compared with the AB2 velocity �un+1∗ , which is computed using the explicit formula

�un+1∗ = �un + kn+1

2

[(
2 + kn+1

kn

)
∂ �un

∂t
−
(

kn+1

kn

)
∂ �un−1

∂t

]
. (2.16)

There are three issues that need to be addressed:

1. The AB2 is not self-starting. To start the simulation we require a function �u0 with boundary data �g0 such that∫
D

q
(
∇ · �u0

)
= 0, ∀q ∈ Q D .

The initial acceleration (and pressure) is computed as follows: given the boundary update �g := (�g1 − �g0)/k1, find the 
pair 

(
∂ �u0

∂t , p0
)

∈ V E × Q D such that∫
D

∂ �u0

∂t
�v −

∫
D

p0 (∇ · �v)= −
∫
D

ν ∇�u0 : ∇�v −
∫
D

(
�u0 · ∇�u0

)
�v,

∫
D

q

(
∇ · ∂ �u0

∂t

)
= 0,
3
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for all (�v, q) ∈ V D × Q D . The discrete Oseen problem (2.11)–(2.12) is then constructed by setting n = 0 and defining 
�w1 = �u0 + k1

∂ �u0

∂t , and its solution 
(�u1, p1

)
is used to compute the acceleration at time t = k1 as

∂ �u1

∂t
= 2

k1

(
�u1 − �u0

)
− ∂ �u0

∂t
, (2.17)

and allows to compute the AB2 velocity at the second time step. The start-up is completed by switching on the time-
step control at the third time step (k1 = k0).

2. Choice of initial time step. The strategy is to select a conservatively small value for k0, say 10−8. The time step then 
typically exhibits a rapid growth in the first few steps, roughly as kn+1/kn = O  

(
(ε/eps)1/3)≈ 104, with ε = 10−4 and 

considering the (double) machine precision eps≈ 10−16.
3. Time-step rejection. The new time step is proposed by formula (2.14). However, if the next time step is seriously reduced, 

i.e., kn+2 < 0.7kn+1 (or equivalently 
∥∥�en+1

∥∥> (1/0.7)3 ε), the next time step is rejected: the value of kn+1 is multiplied 
by 

(
ε/
∥∥�en+1

∥∥)1/3
, and the current step is repeated with this new kn+1.

Stabilization of the integrator The numerical stabilization is implemented using time-step averaging with the purpose to an-
nihilate any contribution of the form (−1)n to the solution and its time derivative, which is invoked periodically every n∗
steps. For such a step the values of t∗ = tn and �u∗ = �un are saved, we set tn = tn−1 + 1

2 kn , tn+1 = t∗ + 1
2 kn+1 and define the 

new “shifted” solution vectors as

�un = 1

2

(�u∗ + �un−1) , ∂ �un

∂t
= 1

2

(
∂ �un

∂t
+ ∂ �un−1

∂t

)
,

�un+1 = �u∗ + 1

2
kn+1�dn,

∂ �un+1

∂t
= �dn,

where �dn is the TR update computed via (2.11)–(2.12). In our implementation, the parameter n∗ is fixed and the value is set 
to 10.

Finite element formulation We consider the discretization of the Oseen problem (2.11)–(2.12) by a div-stable mixed finite 
element method; in the numerical experiments we use Taylor–Hood elements see, e.g., [7]. Let the bases for velocity and 
pressure spaces be denoted by {φi}nu

i=1 and 
{
ϕ j
}np

j=1, respectively. In matrix terminology, the Oseen problem at time step n
entails solving a linear system[

Fn+1 BT

B 0

][
dn

pn+1

]
=
[

fn+1
v

fn+1
p

]
, (2.18)

where Fn+1 is the velocity convection-diffusion matrix: a sum of the velocity mass matrix M, diffusion matrix A and 
convection matrix Nn+1, defined as

Fn+1 = 2M + kn+1A + kn+1Nn+1, (2.19)

where

A= [aab] , aab =
∫
D

ν ∇φb : ∇φa,

M = [mab] , mab =
∫
D

φbφa,

Nn+1 =
[
nn+1

ab

]
, nn+1

ab =
∫
D

( �wn+1 · ∇φb
) · φa,

and �wn+1 is computed from (2.8). The divergence matrix B is defined as

B = [bcd] , bcd = −
∫
D

ϕc (∇ · φd) . (2.20)

The right-hand side in (2.18) is constructed from the boundary data �gn+1, the computed velocity �un at the previous time 
level, and the acceleration ∂ �un

.

∂t

4
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3. Algorithms for the stochastic problem

Let (	,F ,P) represent a complete probability space, where 	 is the sample space, F is a σ -algebra on 	 and P is a 
probability measure. We assume that the randomness in the model is induced by a vector ξ : 	 → � ⊂Rmξ of independent, 
identically distributed (i.i.d.) random variables ξ1(ω), . . . , ξmξ (ω), where ω ∈ 	. Let B(�) denote the Borel σ -algebra on 
� induced by ξ , and μ denote the induced measure. The expected value of the product of measurable functions on �
determines a Hilbert space T� ≡ L2 (�,B(�),μ) with inner product

〈u, v〉 = E [uv] =
∫
�

u (ξ) v (ξ) dμ(ξ) , (3.1)

where the symbol E denotes mathematical expectation.
In computations, we will use a finite-dimensional subspace T p ⊂ T� spanned by a set of multivariate polynomials {ψ
(ξ)}

that are orthonormal with respect to the density function μ, that is E [ψkψ
] = δk
 , and ψ1 = 1. This will be referred to as 
the gPC basis [40]. The dimension of the space T p , depends on the polynomial degree. For polynomials of total degree pξ , 
the dimension is nξ = (mξ +pξ

pξ

)
.

3.1. Navier–Stokes equation with stochastic viscosity

We use the same setup as in [37]. Specifically, we consider that the expansion of viscosity is given as

ν ≡ ν (x, ξ) =
nν∑


=1

ν
(x)ψ
(ξ), (3.2)

where ν
(x) is a set of deterministic spatial functions, and index 
 is related through a multi-index to the degrees of 
the random variables ξ1, . . . , ξmξ used in the construction of the gPC basis function ψ
(ξ) see, e.g., [13, Section 2.4.3]
or [39, Section 5.2]. For simplicity, we will also assume that both the Dirichlet boundary conditions (2.3) and the initial 
condition (2.5) are deterministic. We seek a discrete approximation of the velocity in the form

�u (x, t, ξ) ≈
nξ∑

k=1

nu∑
i=1

uik(x, t)φi(x)ψk(ξ) =
nξ∑

k=1

�uk(x, t)ψk(ξ). (3.3)

Remark 3.1. In literature it is sometime recommended to use a time-dependent gPC basis, that is ψk(ξ, t), to keep the 
stochastic dimension low in long-time integration. However, this is a complementary strategy to the present study. Since it 
is not needed in our numerical experiments, we use only a time-independent gPC basis.

3.2. Stochastic Galerkin method

The stochastic Galerkin formulation of problem (2.9)–(2.10) consists of using the expansion (3.2) and performing a 
Galerkin projection on the space T� using mathematical expectation in the sense of (3.1). That is, we seek velocity 
�un+1 ∈ T� ⊗ V E and pressure pn+1 ∈ T� ⊗ Q D for a given pair (�un, pn), such that

E

⎡⎣ 2

kn+1

∫
D

�un+1�v +
∫
D

ν ∇�un+1 : ∇�v +
∫
D

( �wn+1 · ∇�un+1) �v −
∫
D

pn+1 (∇ · �v)
⎤⎦

= E

⎡⎣ 2

kn+1

∫
D

�un �v +
∫
D

∂ �un

∂t
�v
⎤⎦ , ∀�v ∈ T� ⊗ V D ,

E

⎡⎣∫
D

q
(∇ · �un+1)⎤⎦= 0, ∀q ∈ T� ⊗ Q D ,

and the stochastic counterpart of the discrete Oseen problem (2.11)–(2.13) is: given �un , ∂ �un/∂t and the boundary update 
�g := (�gn+1 − �gn)/kn+1, we first compute �dn ∈ T� ⊗ V E and pn+1 ∈ T� ⊗ Q D such that

E

⎡⎣2
∫

�dn �v + kn+1

∫
ν ∇�dn : ∇v + kn+1

∫ (
�wn+1 · ∇�dn

)
v −

∫
pn+1 (∇ · �v)

⎤⎦ (3.4)
D D D D

5
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= E

⎡⎣∫
D

∂ �un

∂t
�v −

∫
D

ν ∇�un : ∇�v −
∫
D

( �wn+1 · ∇�un) �v
⎤⎦ , ∀�v ∈ T� ⊗ V D ,

E

⎡⎣∫
D

q
(
∇ · �dn

)⎤⎦= 0, ∀q ∈ T� ⊗ Q D , (3.5)

and the TR velocity and the acceleration are updated as in (2.13).

3.2.1. Stochastic Galerkin finite element formulation
The Galerkin projection leads to a large coupled system of equations with structure depending on the ordering of the 

unknown coefficients {uik}, {p jk}. We will group velocity-pressure pairs for each k, the index of stochastic basis functions 
(and order equations in the same way), giving the ordered list of coefficients

u1:nu ,1, p1:np ,1, u1:nu ,2, p1:np ,2, . . . , u1:nu ,nξ , p1:np ,nξ . (3.6)

The discrete stochastic Oseen operator is built as follows. First, we set up the discrete components of the diffusion matrix 
using the expansion of viscosity (3.2) as

A
=
[
a
,ab

]
, a
,ab =

⎛⎝∫
D

ν
(x)∇φb : ∇φa

⎞⎠ , 
 = 1, . . . ,nν . (3.7)

Next, let �wn+1

 (x) denote the 
th term of the extrapolated velocity iterate (as in the expression on the right in (3.3) for 

k = 
) at step n, and let

Nn+1

 =

[
nn+1


,ab

]
, nn+1


,ab =
∫
D

(
�wn+1


 · ∇φb

)
· φa, 
 = 1, . . . ,nξ .

Let n̂ = max(nν, nξ ) and, if needed, define A
 = 0 for nν < 
 ≤ n̂ and Nn+1

 = 0 for nξ < 
 ≤ n̂. Then in analogue to (2.19)

define matrices

Fn+1
1 = 2M + kn+1A1 + kn+1Nn+1

1 , (3.8)

Fn+1

 = kn+1A
 + kn+1Nn+1


 , 
 = 2, . . . , n̂, (3.9)

which are incorporated into the block matrices

Fn+1
1 =

[
Fn+1

1 BT

B 0

]
, Fn+1


 =
[

Fn+1

 0
0 0

]
, 
 = 2, . . . , n̂. (3.10)

These operators will be coupled with matrices arising from terms in T p ,

H
 = [
h
, jk

]
, h
, jk ≡ E

[
ψ
ψ jψk

]
, 
 = 1, . . . ,nν, j,k = 1, . . . ,nξ . (3.11)

Combining the expressions from (3.10) and (3.11), using the ordering (3.6) yields the discrete stochastic Oseen system(
n̂∑


=1

H
 ⊗Fn+1



)
v = y, (3.12)

where ⊗ denotes the matrix Kronecker product. The entries of the vectors v and y are ordered as in (3.6). Note that H1 is 
the identity matrix of order nξ .

Remark 3.2. With this ordering, which we used also in [37], the coefficient matrix contains a set of nξ block 2 × 2 matrices 
of saddle-point structure along its block diagonal, given by

Fn+1
1 +

n̂∑

=2

h
, j jFn+1

 , j = 1, . . . ,nξ .

This enables the use of existing deterministic solvers for the individual diagonal blocks.
6
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We find it convenient to formulate the solvers in the so-called matricized format. To this end, we make use of iso-
morphism between Rnxnξ and Rnx×nξ determined by the operators vec and mat. Let nx = nu + np and consider writing 
the solution of (3.12) using the ordering (3.6) as v = [v T

1 , v T
2 , . . . , v T

nξ
]T , where vk = [�uT

k , pT
k ] for k = 1, . . . , nξ as in the 

expansions on the right in (3.3). Then we write v = vec(V), V = mat(v), where v ∈ Rnxnξ , V ∈ Rnx×nξ and the upper/lower 
case notation is assumed throughout the paper, so Y = mat(y), etc. Specifically, we define the matricized coefficients of the 
solution expansion

V = mat(v) = [
v1, v2, . . . , vnξ

] ∈Rnx×nξ , (3.13)

where the column k contains the coefficients associated with the basis function ψk . In this setting, since (V ⊗ W) vec (X) =
vec

(
WXVT

)
, the linear system (3.12) can be equivalently written as

n̂∑

=1

Fn+1

 VH
 = Y. (3.14)

The time-step selection is driven by the formula (2.14), which we heuristically modify as follows. First, we run the 
deterministic solver with viscosity ν = ν1 and record the set of time steps 0, t1, t2, . . . , T . Then, we divide size of each 
interval [tn, tn+1] by nξ , and we further round down the time-step size to the nearest power of 10. This procedure yields 
a sequence of time steps, which is then used for evolution of the stochastic Galerkin method. We note that an alternative 
strategy could be utilized by using the gPC coefficients corresponding to the mean velocity directly in formula (2.14), that 
is without an a priori run of the deterministic solver.

3.3. Sampling methods

Both Monte Carlo and stochastic collocation methods are based on sampling. This entails the solution of a number of 
mutually independent deterministic problems at a set of sample points

{
ξ (q)

}
, which give realizations of the viscosity (3.2). 

That is, a realization of viscosity ν
(
ξ (q)

)
gives rise to deterministic functions �u (·, ·, ξ (q)

)
and p 

(·, ·, ξ (q)
)

on D that satisfy 
the standard deterministic Navier–Stokes equations, and to corresponding finite-element approximations.

In the Monte Carlo method, the nMC sample points are generated randomly, following the distribution of the random 
variables ξ , and moments of the solution are obtained from ensemble averaging. In addition the coefficients in (3.3) could 
be determined at time tb using2

uik(tb) = 1

nMC

nMC∑
q=1

�u (q) (xi, tb) ψk

(
ξ (q)

)
,

where for tb , b = 1, . . . , nb , we will consider an a priori set of time barriers, which is used in implementation to enforce 
all nMC instances of the deterministic solver to step through. For stochastic collocation, the sample points consist of a set of 
predetermined collocation points. This approach derives from a methodology for performing quadrature or interpolation in 
multidimensional space using a small number of points, a so-called sparse grid [11,28]. There are several ways to implement 
stochastic collocation to obtain the coefficients in (3.3). In the basic variant of the method, it is possible proceed either by 
constructing a Lagrange interpolating polynomial, or, in the so-called pseudospectral approach, by performing a discrete 
projection [39]. We use the pseudospectral approach because it facilitates a direct comparison with the stochastic Galerkin 
method, and we refer, e.g., to [23] for an overview and discussion of integration rules. In particular, the coefficients in (3.3)
are determined at time tb using a quadrature rule

uik(tb) =
nq∑

q=1

�u (q) (xi, tb) ψk

(
ξ (q)

)
w(q),

where ξ (q) and w(q) , q = 1, . . . , nq , are the collocation (quadrature) points and weights. Finally, we note that the other ways 
to perform stochastic collocation include the least-square approach and the compressed sensing approach see, e.g., [5,17,18,
27].

4. Numerical experiments

We implemented the method in Matlab using the IFISS 3.5 package [6,35], and in this section we present results of 
numerical experiments for a model problem given by a flow around an obstacle. The geometry of the problem is shown 

2 In numerical experiments, we avoid this approximation of the gPC coefficients and directly work with the sampled quantities.
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Fig. 4.1. Finite element mesh for the flow around an obstacle problem.

in Fig. 4.1. The discretization of the physical space consists of 12, 640 velocity and 1640 pressure degrees of freedom. 
The viscosity was taken to be a lognormal process, and its representation was computed from an underlying Gaussian 
random process using the transformation described in [12]. That is, for 
 = 1, . . . , nν , ψ
 (ξ) is the product of mξ univariate 
Hermite polynomials, and denoting the coefficients of the Karhunen-Loève expansion of the Gaussian process by g j (x) and 
η j = ξ j − g j , j = 1, . . . , mξ , the coefficients in expansion (3.2) are computed as

ν
 (x) = E [ψ
 (η)] exp

⎡⎣g0 (x) + 1

2

mξ∑
j=1

(
g j (x)

)2

⎤⎦ .

The covariance function of the Gaussian field, for points Xi = (xi, yi) ∈ D , i = 1, 2, was chosen to be

C (X1, X2) = σ 2
g exp

(
−|x2 − x1|

Lx
− |y2 − y1|

L y

)
,

where Lx and L y are the correlation lengths of the random variables ξi , i = 1, . . . , mξ , in the x and y directions, respectively, 
and σg is the standard deviation of the Gaussian random field. The correlation lengths were set to be equal to 25% of 
the width and height of the domain, i.e. Lx = 3 and L y = 0.5. The coefficient of variation of the lognormal field, defined 
as CoV = σν/ν1 where σν is the standard deviation, was set to either 1% or 10%. The stochastic dimension was mξ = 2. 
The degree used for the polynomial expansion of the solution was pξ = 3, and the degree used for the expansion of the 
lognormal process was 2pξ , which ensures a complete representation of the process in the discrete problem [26]. With these 
settings, nξ = 10 and nν = n̂ = 28, and H
 is of order 10 in (3.12). For the mean value of viscosity we used ν1 = 0.02, which 
corresponds to mean Reynolds number Re1 = 100, and ν1 = 6.67 × 10−3, which corresponds to mean Reynolds number 
Re1 = 300. We note that the steady-state case was studied in [37], and the setup for the (deterministic) time-dependent 
problem is the same to [7, Chapter 10] except that the length of the channel was set to 12. Specifically, the initial condition 
for velocity was taken zero, and the Dirichlet boundary condition on the inflow ∂ DDir (the left side) was smoothly ramped 
up from zero to steady state as �u (·, t) = (

1 − e−5t
) �w , where �w is a Poiseuille (parabolic) flow profile, no-flow condition was 

prescribed on the top and bottom walls and natural ‘do-nothing’ condition was used on the outflow boundary (the right 
side). The initial time step was set to k0 = 10−9, and the problem was evolved from t0 = 0 s to T = 10 s. The time-stepping 
method described in Section 2 was used for each sample of viscosity ν

(
x, ξ (q)

)
for both Monte Carlo and the stochastic 

collocation methods, and the method from Section 3.2 was used for the stochastic Galerkin method. In order to compare 
the gPC coefficients at the a priori chosen set of times, which we will refer to as time barriers, we prescribed the stochastic 
Galerkin solver to step through certain times, and we used the same set also for the Monte Carlo simulation in order to 
compare probability density function estimates of the velocity obtained by using all three methods. Specifically, we used 
time barriers tb = {0, 0.1, 0.2, 0.5, 1, 2, 5, 6, 8, 10}.

The evolution of the time step for the two deterministic cases with mean Reynolds numbers Re1 = 100 and Re1 = 300
and for the stochastic Galerkin method is shown in Fig. 4.2. We note that the heuristic used for the stochastic Galerkin 
methods yields the same time-step selection for both values of the Reynolds number. Specifically, only three steps with size 
10−9 are performed at the very beginning, then the step size increases to 10−6 and eventually to 10−5 for the most part of 
the first second. For the next two seconds it becomes 10−4 and eventually 10−3 for the rest of the time.

Now, let us consider first the case of Re1 = 100 and CoV = 10%. Fig. 4.3 shows the evolution of the gPC coefficients of 
the horizontal velocity, and the symbols � and × represent the results of Monte Carlo and stochastic collocation at some 
of the time barriers. It can be seen that all methods are in agreement. Fig. 4.4 shows the mean horizontal velocity, Fig. 4.5
the variance of the horizontal velocity, and Fig. 4.6 the variance of the vertical velocity at times 0.1 s, 1 s and 10 s. From 
these figures it can be seen that the flow quickly evolves during the first second, and the later changes are relatively less 
dramatic. It can be seen that there is symmetry in all the quantities, the mean values are essentially the same as we would 
expect in the deterministic case [7], and the variance of the horizontal velocity component is evolving to be concentrated in 
two “eddies” and it is larger than the variance of the vertical velocity component. In fact, it appears that all quantities are 
already at time 10 s close to the steady state, see also Figs. 4.13 and 4.14. A different perspective on the solution is given 
by Fig. 4.7, which displays evolution of the probability density function (pdf) estimates in several points of the domain at 
times 0.1 s, 1 s and 10 s. The left panels show the pdf estimates of the velocity in x direction at points with coordinates 
(4.0100, −0.4339) (top), (4.0100, 0.4339) (bottom), where the variance of the velocity is relatively large cf. Fig. 4.5. The 
8
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Fig. 4.2. Evolution of the time-step size for the deterministic problems with Reynolds numbers Re1 = 100 and Re1 = 300 and for the stochastic Galerkin 
method (SG).

Fig. 4.3. Evolution of the gPC coefficients corresponding to the horizontal velocity in terms of 
2-norm for mean Reynolds number Re1 = 100 and CoV =
10%. The symbols � and × represent the results of the Monte Carlo and stochastic collocation, respectively, at times 0.1 s, 1 s and 10 s.

right panels show the estimates at point (3.6436, 0) which is slightly downstream from the obstacle: the estimate in the x
direction in the top panel and the estimate in the y direction in the bottom panel. The results were obtained using Matlab’s
ksdensity function. It can be seen that the changes of the mean values of the pdf estimates are relatively large during 
the first second, and then the uncertainty gradually increases and the supports of the pdf estimates grow as the solution 
evolves away from the deterministic initial condition and the effect of the stochastic viscosity becomes evident.

Next, let us consider the case of Re1 = 300 and CoV = 1%. Fig. 4.8 shows the evolution of the gPC coefficients of the 
horizontal velocity. It can be seen that with increased Re1 it takes more time for the flow to develop, including the stochastic 
components of the solution despite lower CoV than in the previous problem. Again, all methods are in agreement. Fig. 4.9
then shows the mean horizontal velocity, Fig. 4.10 the variance of the horizontal velocity, and Fig. 4.11 the variance of 
the vertical velocity, all at times 0.1 s, 1 s and 10 s. The mean quantities are quite similar to what would be expected in 
the deterministic case, and the variances reflect on more complex behavior of the fluid at the higher value of Re1. Finally, 
Fig. 4.12 displays evolution of the probability density function (pdf) estimates at the same set of points of the domain and 
times as Fig. 4.7, and all three methods are again in agreement.

Finally, we compare the results of the stochastic Galerkin method applied to the steady-state problem with mean 
Reynolds number Re1 = 100 and CoV = 10%, which was studied by Sousedík and Elman in [37], and the results of the 
long-term integration at time 100 s. Specifically, a comparison of the mean horizontal velocity is shown in Fig. 4.13, and 
Fig. 4.14 displays the variance of the horizontal velocity. By comparing the two figures, it can be seen that the results are 
virtually identical.
9
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Fig. 4.4. Mean horizontal velocity at times 0.1 s (top), 1 s (center) and 10 s (bottom) for mean Reynolds number Re1 = 100 and CoV = 10%.

Fig. 4.5. Variance of the horizontal velocity at times 0.1 s (top), 1 s (center) and 10 s (bottom) for mean Reynolds number Re1 = 100 and CoV = 10%.

4.1. Preconditioning of the Oseen problem

The solution of the Oseen problem (3.12) in each time step of the stochastic Galerkin method is a computationally 
expensive task. Therefore, use of a preconditioned Krylov subspace method may be preferred over a direct solver. To this 
end, we used the right-preconditioned flexible GMRES (fGMRES) method [32] with the so-called mean-based preconditioner 
M−1

1 : R �−→ V, which entails solving a linear system

M1V = R, (4.1)

where R and V are the matricized coefficients of the gPC expansions, cf. (3.13). Specifically, M−1
1 denotes an action of the 

pressure convection-diffusion (PCD) preconditioner, see [21, Section 3] and [7, Section 9.2.2], which is motivated by the 
block inverse of the matrix Fn+1

1 in (3.10). It can be specifically written as

M−1
1 =

[ (
Fn+1

1

)−1 (
Fn+1

1

)−1
BT X−1

0 −X−1

]
, (4.2)

where Fn+1
1 is the matrix from (3.8), and X−1 is the pressure convection-diffusion term

X−1= A−1
p Fn+1

p M−1
p .
10



Fig. 4.6. Variance of the vertical velocity at times 0.1 s (top), 1 s (center) and 10 s (bottom) for mean Reynolds number Re1 = 100 and CoV = 10%.

Fig. 4.7. Estimated probability density functions at times 0.1 s, 1 s and 10 s (left to right, all panels) of the horizontal velocity at points with coordinates 
(4.0100, −0.4339) (top left), (4.0100, 0.4339) (bottom left), and of the horizontal (top right) and vertical (bottom right) velocities at the point (3.6436, 0)

for mean Reynolds number Re1 = 100 and CoV = 10%.

First, we used LU factorizations of the matrices from (4.2), which are updated in each time step. Since the solves with the 
(mean) matrix M1 are thus exact, this illustrates the approximation properties of the mean-based preconditioner. Then, 
we also used the IFISS implementation of the PCD iterated preconditioner, in which the solves involving both Fn+1

1 and 
Ap = BT−1BT , where T is the diagonal of the velocity mass matrix, are replaced by a single V-cycle of AMG using the IFISS 
default parameters, and the solve with the pressure matrix Mp is effected by five Chebyshev iterations, see [7, Section 10.3]. 
The construction of the matrix Fn+1

p is described in [7, Chapter 9]. We note that the AMG implementation is based on

HSL_MI20 [3]. All tests started with a zero initial iterate and stopped when the relative residual was reduced to 10−8

in the Euclidean norm. The numbers of fGMRES iterations for solves in the time interval [0,10s] with the exact mean-
based preconditioner (4.1) are shown in Fig. 4.15. It can be seen that at most three iterations were needed in all steps. 
A comparison of the exact mean-based preconditioner (LU) and its PCD iterated variant (AMG) is illustrated by Fig. 4.16. 
It can be seen that the numbers of iterations are the same in most cases, or it takes at most one extra step for the PCD 
B. Sousedík and R. Price Journal of Computational Physics 468 (2022) 111456
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Fig. 4.8. Evolution of the gPC coefficients corresponding to the horizontal velocity in terms of 
2-norm for mean Reynolds number Re1 = 300 and CoV = 1%. 
The symbols � and × represent the results of the Monte Carlo and stochastic collocation, respectively, at times 0.1 s, 1 s and 10 s.

Fig. 4.9. Mean horizontal velocity at times 0.1 s (top), 1 s (center) and 10 s (bottom) for mean Reynolds number Re1 = 300 and CoV = 1%.

Fig. 4.10. Variance of the horizontal velocity at times 0.1 s (top), 1 s (center) and 10 s (bottom) for mean Reynolds number Re1 = 300 and CoV = 1%.
12
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Fig. 4.11. Variance of the vertical velocity at times 0.1 s (top), 1 s (center) and 10 s (bottom) for mean Reynolds number Re1 = 300 and CoV = 1%.

Fig. 4.12. Estimated probability density functions at times 0.1 s, 1 s and 10 s (left to right, all panels) of the horizontal velocity at points with coordinates 
(4.0100, −0.4339) (top left), (4.0100, 0.4339) (bottom left), and of the horizontal (top right) and vertical (bottom right) velocities at the point (3.6436, 0)

for mean Reynolds number Re1 = 300 and CoV = 1%.

iterated variant to converge. Thus both exact and iterated versions of the mean-based preconditioner are suitable for the 
problems studied in our numerical experiments.

5. Conclusion

We studied the time-dependent Navier–Stokes equations with stochastic viscosity, which was given in terms of a poly-
nomial chaos expansion. For this problem, we developed a stochastic Galerkin method with adaptive, mean-informed time 
stepping. We applied the method to a popular benchmark problem given by a flow around an obstacle, and we compared 
the solution of the time-dependent problem after the transient to that of the corresponding steady-state problem. Next, 
since the time-stepping scheme is fully implicit, a linear solve with the stochastic Galerkin matrix is required in each time 
step. Use of direct solvers may be prohibitive due to the large size of the systems, and in fact it is even not desirable to form 
the matrices explicitly. Therefore, we also formulated a preconditioner, which is used by the right-preconditioned flexible 
13
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Fig. 4.13. Mean horizontal velocity obtained using the stochastic Galerkin methods for the steady-state problem (top), and at time 100 s (bottom) with 
mean Reynolds number Re1 = 100 and CoV = 10%.

Fig. 4.14. Variance of the horizontal velocity obtained using the stochastic Galerkin methods for the steady-state problem (top), and at time 100 s (bottom) 
with mean Reynolds number Re1 = 100 and CoV = 10%.

Fig. 4.15. Numbers of fGMRES iterations with the exact mean-based preconditioner for mean Reynolds number Re1 = 100, CoV = 10% (top), and Re1 = 300, 
CoV = 1% (bottom).

GMRES method, and allows to solve the stochastic Galerkin systems efficiently. We studied two variants of the precondi-
tioner. The first variant is based on exact factorization of the matrix corresponding to the underlying mean problem, and the 
second one was an iterated variant by means of an algebraic multigrid solver. In the numerical experiments we observed 
that the performance of the exact and iterated variants of the preconditioner was virtually identical, and only a couple 
of GMRES iterations were needed for convergence in all time steps. Therefore, the proposed stochastic Galerkin method 
is designed as a wrapper around an existing code for the corresponding deterministic problem, and in fact an efficient 
14
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Fig. 4.16. A comparison of the exact mean-based preconditioner (LU) and its PCD iterated variant (AMG) in terms of the numbers of fGMRES iterations for 
mean Reynolds number Re1 = 100, CoV = 10% (top), and Re1 = 300, CoV = 1% (bottom).

solver for the deterministic problem is the essential component also for the method presented in this study. Finally, we also 
compared the stochastic Galerkin solution with the stochastic collocation and Monte Carlo solutions, and we observed an 
excellent agreement for all problems studied in our numerical experiments.
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