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Abstract. We describe the design and implementation of a virtual
machine for programming languages that use gradual typing with
set-theoretic types focusing on practical issues such as runtime
space efficiency, and efficient implementation of tail recursive calls.

1 INTRODUCTION

Gradual typing is an approach proposed by Siek and Taha [23] to
combine the safety guarantees of static typing with the program-
ming flexibility of dynamic typing. In gradually typed programs
some parts of a program may be given types and their correctness is
checked at compile time (which is static typing), while some other
parts are left untyped and any eventual type errors are reported
at run-time (which is dynamic typing). Programmers may spec-
ify which parts are which by using suitable type annotations. A
gradually-typed program is then rejected at compile time only if
the statically typed parts do not type-check and/or if there exists
some dynamically typed parts for which there are always failures
at runtime (e.g., the application of a number to an argument).

Recently, gradual typing has received a lot of attention both from
academia and industry. It is becoming the standard approach for
adding static typing to dynamic languages such as, among others,
JavaScript [2, 9, 20, 21], PHP [10], Python [19, 30], Clojure [3], and
Scheme [28, 29]. These designs often include the use of union, in-
tersection and, to a lesser extent, negation types (the set-theoretic
types of the title), because such types are needed to capture many
programming patterns common in dynamic languages. For instance,
union and intersection types are present (in more or less limited
forms) and heavily used in TypeScript [2], Flow [9] (two gradually-
typed versions of JavaScript by Microsoft and Facebook, respec-
tively) and Typed Racket [29] (a gradually-typed version of Scheme),
while support for negation types are in a pull request for TypeScript.
The compilers of these latter extensions do not implement gradual
typing to its full extent. As we explain later, for a gradually typed
language to be “sound”, the compiler must insert dynamic type
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checks (called type casts) in the compiled code at the boundaries
between the untyped and typed parts of the program. These checks
provide strong type-based guarantees that can be used by the pro-
grammer and the compiler to reason about and optimize statically
typed code. Instead, TypeScript, Flow, and Typed Racket forgo these
runtime checks, and compile both the typed and untyped parts to
an underlying untyped language, which, as usual, performs perva-
sive runtime checking. While this approach still guarantees that
programs “do not get stuck”, it does not provide the strong type-
based guarantees of sound gradual typing. For example, it allows a
number to mascarade as a string inside of statically typed code!
There are two main reasons for not implementing gradual typing
thoroughly. One is somehow philosophical: you may not want
to change the semantics of the dynamically typed language on
which gradual types are grafted (especially when this is a very
popular language such as JavaScript); type annotations are then
just debugging and documentation glosses that must not alter the
program they are added to. The other is eminently practical: the
addition of dynamic type checks in the run-time code may hugely
penalize performance [27]; to limit this impact special care must be
taken in defining the compilation of untyped code and the execution
of the compiled code [1, 18].

This degradation of performances for sound gradual typing has a
main culprit: the use of higher order functions in untyped code
which yields a compiled code where dynamic type tests are ap-
plied to unknown functions. As we explain in Section 2.3, the only
reasonable way to cast a function to a particular type is to de-
lay the runtime check to the moment of its application and check
that its argument and result are both of the expected types. This
delayed checking is accomplished by proxying the function, and
when a function passes through many casts, it would naively be
wrapped in a long chain of proxies, making performance utterly
degrade. Resolving this problem requires specific implementation
techniques [18].

The degradation of performances just described is dramatically
amplified by the presence of union and intersection types: while in
their absence determining the type expected for the input and the
output of a function is just the matter of reading a couple of fields,
the presence of union and intersection type makes this operation
more complicated and computationally demanding; and since this
computation must be performed at runtime, it adds a further critical
overhead to the performance bottleneck of sound gradual typing.
No implementation techniques have been developed to handle this
further overhead, yet.

To summarize, gradual typing is the approach chosen by major IT
actors to inject a dose of static typing into dynamic languages, but
this injection also requires the use of union and intersection types.
To provide stronger soundness guarantees the compiler must insert
dynamic checks into the compiled code, but this may dramatically
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degrade performances. While compilation and implementation tech-
niques exist for standard type structures, there is no equivalent
for union and intersection types. This lack constitutes an objec-
tive obstacle to the adoption of sound gradual typing for dynamic
languages. This work aims at filling this gap, by defining a virtual
machine that copes with the overhead of using set-theoretic types.
Before presenting the formal development we discuss some exam-
ples to give a more detailed account of the context.

Gradual Typing. The main idea of gradual typing is to introduce
the type ? to represent the unknown type. For example, the type
Int — ? is the type of a function which will output an element of
unknown type when given an input of integer type. Types with
unknown components stem from either explicit annotations or
because they are deduced. For instance in

let foo (x : ?) = x + 1

let bar (x : ?) = x

let baz (x : Int) = bar(x)
it is natural to assign the type ? — Int to foo, ? — ? to bar, and
Int — ? to baz. This is so because in gradual typing the types Int
and ? are consistent, that is, they are two types that at runtime may
turn out to be the same (in particular because the ? may turn out to
be any type and, thus, Int).! A gradual type-checker checks that
types are consistent rather than equal, which is why it allows to
use expressions of type unknown ? where an expression of a static
type such as Int is expected (e.g., the x in the body of foo) and
use an expression of a static type such as Int where an expression
of unknown type is expected (e.g., the x in the body of baz). The
absence of type annotation can be either treated as an implicit ?
annotation (dynamic languages are a special case of it) or by using
classic type reconstruction techniques (as in ML).

Cast Calculus. In practice, if an expression e of type ? is used in
a context that requires an integer, such as e + 1, the gradual type
checker will consider that ? is consistent with Int, and the expres-
sion e + 1 will type-check. But this might backfire, at runtime, if
e evaluates to anything else than an integer. In order to ensure
that this is not the case, the compiler will insert in the program
safeguards that dynamically enforce type constraints on gradually-
typed expressions. For instance, e+1 will be compiled into e(Int)+1
where e(Int) is a type-cast expression that dynamically checks
whether the result of e has type Int. In particular, foo will be com-
piled as foo(x : ?) = (x(Int) + 1). The target language of this
compilation, with explicit type-casts, is called a cast calculus.

Let us recap the process with the following example:

let f (condition) (x : ?) =
if condition then x + 1 else —x
This is a function that takes two arguments, condition and x, and
returns either x+1 if condition is true, or the negation of x, —x,
if condition is false. This code is typed with Bool — ? — ? by
gradual type system of Siek and Vachharajani [24]. This knowledge
is then used to insert dynamic type checks to ensure that the value
bound to x will be, according to the case, an integer or a Boolean:
let f (condition) (x : ?) =
if condition then x<Int> + 1 else —(x<Bool>)

!For example the three types of foo, bar, and baz are pairwise consistent, but the
type Bool — ? is consistent only with the first two.
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But looking again at this example, we see that its derived type
Bool — ? — ? is quite imprecise. For example, if we pass a value
that is neither an integer nor a Boolean (e.g., a list) as the last
argument x to f, then this application is well-typed due to the type-
casts which enforces the type of x, even though the execution will
always fail, independently of the value of condition. Likewise, the
type gives no useful information about the result of f, even though
it will clearly be either an integer or a Boolean, and nothing else.
This problem can be solved by using more precise types and, in this
case, set-theoretic types.

Set-theoretic types. Set-theoretic types include intersection types
t1 Atz, union types t1 Viz, and negation types —t. These constructors
respect naive set intuitions, so that an expression of type t; and
t; can be given the type t; A t2, etc. In our previous example, they
allow the programmer to annotate the argument x more precisely:
let f (condition) (x : (Int | Bool) & ?) =
if condition then x<Int> + 1 else —(x<Bool>)

<

where “|” denotes union and “&” denotes intersection. The union
(Int | Bool) indicates that a value of this type is either an integer
or a Boolean, and the intersection indicates that x has both type
(Int | Bool) and type ?. Intuitively, this type annotation means
that the function f accepts for x a value of any type (which is
indicated by ?), as long as this value is also either an integer or a
Boolean. The use of the intersection of a union type with “?” to
type a parameter corresponds to a programming style in which the
programmer asks the system to statically enforce that the function
will be applied only to arguments in the union type and delegates to
the system any dynamic check regarding the use of the parameter
in the body of the function. The system by Castagna et al. [7] is
able to deduce for this code example the type:

Bool — ((Int | Bool) & ?) — (Int | Bool)

The return type is no longer gradual, thanks to set-theoretic types.
This is a useful feature as more precision in types may be a source
of optimizations. In this case, it might be crucial for the run-time
type checker or the compiler to have the information that the result
will be of type (Int | Bool). However, the use of set-theoretic
types brings new complexity issues when dealing with casts. In this
example, it was easy to reconstruct the return type of f because the
operators + and negation — had simple static types: respectively,
IntxInt—Int and Bool—Bool. But set-theoretic types encode
complex function types whose return types are not obvious and
need to be computed. For example, intersection types can be used to
encode ad-hoc polymorphism (a.k.a., function overloading), where a
piece of code acts on more than one type with different behavior in
each case. See the type 7 = (Int — Int) A (Bool — Bool), which
denotes functions that will return an integer if applied to an integer,
and will return a Boolean if applied to a Boolean. It is possible to
compute the domain of such a type (i.e., of all functions of this
type), denoted by dom7 = Int V Bool, that is the union of all the
possible input types. But what is the precise return type of such a
function? It depends on what the argument of such a function is:
either an integer or a Boolean—or both, denoted by the union type
Int vV Bool. Therefore, an operator on types needs to be defined
which we denote by o. More precisely, we denote by 7j o 75 the type
of an application of a function of type 71 to an argument of type 7.
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In the example with 7 = (Int —» Int) A (Bool — Bool), it gives
roInt =1Int, roBool =Bool,and ro (IntVBool) = Int Vv Bool.
The execution of a cast calculus with set-theoretic types requires
the operations of domain and result to be computed at run-time (e.g.,
when an unknown function is cast to the type 7 above), likewise
for the subtyping relation. In this paper we show how to limit the
impact of these computations on performance.

Overview. In Section 2, we start by presenting the intuitions be-
hind the gradual set-theoretic types, we describe the main chal-
lenges to obtain a space efficient implementation, and we formally
describe the cast language implemented by our virtual machine:
its syntax, dynamic, and static semantics. Section 3 describes our
virtual machine and how to compile the cast language into its byte-
code. Section 4 studies the space efficiency of our machine and
Section 5 its time efficiency via a chosen set of benchmarks. Dis-
cussion of related work of future extension and a conclusion end
the presentation. For space reasons, several definition and all the
proofs are relegated to an appendix available online. The source
code of our virtual machine and of the benchmarks is available at
https://github.com/gliboc/cast-machine.

2 CAST LANGUAGE

In this section we present the cast language implemented by our
virtual machine. The syntax is that of the cast language by Castagna
et al. [7] tweaked for efficient implementation. In particular, we
modify the syntax of casts to remove unessential parts and to mem-
oize the information about the domain of function types (for the
reasons we explain in Section 2.2). So our casts will be of the form
(r1)72, where 75 is used to store information about the domain of
71 when this is a function type and it is L otherwise. We do not
explain how to compile a gradually-typed program into a program
of the cast language since this is essentially? the same as in [7]. To
define the cast language we have to introduce the gradual types
and their subtyping relation (the consistency relation is factored out
by the compilation), the syntax of the calculus and its dynamic and
static semantics, as we do next.

2.1 Gradual set-theoretic types

Let b range over a set B of basic types (e.g., B = {Int,Bool}).
Following the approach of Castagna et al. [7], we define both grad-
ual and static (a.k.a. non-gradual) set-theoretic types as the terms
produced coinductively by the following grammars

tu=b|txXt|t—ot|tVi|-t]|0
tu=2|blrtxt|t—>r|rVvr|-r|0

static types
gradual types

and that satisfy the following conditions:
o (regularity) the term has a finite number of different sub-terms;
o (contractivity) every infinite branch of a type contains an infi-
nite number of occurrences of products or arrows.

We refer the reader to [13] and [7] for more explanation about these
restrictions. We introduce the following abbreviations for gradual

def def def
types: 71 A 1 e=—|(—|‘[1 \Y —|T2), 71 \ 2 e=‘[1 A1, 1 e=ﬂ(D, and

2The only difference is that whenever the compilation in [7] produces a cast of the

¢
form (' = 1) here we produce the cast (7)%"?
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likewise for static types. We refer to b, X, and — as type constructors
and to V, A, -, and \ as type connectives.

Type connectives are only truly meaningful in presence of a sub-
typing relation: union and intersection can respectively be defined
as the least upper bound and the greatest lower bound for this
relation, while 0 and 1 can be respectively defined as the extrema
of the lattice. In this work, we choose to reuse the semantic subtyp-
ing relation defined on both static and gradual set-theoretic types
by Castagna et al. [7]. This definition being complex, we omit the
details in this paper, and instead give the following sound but not
complete set of rules for intuition:

1<1 7173 T2<T4
T<T r<i1 -7y < 07y 71 X7y 13X 7174
317 T2<14 T<11 TZ1T T1<7 17<7T
71— T S 1374 T<TI AT 1V ST

In particular, ? is only a subtype of itself and of 1, and the same
holds for =?.

2.2 Space Efficiency

There are two major problems one must solve when defining a
space-efficient cast language with set-theoretic types.

Function Application. The first problem concerns the application of
cast functions (i.e., of functions that have a cast applied to them).
This issue comes from the fact that checking the type of a function
against a cast is highly impractical. Consider for example:

let f (x : ?) = if x = 42 then 42 else true

This function can be given the dynamic type ? — ?. Since, intu-
itively, ? stands for any type (or the absence of type), this function
can be cast to type Int — Int. Moreover, it is clear that, for a
certain value of its parameter (x = 42), this function returns an
integer. Therefore, there are some execution contexts where casting
this function to Int — Int is safe and will not produce a runtime
error. However, it is also clear that this function cannot be given
type Int — Int since it can also return a Boolean, and in some
execution contexts, such a cast would fail.

The solution to decide whether a cast function such as f(Int — Int)
should produce an error is to delay the evaluation of casts after the
application of the function, as is usually done in the gradual typing
literature [26]. The basic idea is to define a reduction rule for cast
functions that resembles the following one, where e(r) denotes a
cast of the expression e to the type 7 and v denote values:

(Bl vi{m—o)or — (01 02(r1)){2)

The presence of set-theoretic types make this problem much more
difficult however, because casts applied to functions can contain
arbitrarily complex types (intersections of unions of arrows). Hence,
we need to use operators on types to compute the domain and the
result type of an application. Using the operators outlined in the
introduction and formally defined in [5], the rule becomes:

Byl vi(r)oz — (01 v2(dom(2)))(z o type(vz))

where dom(7) computes the domain of 7, and 7 o 7/ computes the
result type of the application of a function of type 7 to an argument
of type 7/, and type(e) returns the type of the expression e.
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Cast Accumulation. The second problem concerns casts that accu-
mulate and create sequences of growing length. When the cast is
in tail position, it can blow up the return stack during execution.
For example, consider the mutually recursive functions:
let rec odd : Int -> ? = fun n ->
if n = @ then false
else (even (n-1))
and even : Int -> Bool = fun n ->
if n = @ then true
else (odd (n-1))
Originally, these functions are written by the programmer in a
gradually-typed language without casts, which corresponds to the
code above without the green parts (i.e., the casts). During type-
checking, the type annotation on function odd, which is Int—?,
drives the type-checker to add explicit type-casts that enforce ? to
be the return type of odd. In the same way, in the body of even,
the call to odd is considered to return an element of type ? and has
to be cast to Bool. Now, a naive evaluation of odd 5 would yield:

odd 5 (even 4)<?>

(odd 3)<Bool><?>

(even 2)<?><Bool><?>

(odd 1)<Bool><?><Bool><?>

(even 0)<?><Boo0l><?><Bool><?>

Ll

This short evaluation sequence highlights the problem many cast
semantics have, which is space-inefficiency due to the accumulation
of casts, possibly breaking tail-recursion. A solution that is used by
the Grift compiler [18] is to implement a calculus on these casts,
called the coercion calculus, in order to allow the composition of
casts. Space efficiency is then achieved with the reduction that takes
a chain-cast expression E{c1){c2) and computes E{c §c2) where the
$ operation normalizes the sequencing of coercions c; and ¢y into a
bounded-size representation. This approach has been carried out in
the context of a simply-typed language (with functions, products),
but it does not easily transfer to set-theoretic types.

We argue that, in the absence of blame-tracking, set-theoretic types
can easily solve this problem. Remark that, intuitively, if an expres-
sion can be successfully cast to 7 and to 7/, it means that it has both
of these types or, equivalently, that it has type 7 A 7’. Therefore, an
expression E (r) (r’) can be “compressed” to E (t A 7). This idea
is at the core of our space-efficient cast language we present next.

2.3 Language syntax

The expressions of the cast language are defined as follows (where
x € Var ranges over variables and ¢ over constants):

Expr Ex=x|c| y""fx.E| EE| E(z)T
| let x=E in E| if EEE | (EE) | mE

Typest 7:= 7| L

For the most part, this language is a standard A-calculus with con-
stants, pairs (E, E), projections n; E (with i € {1,2}), and a let con-
struct. (u™ 7% f x . E) stands for an abstraction explicitly annotated
with type 71 — 72, which uses f as a recursive binder. Intuitively,
the application of such a function to a value v (values are defined in
the next section) reduces to E [f := g™ % f x.E] [x := v]. More
importantly, the construct E (r)7 stands for an expression that is
cast to type 7, and that can safely be applied to elements of type 7,
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provided it is a function (otherwise, 7 = L). Leaving the exponent
part aside, this is a fairly standard cast construct [23, 26] where
only information about the target type is kept (we do not need the
source type, nor do we handle blame). If E reduces to some constant
¢ then E (r)7 reduces to c if ¢ has type 7, and fails otherwise.

The need for the exponent part comes from the fact that, as we
previously said, we merge successive casts together into a single
one (in our implementation space depends more on the number of
casts than on the form of their types). This operation is straight-
forward thanks to set-theoretic types: an expression E (r) (z’) is
“compressed” to E (t A t”). However, for function casts, a differ-
ent operation must be done on the domain of the cast. Using the
semantics for cast applications we described before, an applica-
tion v (Int — Int) (? — ?) (Bool — Bool) v’ must never suc-
ceed, since this would result in the argument o’ being cast from
Bool to ? to Int before being passed to the function v, and no
value can be of both types Bool and Int. However, if we were
to merge these casts naively, we would obtain the application
v {(Int — Int) A (2 > ?) A (Bool — Bool))v’. Since (Int —
Int)A(? — ?)A(Bool — Bool) is a subtype of (Int V?VBool) —
(IntVv? V Bool), then in particular this application will succeed
whenever v’ is of type either Int or Bool, which would be unsound.
More formally, the issue is that taking the intersection of two func-
tion types increases their domains (the domain of an intersection
being the union of the domains), while casting a function to two
different types makes it less likely to succeed when applied. To
compress casts by intersections, thus, we record casts on the do-
main of a function independently from its type, hence the exponent.
In particular we now compress E (7)™ (/) into E (1 A 7/)71/\%,
Adding this information to casts, the previous application becomes
v (Int = Int)I"t (?  ?)? (Bool — Bool)B°l ¢/, which reduces
tov {(Int — Int)A(? = ?) A(Bool — Bool))IntA?ABool,/ Thjg
expression will then always fail, since the type of the argument is
now checked against the exponent, and Int A? A Bool is empty
(since Int A Bool is so) and thus no value can have this type.

2.4 Big step semantics

We present the big step semantics of the cast calculus since it is
closer to our our virtual machine (cf. Theorem 2). The (equivalent)
small step semantics is used just to state the type safety property
and omitted for space reasons (it can be found in Appendix ??). First
we define the syntax of values, for which we partition the set of
constants (ranged over by c) in functional constants (i.e., constants
with a function type) ranged over by o € Functionals and non
functional ones ranged over by k € Constants:

Func u:=o| p" " fx.E
val  v:=k| (vo)] [u&@7]|"
Mark m:= x| O

The operator type is defined on values v € Val as:
m
type([w & (r)2]™) =u
type k =B(k) A?A=?
type (v1,02) = type v1 X type v;
3This operator is used to get the type of values that are used as arguments of an

application in order to compute the result type of the application. For more details on
the definition, especially in the case of constants, see the Section 2.5 (cf., rule [CONsT]).
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where B maps non functional constants into their basic type. Our
values include closures [u, &, <T>T] ™ which are formed by a func-
tional expression u, an environment & which is a finite function
Var — Val, a pair of types and, at the index, a mark m. This mark
distinguishes between two cases: when m = 0O, it means that the
cast (r)7 is waiting to be applied to the function inside the closure;
when m = %, (r)7 is kept as a static type information regarding
this function, but the closure will be applied without adding or
enforcing type-casts. In other terms, O-closures represent func-
tions to which a cast is applied (they will be reduced by using f))
while x-closures are usual functions without any cast (they will
be reduced by the usual ff). We distinguished between functional
constants o and constants k, because we want to have a support for
pre-defined functions in our language (e.g., +, incr, ...), and because
casts behave differently on these two kinds of constants.

Closures are created by capturing the current environment and the
type in the abstraction. At first, such a closure should not enforce
any typing constraints, hence the x mark. Functional constants are
wrapped into similar closure only with empty environments since
they do not have free variables needing to be bound.

Er T fx E= (07" fx E &, (11 > )7 ]*
Then, the following rules handle function application. The first,
[Bx], is a standard untyped function application that corresponds
to the standard f-reduction. The second, [fg], enforces cast con-
straints on the arguments and on the result of the application, which
this time corresponds to the rule [§,] outlined earlier. We denote
by &{x := v} a copy of & which outputs v when given x.

ErE = =y fx.E &, «k]*
ErE =0 E{x=vy fr=v1}FE>0v
EFEIEy; >0

[Bx]

EFE = [u & (m)?]7 v =[u &, (m)?2]*
ErEy =0 Etr 02<T2>d0mr2 = 03
& + (0193)(71 © type(vp))®n (motPe(®)) = o
[ﬁD] EFEIEy >0

Let us see how [ ] works. When applying a closure [u, &, {(r1)%]",
the index type 72 should already capture the type of the argument.
Therefore, the argument E; is evaluated to a value vy and then
cast to v3 using 2. During that time, the type 7 = 71 o type(vz)
is computed in order to best approximate the result type of the
function call. Finally, (01 03)(z)%" 7 can be evaluated, where 0; is
the closure of the beginning whose mark has been set to x, meaning
that the next reduction used will be the untyped one, [fx].
The problem of accumulating casts is solved by systematically re-
ducing such proxies both on constants and on closures. Reduction
of casts on closures is achieved by the following rule:

ErE= [u &, (r5)"]™
EFE(m)? = [u, &, (n Aws)2"7]"
This rule uses intersection types to compress type-casts on closures.
As we show in Section 4, this representation is bounded in space
according to the number of type annotations in the source program.
After computing the new type-cast, the closure is tagged with O

in order to signify that it should be applied using rule [fg], which
enforces type constraints.

IFL’19, September 2019, Singapore

In order to reduce casts on constants, we consider the fact that
the gradual part of a cast does not influence the result of the cast.
Indeed, if we cast an integer to a gradual type, as in 42<IntA?> or
42<BoolA?>, the only parts of theses casts that have a consequence
are Int or Bool, since ? could represent anything. Therefore, we
can erase ? in both these casts, and re-apply the newly-obtained
cast. To this purpose we define the extrema of gradual types in
order to be able to cast constants to gradual types.

DEFINITION 1. (Gradual Extrema) For every gradual type T,

o the gradual maximum t is obtained by replacing every covariant
occurrence of ? by 1, and every contravariant occurrence by 0

o the gradual minimum U is obtained by replacing every contravari-
ant occurrence of ? by 1, and every covariant occurrence by 0

This definition is made so that the type-cast from B(k) to 1 will
succeed whenever B(k) < r,T—i.e., that it is not a problem to
ignore the gradual part of the cast that is erased by taking the
gradual extrema, since all constants are implicitly gradually typed

i

(see Footnote 1). The condition resulting from, written B(k) < 7/,
is implemented by the two following rules, which imply the full
reduction of casts on constants:

ErE=k Bk)<tl &+rEsk Bk £l

EFEm2 =k E+ E(r)™ = Fail
The full set of rules for the big step semantics can be found in
Figure 10 in the annexes.

2.5 Type System

Since a cast language is not meant to be used by a programmer,
but rather by the compiler as an intermediate language, defining
its type system is only necessary to prove the soundness of its
semantics, which is the point of this section. The type systems uses
most of the standard rules of a simply-typed lambda-calculus with
pairs plus classic subsumption for subtyping:

F'rE: 7
'rE: 7
However, there are two major differences coming from the typing
rules for non-functional constants and for casts, stated as follows:

TrE: 7
Trk:Bk) A?A 2 TrE(m)® 1

The rule for casts states that, since 71 is the most precise type that
can be given to E(r;)™ if the cast succeeds, we simply give this
type to the expression, provided E is well-typed. Notice that both =
and 7 are disregarded by the rule

The rule for constants is certainly the most bizarre one. Intuitively,
this rule should be understood in this way: a constant k can be given
type B(k) (which is its expected type), but can also be implicitely
downcast to type ? and to —?. This comes from the fact that, in
order to further optimize space consumption, we chose to remove
all casts on non-functional constants. Consider for example the cast
constant 42<?>: this cast can never be the cause of an error, as a
value can always be cast to the dynamic type, independently of its
type. Therefore, such a cast can be removed without altering the

[SuBsUME] <7

[ConsT]

[CasT]

“This reduction erases the information given by having type-casts such as ? on con-
stants. Our type system will take that into account by adding a typing rule which
allows the type-checker to implicitly type constants by “?” (and by “—?” as well).
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semantics of the program. However, this means in particular that
42<?>, which is of type ?, reduces to 42, which would intuitively
be of type Int. Such a reduction would violate type preservation,
hence the need for the rule [ConsT] which allows constant to be
implicitely consider of type ?.

The part =? can be understood with the same reasoning, as ? and —?
are actually semantically equivalent (but incomparable for subtyp-
ing). Indeed, since ? can intuitively represent any type 7, it can also
represent the negation of any type —7. Therefore, =? can represent
any double negation -, thus any type 7.

Using this type system, we can then prove for small step semantics
the traditional lemmas from which the type safety theorem follows:

LEMMA 1 (PRESERVATION). IfT +E : tand E—E’, thenT + E’ : 7.

LEMMA 2 (PROGRESS). IfT + E : 7 and E is closed, then either E is a
value or E— E’ for some E’.

THEOREM 1 (TYPE SAFETY). IfT + E : 7 and E is closed, then either
E diverges, or E—* v for some value v, or E—* Fail.

In order to prove that using [ fg] is practical, we now build a virtual
machine that computes function calls space-efficiently.

3 VIRTUAL MACHINE

In this section we define our virtual machine and the compilation
of the cast language into it. The main interest of our machine is
that it provides a space-efficient implementation in presence of
set-theoretic types. The two main problems of space-efficiency
which we tackle are the efficient representation of casts and the
compression of suite of casts (a sensitive problem in the presence
of tail recursive calls of functions with cast).

3.1 Structure

A state of our machine is a 4-tuple (c, e, s, d) composed of a code
pointer c, the current environment e, an operand stack s, and a con-
trol stack d (also called “dump”) which handles return frames. The
last three components of the machine are defined by the following
grammar (the code c is defined below).

su= @|lv.s|K.s| Q.s Operand Stack
du= @] k.d] (ce).d Control Stack
ex= Q| v.e Environment
MVal  v:i= c¢| (v,v) | [c,ek]™ Machine Values
k== (0)F Type-casts
ko= Tt Type Pairs
mu= x| 0O Reduction Marks

The stack stores machine values v which encode the values of
the cast language), type-casts k, used to cast machine values that
were pushed on the stack, and a failure mark Q which denotes the
failure of a cast. Machine values MVal include constants, pairs, and
closures [c, e, k]™ containing a piece of code c, an environment e,
a type-cast x and a mark which indicates how to apply the closure,
similarly as in Section 2.4 in the big-step semantics. Each machine
value MVal is associated to its minimal (w.r.t. subtyping) type by
the type operator defined as:

type ([c, e, (r1)®]™)
type (c)
type ((v1,v2))

1
B(c) A?A=?
type(v1) X type(vz)
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As for the operational semantics in Section 2.4, the mark O in a
closures indicates that this closure has a cast pending to be applied,
while the x mark indicates that a closure does not require any casts
to be applied. No closure can contain a cast of the form (z)+, which
is a pattern that indicates a cast that may only succeed on constants,
and which fails on functions. However this pattern, in the form of
K, can appear on both the operand and the control stack.

The code of the virtual machine is a suite of instructions defined as

follows:
cu= @] instr;c
instr:= | push obj Stack push
| app | ret Function call
| tap Tail app
| tca & Cast tail app
| cast Type-cast
| ifz(c,c) Conditional
| let | end Let binders
| pair Pairs
obj:= n|k|ol|(ck)]| & n € Integers
o= X|+|—| =] fst| snd

The push instruction injects identifiers, constants, closures, and
types into the execution by pushing them onto the stack. Pair
of types k are passed around in the stack and used by the tca
instructions to create, compress, and apply casts at the execution.

3.2 Compilation

Our machine uses De Bruijn indices. To replace variables with
indices, compilation uses a list of variables p and calls lookup p x
which returns the index of the first occurrence of x in p.

The compilation process is decomposed into two functions. The
function C[]], : Expr — Bytes is the general one. It calls 7] to
compile expressions of that cast language that are in tail position,
that is, the bodies of functions and the bodies of let expressions
that are in tail position:

Clelp = push ¢

Clx]p = push (Lookup p x)

Clu™=" fx.E]p = push (T[[E]]f'x.p, <T1—>T2>T1)
CIE(m)™]p = push (11)%; C[E]p; cast
ClE1 E2], = C[E]p: C[E]p: app

C[[let x=E1 in Ez]]p
C[(E1, E2)], =
T [E1 E2]p

T[(E1 E2) {m1)™]p
T[[let x=E1 in Ez]]pz

C[E1]p; let; C[Ez]x.p; end
C[E1lp; C[E2]p ;s pair

CHEal 5 C[[Ezﬂp 5 tap
ClE1]p; ClEz2]p ;s tca (r1)™
C[[El]]p; let; ‘T[[Ez]]x_p

TE], = C[E]p; ret

Our machine follows a classic eval-apply pattern with some speci-
ficities. In particular, the evaluation of a p-abstraction pushes on
the stack (see the definition of push further on) the closure which
contains the body of the function (compiled for tail position), an
environment containing both the parameter and the recursion vari-
able, and a cast formed by the type annotation of the function and
indexed with its domain. Applications are evaluated from left to
right by the instruction app. When they are in tail position appli-
cations are compiled using the tap instruction that—contrary to
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app—does not save the calling context. If a cast is applied to a tail
call, then the special tca instruction is used instead: acccording to
the case, this instruction composes the cast on the tail call with the
one on the top of the dump or the one in the callee, thus avoiding
the problem of accumulation of casts we described before. Finally,
casts that are not applied to tail calls are simply handled as plain
operators whose arguments are first pushed on the stack and then
evaluated by the execution of the cast instruction.

3.3 Transitions

3.3.1 Parameter functions. Several functions allow us to abstract
functionalities of the virtual machine. The push¢(0bj, s) function
handles adding elements to the stack.

pushe(n,s) =e(n).s
pushe(k, s) =k.s
pushe((c,x),s) =[c,ek]*.s
pushe (%, s) =K.s

The composition of two pairs of types is defined as the symmetric

operator that satisfies:

™5™

0§t =

fZ;TJ' = (T/\Tl)J'
)TZ/\T4

71
(A3
The cast function implements the application of casts on constants
or closures using intersections to compress successive applications
of function casts.

k ifB(k) <l

[ce (i Ar3)2AT]T if F# L
Q in all other cases

cast (k, Tlfz)

cast (<& (m)2]™, 77
cast (v, k)

The dump d can contain either call frames or type pairs, which is
what allows the elimination of tail calls even with casts on them.
During a tail call, this function accumulates casts on top of the
dump stack, in order to apply the resulting cast when the tail calls
are over and the result of the computation is returned.

dump (K1, k2.d) = (k15k2).d
dump (%, (c,e).d) =k.(c,e).d
dump (K, @) =K

The table in Figure 1 describes the complete set of transitions of
the virtual machine. There are three kinds of reduction: the usual
function application [f4], tail function calls [tf4], and cast tail
function calls [c¢f«]. While the first two are standard, the third
one mixes a tail function call and a delayed cast application. It
works by pushing a type-cast on the dump to be applied later, while
performing a tail function call. There exists a typed version of each
of these reductions: [fg], [tfn] and [cfg] which are performed
when the closure applied has a type-cast on it. Finally, the return
instruction ret is also performed by two transitions: the usual one
[R«], which replaces the current frame by the top frame on the
dump; and a typed one [Rg], which applies the type-cast on top of
the dump to the current value on top of the stack.

3.4 Example

Let us compute odd 5 from the odd/even example of Section 2.2.
By inlining the function even into the definition of odd, we can
compile odd into a piece of bytecode c,qq, which is put inside the
closure [Coqq, €, (Int — 2)I"t]*. Now, we want to compute:

Clodd 5], = push odd;push 5;app
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These several key points illustrate the most important transitions
used to compute odd 5 (abstracting inessential details away, such
as De Bruijn indexes and recursion variables):

o First, the function call odd 5 is handled by regular application:
(app, e, [Codd, €, (Int = DHINt]* 5, @)
= (ot n=5}.¢", 2, (2,0))

e Then, the code of odd is executed and, since n = 5 is not zero,
the conditional branch for the code (even (n-1)) is chosen.
This expression is in tail position and consists of a cast on a
function call. Therefore, the [c¢fx] transition is applied and
adds a type-cast “?” on the dump stack. Then, a tail call tap is
executed, that is, a function call that does not push the current
frame on the dump stack.

(tca?, (n:=5}.¢, [Cevem e, (Int — DINT* 4 (g, e))
> (tap, {n=5}.¢’, [ceven s (Int > DIM]* 4,2 (2,))
- (Ceven, {n:=4}.¢",2,?.(2, e))

e The execution of Ceyep is similar to the one of cy4q, and adds
to the dump the typecast Bool which composes with the cast ?
already on the top of the dumyp, resulting in the following:

- (codd, (n:=3}.¢’, @, (Bool A?). (2, e))

o These cast tail calls keep decreasing the value of n, building up
a single type-cast on top of the dump, until even 0 is called,
which returns true. But since a type-cast has been put on the
dump stack, the result true must pass this type-cast before being
returned, which yields the following final execution:

(push true;ret, {n:=0}.e”, @, (Bool A?). (2, e))
- ( ret, {n:=0}.e”, true, (Bool A?). (2, e))
- (cast sret, {n:=0}.e””, (Bool A?).true, (2, e))
- ( ret, {n:=0}.e”, true, (@, e))

—>(®, e, true, @)

This example shows how the mechanism for handling casts on tail
calls work in our virtual machine, by compressing type-casts on
the dump stack using intersection types. Next we prove that this
mechanism respects the semantics of our language.

We denote by [ ] the function that maps the cast language values v
into the corresponding machine values v, and extend it to environ-
ments [E] pointwise. The link between the big step semantics and
the virtual machine, is stated by the following theorem.

THEOREM 2 (SOUNDNESS). For every term E and environment &, if
EFE = o, thenV(c,s,d) (C[E] ;¢ [E],s d) =*(c, [E], [v].s, d)

3.5 Symbolic casts

A drawback of this virtual machine is that it relies on high-order
operations on types: dom, o, A (see the three _fig rules in Figure 1).
Thank to the representation of types we describe in Section 4.1.1,
intersection are less costly than the first two, since they consist of a
simple merge of Binary Decision Diagrams (BDDs). This is why we
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BEFORE AFTER
sp push obj;c c
— e \ s \ d e \ pushe(0bj, s) | d
B app;c c’
— e ‘ v.[c,e’ k]*. s ‘ d [c/,e’,k]*.v.e’ [ s [ (c,e).d
Pn app;c cast;app;cast;c T =11 o type v
— e | v[c e/ /(m)?]%s | d]e | vp® [ e (m)?]*r™s [ d
By tap;c c’
— e | vIciek]*s | d [’ k*ve’ [ s | d
tfa tap;c cast ; tca 79°M 7T ¢ T =11 otype v
—- |e ‘ v.[c/, e {r)2] . s \ d e \ V.M [ e’ ()2 ]*. s \ d
Ry ret;c c’
— e [ V.S [ (c’e)d e’ [ V.S [ d
Rg ret;c cast;ret;c
— e | vs | kd e [ vk.s [ d
cPx tcak;c tap;c
— e | viciex]*s | d e | viIcex]*.s | dump(&,d)
cfa tcak;c cast;tca (k;rdomf) ;C 7 =1 0type v
—- |e ‘ v.[c/, e (r)2] . s \ d e \ V@M 2 [cf e’ (r)2]*. s \ d
cl cast;c @ cast (1,K) = Q
— e [ V.K .S [ d ) [ Q.s [ (c,e).d
c cast;c C -
- e \ v.K.s \ d e \ v.s \ d cast (&) =’
LET let;c C
— e [ V.S [ d v.e [ s [ d
END end;c
— ve [ s | d e[ s [ d

Fig. 1: Transitions of the virtual machine

concentrate on dom and o and explore the possibility of delaying The transition rules of this virtual machine with symbolic casts
their application in a symbolic structure for casts. stay the same, except for the three rules described in Figure 2.
This yields a variant of the virtual machine, which differs from the
first in that it replaces pairs of types k by symbolic casts : 4 SPACE EFFICIENCY
>Bytes c:= @] instr;c In this section we study the space efficiency of our virtual machine.
zu= k| domz | app,(2) There are two space-related problems to be considered: (1) the
instr:= ...| tcaz | ... memory blueprint of casts created during the execution (2) the
Symbolic casts encode in their structure the calls to domain dom size of the structures (the three stacks for control, operands, and
and cast composition o, and they are lazily evaluated by eval: environment) during the execution.
eval (doms) =79"7%  witheval (5) = ;72
dom = ) ; 4.1 Castrepresentation and compression
eval (app,z) =r%"7 witheval () =17 ) ) ) ]
andr, =110 T Our operational semantics uses intersection types to compress

types, and the type operators (dom, o) to build new casts. To achieve
space efficiency, we need to show that the representations of these
type-casts are bounded in size. For this aspect of the space efficiency

Structures. The structures of the machine are slightly different as
well, as again we replace pairs of types kK with symbolic casts 3.

2val vi= c| (nv) | [cex]™  Machine values we can actually provide a formal proof based on the cast language
sw= @|v.s|zs|Q.s Operandstack itself. Let |E| be the cast language expression obtained from erasing
du= @] 3.d](ce).d Control stack all casts from E. We have
Parameter functions. Since intersections are not symbolic opera- THEOREM 3. For each program E there exists a constant factor ¢ such
tions, the composition of two symbolic pairs 21, £ is defined as: that for all E/, if E—* E’, then size(E") < c - size(|E’)).
e = st = (tAn)t
nsn™ = (1 Ar)2hT where size is a function defined on the cast language which mea-

1535 = eval (31) geval (32) sures the size of the representation of an expression. This theorem
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Po app;c cast;app;cast;c

—- |e \ v.[c, e, 5], s \ dil e \ v.3g.[c e, 5% 5.5 \ d
tfn tap;c cast;tcax,;c

— e [ vicez]%s [ d][ e | vizglc e s*s | d
cfa tcaz;;c cast;tca (21§ %) ;¢

— e [ vices%s [ d]f e | viglc e/ s*s [ d

Fig. 2: Modified transitions of the virtual machine with symbolic casts (with 3, = appiype ,(2) and %4 = dom(3))

states that the space required for the execution of a program which
uses the type annotations of gradual typing is bounded, as it stays
within a constant factor of the space required to execute the same
untyped program. In other terms, the space used by casts during
the execution is bounded by a factor constant at all times. To see
this we need to be more precise and define the size required to
represent a program:

sizex = sizec =1
size (E1 E2) = size (E1,E2) = 1+size E1 + size E2
size (7; E) =1+sizeE

size (E(r1)™) =1+ sizeE + size 11 + size 73
Establishing a bound on the size of the representation of types
used during execution—which is the difference in size between
untyped and typed versions of a program—is key to the proof of
this theorem. The existence of this bound is due to the fact that in
our machine types are represented by Binary Decision Diagrams
(BDD). So in the definition above the size of a type is the size of the
BDD representing it.

4.1.1 Binary decision diagrams. The subtyping algorithm for set-
theoretic types works with types in disjunctive normal forms, which
are best represented by Boolean functions [4]. It follows that the
classic representation structure for set-theoretic types is BDDs. We
will now present the representation of set-theoretic types which
is used in CDuce, and therefore in the implementation of our vir-
tual machine. First, we introduce an equivalent definition for types
based on atoms. Let b range over a set 8B of basic types. Gradual
set-theoretic types are the possibly infinite terms produced coin-
ductively by

Atoms a: b|?| t—>r1

alrtvrt| -] 0

Types T
with the same condition and abbreviation as in Section 2.1. Frisch
et al. [13] proved that every type is equivalent to (i.e., denotes the
same set of values as) a type in Disjunctive Normal Form:

\/ /\ap/\ /\ﬂan (1)

iel pEPi neN;

BDDs are defined by the grammar B:= 1| T | a?B:B and
have the following interpretation:

[T] =1

[L] =0

[a?Bi:B2] = (aA[Bi])V (ma A [B2])
which allows to convert any BDD to a type in disjunctive normal
form—see Figure 3 for an example. To ensure that the atoms oc-
curring on a path are distinct, a total order is defined on the atoms

Fig. 3: BDD for (a; A az) V (a1 A —az A az) V (ma; A —as)

which imposes that on every path the order of the labels strictly
increases. Besides, hash consing is used for atoms and, thus, sev-
eral occurrence of the same atom (e.g., a3 in Fig. 3) share the same
representation. Hence the depth of a BDD is upper-bounded by the
number of atoms available to build it. This yields the result:

LEMMA 3. For B a BDD, let A = {a € B} be the set of distinct atoms
in B, and o = | A|, we have
size(B) < 2% log, a + Z sizea & Cq
aceA

In this formula, we consider the maximum number of nodes of a tree
of depth a, which is 2. All the distinct atoms are stored separately
using size )}, 4 size a, each node of the tree being a reference to a
stored atom (i.e. of size log, 0(),5 What we now prove is that, in fact,
the set of distinct atoms that can be used to build casts for a given
program is fixed and does not vary during the execution. An initial
cast expression E contains a bounded amount of type annotations
and type-casts, from which only a bounded amount of atoms can be
extracted. And because the creation of type-casts in the operational
semantics is conservative in that it never creates any new atom, we
can bound the size of any BDD-represented type-cast during the
execution of a program by C #, with A the set of distinct atoms
initially derived from the program. Formally:

THEOREM 4. Let E be a cast expression. There exists a finite set of
atoms A such that for all E’, if E—* E’, then every type-cast oc-
curring E’ is represented by a BDD using exclusively atoms from A.

COROLLARY 5. Any type-cast {r1)% in E’ is bounded in size, by
size (11)"2 < 2CH

Theorem 4 comes from the fact that the operations on types used at
run-time do not create new atoms. To create new casts the machine
uses type intersection A, and the domain and result operators dom, o.
Let us describe how each operation handles atoms:

Intersections: consider the intersection of two BDDs. Let B; and
By denote generic BBDs, By = a1?C; : Dy, By = a3?Cy : Ds.
Intersections of BDDs are defined as follows:

1AB=BAL=1 TAB=BAT=B

SThis is a conservative approximation: the actual representation of types is a record of
several BDDs, one for each type constructor, as described in Section 4.3 of [4].
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bench fun. calls | app (%) | tap(%) | tca (%)
sieve 2.6-10° [59.6% | 20.8% | 19.6%
odd-even | 107 ~ 0% 0% ~ 99%

Fig. 4: Benchmark of Space Consumption (Tail Calls)

a1?C1 ACy: D1 ADy foray =ay
BiABy=3a1?C1 ABy : D1 ABy foraj < ay
a?B1 ACy : By ADy foray > ay
This definition makes it clear that the atoms of B1 A By are included
in the union of the atoms of B1 and By, so no new atom is created.
The same property holds for union and negation.

Domain operator: if 7 is a function type then it can be represented
in disjunctive normal form as [13]:

r:\/ A(ap—mp)/\ /\ =(on— 1)

iel \peP; neN;
and its domain is defined as domz = A \/ o) (see [13]).
ielpeP;

Since unions and intersections do no create new atoms, then it is
enough to include in the initial set of atoms A all the atoms used
in the domain o, of every single function atom a = o), — 7, in E.

Result operator: for 7 the function type defined above, the codomain

is defined as
codr = \/ \/ p
ielpeP;

We know that, for any type o, the result types 7 o o will be formed
using the atoms 7}, of cod 7 — see the annexes for a formal definition
of 7 o 0 which makes this more explicit. Therefore, in the same way
as we did for the domain, adding all the atoms of the codomain
7p of every single function atom a = o, — 1 in E allows the
conservation of atoms when using the result operator o.

This principle of conservation allows us to conclude with Theo-
rem 4; and then, Corollary 5 yields a bound on the size of every
type-cast during the execution of a program E. Since our semantics
does not create chains of casts during execution, this allow us to
conclude that the space overhead of casts during execution is in-
deed, bounded, as stated in Theorem 3. For a formal proof of these
claims, the reader can refer to Section F in the annexes.

4.2 Tail recursion and stack space efficiency
The space-efficiency of this machine comes from three sources:

e a bounded representation for type-casts
o a semantics which reduces all chains of casts into a single one
e an instruction to handle casts on tail function calls

We formally proved in the previous section the first two points.
We studied the third on examples and by comparisons with other
works, but we did not provide a formal characterization of this
aspect. Instead, we ran a couple of benchmarks that confirmed
the efficiency in terms of function calls for the odd-even and sieve
programs (explained in next section). In particular, Fig. 4 shows the
distribution of functions calls over app calls (which perform usual
typed or untyped function application, saving the current frame on
the dump), the tap calls (which perform usual tail call, not saving
the frame), and the tca calls (which perform cast tail calls). When
the last percentages are high, it means that a significant portion
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bench tail call depth | non-tail call depth | dump len.
sieve 7942 1000 1009
odd-even | 107 1 2

Fig. 5: Benchmark of Space Consumption (Dump Size)

of typed app calls were avoided. Another important metric is the
size of the dump stack, which should be of the same order as the
maximum depth of non-terminal recursive calls. This is the case
both for sieve and for odd-even as shown in Figure 5. For a less
empiric characterization we plan as future work to build up on [8]
and find a class of space-efficiency to which our machine belongs.

5 PERFORMANCE

This work aims at alleviating the performance issues of a language
with gradual set-theoretic types. The two key ingredients we devel-
opped to achieve this are:

(1) Cast compression using set-theoretic types to prevent the accu-
mulation of multiple casts on an expression.

(2) Compressing casts in tail position using cast compression on
the dump stack.

We chose our benchmarks to test the impact of these two features.

5.1 Benchmarks

We describe each benchmark, and why it was chosen to test our
virtual machine.

Sieve This program finds prime numbers using the Sieve of Er-
atosthenes. It was among those which nailed in the coffin of
sound gradual typing in Takikawa et al. [27], with a mean over-
head of 100x compared to the untyped running times. The mean
overhead we obtain with our solution is 7.6x.

Odd-even This is the program we gave as an example in Sec-
tion 2.2: it computes whether an integer is odd or even using
two mutually recursive functions. Usually, in sound gradual typ-
ing, the typed version of this program is not tail recursive, which
incurs bad performances compared to the untyped version. In
our machine, it is tail recursive and we obtain an overhead of
1.5x, which goes down to 1.15x with symbolic optimizations.

Cast-acc This ad-hoc (and highly unrealistic) program was writ-
ten to illustrate a pitfall of our current optimization using sym-
bolic computations: it does not memoize previously done cast
computations. Here, we cast a function multiple times and then
use it repetitively, and the cost is higher with symbolic computa-
tions because casts on the function have to be recomputed with
each use. Knowing this pitfall exists makes the good perfor-
mances of the SymbolicCap runtime in the other benchmarks
even more interesting.

Polyadhoc This program, similarly to Odd-even, runs mutually
recursive functions, one which is statically typed, the other
which is partially typed. Except that this time, the cast inserted
in the code is not a basic type, but an intersection of arrow types.
It is essentially the same as Odd-even, except that domains
and result types are harder to compute.

5.2 Experimental Setup

We implemented our machine in OCaml. The project is about 3000
lines of code (available at https://github.com/gliboc/cast-machine),
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Fig. 6: Sieve Benchmark

and relies on the CDuce library for its representation of types
(https://gitlab.math.univ-paris-diderot.fr/cduce/cduce). Our tests
were executed on a machine with a CPU i7-5600U (Clock 2,6 GHz).

Runtimes. The execution times of the four benchmarks described
above are presented in Figure 7.

e The Typed runtime corresponds to a typed execution of the
program. There can be several typed versions, as in the case of
Sieve, or just one (the other cases).

e The Symbolic runtime corresponds to using casts where the
operations of domain and result are symbolic.

e The SymbolicCap runtime corresponds to the case in which
also the intersection of type-casts are symbolic.

e The Untyped corresponds to running the program without
any compiler-inserted casts.

What Figure 7 shows is that, as expected, the typed execution is
much slower than the untyped one. However, this overhead is rea-
sonable compared to the results obtained for sound gradual typing
by Takikawa et al. [27]. Moreover, the results show that there is
room for improvement, as we obtain better results by using sym-
bolic computations for casts. Finally, the benchmarks, in particular
cast-acc, strongly suggest that addition of memoization to the
computation of casts may further improve performance, yielding
important speed ups in particular cases.

5.3 Evaluation Criteria

There are many ways to optimize the code running in a virtual
machine. Here, we are interested in measuring the overhead that
occurs when executing different versions of a program annotated
with gradual types. A gradual type system allows both fully typed
and untyped versions of a program, and so does the machine we
built. The difference comes from using different reduction rules:
the untyped one, [f4], or the typed one [fg]. By comparing the
execution time of these different versions of the same programs,
which we call configurations, we intend to measure directly the
overhead of gradual typing on our machine.

Takikawa et al. [27] define the notion of N-deliverable to com-
pare different configurations: a configuration is N-deliverable if
its performance is no worse than an Nx slowdown compared to
the completely untyped configuration. Another interesting defi-
nition is that a configuration is N/M-usable if its performance is
worse than an Nx slowdown and no worse than an Mx slowdown
compared to the completely untyped configuration. Finally, for any
choice of N and M, a configuration is unacceptable if it is neither
N-deliverable nor N/M-usable. For N = 3 and M = 10, the sieve
benchmark in [27] concludes that most configurations incur an
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overwhelming overhead (on average, more than 100 times the un-
typed running time). We reproduce this benchmark on our machine
for comparison, and obtain the results of Figure 6.

The four bars of Figure 6 correspond to four configurations of
interest of the program sieve. This program consists in two modules:
(1) an implementation of streams using thunks and pairs; (2) an
implementation of the Sieve of Eratosthenes using the streams
module.

The different configurations we consider are obtained by variating
the degree of annotations in each of these modules. In particular:

Untyped: no type annotations, no type-casts

Typed: we annotated two functions in each module
Typed2: only the module streams is completely annotated
Typed3: only the code of sieve is completely annotated

We obtain an overhead of 5x for the Typed2 configuration, meaning
it is a 5-deliverable according to the metrics of Takikawa et al. [27],
and therefore a 3/10-usable. Similarly, Typed3 has an overhead of
around 10x compared to the untyped sieve. This is still significant,
but it is way faster than the maximum overhead of more than
110x obtained in Takikawa et al. [27] and still acceptable by the
reasonable standards of 3/10-usability.

5.4 Impact of Set-Theoretic Operators

Our implementation relies on the CDuce implementation to com-
pute four type operators: (1) decide subtyping <; (2) the domain
operator dom; (3) the apply operator o; (4) the intersection of types.
We tried to minimize the use of these operations in our machine
by using a symbolic representation of casts. Our implementation
of this technique yields the results seen in Figure 7. We notice in
particular that the most interesting configuration is the one which
uses symbolic intersections.

6 RELATED WORK

We followed an approach similar to the one from Siek and Garcia
[22], who built abstract machines for the gradually-typed lambda
calculus, and used parameterization to model several different se-
mantics for gradual typing such as eager or lazy cast checking, as
well as different kinds of blame tracking. This broad approach of
experimenting the different features of gradual typing with abstract
machine before plugging gradual type systems into real systems
reflects the current evolving state of gradual typing.

The problem of cast accumulation was recognized by Herman et al.
[16], who proposes a solution based on the coercions of Henglein
[15]. Siek et al. [26] present an efficient algorithm for compressing
coercions. Alternatively, Siek and Wadler [25] propose a solution
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based on compressing a sequence of casts into a pair of casts, to
and from the least upper bound of the types (with respect to type
precision). One can view the present paper as generalizing this
approach to languages with set-theoretic types and subtyping.
Contracts are a generalization of casts to handle arbitrary predi-
cates [12]. Greenberg [14] proves that the space overhead for con-
tracts can be bounded by a constant by taking care to never wrap
the same contract on a value multiple times. Feltey et al. [11] im-
plement and evaluate this approach in the Racket contract library,
which underlies the implementation of sound gradual typing in
Typed Racket. The approach that we present, based on the BDD
representation of types, enables finer-grained sharing which we
conjecture leads to better compression.

While the present paper focuses on efficiency but leaves out blame
tracking, Keil and Thiemann [17] develop an operational semantics
for intersection and union types that includes blame tracking, but
they do not consider space efficiency.

On a more set-theoretic perspective, an interesting approach is
dedicated to the inference of interfaces — the type constraints of
functions — and in particular of intersections of interfaces. This
type inference makes it possible to fully annotate a module more
quickly, in order to faster bridge the gap between untyped and
partially-typed performances. The paper [6] treats the subject, but
in a context of non-gradual set-theoretic types.

7 FUTURE WORK

Blame tracking. In gradual typing, blame tracking makes it possible
to find which cast in the code led to a failure. It should satisfy two
properties: blame safety, and type safety. Blame safety means that an
expression that could reduce to a value should never be blamed, and
soundness that a well-typed expression can either reduce to a value,
diverge, or be blamed. Our machine has difficulties in assigning
blame, because the compression of casts using type intersections
lose the information of blame labels.

However, it might be possible to compress the labels as well as the
casts. We conjecture that if a function terminates, then the sequence
of blame labels of its casts can be expressed as a regular expression
whose size is bounded according to the number of blame labels
in the original program. This regular expression would record the
arrival of each casts on an expression: therefore, when a type-cast
fails on a value, it would be possible to blame the earliest type-cast
that was incompatible with the value. A fallback solution would be
to handle sets of blame labels, of which there finitely many, instead
of regular expressions, but this would yield far less precise blames.

Benchmarks and Language Extensions. We would also like to test
more thoroughly our implementation by adapting the rest of the
benchmarks of Takikawa et al. [27], and by finding other tests
specific to set-theoretic types. There are also some language features
that could be of interest once our machine is sufficiently improved,
such as (i) using type intersections in annotations—currently it is
only possible to annotate functions with a function type and (ii)
extending the type system with polymorphism.

8 CONCLUSION

The goal of this work was to study the implementation of functional
languages using a gradual type system with set-theoretic types. Our

Giuseppe Castagna, Guillaume Duboc, Victor Lanvin, and Jeremy G. Siek

main contribution is our technique of combining intersection types
and domain caching to obtain a space efficient compression of cast
compositions. This, combined with various other implementation
techniques we described (caching of casts in closures, use of the
dump to efficiently implement cast application in tail position, the
symbolic computation of type operations) yields an implementation
satisfactory in space consumption and is not extremely penalizing
in time consumption. The time overhead due to set-theoretic types
is still too important but, as we discussed in Section 5 so is the room
for improvement, that we plan to explore in future work
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