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Abstract. We describe the design and implementation of a virtual

machine for programming languages that use gradual typing with

set-theoretic types focusing on practical issues such as runtime

space efficiency, and efficient implementation of tail recursive calls.

1 INTRODUCTION

Gradual typing is an approach proposed by Siek and Taha [23] to

combine the safety guarantees of static typing with the program-

ming flexibility of dynamic typing. In gradually typed programs

some parts of a programmay be given types and their correctness is

checked at compile time (which is static typing), while some other

parts are left untyped and any eventual type errors are reported

at run-time (which is dynamic typing). Programmers may spec-

ify which parts are which by using suitable type annotations. A

gradually-typed program is then rejected at compile time only if

the statically typed parts do not type-check and/or if there exists

some dynamically typed parts for which there are always failures

at runtime (e.g., the application of a number to an argument).

Recently, gradual typing has received a lot of attention both from

academia and industry. It is becoming the standard approach for

adding static typing to dynamic languages such as, among others,

JavaScript [2, 9, 20, 21], PHP [10], Python [19, 30], Clojure [3], and

Scheme [28, 29]. These designs often include the use of union, in-

tersection and, to a lesser extent, negation types (the set-theoretic

types of the title), because such types are needed to capture many

programming patterns common in dynamic languages. For instance,

union and intersection types are present (in more or less limited

forms) and heavily used in TypeScript [2], Flow [9] (two gradually-

typed versions of JavaScript by Microsoft and Facebook, respec-

tively) and Typed Racket [29] (a gradually-typed version of Scheme),

while support for negation types are in a pull request for TypeScript.

The compilers of these latter extensions do not implement gradual

typing to its full extent. As we explain later, for a gradually typed

language to be “sound”, the compiler must insert dynamic type
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checks (called type casts) in the compiled code at the boundaries

between the untyped and typed parts of the program. These checks

provide strong type-based guarantees that can be used by the pro-

grammer and the compiler to reason about and optimize statically

typed code. Instead, TypeScript, Flow, and Typed Racket forgo these

runtime checks, and compile both the typed and untyped parts to

an underlying untyped language, which, as usual, performs perva-

sive runtime checking. While this approach still guarantees that

programs “do not get stuck”, it does not provide the strong type-

based guarantees of sound gradual typing. For example, it allows a

number to mascarade as a string inside of statically typed code!

There are two main reasons for not implementing gradual typing

thoroughly. One is somehow philosophical: you may not want

to change the semantics of the dynamically typed language on

which gradual types are grafted (especially when this is a very

popular language such as JavaScript); type annotations are then

just debugging and documentation glosses that must not alter the

program they are added to. The other is eminently practical: the

addition of dynamic type checks in the run-time code may hugely

penalize performance [27]; to limit this impact special care must be

taken in defining the compilation of untyped code and the execution

of the compiled code [1, 18].

This degradation of performances for sound gradual typing has a

main culprit: the use of higher order functions in untyped code

which yields a compiled code where dynamic type tests are ap-

plied to unknown functions. As we explain in Section 2.3, the only

reasonable way to cast a function to a particular type is to de-

lay the runtime check to the moment of its application and check

that its argument and result are both of the expected types. This

delayed checking is accomplished by proxying the function, and

when a function passes through many casts, it would naively be

wrapped in a long chain of proxies, making performance utterly

degrade. Resolving this problem requires specific implementation

techniques [18].

The degradation of performances just described is dramatically

amplified by the presence of union and intersection types: while in

their absence determining the type expected for the input and the

output of a function is just the matter of reading a couple of fields,

the presence of union and intersection type makes this operation

more complicated and computationally demanding; and since this

computation must be performed at runtime, it adds a further critical

overhead to the performance bottleneck of sound gradual typing.

No implementation techniques have been developed to handle this

further overhead, yet.

To summarize, gradual typing is the approach chosen by major IT

actors to inject a dose of static typing into dynamic languages, but

this injection also requires the use of union and intersection types.

To provide stronger soundness guarantees the compiler must insert

dynamic checks into the compiled code, but this may dramatically
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degrade performances.While compilation and implementation tech-

niques exist for standard type structures, there is no equivalent

for union and intersection types. This lack constitutes an objec-

tive obstacle to the adoption of sound gradual typing for dynamic

languages. This work aims at filling this gap, by defining a virtual

machine that copes with the overhead of using set-theoretic types.

Before presenting the formal development we discuss some exam-

ples to give a more detailed account of the context.

Gradual Typing. The main idea of gradual typing is to introduce

the type ? to represent the unknown type. For example, the type

Int→ ? is the type of a function which will output an element of

unknown type when given an input of integer type. Types with

unknown components stem from either explicit annotations or

because they are deduced. For instance in

let foo (x : ?) = x + 1

let bar (x : ?) = x

let baz (x : Int) = bar(x)

it is natural to assign the type ? → Int to foo, ? → ? to bar, and

Int → ? to baz. This is so because in gradual typing the types Int

and ? are consistent, that is, they are two types that at runtime may

turn out to be the same (in particular because the ?may turn out to

be any type and, thus, Int).1 A gradual type-checker checks that

types are consistent rather than equal, which is why it allows to

use expressions of type unknown ? where an expression of a static

type such as Int is expected (e.g., the x in the body of foo) and

use an expression of a static type such as Int where an expression

of unknown type is expected (e.g., the x in the body of baz). The

absence of type annotation can be either treated as an implicit ?

annotation (dynamic languages are a special case of it) or by using

classic type reconstruction techniques (as in ML).

Cast Calculus. In practice, if an expression 4 of type ? is used in

a context that requires an integer, such as 4 + 1 , the gradual type

checker will consider that ? is consistent with Int, and the expres-

sion 4 + 1 will type-check. But this might backfire, at runtime, if

4 evaluates to anything else than an integer. In order to ensure

that this is not the case, the compiler will insert in the program

safeguards that dynamically enforce type constraints on gradually-

typed expressions. For instance, 4+1 will be compiled into 4 〈Int〉+1

where 4 〈Int〉 is a type-cast expression that dynamically checks

whether the result of 4 has type Int. In particular, foo will be com-

piled as foo(x : ?) = (x〈Int〉 + 1). The target language of this

compilation, with explicit type-casts, is called a cast calculus.

Let us recap the process with the following example:

let f (condition) (x : ?) =

if condition then x + 1 else ¬x

This is a function that takes two arguments, condition and x, and

returns either x+1 if condition is true, or the negation of x, ¬x,

if condition is false. This code is typed with Bool → ? → ? by

gradual type system of Siek and Vachharajani [24]. This knowledge

is then used to insert dynamic type checks to ensure that the value

bound to x will be, according to the case, an integer or a Boolean:

let f (condition) (x : ?) =

if condition then x<Int> + 1 else ¬(x<Bool>)

1For example the three types of foo, bar, and baz are pairwise consistent, but the
type Bool → ? is consistent only with the first two.

But looking again at this example, we see that its derived type

Bool → ? → ? is quite imprecise. For example, if we pass a value

that is neither an integer nor a Boolean (e.g., a list) as the last

argument x to f, then this application is well-typed due to the type-

casts which enforces the type of x, even though the execution will

always fail, independently of the value of condition. Likewise, the

type gives no useful information about the result of f, even though

it will clearly be either an integer or a Boolean, and nothing else.

This problem can be solved by using more precise types and, in this

case, set-theoretic types.

Set-theoretic types. Set-theoretic types include intersection types

C1∧C2, union types C1∨C2, and negation types¬C . These constructors

respect naive set intuitions, so that an expression of type C1 and

C2 can be given the type C1 ∧ C2, etc. In our previous example, they

allow the programmer to annotate the argument x more precisely:

let f (condition) (x : (Int | Bool) & ?) =

if condition then x<Int> + 1 else ¬(x<Bool>)

where “|” denotes union and “&” denotes intersection. The union

(Int | Bool) indicates that a value of this type is either an integer

or a Boolean, and the intersection indicates that x has both type

(Int | Bool) and type ?. Intuitively, this type annotation means

that the function f accepts for x a value of any type (which is

indicated by ?), as long as this value is also either an integer or a

Boolean. The use of the intersection of a union type with “?” to

type a parameter corresponds to a programming style in which the

programmer asks the system to statically enforce that the function

will be applied only to arguments in the union type and delegates to

the system any dynamic check regarding the use of the parameter

in the body of the function. The system by Castagna et al. [7] is

able to deduce for this code example the type:

Bool → ((Int | Bool) & ?) → (Int | Bool)

The return type is no longer gradual, thanks to set-theoretic types.

This is a useful feature as more precision in types may be a source

of optimizations. In this case, it might be crucial for the run-time

type checker or the compiler to have the information that the result

will be of type (Int | Bool ). However, the use of set-theoretic

types brings new complexity issues when dealing with casts. In this

example, it was easy to reconstruct the return type of f because the

operators + and negation ¬ had simple static types: respectively,

Int×Int→Int and Bool→Bool. But set-theoretic types encode

complex function types whose return types are not obvious and

need to be computed. For example, intersection types can be used to

encode ad-hoc polymorphism (a.k.a., function overloading), where a

piece of code acts on more than one type with different behavior in

each case. See the type g = (Int→ Int) ∧ (Bool→ Bool), which

denotes functions that will return an integer if applied to an integer,

and will return a Boolean if applied to a Boolean. It is possible to

compute the domain of such a type (i.e., of all functions of this

type), denoted by domg = Int∨ Bool, that is the union of all the

possible input types. But what is the precise return type of such a

function? It depends on what the argument of such a function is:

either an integer or a Boolean—or both, denoted by the union type

Int∨ Bool. Therefore, an operator on types needs to be defined

which we denote by ◦. More precisely, we denote by g1 ◦g2 the type

of an application of a function of type g1 to an argument of type g2.
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In the example with g = (Int→ Int) ∧ (Bool→ Bool), it gives

g ◦ Int = Int, g ◦ Bool = Bool, and g ◦ (Int∨ Bool) = Int∨ Bool.

The execution of a cast calculus with set-theoretic types requires

the operations of domain and result to be computed at run-time (e.g.,

when an unknown function is cast to the type g above), likewise

for the subtyping relation. In this paper we show how to limit the

impact of these computations on performance.

Overview. In Section 2, we start by presenting the intuitions be-

hind the gradual set-theoretic types, we describe the main chal-

lenges to obtain a space efficient implementation, and we formally

describe the cast language implemented by our virtual machine:

its syntax, dynamic, and static semantics. Section 3 describes our

virtual machine and how to compile the cast language into its byte-

code. Section 4 studies the space efficiency of our machine and

Section 5 its time efficiency via a chosen set of benchmarks. Dis-

cussion of related work of future extension and a conclusion end

the presentation. For space reasons, several definition and all the

proofs are relegated to an appendix available online. The source

code of our virtual machine and of the benchmarks is available at

https://github.com/gliboc/cast-machine.

2 CAST LANGUAGE

In this section we present the cast language implemented by our

virtual machine. The syntax is that of the cast language by Castagna

et al. [7] tweaked for efficient implementation. In particular, we

modify the syntax of casts to remove unessential parts and to mem-

oize the information about the domain of function types (for the

reasons we explain in Section 2.2). So our casts will be of the form

〈g1〉
g̃2 , where g̃2 is used to store information about the domain of

g1 when this is a function type and it is ⊥ otherwise. We do not

explain how to compile a gradually-typed program into a program

of the cast language since this is essentially2 the same as in [7]. To

define the cast language we have to introduce the gradual types

and their subtyping relation (the consistency relation is factored out

by the compilation), the syntax of the calculus and its dynamic and

static semantics, as we do next.

2.1 Gradual set-theoretic types

Let 1 range over a set B of basic types (e.g., B = {Int, Bool}).

Following the approach of Castagna et al. [7], we define both grad-

ual and static (a.k.a. non-gradual) set-theoretic types as the terms

produced coinductively by the following grammars

static types C ::= 1 | C × C | C → C | C ∨ C | ¬C | 0

gradual types g ::= ? | 1 | g × g | g → g | g ∨ g | ¬g | 0

and that satisfy the following conditions:

• (regularity) the term has a finite number of different sub-terms;

• (contractivity) every infinite branch of a type contains an infi-

nite number of occurrences of products or arrows.

We refer the reader to [13] and [7] for more explanation about these

restrictions. We introduce the following abbreviations for gradual

types: g1 ∧ g2 =
def

¬(¬g1 ∨ ¬g2), g1 \ g2 =
def

g1 ∧ ¬g2, 1 =
def

¬0, and

2The only difference is that whenever the compilation in [7] produces a cast of the

form 〈g′
ℓ

⇒ g 〉 here we produce the cast 〈g 〉domg

likewise for static types. We refer to 1, ×, and→ as type constructors

and to ∨, ∧, ¬, and \ as type connectives.

Type connectives are only truly meaningful in presence of a sub-

typing relation: union and intersection can respectively be defined

as the least upper bound and the greatest lower bound for this

relation, while 0 and 1 can be respectively defined as the extrema

of the lattice. In this work, we choose to reuse the semantic subtyp-

ing relation defined on both static and gradual set-theoretic types

by Castagna et al. [7]. This definition being complex, we omit the

details in this paper, and instead give the following sound but not

complete set of rules for intuition:

g ≤ g g ≤ 1

g1 ≤ g2
¬g2 ≤ ¬g1

g1 ≤ g3 g2 ≤ g4
g1 × g2 ≤ g3 × g4

g3 ≤ g1 g2 ≤ g4
g1→g2 ≤ g3→g4

g ≤ g1 g ≤ g2
g ≤ g1 ∧ g2

g1 ≤ g g2 ≤ g

g1 ∨ g2 ≤ g

In particular, ? is only a subtype of itself and of 1, and the same

holds for ¬?.

2.2 Space Efficiency

There are two major problems one must solve when defining a

space-efficient cast language with set-theoretic types.

Function Application. The first problem concerns the application of

cast functions (i.e., of functions that have a cast applied to them).

This issue comes from the fact that checking the type of a function

against a cast is highly impractical. Consider for example:

let f (x : ?) = if x = 42 then 42 else true

This function can be given the dynamic type ? → ?. Since, intu-

itively, ? stands for any type (or the absence of type), this function

can be cast to type Int → Int. Moreover, it is clear that, for a

certain value of its parameter (G = 42), this function returns an

integer. Therefore, there are some execution contexts where casting

this function to Int → Int is safe and will not produce a runtime

error. However, it is also clear that this function cannot be given

type Int → Int since it can also return a Boolean, and in some

execution contexts, such a cast would fail.

The solution to decidewhether a cast function such as f〈Int→ Int〉

should produce an error is to delay the evaluation of casts after the

application of the function, as is usually done in the gradual typing

literature [26]. The basic idea is to define a reduction rule for cast

functions that resembles the following one, where 4 〈g〉 denotes a

cast of the expression 4 to the type g and E denote values:

[V 〈〉] E1〈g1→g2〉 E2 −→ (E1 E2〈g1〉)〈g2〉

The presence of set-theoretic types make this problem much more

difficult however, because casts applied to functions can contain

arbitrarily complex types (intersections of unions of arrows). Hence,

we need to use operators on types to compute the domain and the

result type of an application. Using the operators outlined in the

introduction and formally defined in [5], the rule becomes:

[V 〈〉] E1〈g〉 E2 −→ (E1 E2〈dom(g)〉)〈g ◦ type(E2)〉

where dom(g) computes the domain of g , and g ◦ g ′ computes the

result type of the application of a function of type g to an argument

of type g ′, and type(4) returns the type of the expression 4 .
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Cast Accumulation. The second problem concerns casts that accu-

mulate and create sequences of growing length. When the cast is

in tail position, it can blow up the return stack during execution.

For example, consider the mutually recursive functions:

let rec odd : Int -> ? = fun n ->

if n = 0 then false<?>

else (even (n-1))<?>

and even : Int -> Bool = fun n ->

if n = 0 then true

else (odd (n-1))<Bool>

Originally, these functions are written by the programmer in a

gradually-typed language without casts, which corresponds to the

code above without the green parts (i.e., the casts). During type-

checking, the type annotation on function odd, which is Int→?,

drives the type-checker to add explicit type-casts that enforce ? to

be the return type of odd. In the same way, in the body of even,

the call to odd is considered to return an element of type ? and has

to be cast to Bool. Now, a naive evaluation of odd 5 would yield:

odd 5 → (even 4)<?>

→ (odd 3)<Bool><?>

→ (even 2)<?><Bool><?>

→ (odd 1)<Bool><?><Bool><?>

→ (even 0)<?><Bool><?><Bool><?>

This short evaluation sequence highlights the problem many cast

semantics have, which is space-inefficiency due to the accumulation

of casts, possibly breaking tail-recursion. A solution that is used by

the Grift compiler [18] is to implement a calculus on these casts,

called the coercion calculus, in order to allow the composition of

casts. Space efficiency is then achieved with the reduction that takes

a chain-cast expression �〈21〉〈22〉 and computes �〈21 #22〉 where the
# operation normalizes the sequencing of coercions 21 and 22 into a

bounded-size representation. This approach has been carried out in

the context of a simply-typed language (with functions, products),

but it does not easily transfer to set-theoretic types.

We argue that, in the absence of blame-tracking, set-theoretic types

can easily solve this problem. Remark that, intuitively, if an expres-

sion can be successfully cast to g and to g ′, it means that it has both

of these types or, equivalently, that it has type g ∧ g ′. Therefore, an

expression � 〈g〉 〈g ′〉 can be “compressed” to � 〈g ∧ g ′〉 . This idea

is at the core of our space-efficient cast language we present next.

2.3 Language syntax

The expressions of the cast language are defined as follows (where

G ∈ Var ranges over variables and 2 over constants):

Expr � ::= G | 2 | `g→g 5 G . � | � � | � 〈g〉g̃

| let G = � in � | if � � � | (�, �) | c8 �

Types⊥ g̃ := g | ⊥

For the most part, this language is a standard _-calculus with con-

stants, pairs (�, �), projections c8 � (with 8 ∈ {1, 2}), and a let con-

struct. (`g1→g2 5 G . �) stands for an abstraction explicitly annotated

with type g1→g2, which uses 5 as a recursive binder. Intuitively,

the application of such a function to a value E (values are defined in

the next section) reduces to � [5 := `g1→g2 5 G . �] [G := E]. More

importantly, the construct � 〈g〉g̃ stands for an expression that is

cast to type g , and that can safely be applied to elements of type g̃ ,

provided it is a function (otherwise, g̃ = ⊥). Leaving the exponent

part aside, this is a fairly standard cast construct [23, 26] where

only information about the target type is kept (we do not need the

source type, nor do we handle blame). If � reduces to some constant

2 then � 〈g〉g̃ reduces to 2 if 2 has type g , and fails otherwise.

The need for the exponent part comes from the fact that, as we

previously said, we merge successive casts together into a single

one (in our implementation space depends more on the number of

casts than on the form of their types). This operation is straight-

forward thanks to set-theoretic types: an expression � 〈g〉 〈g ′〉 is

“compressed” to � 〈g ∧ g ′〉 . However, for function casts, a differ-

ent operation must be done on the domain of the cast. Using the

semantics for cast applications we described before, an applica-

tion E 〈Int → Int〉 〈? → ?〉 〈Bool → Bool〉 E ′ must never suc-

ceed, since this would result in the argument E ′ being cast from

Bool to ? to Int before being passed to the function E , and no

value can be of both types Bool and Int. However, if we were

to merge these casts naively, we would obtain the application

E 〈(Int → Int) ∧ (? → ?) ∧ (Bool → Bool)〉E ′. Since (Int →

Int)∧(? → ?)∧(Bool → Bool) is a subtype of (Int∨?∨Bool) →

(Int∨? ∨ Bool), then in particular this application will succeed

whenever E ′ is of type either Int or Bool, which would be unsound.

More formally, the issue is that taking the intersection of two func-

tion types increases their domains (the domain of an intersection

being the union of the domains), while casting a function to two

different types makes it less likely to succeed when applied. To

compress casts by intersections, thus, we record casts on the do-

main of a function independently from its type, hence the exponent.

In particular we now compress � 〈g〉g1 〈g ′〉g2 into � 〈g ∧ g ′〉g1∧g2 .

Adding this information to casts, the previous application becomes

E 〈Int → Int〉Int 〈? → ?〉? 〈Bool → Bool〉Bool E ′, which reduces

to E 〈(Int → Int) ∧ (? → ?) ∧ (Bool → Bool)〉Int∧?∧BoolE ′. This

expression will then always fail, since the type of the argument is

now checked against the exponent, and Int∧? ∧ Bool is empty

(since Int∧ Bool is so) and thus no value can have this type.

2.4 Big step semantics

We present the big step semantics of the cast calculus since it is

closer to our our virtual machine (cf. Theorem 2). The (equivalent)

small step semantics is used just to state the type safety property

and omitted for space reasons (it can be found in Appendix ??). First

we define the syntax of values, for which we partition the set of

constants (ranged over by 2) in functional constants (i.e., constants

with a function type) ranged over by > ∈ Functionals and non

functional ones ranged over by : ∈ Constants:

Func D := > | `g→g 5 G . �

Val E := : | (E, E) |
[
D, E, 〈g〉g

]<
Mark < := ★ | �

The operator type3 is defined on values E ∈ Val as:

type(
[
D, E, 〈g1〉

g2
]<

) = g1
type : = B(:) ∧ ? ∧ ¬?

type (E1, E2) = type E1 × type E2

3This operator is used to get the type of values that are used as arguments of an
application in order to compute the result type of the application. For more details on
the definition, especially in the case of constants, see the Section 2.5 (cf., rule [Const]).
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where B maps non functional constants into their basic type. Our

values include closures
[
D, E, 〈g〉g

]<
, which are formed by a func-

tional expression D, an environment E which is a finite function

Var→ Val, a pair of types and, at the index, a mark<. This mark

distinguishes between two cases: when< = �, it means that the

cast 〈g〉g is waiting to be applied to the function inside the closure;

when< = ★, 〈g〉g is kept as a static type information regarding

this function, but the closure will be applied without adding or

enforcing type-casts. In other terms, �-closures represent func-

tions to which a cast is applied (they will be reduced by using V 〈〉)

while ★-closures are usual functions without any cast (they will

be reduced by the usual V). We distinguished between functional

constants > and constants : , because we want to have a support for

pre-defined functions in our language (e.g., +, incr, . . . ), and because

casts behave differently on these two kinds of constants.

Closures are created by capturing the current environment and the

type in the abstraction. At first, such a closure should not enforce

any typing constraints, hence the ★mark. Functional constants are

wrapped into similar closure only with empty environments since

they do not have free variables needing to be bound.

E ⊢ `g1→g2 5 G . � ⇒ [`g1→g2 5 G . �, E, 〈g1→g2〉
g1 ]★

Then, the following rules handle function application. The first,

[V★], is a standard untyped function application that corresponds

to the standard V-reduction. The second, [V�], enforces cast con-

straints on the arguments and on the result of the application, which

this time corresponds to the rule [V 〈〉] outlined earlier. We denote

by E{G := E} a copy of E which outputs E when given G .

E ⊢ �1 ⇒ E1 = [`g 5 G . �, E ′, ^]★

E ⊢ �2 ⇒ E2 E ′{G := E2 5 := E1} ⊢ � ⇒ E
[V★]

E ⊢ �1 �2 ⇒ E

E ⊢ (E1 E3)〈g1 ◦ type(E2)〉
dom (g1◦ type(E2)) ⇒ E

E ⊢ �2 ⇒ E2 E ⊢ E2〈g2〉
domg2 ⇒ E3

E ⊢ �1 ⇒ [D, E ′, 〈g1〉
g2 ]� E1 = [D, E ′, 〈g1〉

g2 ]★

[V�]
E ⊢ �1 �2 ⇒ E

Let us see how [V�] works.When applying a closure [D, E ′, 〈g1〉
g2 ]�,

the index type g2 should already capture the type of the argument.

Therefore, the argument �2 is evaluated to a value E2 and then

cast to E3 using g2. During that time, the type g = g1 ◦ type(E2)

is computed in order to best approximate the result type of the

function call. Finally, (E1 E3)〈g〉
dom g can be evaluated, where E1 is

the closure of the beginning whose mark has been set to★, meaning

that the next reduction used will be the untyped one, [V★].

The problem of accumulating casts is solved by systematically re-

ducing such proxies both on constants and on closures. Reduction

of casts on closures is achieved by the following rule:

E ⊢ � ⇒ [D, E ′, 〈g3〉
g4 ]<

E ⊢ � 〈g1〉
g2 ⇒

[
D, E ′, 〈g1 ∧ g3〉

g2 ∧g4
]
�

This rule uses intersection types to compress type-casts on closures.

As we show in Section 4, this representation is bounded in space

according to the number of type annotations in the source program.

After computing the new type-cast, the closure is tagged with �

in order to signify that it should be applied using rule [V�], which

enforces type constraints.

In order to reduce casts on constants, we consider the fact that

the gradual part of a cast does not influence the result of the cast.

Indeed, if we cast an integer to a gradual type, as in 42<Int∧?> or

42<Bool∧?>, the only parts of theses casts that have a consequence

are Int or Bool, since ? could represent anything. Therefore, we

can erase ? in both these casts, and re-apply the newly-obtained

cast.4 To this purpose we define the extrema of gradual types in

order to be able to cast constants to gradual types.

Definition 1. (Gradual Extrema) For every gradual type g ,

• the gradual maximum g⇑ is obtained by replacing every covariant

occurrence of ? by 1, and every contravariant occurrence by 0

• the gradual minimum g⇓ is obtained by replacing every contravari-

ant occurrence of ? by 1, and every covariant occurrence by 0

This definition is made so that the type-cast from B(:) to g1 will

succeed whenever B(:) ≤ g1
⇑—i.e., that it is not a problem to

ignore the gradual part of the cast that is erased by taking the

gradual extrema, since all constants are implicitly gradually typed

(see Footnote 1). The condition resulting from, written B(:) ≤ g
⇑
1 ,

is implemented by the two following rules, which imply the full

reduction of casts on constants:

E ⊢ � ⇒ : B(:) ≤ g
⇑
1

E ⊢ �〈g1〉
g2 ⇒ :

E ⊢ � ⇒ : B(:) � g
⇑
1

E ⊢ �〈g1〉
g2 ⇒ Fail

The full set of rules for the big step semantics can be found in

Figure 10 in the annexes.

2.5 Type System

Since a cast language is not meant to be used by a programmer,

but rather by the compiler as an intermediate language, defining

its type system is only necessary to prove the soundness of its

semantics, which is the point of this section. The type systems uses

most of the standard rules of a simply-typed lambda-calculus with

pairs plus classic subsumption for subtyping:

Γ ⊢ � : g ′
[Subsume] g ′ ≤ g

Γ ⊢ � : g
However, there are two major differences coming from the typing

rules for non-functional constants and for casts, stated as follows:

[Const]
Γ ⊢ : : B(:) ∧ ? ∧ ¬?

[Cast]
Γ ⊢ � : g

Γ ⊢ �〈g1〉g̃2 : g1

The rule for casts states that, since g1 is the most precise type that

can be given to �〈g1〉
g2 if the cast succeeds, we simply give this

type to the expression, provided � is well-typed. Notice that both g

and g̃2 are disregarded by the rule

The rule for constants is certainly the most bizarre one. Intuitively,

this rule should be understood in this way: a constant : can be given

type B(:) (which is its expected type), but can also be implicitely

downcast to type ? and to ¬?. This comes from the fact that, in

order to further optimize space consumption, we chose to remove

all casts on non-functional constants. Consider for example the cast

constant 42<?>: this cast can never be the cause of an error, as a

value can always be cast to the dynamic type, independently of its

type. Therefore, such a cast can be removed without altering the

4This reduction erases the information given by having type-casts such as ? on con-
stants. Our type system will take that into account by adding a typing rule which
allows the type-checker to implicitly type constants by “?” (and by “¬?” as well).
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semantics of the program. However, this means in particular that

42<?>, which is of type ?, reduces to 42, which would intuitively

be of type Int. Such a reduction would violate type preservation,

hence the need for the rule [Const] which allows constant to be

implicitely consider of type ?.

The part¬? can be understood with the same reasoning, as ? and¬?

are actually semantically equivalent (but incomparable for subtyp-

ing). Indeed, since ? can intuitively represent any type g , it can also

represent the negation of any type ¬g . Therefore, ¬? can represent

any double negation ¬¬g , thus any type g .

Using this type system, we can then prove for small step semantics

the traditional lemmas from which the type safety theorem follows:

Lemma 1 (Preservation). If Γ ⊢ � : g and �→� ′, then Γ ⊢ � ′ : g .

Lemma 2 (Progress). If Γ ⊢ � : g and � is closed, then either � is a

value or �→� ′ for some � ′.

Theorem 1 (Type safety). If Γ ⊢ � : g and � is closed, then either

� diverges, or �→★ E for some value E , or �→★ Fail.

In order to prove that using [V�] is practical, we now build a virtual

machine that computes function calls space-efficiently.

3 VIRTUAL MACHINE

In this section we define our virtual machine and the compilation

of the cast language into it. The main interest of our machine is

that it provides a space-efficient implementation in presence of

set-theoretic types. The two main problems of space-efficiency

which we tackle are the efficient representation of casts and the

compression of suite of casts (a sensitive problem in the presence

of tail recursive calls of functions with cast).

3.1 Structure

A state of our machine is a 4-tuple (c, e, s, d) composed of a code

pointer c, the current environment e, an operand stack s, and a con-

trol stack d (also called “dump”) which handles return frames. The

last three components of the machine are defined by the following

grammar (the code c is defined below).

s ::= ∅ | a . s | ˜̂ . s | Ω . s Operand Stack

d ::= ∅ | ˜̂ . d | (c, e) . d Control Stack

e ::= ∅ | a . e Environment

MVal a ::= 2 | (a, a) | [c, e, ^]< Machine Values

^ ::= 〈g〉g Type-casts

˜̂ ::= gg̃ Type Pairs

< ::= ★ | � Reduction Marks

The stack stores machine values a which encode the values of

the cast language), type-casts ^, used to cast machine values that

were pushed on the stack, and a failure mark Ω which denotes the

failure of a cast. Machine valuesMVal include constants, pairs, and

closures [c, e, ^]< containing a piece of code c, an environment e,

a type-cast ^ and a mark which indicates how to apply the closure,

similarly as in Section 2.4 in the big-step semantics. Each machine

value MVal is associated to its minimal (w.r.t. subtyping) type by

the type operator defined as:

type ( [c, e, 〈g1〉
g2 ]<) = g1

type (2) = B(2) ∧ ? ∧ ¬?
type ((a1, a2)) = type(a1) × type(a2)

As for the operational semantics in Section 2.4, the mark � in a

closures indicates that this closure has a cast pending to be applied,

while the★mark indicates that a closure does not require any casts

to be applied. No closure can contain a cast of the form 〈g〉⊥, which

is a pattern that indicates a cast that may only succeed on constants,

and which fails on functions. However this pattern, in the form of
˜̂ , can appear on both the operand and the control stack.

The code of the virtual machine is a suite of instructions defined as

follows:
c ::= ∅ | instr ; c

instr := | push >1 9 Stack push
| app | ret Function call
| tap Tail app
| tca ˜̂ Cast tail app
| cast Type-cast
| ifz (c, c) Conditional
| let | end Let binders
| pair Pairs

>1 9 := = | : | > | (c, ^) | ˜̂ = ∈ Integers

> := × | + | − | = | fst | snd

The push instruction injects identifiers, constants, closures, and

types into the execution by pushing them onto the stack. Pair

of types ˜̂ are passed around in the stack and used by the tca

instructions to create, compress, and apply casts at the execution.

3.2 Compilation

Our machine uses De Bruijn indices. To replace variables with

indices, compilation uses a list of variables d and calls lookup d G

which returns the index of the first occurrence of G in d .

The compilation process is decomposed into two functions. The

function CJKd : Expr → Bytes is the general one. It calls T JKd to

compile expressions of that cast language that are in tail position,

that is, the bodies of functions and the bodies of let expressions

that are in tail position:

CJ2Kd = push 2

CJGKd = push (lookup d G)

CJ`g1→g2 5 G . �Kd = push
(
T J�K5 .G .d , 〈g1→g2〉

g1
)

CJ� 〈g1〉
g2Kd = push 〈g1〉

g2 ; CJ�Kd ; cast

CJ�1 �2Kd = CJ�1Kd ; CJ�2Kd ; app

CJlet G = �1 in �2Kd = CJ�1Kd ; let ; CJ�2KG.d ; end

CJ(�1, �2)Kd = CJ�1Kd ; CJ�2Kd ; pair

T J�1 �2Kd = CJ�1Kd ; CJ�2Kd ; tap

T J(�1 �2) 〈g1〉
g2Kd = CJ�1Kd ; CJ�2Kd ; tca 〈g1〉

g2

T Jlet G = �1 in �2Kd = CJ�1Kd ; let ; T J�2KG.d
T J�Kd = CJ�Kd ; ret

Our machine follows a classic eval-apply pattern with some speci-

ficities. In particular, the evaluation of a `-abstraction pushes on

the stack (see the definition of push further on) the closure which

contains the body of the function (compiled for tail position), an

environment containing both the parameter and the recursion vari-

able, and a cast formed by the type annotation of the function and

indexed with its domain. Applications are evaluated from left to

right by the instruction app. When they are in tail position appli-

cations are compiled using the tap instruction that—contrary to
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app—does not save the calling context. If a cast is applied to a tail

call, then the special tca instruction is used instead: acccording to

the case, this instruction composes the cast on the tail call with the

one on the top of the dump or the one in the callee, thus avoiding

the problem of accumulation of casts we described before. Finally,

casts that are not applied to tail calls are simply handled as plain

operators whose arguments are first pushed on the stack and then

evaluated by the execution of the cast instruction.

3.3 Transitions

3.3.1 Parameter functions. Several functions allow us to abstract

functionalities of the virtual machine. The pushe (>1 9, s) function

handles adding elements to the stack.

pushe (=, s) = e(=). s
pushe (:, s) = :. s
pushe ((c, ^), s) = [c, e, ^]★. s
pushe ( ˜̂ , s) = ˜̂ . s

The composition of two pairs of types is defined as the symmetric

operator that satisfies:

g⊥ # g1
g̃2 = g1

g̃2 # g⊥ = (g ∧ g1)
⊥

g1
g2 # g3

g4 = (g1 ∧ g3)
g2 ∧g4

The cast function implements the application of casts on constants

or closures using intersections to compress successive applications

of function casts.

cast

(
:, g1

g̃2
)

= : if B(:) ≤ g1
⇑

cast

(
[c, e, 〈g1〉

g2 ]<, g3
g̃
)

= [c, e, 〈g1 ∧ g3〉
g2 ∧ g̃ ]� if g̃ ≠ ⊥

cast (a, ˜̂) = Ω in all other cases

The dump d can contain either call frames or type pairs, which is

what allows the elimination of tail calls even with casts on them.

During a tail call, this function accumulates casts on top of the

dump stack, in order to apply the resulting cast when the tail calls

are over and the result of the computation is returned.

dump ( ˜̂1, ˜̂2 . d) = ( ˜̂1 # ˜̂2) . d
dump ( ˜̂ , (c, e) . d) = ˜̂ . (c, e) . d
dump ( ˜̂ , ∅) = ˜̂

The table in Figure 1 describes the complete set of transitions of

the virtual machine. There are three kinds of reduction: the usual

function application [V★], tail function calls [CV★], and cast tail

function calls [2V★]. While the first two are standard, the third

one mixes a tail function call and a delayed cast application. It

works by pushing a type-cast on the dump to be applied later, while

performing a tail function call. There exists a typed version of each

of these reductions: [V�], [CV�] and [2V�] which are performed

when the closure applied has a type-cast on it. Finally, the return

instruction ret is also performed by two transitions: the usual one

['★], which replaces the current frame by the top frame on the

dump; and a typed one ['�], which applies the type-cast on top of

the dump to the current value on top of the stack.

3.4 Example

Let us compute odd 5 from the odd/even example of Section 2.2.

By inlining the function even into the definition of odd, we can

compile odd into a piece of bytecode codd, which is put inside the

closure [codd, e
′, 〈Int→ ?〉Int]★. Now, we want to compute:

CJodd 5Kd = push >33 ; push 5 ; app

These several key points illustrate the most important transitions

used to compute odd 5 (abstracting inessential details away, such

as De Bruijn indexes and recursion variables):

• First, the function call odd 5 is handled by regular application:(
app , e , [codd, e

′, 〈Int→ ?〉Int]★. 5 , ∅
)

→
(
codd , {= := 5}. e′ , ∅ , (∅, e)

)
• Then, the code of odd is executed and, since = = 5 is not zero,

the conditional branch for the code (even (n-1))<?> is chosen.

This expression is in tail position and consists of a cast on a

function call. Therefore, the [2V★] transition is applied and

adds a type-cast “?” on the dump stack. Then, a tail call tap is

executed, that is, a function call that does not push the current

frame on the dump stack.(
tca ? , {= := 5}. e′ , [ceven, e

′′, 〈Int→ ?〉Int]★. 4 , (∅, e)
)

→
(
tap , {= := 5}. e′ , [ceven, e

′′, 〈Int→ ?〉Int]★. 4 , ? . (∅, e)
)

→
(
ceven , {= := 4}. e′′ , ∅ , ? . (∅, e)

)
• The execution of ceven is similar to the one of codd, and adds

to the dump the typecast Bool which composes with the cast ?

already on the top of the dump, resulting in the following:

→
(
codd , {= := 3}. e′ , ∅ , (Bool∧?) . (∅, e)

)
• These cast tail calls keep decreasing the value of =, building up

a single type-cast on top of the dump, until even 0 is called,

which returns true. But since a type-cast has been put on the

dump stack, the result truemust pass this type-cast before being

returned, which yields the following final execution:(
push true ; ret , {= := 0}. e′′ , ∅ , (Bool∧?) . (∅, e)

)
→

(
ret , {= := 0}. e′′ , true , (Bool∧?) . (∅, e)

)
→

(
cast ; ret , {= := 0}. e′′ , (Bool∧?) . true , (∅, e)

)
→

(
ret , {= := 0}. e′′ , true , (∅, e)

)
→

(
∅ , e , true , ∅

)
This example shows how the mechanism for handling casts on tail

calls work in our virtual machine, by compressing type-casts on

the dump stack using intersection types. Next we prove that this

mechanism respects the semantics of our language.

We denote by J K the function that maps the cast language values E

into the corresponding machine values a , and extend it to environ-

ments JEK pointwise. The link between the big step semantics and

the virtual machine, is stated by the following theorem.

Theorem 2 (Soundness). For every term � and environment E, if

E ⊢ � ⇒ E , then ∀(c, s, d) (CJ�K ; c, JEK , s, d) →★(c, JEK, JEK.s, d)

3.5 Symbolic casts

A drawback of this virtual machine is that it relies on high-order

operations on types: dom , ◦, ∧ (see the three _V� rules in Figure 1).

Thank to the representation of types we describe in Section 4.1.1,

intersection are less costly than the first two, since they consist of a

simple merge of Binary Decision Diagrams (BDDs). This is why we
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BEFORE AFTER

SP push >1 9 ; c c

_ e s d e pushe (>1 9, s) d

V★ app ; c c′

_ e a.[c′, e′, ^]★. s d [c′, e′, ^]★.a . e′ s (c, e) . d

V� app ; c cast ; app ; cast ; c g = g1 ◦ type a

_ e a.[c′, e′, 〈g1〉
g2 ]� . s d e a.g2

dom g2. [c′, e′, 〈g1〉
g2 ]★.g domg. s d

CV★ tap ; c c′

_ e a.[c′, e′, ^]★. s d [c′, e′, ^]★.a . e′ s d

CV� tap ; c cast ; tcagdomg; c g = g1 ◦ type a

_ e a.[c′, e′, 〈g1〉
g2 ]� . s d e a. g2

dom g2. [c′, e′, 〈g1〉
g2 ]★. s d

R★ ret ; c c′

_ e a. s (c′,e′).d e′ a. s d

R� ret ; c cast ; ret ; c

_ e a. s ˜̂ .d e a. ˜̂ . s d

2V★ tca ˜̂ ; c tap ; c

_ e a.[c′, e′, ^]★. s d e a.[c′, e′, ^]★. s dump ( ˜̂ , d)

2V� tca ˜̂ ; c cast ; tca
(
˜̂ #gdomg

)
; c g = g1 ◦ type a

_ e a.[c′, e′, 〈g1〉
g2 ]� . s d e a.g2

dom g2 . [c′, e′, 〈g1〉
g2 ]★. s d

C⊥ cast ; c ∅ cast (a, ˜̂) = Ω

_ e a. ˜̂ . s d ∅ Ω . s (c, e) . d

C cast ; c c
cast (a, ˜̂) = a ′

_ e a. ˜̂ . s d e a ′ . s d

LET let ; c c

_ e a. s d a. e s d

END end ; c c

_ a. e s d e s d

Fig. 1: Transitions of the virtual machine

concentrate on dom and ◦ and explore the possibility of delaying

their application in a symbolic structure for casts.

This yields a variant of the virtual machine, which differs from the

first in that it replaces pairs of types ˜̂ by symbolic casts Σ:

ΣBytes c ::= ∅ | instr ; c

Σ ::= ˜̂ | dom Σ | appg (Σ)

instr := . . . | tca Σ | . . .

Symbolic casts encode in their structure the calls to domain dom

and cast composition ◦, and they are lazily evaluated by eval:

eval (dom Σ) = g̃2
dom g̃2 with eval (Σ) = g1

g̃2

eval
(
appg Σ

)
= gA

dom gA with eval (Σ) = g1
g̃2

and gA = g1 ◦ g

Structures. The structures of the machine are slightly different as

well, as again we replace pairs of types ˜̂ with symbolic casts Σ.

ΣVal a ::= 2 | (a, a) | [c, e, Σ]< Machine values

s ::= ∅ | a . s | Σ. s | Ω . s Operand stack

d ::= ∅ | Σ. d | (c, e). d Control stack

Parameter functions. Since intersections are not symbolic opera-

tions, the composition of two symbolic pairs Σ1, Σ2 is defined as:

g⊥ # g1
g̃2 = g1

g̃2 # g⊥ = (g ∧ g1)
⊥

g1
g2 #g3

g4 = (g1 ∧ g3)
g2 ∧g4

Σ1 # Σ2 = eval (Σ1) # eval (Σ2)

The transition rules of this virtual machine with symbolic casts

stay the same, except for the three rules described in Figure 2.

4 SPACE EFFICIENCY

In this section we study the space efficiency of our virtual machine.

There are two space-related problems to be considered: (1) the

memory blueprint of casts created during the execution (2) the

size of the structures (the three stacks for control, operands, and

environment) during the execution.

4.1 Cast representation and compression

Our operational semantics uses intersection types to compress

types, and the type operators (dom, ◦) to build new casts. To achieve

space efficiency, we need to show that the representations of these

type-casts are bounded in size. For this aspect of the space efficiency

we can actually provide a formal proof based on the cast language

itself. Let |� | be the cast language expression obtained from erasing

all casts from �. We have

Theorem 3. For each program � there exists a constant factor 2 such

that for all � ′, if �→★ � ′, then size(� ′) ≤ 2 · size( |� ′ |).

where size is a function defined on the cast language which mea-

sures the size of the representation of an expression. This theorem
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V� app ; c cast ; app ; cast ; c

_ e a.[c′, e′, Σ]� . s d e a.Σ3 . [c
′, e′, Σ]★.ΣA . s d

CV� tap ; c cast ; tca ΣA; c

_ e a.[c′, e′, Σ]� . s d e a. Σ3 . [c
′, e′, Σ]★. s d

2V� tca Σ1 ; c cast ; tca (Σ1 # ΣA) ; c

_ e a.[c′, e′, Σ]� . s d e a.Σ3 . [c
′, e′, Σ]★. s d

Fig. 2: Modified transitions of the virtual machine with symbolic casts (with ΣA = apptype a (Σ) and Σ3 = dom(Σ))

states that the space required for the execution of a program which

uses the type annotations of gradual typing is bounded, as it stays

within a constant factor of the space required to execute the same

untyped program. In other terms, the space used by casts during

the execution is bounded by a factor constant at all times. To see

this we need to be more precise and define the size required to

represent a program:
sizeG = size 2 = 1

size (�1 �2) = size (�1, �2) = 1 + size�1 + size�2
...

size (c8 �) = 1 + size�

size (E〈g1〉
g̃2 ) = 1 + sizeE + sizeg1 + size g̃2

Establishing a bound on the size of the representation of types

used during execution—which is the difference in size between

untyped and typed versions of a program—is key to the proof of

this theorem. The existence of this bound is due to the fact that in

our machine types are represented by Binary Decision Diagrams

(BDD). So in the definition above the size of a type is the size of the

BDD representing it.

4.1.1 Binary decision diagrams. The subtyping algorithm for set-

theoretic types works with types in disjunctive normal forms, which

are best represented by Boolean functions [4]. It follows that the

classic representation structure for set-theoretic types is BDDs. We

will now present the representation of set-theoretic types which

is used in CDuce, and therefore in the implementation of our vir-

tual machine. First, we introduce an equivalent definition for types

based on atoms. Let 1 range over a set B of basic types. Gradual

set-theoretic types are the possibly infinite terms produced coin-

ductively by

Atoms 0 ::= 1 | ? | g →g

Types g ::= 0 | g ∨ g | ¬g | 0

with the same condition and abbreviation as in Section 2.1. Frisch

et al. [13] proved that every type is equivalent to (i.e., denotes the

same set of values as) a type in Disjunctive Normal Form:

∨
8∈�

©­«
∧
?∈%8

0? ∧
∧
=∈#8

¬0=
ª®¬

(1)

BDDs are defined by the grammar � ::= ⊥ | ⊤ | 0?� : � and

have the following interpretation:

J⊤K = 1

J⊥K = 0

J0?�1 : �2K = (0 ∧ J�1K) ∨ (¬0 ∧ J�2K)

which allows to convert any BDD to a type in disjunctive normal

form—see Figure 3 for an example. To ensure that the atoms oc-

curring on a path are distinct, a total order is defined on the atoms

a1

a2

⊤ a3

⊤ ⊥

a3

⊥ ⊤

Fig. 3: BDD for (01 ∧ 02) ∨ (01 ∧ ¬02 ∧ 03) ∨ (¬01 ∧ ¬03)

which imposes that on every path the order of the labels strictly

increases. Besides, hash consing is used for atoms and, thus, sev-

eral occurrence of the same atom (e.g., 03 in Fig. 3) share the same

representation. Hence the depth of a BDD is upper-bounded by the

number of atoms available to build it. This yields the result:

Lemma 3. For � a BDD, let A = {0 ∈ �} be the set of distinct atoms

in �, and U = |A|, we have

size(�) ≤ 2U log2 U +
∑
0∈A

size0
def
= �A

In this formula, we consider the maximum number of nodes of a tree

of depth U , which is 2U . All the distinct atoms are stored separately

using size
∑
0∈A size0, each node of the tree being a reference to a

stored atom (i.e. of size log2 U).
5 What we now prove is that, in fact,

the set of distinct atoms that can be used to build casts for a given

program is fixed and does not vary during the execution. An initial

cast expression � contains a bounded amount of type annotations

and type-casts, from which only a bounded amount of atoms can be

extracted. And because the creation of type-casts in the operational

semantics is conservative in that it never creates any new atom, we

can bound the size of any BDD-represented type-cast during the

execution of a program by �A , with A the set of distinct atoms

initially derived from the program. Formally:

Theorem 4. Let � be a cast expression. There exists a finite set of

atoms A such that for all � ′, if � −→★ � ′, then every type-cast oc-

curring � ′ is represented by a BDD using exclusively atoms from A.

Corollary 5. Any type-cast 〈g1〉
g̃2 in � ′ is bounded in size, by

size 〈g1〉
g̃2 ≤ 2�A

Theorem 4 comes from the fact that the operations on types used at

run-time do not create new atoms. To create new casts the machine

uses type intersection∧, and the domain and result operators dom, ◦.

Let us describe how each operation handles atoms:

Intersections: consider the intersection of two BDDs. Let �1 and

�2 denote generic BBDs, �1 = 01?�1 : �1, �2 = 02?�2 : �2.

Intersections of BDDs are defined as follows:

⊥ ∧ � = � ∧ ⊥ = ⊥ ⊤ ∧ � = � ∧ ⊤ = �

5This is a conservative approximation: the actual representation of types is a record of
several BDDs, one for each type constructor, as described in Section 4.3 of [4].
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bench fun. calls app (%) tap(%) tca (%)

sieve 2.6 · 106 59.6% 20.8% 19.6%

odd-even 107 ∼ 0% 0% ∼ 99%

Fig. 4: Benchmark of Space Consumption (Tail Calls)

�1 ∧ �2 =


02?�1 ∧�2 : �1 ∧ �2 for 01 > 02

01?�1 ∧ �2 : �1 ∧ �2 for 01 < 02

01?�1 ∧�2 : �1 ∧ �2 for 01 = 02

This definition makes it clear that the atoms of �1 ∧�2 are included

in the union of the atoms of �1 and �2, so no new atom is created.

The same property holds for union and negation.

Domain operator: if g is a function type then it can be represented

in disjunctive normal form as [13]:

g =

∨
8∈�

©­«
∧
?∈%8

(f? →g? ) ∧
∧
=∈#8

¬(f= →g=)
ª®¬

and its domain is defined as domg =
∧
8∈�

∨
?∈%8

f? (see [13]).

Since unions and intersections do no create new atoms, then it is

enough to include in the initial set of atoms A all the atoms used

in the domain f? of every single function atom 0 = f? →g? in �.

Result operator: for g the function type defined above, the codomain

is defined as

codg =

∨
8∈�

∨
?∈%8

g?

We know that, for any type f , the result types g ◦ f will be formed

using the atoms g? of codg — see the annexes for a formal definition

of g ◦f which makes this more explicit. Therefore, in the same way

as we did for the domain, adding all the atoms of the codomain

g? of every single function atom 0 = f? →g? in � allows the

conservation of atoms when using the result operator ◦.

This principle of conservation allows us to conclude with Theo-

rem 4; and then, Corollary 5 yields a bound on the size of every

type-cast during the execution of a program �. Since our semantics

does not create chains of casts during execution, this allow us to

conclude that the space overhead of casts during execution is in-

deed, bounded, as stated in Theorem 3. For a formal proof of these

claims, the reader can refer to Section F in the annexes.

4.2 Tail recursion and stack space efficiency

The space-efficiency of this machine comes from three sources:

• a bounded representation for type-casts

• a semantics which reduces all chains of casts into a single one

• an instruction to handle casts on tail function calls

We formally proved in the previous section the first two points.

We studied the third on examples and by comparisons with other

works, but we did not provide a formal characterization of this

aspect. Instead, we ran a couple of benchmarks that confirmed

the efficiency in terms of function calls for the odd-even and sieve

programs (explained in next section). In particular, Fig. 4 shows the

distribution of functions calls over app calls (which perform usual

typed or untyped function application, saving the current frame on

the dump), the tap calls (which perform usual tail call, not saving

the frame), and the tca calls (which perform cast tail calls). When

the last percentages are high, it means that a significant portion

bench tail call depth non-tail call depth dump len.

sieve 7942 1000 1009

odd-even 107 1 2

Fig. 5: Benchmark of Space Consumption (Dump Size)

of typed app calls were avoided. Another important metric is the

size of the dump stack, which should be of the same order as the

maximum depth of non-terminal recursive calls. This is the case

both for sieve and for odd-even as shown in Figure 5. For a less

empiric characterization we plan as future work to build up on [8]

and find a class of space-efficiency to which our machine belongs.

5 PERFORMANCE

This work aims at alleviating the performance issues of a language

with gradual set-theoretic types. The two key ingredients we devel-

opped to achieve this are:

(1) Cast compression using set-theoretic types to prevent the accu-

mulation of multiple casts on an expression.

(2) Compressing casts in tail position using cast compression on

the dump stack.

We chose our benchmarks to test the impact of these two features.

5.1 Benchmarks

We describe each benchmark, and why it was chosen to test our

virtual machine.

Sieve This program finds prime numbers using the Sieve of Er-

atosthenes. It was among those which nailed in the coffin of

sound gradual typing in Takikawa et al. [27], with a mean over-

head of 100x compared to the untyped running times. The mean

overhead we obtain with our solution is 7.6x.

Odd-even This is the program we gave as an example in Sec-

tion 2.2: it computes whether an integer is odd or even using

twomutually recursive functions. Usually, in sound gradual typ-

ing, the typed version of this program is not tail recursive, which

incurs bad performances compared to the untyped version. In

our machine, it is tail recursive and we obtain an overhead of

1.5x, which goes down to 1.15x with symbolic optimizations.

Cast-acc This ad-hoc (and highly unrealistic) program was writ-

ten to illustrate a pitfall of our current optimization using sym-

bolic computations: it does not memoize previously done cast

computations. Here, we cast a function multiple times and then

use it repetitively, and the cost is higher with symbolic computa-

tions because casts on the function have to be recomputed with

each use. Knowing this pitfall exists makes the good perfor-

mances of the SymbolicCap runtime in the other benchmarks

even more interesting.

Polyadhoc This program, similarly to Odd-even, runs mutually

recursive functions, one which is statically typed, the other

which is partially typed. Except that this time, the cast inserted

in the code is not a basic type, but an intersection of arrow types.

It is essentially the same as Odd-even, except that domains

and result types are harder to compute.

5.2 Experimental Setup

We implemented our machine in OCaml. The project is about 3000

lines of code (available at https://github.com/gliboc/cast-machine),
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based on compressing a sequence of casts into a pair of casts, to

and from the least upper bound of the types (with respect to type

precision). One can view the present paper as generalizing this

approach to languages with set-theoretic types and subtyping.

Contracts are a generalization of casts to handle arbitrary predi-

cates [12]. Greenberg [14] proves that the space overhead for con-

tracts can be bounded by a constant by taking care to never wrap

the same contract on a value multiple times. Feltey et al. [11] im-

plement and evaluate this approach in the Racket contract library,

which underlies the implementation of sound gradual typing in

Typed Racket. The approach that we present, based on the BDD

representation of types, enables finer-grained sharing which we

conjecture leads to better compression.

While the present paper focuses on efficiency but leaves out blame

tracking, Keil and Thiemann [17] develop an operational semantics

for intersection and union types that includes blame tracking, but

they do not consider space efficiency.

On a more set-theoretic perspective, an interesting approach is

dedicated to the inference of interfaces — the type constraints of

functions — and in particular of intersections of interfaces. This

type inference makes it possible to fully annotate a module more

quickly, in order to faster bridge the gap between untyped and

partially-typed performances. The paper [6] treats the subject, but

in a context of non-gradual set-theoretic types.

7 FUTURE WORK

Blame tracking. In gradual typing, blame tracking makes it possible

to find which cast in the code led to a failure. It should satisfy two

properties: blame safety, and type safety. Blame safety means that an

expression that could reduce to a value should never be blamed, and

soundness that a well-typed expression can either reduce to a value,

diverge, or be blamed. Our machine has difficulties in assigning

blame, because the compression of casts using type intersections

lose the information of blame labels.

However, it might be possible to compress the labels as well as the

casts. We conjecture that if a function terminates, then the sequence

of blame labels of its casts can be expressed as a regular expression

whose size is bounded according to the number of blame labels

in the original program. This regular expression would record the

arrival of each casts on an expression: therefore, when a type-cast

fails on a value, it would be possible to blame the earliest type-cast

that was incompatible with the value. A fallback solution would be

to handle sets of blame labels, of which there finitely many, instead

of regular expressions, but this would yield far less precise blames.

Benchmarks and Language Extensions. We would also like to test

more thoroughly our implementation by adapting the rest of the

benchmarks of Takikawa et al. [27], and by finding other tests

specific to set-theoretic types. There are also some language features

that could be of interest once our machine is sufficiently improved,

such as (8) using type intersections in annotations—currently it is

only possible to annotate functions with a function type and (88)

extending the type system with polymorphism.

8 CONCLUSION

The goal of this work was to study the implementation of functional

languages using a gradual type system with set-theoretic types. Our

main contribution is our technique of combining intersection types

and domain caching to obtain a space efficient compression of cast

compositions. This, combined with various other implementation

techniques we described (caching of casts in closures, use of the

dump to efficiently implement cast application in tail position, the

symbolic computation of type operations) yields an implementation

satisfactory in space consumption and is not extremely penalizing

in time consumption. The time overhead due to set-theoretic types

is still too important but, as we discussed in Section 5 so is the room

for improvement, that we plan to explore in future work
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