Type Checking Extracted Methods

Yuquan Fu? and Sam Tobin-Hochstadt®

a Indiana University, Indiana, USA

Abstract Many object-oriented dynamic languages allow programmers to extract methods from objects
and treat them as functions. This allows for flexible programming patterns, but presents challenges for type
systems. In particular, a simple treatment of method extraction would require methods to be contravariant in
the receiver type, making overriding all-but-impossible. We present a detailed investigation of this problem, as
well as an implemented and evaluated solution.

Method extraction is a feature of many dynamically-typed and gradually-typed languages, ranging from
Python and PHP to Flow and TypeScript. In these languages, the underlying representation of objects as
records of procedures can be accessed, and the procedures that implement methods can be reified as functions
that can be called independently. In many of these languages, the programmer can then explicitly specify the
this value to be used when the method implementation is called.

Unfortunately, as we show, existing gradual type systems such as TypeScript and Flow are unsound in the
presence of method extraction. The problem for typing any such system is that the flexibility it allows must be
tamed by requiring a connection between the object the method was extracted from, and the function value
that is later called.

In Racket, where a method extraction-like facility, dubbed “structure type properties”, is fundamental to
classes, generic methods, and other APIs, these same challenges arise, and must be solved to support this
feature in Typed Racket. We show how to combine two existing type system features—existential types and
occurrence typing—to produce a sound approach to typing method extraction.

We formalize our design, extending an existing formal model of the Typed Racket type system, and prove
that our extension is sound. Our design is also implemented in the released version of Racket, and is compatible
with all existing Typed Racket packages, many of which already used a previous version of this feature.
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Type Checking Extracted Methods

EJ Methods as Values

On his next walk with Qc Na, Anton attempted to impress his master by saying
“Master, I have diligently studied the matter, and now understand that objects
are truly a poor man’s closures.” Qc Na responded by hitting Anton with his
stick, saying “When will you learn? Closures are a poor man’s object.” At that
moment, Anton became enlightened. —Anton Van Straaten [23]

The relationship between objects with methods and functions is fundamental to
understanding object-oriented programming and languages. In some languages, such
as Smalltalk, “everything is an object”, and there is no way to interact with a method
except by sending the appropriate message to the object. But in languages ranging
from JavaScript [19] to Python [6] to PHP [22] to Racket [12], it is possible to extract
the function corresponding to a method from its containing object and call it.

Similarly, whether attempting to understand the foundations of object-oriented
languages or to implement them on a low-level platform, a standard approach [4]
is to encode objects as records of functions, with message sending becoming record
selection followed by function call. Thus the necessity of considering methods inde-
pendently of their containing object arises here too.

The key challenge in all of these settings is the role of Self, the receiver of the
message. Once a method is separated from its object, there is no longer a designated
receiver. This offers new flexibility to programmers, but also the opportunity for error.

In the face of this challenge, languages supporting method extraction take two
primary approaches. First, systems such as Python avoid the problem entirely by closing
extracted methods over the object they are extracted from. This ensures that flexibility
is not misused by eliminating it entirely. The alternative approach, seen in languages
such as JavaScript where object-orientation is built upon records, allows programmers
to pick arbitrary objects to stand in as the receiver. This flexibility enables new patterns
but also makes reasoning about the correctness of programs more challenging and
opens up the possibility of hard-to-understand errors.

The challenges of method extraction multiply when combined with type checking,
especially in the setting of gradual type systems for existing languages. A naive
approach to typing either violates soundness or requires that methods be both co- and
contra-variant in their receiver type, rendering inheritance impossible. Unfortunately,
systems such as TypeScript [15] and Flow [18] have chosen unsoundness, opting to
preserve the flexibility apparent without types over a sound approach to the problem.

To show that a synthesis is possible, we present a system which supports method ex-
traction along with sound gradual typing. We work in the context of Typed Racket [11],
a mature gradual type system for Racket, an existing untyped language. Racket’s
structure type properties are the focus of our study—they are essentially a vtable-like
mechanism for arbitrary records, and building well-typed abstractions from them
requires tackling precisely the key challenges posed by method extraction. Structure
type properties are also the implementation technology for Racket’s system of generic
methods, and Racket’s Java-like class system.

Our system allows programmers to control when an argument should have the type
Self, and when it does, then exactly the receiver—that is, the object the method was
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extracted from—must be supplied in that position. This restriction is the only sound
one compatible with both subtyping and inheritance. We show that this restriction is
naturally expressed using a combination of existential types [2] and Typed Racket’s
support for occurrence typing [11, 13]. Occurrence typing was originally developed
to model predicate tests; here it finds unrelated but compelling use in recording the
identity of the receiver.

The resulting system is capable of working with existing idiomatic use of Racket’s
structure properties, which we validate by implementing the system in Typed Racket
and releasing it to all Typed Racket users. Typed Racket had previously and unsoundly
accepted all uses of structure type properties with no checking whatsoever; with our
new implementation virtually all of these unchecked uses simply worked correctly
and the remaining cases were both unrelated to our design and easily fixed.

We begin our presentation in section 2 by outlining current approaches to method
extraction in gradually-typed languages, starting with JavaScript and its existing
type systems. This demonstrates both the problem and the inadequacy of current
solutions. We also describe Racket’s structure type property system, and how the
same problem of method extraction re-occurs in this setting. Section 3 presents our
type-checking approach at a high level, focusing on examples. In section 4, we present
a formal model of our approach, extending existing models of Typed Racket, which we
prove sound. Section 5 describes our implementation, including how we dynamically
enforce the new types we have added, as required for gradual typing. We then discuss
the practical experience gained by applying our system, now released in the current
version of Racket, to existing Typed Racket programs. Finally, we compare with related
approaches and conclude.

EJ The Current State of the Art

Numerous dynamic languages both support method extraction and have recently
developed gradual type systems, among them JavaScript, Python, PHP, and Ruby[26].
With the exception of Python, discussed below, all of them fail to soundly enforce the
type system in the presence of extracted methods.

Since JavaScript is the language with both the most mature type systems and the
simplest model of objects as records with functions as members, we first present the
issues in that context. Then we show how the same issues reoccur in Racket’s structure
type properties.

241 Unsound Method Extraction in JavaScript

We begin with the key issue—the type of self or this for extracted methods in the
presence of inheritance. Consider the program in listing 1, which uses the syntax
accepted by both TypeScript and Flow for type annotations.

In this program, we have two classes, one for two-dimensional coordinates and an
extension for three dimensions. Each defines a simple constructor that initializes its
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fields and a dist method that computes the distance between the current point and
a specific point.

We then construct an instance of each, but annotate p3d, the three-dimensional
instance, with the Point2D type. We also extract the dist method from p3d using
JavaScript’s .bind() method with the this keyword mistakenly set to the two-
dimensional instance p2d. Then we intend to use the extracted method to calculate
distance between p3d and every element of an array of three-dimensional points.

M Listing1 Unsound Method Extraction in TypeScript and Flow

class Point2D {
X : number; y : number;
constructor(x : number, y : number) {
this.x = x; this.y = y;
}
dist(this:this, target: Point2D) {
return Math.sqrt(Math.pow(target.x - this.x, 2) +
Math.pow(target.y - this.y, 2));
}
}

class Point3D extends Point2D {
z : number;
constructor(x : number, y : number, z : number) {
super(x, y); this.z = z;

}

dist(this:this, target : Point2D) : number {
if (target instanceof Point3D) {
return Math.sqrt(Math.pow(target.x - this.x, 2) +
Math.pow(target.y - this.y, 2) +
Math.pow(target.z - this.z, 2));
} else {
throw "Target is not a Point3D";
}
}
}

var p2d = new Point2D(0, 0);

var p3d : Point2D = new Point3D(3, 4, 5);

var meth = p3d.dist.bind(p2d);

[new Point3D(5, 6, 7), new Point3D(9, 10, 11)].map(meth);

We would hope that the type checkers would reject the program, since meth is
the extracted method dist of a Point3D instance and only works if the receiver is
an instance of Point3D or its subtype. However, the type checkers report no errors.
When we run the program, the p2d is used as this in the method Point3D’s dist
and hence this.z evaluates to undefined. Because of JavaScript’s type coercion for
arithmetic operations, this produces NaN rather than an error, but is straightforwardly
unsound.

The fundamental issues for TypeScript and Flow are different. In Flow, .bind can
take in any value as the first argument, regardless of the connection to Point3D. This
preserves maximum flexibility, but will not do for a sound type system. On the other

6:4



Yuquan Fu and Sam Tobin-Hochstadt

hand, TypeScript’s .bind accepts a value of any subtype of the current class for this,
and the type of p3d when dist is extracted is Point2D.

More generally, it is well known that method overriding is sound when arguments
vary contravariantly in the subclass. Of course, the type of this varies covariantly in
subclasses—that’s what it means for subclasses to be subtypes. But method extraction
makes the this parameter into an argument, producing a contradiction that leads to
unsoundness if not addressed.

2.2 Structures and Structure Type Properties

Having seen the challenge of method extraction in JavaScript, we now turn to our
setting—Racket structures and structure type properties, and how they face all of the
challenges of method extraction in a way that requires a full solution. We begin with
an overview, and then rediscover the same problems.

Racket’s structures are records with named fields and inheritance defined with the
struct form:

M Listing2 Two and Three-Dimensional Points in Racket

(struct point2d [x y]
#:property prop:how-big 10
#:property prop:custom-write
(lambda (self)
(printf "Point(~a, ~a)" (point2d-x self) (point2d-y self))))

(struct point3d point2d [z]
#:property prop:custom-write
(lambda (self)
(printf "Point(~a, ~a, ~a)" (point2d-x self) (point2d-y self)
(point3d-z self))))

As shown in the code above, a struct form also introduces several names to the
current scope. For example, the struct form for point2d at least defines the following
names: I. point2d, a constructor procedure to create an instance of point2d with
a value for each field defined in it; 2. point2d?, a predicate procedure to check if
an arbitrary value is a point2d, producing a boolean; 3. point2d-x and point2d-vy,
two field accessor procedures that take a point2d and produce the values of the field
x and y respectively.

Structure definitions can also inherit from other structure types; doing so means
that new fields are additive and that instances of the structure subtype are treated as
instances of the supertype. Note that structure subtyping in Racket is nominal. In the
code above, we create the structure point3d based on the structure point2d.

Structures also support structure type properties, a per-type map of property keys to
arbitrary values. In listing 2, the point2d structure has two structure type properties:
prop:how-big, whose value is 2, and prop:custom-write. The value supplied for
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prop:custom-write is a function whose first argument is expected to be an instance
of the structure type."

As with structures, a structure type property is defined by a collection of generated
functions and values specific to that property. These values are created by the func-
tion make-struct-type-property, which takes a symbol naming the property and
returns three values: a property descriptor to be used in a struct definition, as well
as a predicate procedure and an accessor procedure:

(define-values (prop:custom-write custom-write? custom-write-accessor)
(make-struct-type-property 'custom-write))

In the code above, the predicate procedure custom-write? returns true if the argu-
ment is an instance of any structure type with a value attached for the corresponding
property prop:custom-write. The accessor procedure custom-write-accessor
extracts the property value paired with the property descriptor of a structure type
from its instance, raising an error for values that don’t have the relevant property.

The design of structure type properties makes them similar to Java static fields:
there is a single value per-type but that value is accessible from individual instances.
The key distinction is that access to structure type properties is mediated by values
that serve as capabilities: the accessor and property descriptor.

Structure type properties allow defining extensible abstractions, such as the follow-
ing customizable printer print-value:

(define (print-value v)

(if (custom-write? v)

((custom-write-accessor v) v)
(printf "unknown value")))

First, it checks if the input v has a value for the custom-write property, using
the corresponding predicate. If so, that property value is extracted from v with the
appropriate accessor and used to print the value, by passing v to the custom printing
function.

This example demonstrates one common pattern used with structure type properties:
the property serves as a single-entry vtable, and an abstraction around the property
defines a generic function which supplies the appropriate self value.

Modular encapsulation allows the use of custom-write-accessor to be limited
to just the print-value function, ensuring that the value supplied in the struct
definition is not misused, perhaps by passing some other value as the input. However,
Racket programmers can easily break the invariant by making a similar mistake to
what we have shown in listing 1:

(define (print-value2 vi1 v2)
(if (and (custom-write? v1) (custom-write? v2))

((custom-write-accessor vi1) v2)
(printf "unknown value")))

" The actual custom-write property in Racket is somewhat more complex, in ways that are
not relevant to our discussion.
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In print-value2, we extract the print method from v1, but then invoke it with v2.
Suppose we supply v1 with a point3d value and v2 with a point2d value. Though
both v1 and v2 pass the check, the function will raise a runtime error, because the
point2d value cannot be applied to the method point3d-z used in the structure
point3d’s property value for prop:custom-write.

2.3 A View to Solutions

Other dynamic languages with gradual type systems face versions of this problem,
and have addressed it in different ways. Hack [21], a typed version of PHP, has evolved
into a new language and dispensed with method extraction. Sorbet [24], for Ruby,
seems to have a similar approach to Flow.

However, two other systems take a different tack. In Java [8], when using reflec-
tion [20] to extract a method, the resulting value tracks the runtime class it was
extracted from, and requires an instance of that class to be supplied at invocation time.
Python, when extracting a method, closes the method over the object it is extracted
from, instead of allowing it to be supplied later.

The key difference between Java and Python, on the one hand, and systems such as
Racket and JavaScript, where the problem arises, is access to the underlying view of
objects as records of functions. In Racket, where it is implemented via macros, and in
JavaScript, where it is built into the semantics of method call syntax, method calls are
simply patterns of use of this lower-level view. While it is possible for JavaScript to adopt
the treatment of extracted methods in Python at the cost of backward-incompatibility,
it is impossible for Racket to redesign structure type properites in a similar fasion,
because they have a variety of use cases and serving as a method table is just one of
them.

In such languages, type systems should support the mechanisms directly, and not
merely certain patterns of use that fit in predefined categories, such as type checking
of Racket’s class system [9, 14]. As we will see, an appropriate static type system can
preserve soundness while keeping the original runtime behavior.

] Types for Structure Type Properties

With an understanding of structures and properties in Racket in hand, we now
describe our approach for typing these features, including the key issue of what the
legal arguments to the function attached to the custom-write property are.

3.4 Declaring Typed Structure Properties
M Listing3 Typed Structure Point
(struct point2d ([x : Integer] [y : Integer])
#:property prop:how-big 10
#:property prop:custom-write
(lambda ([self : point2d]) : Void
(printf "Point(~a, ~a)" (point2d-x self) (point2d-y self))))
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Consider a typed version of the structure definition shown previously, in Typed Racket
syntax, given in listing 3. This definition follows the similar one in untyped Racket
closely, with type annotations in three places: on the two fields, x and y, and on the
argument to the custom printer, which takes a point2d, as expected.

In order for this to work, the structure type property descriptors must be equipped
with types; for example (Struct-Property Number) for prop:how-big, using a
new unary type constructor Struct-Property. But for structure type properties
like prop:custom-write, the type is less obvious. Obviously it cannot already have
the type (Struct-Property (-> point2d Void)), since the function type (->
point2d Void) only works for the initial definition of point2d. And yet, in the body
of the value expression, self must be of type point2d, since it must be a suitable
input to point2d-x.

Our solution is a new built-in type Self, denoting the type of the structure that the
property declaration is embedded in, point2d. Thus the type of prop:custom-write
can be expressed as (Struct-Property (-> Self Void)).

To type check the declaration in listing 3, the type checker simply substitutes the
actual structure type, point2d, for Self.

3.2 Type Refinement with Predicates

The next challenge is the definition of print-value. First, what should the domain
of the custom-write-accessor function be? It must be restricted in some way, yet
open to further extension. We represent this with a new type constructor, dubbed
Has-Struct-Property, which allows the domain to be (Has-Struct-Property
prop:custom-write).

The next challenge is that print-value is intended to work on all inputs, not just
those with the property set—that’s why it has a predicate test at all. Fortunately,
Typed Racket comes with a pre-existing solution to this problem: occurrence typing.
This is an approach that enables the type system to obtain type information about
its argument from a predicate procedure and then propagate that information to
branches of control flow. For example, in (if (number? v) v 17), v initially might
have the type Any, just as the parameter to print-value does. Occurrence typing
refines v to the type Number in then branch, which is the logical corollary of (number?
v) evaluating to t. This is expressed by giving the number? predicate the type (->
Any Boolean : Number). The last part is a latent proposition that the input must be
a number if the function produces a true value.

Similarly, the type (-> Any Boolean : (Has-Struct-Property prop:custom-
write)) for custom-write? allows the print-value function to type check.

3.3 Structure Type Property Access Is Method Extraction
We now turn to the result of (custom-write-accessor v), which is precisely an
extracted method. Based on the type of the function associated with the property in

listing 3, the result should have type (-> Self Void). Furthermore, to make the
outer application type check, v must then have type Self.
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Let us consider a few possible options. One obvious choice is to replace Self with
(Has-Struct-Property prop:custom-write). Then the entirety of print-value
will type check. Unfortunately, this is not sound—it’s the same problem that we saw
for TypeScript. Any other value with the correct property would then be allowed
instead of v, even one that was not an instance of point2d.

Instead, we turn to existential types. We existentially quantify over Self, allowing
only values that we know to be appropriate as an argument to the extracted method.

However, existential types are not enough by themselves. If we gave the extracted
method the type (Some (Self) (-> Self Void)), our system would be sound, but
our method would be impossible to apply!

One possible strategy is to change the semantics of structure type property ac-
cess. An accessor could produce a package of both the receiver value and the ex-
tracted property value, with an existential type connecting the two. Then the type of
custom-write-accessor is (-> (Has-Struct-Property prop:custom-write)
(Some (X) (Pairof X (-> X Void))) and adding an unpacking operation to the
language for existential types: (let-unpack ([(X x) e]) b) where e has type
(Some (X) S). For method extraction, x has a pair of the unpacked instance and an
extracted function. The function call in print-value would become:

(let-unpack ([(X (new-v meth)) (custom-write-accessor v)])
(meth new-v))

However, this would require invasive changes to Racket’s runtime system as well as
backwards-incompatible changes to all existing uses of structure type properties—
the opposite of the goals of gradual type systems such as Typed Racket.

3.4 Combining Existential Types and Occurrence Typing

To solve this problem, we extend the existential type approach in two ways. First, we
automatically and implicitly unpack the existential at the point where the custom-
write-accessor function is applied. Second, we use Typed Racket’s support for type
refinement to refine the type of v to be Self.

We have already seen type refinement for number? or custom-write?, but here
instead of refining based on a predicate, we refine the type of the argument to the
accessor function to have the type of the existentially-quantified variable.

The resulting type is (-> (Has-Struct-Property prop:custom-write) (Some
(X) (-> X Void) : X)). Here X appears not just in the domain of the method but
also in the proposition, stating that after we’ve applied the function, we know that
the input has type X.

By putting all the types above together, we can give types to the generated structure
type property descriptor, predicate procedure, and accessor procedure when creating
a new structure type property:

(: prop:custom-write (Struct-Property (-> Self Void))
(: custom-write?
(-> Any Boolean : (Has-Struct-Property prop:custom-write)))
(Z custom-write-accessor
(-> (Has-Struct-Property prop:custom-write) (Some (X) (-> X Void) : X)))

(define-values (prop:custom-write custom-write? custom-write-accessor)
(make-struct-type-property custom-write))
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Furthermore, these types now allow us to type check the print-value function,
exactly as originally written.

Formal Model

Our calculus Ay extends A [13], a formal model of Typed Racket. The presentation
of the formal model starts with the introduction of the typing judgment, followed
by the descriptions of the syntax and the novel typing rules. In section 4.2.1, we
discuss the generativity of let-struct and let-struct-property. Section 4.2.2 describes
an illustrative example to demonstrate how the new typing rules work. We then
present a soundness proof for our calculus in section 4.3.

The fundamental judgment of our type system is:

The:(tsylP_;o0)
It states that in the type environment I' four properties of the expression e hold:
= ¢ has the type 7
= if e evaluates to a non-false value, the true proposition 1 holds
= otherwise, the false proposition v _ holds.

= 0 is a symbolic object referencing a portion of a runtime environment. If o is not
@ (the null object), looking it up in the runtime environment produces the same
value as evaluating e.

44 Syntax

The syntax of terms, values, types, propositions, objects, and environments are given
in figure 1, where new forms are highlighted.

Expressions Our system supports conditionals, let-binding, numeric and boolean
constants, abstraction with a typed parameter, application, pairs and field accesses
to them as well as primitive operations. let-struct creates a structure with specified
name sn, a field type 7, a collection of structure type property names and their value
expressions sp ¢, and it binds three identifiers to a structure constructor procedure,
a structure predicate procedure and a structure field accessor procedure for use in
the body e. let-struct-property creates a structure type property, which is named
x and has a value type 7. It also introduces the following three identifiers among
others to the body e: a property descriptor, a predicate and an accessor procedure for
the property. In our system, we chose to include the names of structures as parts of
their types. This design decision reflects the fact that structure types in Racket are
nominal, and thus two structures with different names are not considered identical
when their fields and properties are equal. Note that let-struct is generative, while
let-struct-property is not. See a detailed discussion in section 4.2.1.

Values Besides the values seen in Ay, we also added structure instances, structure
type property descriptors and their companion procedures. sn(v: 7, spv) describes
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type variable
existential function type
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Symbolic Objects
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that an instance is created from a structure named sn with the field value v of type
7, and the instance also inherits a collection of property names and property values
from the structure. The constructor procedure ctor(sn, 7, Spv) is used to create an
instance for a structure named sn with the field of type 7 and a collection of property
names and property values. The predicate procedure pred(sn) checks if a value is an
instance of the structure sn. The field accessor procedure acc(sn(t,sp)) obtains the
field value from an instance of the structure sn. The property predicate procedure
p-pred(sp) checks if a value is an instance of a structure with the property sp. The
property accessor procedure p-acc(sp, T) takes an instance of a structure with the
property sp, and returns the value associated with the structure for the property sp.

Types The system supports the supertype of all types, the T type. N is the type
of all numeric expressions. T and F are the types of all expressions that evaluate
to true and false respectively. T x T describes a pair type. The untagged union type
(J7) is a supertype of its component. For convenience, the boolean type B is the
abbreviation of (| JT F). To simplify our exposition, structures in our system have
only one field. Structure types are written sn(t, sp ), where sn is the name, 7 is the
field’s type and sp represents a collection of structure property names. Prop(t) is the
type of a structure type property descriptor, and 7 specifies the type of the expected
property values supplied in a structure’s definition. Type Has-Prop(sp) stands for a
collection of structure types attached with the property sp. Self, only used in Prop(7),
denotes the receiver type. When the quantifier X isn’t referenced in the body of the
existential function type 3X.x:7t — R, we abbreviate it to x:7 — R. In our system, an
existentially functional value doesn’t require explicitly unpacking.

Propositions Propositions, borrowed from propositional logic, are key components
of our system. TT is the trivial proposition and FF the absurd proposition. The atomic
proposition states whether a symbolic object has the type 7. The two operations for
compound propositions A and v are for conjunction and disjunction of propositions
respectively.

Our system uses fields to access pair-encoding structural values. Symbolic objects
denotes portion of runtime-environment.

The type environments are extensions to standard type environments. In addition
to variables’ type information, they also include propositions and created structure
property names.

The runtime environments are standard mappings between variables and their
closed runtime values.

4.2 Typing Rules

Since most typing rules in Ay are the same as in Az, we will only show extensions.
See appendix A for the full definition.

Structure Related Values T-PROPERTY-DESCRIPTOR shows the named property pd(sp)
has type Prop(7). T-STRUCT-INSTANCE shows the structure instance sn(v: t, 5pv,)
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T-PROPERTY-DESCRIPTOR T-STRUCT-RELATED-OPERATIONS
T+ pd(sp) : (Prop(t); TT|FF; @) T+ so :(A(so); TT|FF; @)

T-STRUCT-INSTANCE
['sn(v:t,5pv,) : (sn(7,5p); TT|FF; @)
T-LET-STRUCT-PROPERTY
7, = Prop(1)
Tpred = X: T — (B; x € Has-Prop(sp) | x ¢ Has-Prop(sp) ; @)
T, = x:Has-Prop(sp) — 3X. (7[Self = X|; x e X | TT; 03)
I',8p,Xp € Tp, Xpred € Tpred> Xacc € Ta - € R
X#T X # sp#7T

'~ (let—struct-property ((xp xpred xacc) (sp T))) 6) : R[Sp = g] [xpred = g] [xacc = g]

T-LET-STRUCT

'+ sp : (Prop(ty,); TT |FF; @)
T'te, : (t,[Self = sn(t,5P)]; ¥, [Y_; 01)
. =x:T — (sn(t,sp); TT |FF; @) T, =x:sn(7,sp) — (t; TT|FF; @)
T,=x:T — (B; xesn(t,5p)|x ¢sn(t,5p); 0)
T, Xcor € Te>Xpred € TpsXaee € Ta € ‘R

p

I (let'StruCt ((xctor xpred xacc) (STl T (Sp ep))) e) : R[xctor = g] [xpred = Qj] [xacc = ¢]

T-App
Fe; :(x:7 > 3X.R; iy [P 0)
T-ABS Loy ey i (05 Yoy [P 05)
Ixethke:R 'o<it X#0 X#Y,, X#T
[+ Ax:T.e : (3X.x:1 —>R; TT|FF; @) T (e ey) : R[x = 0,]

B Figure2 Extension of Typing Rules

has type sn(t, sp). Through the metafunction A,, T-STRUCT-RELATED-OPERATIONS
assigns function types to primitive operations for structure instances and structure
type properties. Figure 3 describes the definition of A,.

Abstraction T-ABs first checks if the body of the expression has type result R in the
typing environment extended with the bound variable x of type 7. R consists of four
parts: the return type 1, the true proposition v, which reveals type information
about the bound variable x when the return value is non-false, the false proposition
1 _ otherwise, and a symbolic object. Then the lambda is assigned type 3X.x:7 — R.
This rule also shows X might appear in T and R.

Application T-App handles function application. It checks if e; is a function, and
it extends the type environment with v;, to ensure the type of e, is a subtype
of the argument type of e;. After doing capture-avoiding substitution of o, for the
occurrences of x in the existential type result 3X.R, it automatically unpacks the type
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Ag(ctor(sn, T,5pv,)) = x:T — (sn(t,57); TT|FF; @)

A, (acc(sn(r, sp))) =x:sn(t,sp) — (t; TT|TT; @)

A (pred(sn(t,sp))) =x:T — (B; xesn(t,sp)|x ¢sn(t,sp); 0)

A (p- pred(sp ) = x:T — (B; x € Has-Prop(sp;) | x ¢ Has-Prop(sp;) ; )
A (p-acc(sp;, 7)) = x:Has-Prop(sp;) — 3X.(t; x X | TT; 0)

B Figure3 Extensions of Meta-function for Typing Rules

result if X appears in R. Otherwise, the quantifier is simply ignored. The automatic
unpacking is crucial to type checking method extraction. Consider function application
((custom-write-accessor ins) ins). The type of custom-write-accessor is
x:Has-Prop(sp,,) — 3X;. ((x:X; — Void; ¥, |¢_; 0); x € X, | TT; o') and ins has
type Has-Prop(sp,, ). (custom-write-accessor ins) extracts a method from ins.
The method’s type describes that the argument of the previous method extraction is
the method receiver, i.e. it has a unique type so that we cannot later apply any value
of type Has-Prop(sp,,, ) other than ins.

Local bindings Our calculus has two new typing rules to check the corresponding
new binding forms.

= With the expected type 7, T-LET-STRUCT-PROPERTY creates a named structure
property sp along with its property predicate and access procedure. The property
descriptor has type Prop(7), where 7 is the expected type for property values. The
predicate procedure’s type is similar to other type predicates’: if the argument
passes the predicate, it is of type Has-Prop(sp). The accessor’s type is built on an
existential function type, whose body is type T where the receiver type Self is
replaced with the existential quantifier X. Lastly, the rule assigns these three types
to three variables and extends the type environment to ensure e is well typed. The
final type result has all the bindings erased.

= T-LET-STRUCT is similar to T-LET-STRUCT-PROPERTY. It creates a structure type
with the name sn, field type 7, and a collection of property names sp and value
expressions ¢, . Then it checks if the type of each property value match the expected
type from the property name. If the latter contains the receiver type Self, the type
checker will substitute it with the current structure type. The types of the resulting
constructor and field accessor procedure are straightforward: the former takes an
argument of the field type and returns an instance of the structure, whereas the
latter does the opposite. The predicate procedure’s type is no different from other
type predicates’ except for the specific type in the latent propositions. Lastly, the
rule assigns these three types to three variables and extends the typing environment
to ensure e is well typed. The final type result has all the bindings erased.

Subsumption and subtyping T-SuBsuMeE lifts the type result of an expression to a
larger one through subtyping rules, which are defined in the usual manner. Our
extension adds two new rules: 1. S-FUN arranges the argument types and type results
in existential functions the same way as those in normal functions as long as the type
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T-SUBSUME
T'e:R 'R <:R
'—e:R
S-Fun
-1y <ity X#T S-STRUCT
ILxetyR; <:R, ['+sp : (Prop(t); TT|FF; o)

'-3X.x:7; >Ry <:3X.x:79 — R, '+ sn(t,sp) <: Has-Prop(sp)

M Figure 4 Extension of Subtyping Rules

variable appears in the same place 2. S-STRUCT describes a structure type is a subtype
of each well-typed property attached to the structure.

4.2 Generativity of let-struct and let-struct-property
In our system, let-struct is generative, while let-struct-property is not. Consider the
following code:
(let-struct ((mkfoo foo? foo-a) (foo N []))
(let ([y (let-struct ([mkfoo” foo?" foo-b] (foo B []))

(mkfoo” true))l)
(foo-a y)) ;; type error

The type checker will report that the domain of foo-a does not match the type of y,
even though the name of the structure type of y is foo. However, for let-struct-property,
the name is a fundamental part of the type. If the system allowed re-use of names in
structure type properties, then the system would be unsound. Consider the following
code:

(let-struct-property ((p p? p-acc) (prop N))

(let-struct ([mkfoo foo? foo-b] (foo N [p 42]))
(let ([v (mkfoo 10)1)

(let-struct-property ((pl p?1 p-accl) (prop x:Self - N))
((p-accl v) v))))) ;; runtime error

We first create a structure type property named prop, and attach it to the structure
type foo. On line 4, we create another property also named prop with a different
expected property value type, x:Self — N. When the type checker checks (p-acc1l
v) on line 5, it only ensures v is of a structure type with a property named prop. Since
the structure type of v happens to meet the condition, (p-accl v) is well typed and
sois ((p-accl v) v). However, at run time the extracted value from v will be 42,
which is not applicable and will cause a runtime type error. This error, and re-use of
structure type property names altogether, is ruled out by the freshness condition in
T-LET-STRUCT-PROPERTY.

4.2.2 A Worked Example

To illustrate how all the typing rule extensions help check method extraction, let us
work an example:
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(let-struct-property ((pnorm norm? norm-accessor)
(norm x:Self - N))
(let-struct ((mkpoint point? point-x)
(point N [(pnorm (A(this : point(N, pnorm))
(point-x this)))1))
((A(v : Has-Prop(norm))
((norm-accessor v) v))
(mkpoint 3))))

let-struct-property creates a structure type property called norm with the expected
type x:Self — N for property values later supplied in structure definitions. pnorm,
norm?, and norm-accessor are bound to the property descriptor, predicate pro-
cedure and accessor procedure respectively. pnorm has type Prop(x:Self — N) and
norm-accessor has type x:Has-Prop(norm) — 3X.((x:X — N; ¢, [¢Y_;0); x €
X |TT; o). Then we attach the property pnorm to the structure point in its definition.
T-LET-sTRUCT allows us to get the expected type x:Self — N from pnorm’s type, substi-
tute the current structure type point for Self, and use the result x:point(N, pnorm) —
N to successfully check the property value. In the subsequent function application,
we first ensure the lambda is well typed. By using T-App, the extracted method from
(norm-accessor v) hastype x:X — N, and the true proposition x € X from the type
result of applying norm-accessor gives v the unique type X, therefore the immediate
invocation of the extracted method with v is also well typed. Lastly, let us turn to the
argument to the lambda on line 8. By S-STrucT and T-SUBSUME, since (mkpoint 3)
is a point, a subtype of Has-Prop(norm), it is a valid argument to the lambda.

4.3 Semantics, Models and Soundness

Semantics Our calculus uses an environment-based big-step reduction semantics
described. The core judgment p + e || v states that expression e evaluates to value
v in environment p, where variables are mapped to closed values. The definition of
values are shown in figure 1. See figure 13 in appendix A for a full definition of the
evaluation rules.

Soundness
Theorem 1. (Type Soundness for Agrg). If e :tande || vthentv : T

The theorem states the type safety of a closed-term program in our system with
respect to big-step reduction semantics in the usual manner. In particular, the proposi-
tions and objects in type results are irrelevant. But in order to help prove the soundness
of our calculus, we adopt the full form of the typing judgment in the following lemmas
in addition to the same model-theoretic approach from the previous work [13, 17]

Models In Ay, a model is any value environment p. The relation “p satisfies ¢” is
written p = 1, and it states that the proposition vy holds given the assignment to its
free variables in the environment p. The relation extends to a proposition environment
in a point-wise manner. See figure 15 in Appendix A for a full definition of the model
relation.
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Our first lemma states that our proof theory respects our model.
Lemmai1. If p =T and T+ v, then p =
Proof. Do structural induction on derivations of T' - O

With Lemma 1 and our operational semantics, we can prove the next lemma crucial
to the soundness of our calculus.

Lemma2. IfTHe :(t;¢,|Y_;0), p=Tandp e | v then all of the following
hold:

. 0=@orp(o)=v
2. either v #falseand p =1, or v =falseand p =1 _
3. and v :(t; ) [ ;o) for some ', " and o’

Proof. To make the Lemma easier to prove, we slightly modify our typing judgment so
that it includes a store to keep track of free type variables. Since the modified system
has stronger constraints, our original system is also sound. See appendix B for the
complete proof.

Do induction on the derivation of p e | v. O

We can now easily prove the type soundness of Agyp:
Proof of Theorem 1. Corollary of Lemma 2. O

Note that our approach does not address diverging or stuck terms, which is the
standard drawback of big-step soundness proof. To solve this issue, we could do the
following: 1. add a value, error, of type L 2. add evaluation rules to generate error for
every stuck terms and add rules to propagate error upward 3. prove that the reduction
of a well typed term is impossible to be error.

[E} Implementation

In our model, T-LET-STRUCT is generative but T-LET-STRUCT-PROPERTY is not. How-
ever, the corresponding Racket procedures, make-struct-type-property and make-
struct-type, are both generative. We therefore must restrict Typed Racket programs
to avoid violating our assumptions. To accomplish this, Typed Racket requires that
all struct forms and definitions of structure type properties, i.e. (define-value
(pname pred acc) (make-struct-type-property 'name)) must appear at the
top-level of a module, and indexes them with binding information from the definition.
This ensures that each such definition is executed only once, and that similarly-named
definitions in different modules are kept distinct.
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Binary Methods The built-in structure type property prop:equal+hash requires its
values to contain an equality-checking predicate, which tests if the receiver and second
parameter are equal. Inspired by MyType in the programming language TOOPL [3], we
created Imp to denote the implementing structure type so we could annotate the prop-
erty with (StructProperty (-> Self Imp (-> Any Any Boolean) Booelean)).
However, how to translate Imp in a StructProperty type to the type of the corre-
sponding property accessor is still a work in progress, therefore our solution to the
binary method problem [5] is incomplete, and Imp is not exposed to developers.

Proposition Propagation Since Typed Racket’s support for normal function application
predates the existential one, our changes that are compatible with the existing code
is to handle it parallel to normal function application. The type checker simply needs
to use the body of the existential type result to do the rest of type checking in the
usual fashion. A difference in our implementation from our model is we do not only
use the true latent proposition of the type result of the function, but also propagate
it to the lexical proposition environment in order to check subsequent expressions.
Consider the following example of using the structure point2d defined in listing 3:
(define p (point2d 10 20))

((custom-write-accessor p) p)

(define g (point2d 42 24))

(define cw (custom-write-accessor q))

(printf "x of g is ~a " (point2d-x q))

(cw q)

Line 2 shows an example of applying the extracted method to the instance immediately.
In this case, extending the typing environment only to check the method application
would suffice. However, after extracting a method from an structure instance, devel-
opers can manipulate it with the normal structure operations besides applying it to
the method, as shown on line 4 — 7. Thus in order to check the following expressions,
we need to add the proposition to the typing environment.

On line 6, after extracting custom-write from q, it is also applied to point2d-x. To
type check such a program, Typed Racket uses intersection types[1]. Initially, q is of
type point2d. After type checking on line 5, g is assigned a unique receiver type X,
and q also keeps its original type, i.e. q is of type point2d A X.

Contracts Interaction between typed code in Typed Racket and untyped code in
Racket are protected [10, 11] by contracts [7]. When a typed module exports identifiers
to an untyped module, their types are converted to corresponding contracts that ensure
the safety of the program at run-time. When a typed module imports identifiers from
an untyped module, developers need to annotate them with types that are assumed
to be always correct for typed code.

Consider the code defined in listing 4. The enclosing module above is untyped. In
its typed submodule, we create the structure type property foo, its predicate and
accessor procedures. We also define a function that takes a value of any structure
type associated with foo and returns true. All those identifiers are exported to the
enclosing module along with the contracts converted from their types. The contract
of type (Has-Struct-Property prop:foo) monitors whether a contracted value
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is an instance of a structure associated with property prop:foo. For foo-ref, Typed
Racket generates a dependent contract for the function. The contract on the return
function checks if the invoking argument is an identical value to the receiver. When
the check fails, an error is raised.

M Listing 4 Type and untyped code interaction

#lang racket
(module typed typed/racket
(provide prop:foo foo? dummy)
(: prop:foo (Struct-Property (-> Self Number)))
(: foo? (-> Any Boolean : (Has-Struct-Property prop:foo)))
(: foo-ref (Some (X)
(-> (Has-Struct-Property prop:foo) (-> X Number) : X)))
(define-values (prop:foo foo? foo-ref) (make-struct-type-property 'foo))
(define (dummy [x : (Has-Struct-Property prop:foo)]) : Boolean
true)
(require 'typed)
(struct world [] #:property prop:foo (lambda (self) 10))
(define x (world))
((foo-ref x) x)
;; raise an exception that the invoking argument is not identical to x
((foo-ref x) (world))

Generating contracts from type Self is more complex. When bindings are defined in
typed modules, those modules are in positive position. For the contract on prop: foo,
it is provided by the module typed to the enclosing module. The contract also specifies
that a property value provided by the untyped side should be a function, which makes
Self in positive position. In this case, typed parts of a program are type checked,
therefore the contract for Self can be as permissive as possible. On the other hand,
when Self appears in negative position, i.e. a property name is provided by an untyped
module, as shown in the following code, we would fail to gather enough information
from the untyped side to create a contract for Self:

#lang racket
(module untyped racket
(provide prop:foo)
(define-values (prop:foo foo? foo-ref)
(make-struct-type-property 'foo)))
(module typed typed/racket
(require/typed (submod ".." untyped)
[prop:foo (Struct-Property (-> Self Number))l))

K3 Evaluation

As of Racket 7.9, there were officially 2649 packages on Racket’s package catalog, 164
of which were written in or depended on Typed Racket. We divided the evaluation of
the impact of our changes into two categories. First, our investigation showed that, 40
of those 164 packages used structure type properties, relying on the previous unsound
support. It is also worth pointing out that one typed package, typed-struct-props,
provided partial support for structure type properties before our implementation. In
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order to ensure that our changes to Typed Racket would not break existing pack-
ages, we tested them using our modified version of Typed Racket, including type
specifications for all struct type properties provided by the standard library.

When enabling sound checking of struct type properties, only two of 40 failed to
type check. One failure was simply that an additional type annotation was needed
in the property value expression. The other relied on an unsound use of occurrence
typing, as shown below:

(struct bitmap<%>
([convert : (Option (-> Bitmap<%> Symbol Any Any))]
[shadow : Phantom-Bytes]
[surface : Bitmap-Surfacel)

#:type-name Bitmap<%>

#:property prop:convertible

(A [self mime fallback]

(with-handlers ([exn? (A ([e : exn]) (invalid-convert self mime
< fallback))1)
(cond

[(bitmap<%>-convert self) => (A (c) (c self mime fallback))]
[(bitmap? self) (graphics-convert self mime fallback)]))))

The definition of the structure bitmap<%> specifies Bitmap<%> as the type name for
instances of the declared structure. The package developer had assumed the initial
type of parameter self to be Any, therefore a type predicate bitmap? was used
to refine self’s type in the second cond clause. Once we enabled type checking
on structure property values, self would be of type Bitmap<%> as declared in this
snippet, which has nothing in common with the built-in type bitmap.

Our fix was to avoid using the bitmap? predicate. Since bitmap<%>-convert was
not a type predicate, we directly relied on the result of (bitmap<%>-convert self):

(with-handlers ([exn? (A [e : exn] (invalid-convert self mime fallback))])
(define convert (or (bitmap<%>-convert self) graphics-convert))
(convert self mime fallback))

We submitted a pull request to the author of this package, and it was accepted; the
revised program works with or without our changes.

Second, we investigated the usage of structures and structure type properties in
2485 untyped packages. We found out that 878 packages defined structures, 243
of which specified a variety of structure type properties via #:property in their
structure definitions. 45 packages that used structure type properties also created
structure type properties through make-struct-type-property. In addition, four
other packages did not use any structure type properties, but defined and declared
properties as exports. Some racket libraries provided functions that require arguments
to be instances of structures associated with certain structure type properties. For
example, convert from the library file/convert requires the first argument to be
an instance of a prop:convertible-attached structure. For serialize from the
library racket/serialize, one type of serializable values are instances of structures
with prop:serializable. Our investigation showed there were 14 and 19 packages
that used convert and serialize respectively without defining structures with
corresponding structure properties. Our high level investigation did not focus on
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whether structure type properties related code in those packages would be well-typed
or even typeable if they were to switch the implementation language from Racket to
Typed Racket, but our sound support for structure type properties in Typed Racket
will ease the potential transition.

Related Work

While languages with method extraction have existed for decades, the problem of type
checking for these idioms has received little study; we survey the existing literature
here.

Methods as Functions Records are used to describe objects and existential types to
ensure encapsulation [4]. Here, we keep most of the notation from the work of Pierce
and Turner [4]: {f = v ...} isaliteral record, {| f : 7= ...} isarecord type,
and standard pack and unpack operations for existential types. We write r[key] for
field access. For example, if variable p is a one-dimensional coordinate value {x=42}
of type {| x : Int |}, p[x] access the x field of p and produces 42. With this in
hand, consider the following code:

Point = Some(X) {lstate: X, meth : {|get: X -> Int, set: X -> Int -> X|}I}
pl = < {Ix: Int|}, {state = {x = 5},
meth = {set = fun(s:{Ix:int|}, i:Int) {x=i},
get = fun(s:{Ix:int|}) s.x}}> : Point
PointGet(p) = fun(p : Point)
open p as [X, r] in <r, r[meth][get](r[state])> : Point
end;

Type Point is an alias to an existential type whose body is a record type. plis a
value of type Point. For p1, the witness type is also a record type. To encode message
sending for such an object, explicitly unpacking an existential package is required as
shown in the definition of the method PointGet of the object Point.

For method extraction for get, we would want to implement naive encoding in a
similar fashion, as shown by NaiveExtractGet defined below.

NaiveExtractGet(p) = fun(p : Point)
(open p as [X, r] in r[meth][get]) : X -> Int
(* error: X is out of scopex)

end;

ExtractGet(p) = fun(p : Point)
(open p as [X, r] in fun() r[meth][getl(r[state])) : -> Int
end;

However, this definition would not work, because the later supplied receiver is of an
existential type, while the internal get expects a value of the hidden record type that
cannot be used outside the scope. Therefore a general solution is to avoid passing
the receiver by closing it over a function, as shown by ExtractGet defined above.
Unfortunately, this encoding would not be backward-compatible with how structure
type properties are used in Racket.
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Refinement Types Refinement types offers another solution to encode method ex-
traction. Consider the following example in Liquid Haskell [16]:

data Foo = Foo {i :: Int, get_i :: Foo -> Int}

{-@ extract_get_i :: n: Foo -> {m:Foo | m == n} -> Int @-}
extract_get_i :: Foo -> Foo -> Int

extract_get_i ins@Foo {i = i, get_i = get_i} = get_i

We use a recursive record type to represent a class. The record type Foo contains a
data field, i, and the other field get_id as a field accessor function. The function
extract_get_i takes in a Foo instance, and returns its method get_i. By specifying
the refinement typem: Foo | m == n, we enforce the invariance on the self parameter
for method extraction, i.e. this extracted method only accepts the same Foo instance
where it is extracted. Note that refinement typing in Liquid Haskell is supported by
an external solver, whereas our approach is a combination of occurrence typing and
existential types.

Kent, Kempe, and Tobin-Hochstadt [17] extend Typed Racket with refinement types.
We adopt several of their innovations, but they do not include a solver sufficient to
handle our use case.

B Listings Node of Singly Linked List B Listing6 Node of Doubly Linked List

public class Node { public class DNode extends Nodef{
private int data = 0; DNode prev = null;
Node next = null; public DNode(int d) {
public Node(int d) { super(d);
this.data = d; }
} QO0verride
public void setNext(Node next) { public void setNext(Node next) {
this.next = next; super.setNext(next);
} ((DNode)next).setPrev(this);
} }

public void setPrev(DNode prev) {
this.prev = prev;
}
}

Self Type Bruce [3] proposes a new type called MyType in the programming lan-
guage TOOPL to represent the type of the implementing class so as to avoid dynamic
downcasting inside a method. As mentioned in our discussion about binary methods
in paragraph 5, this concept serves a similar purpose of Agrg’s the implementing
structure type Imp, and it is different from the receiver type Self.

Consider the Java code defined in listings 5 and 6. We define the class Node for singly
linked list and a subclass, DNode, that supports doubly-linked lists. When DNode’s
setNext is invoked, we have to downcast next to be a DNode before we invoke
setPrev on next. This shows a potential run-time type error when next is not an
instance of DNode. Using Self to annotate next would eliminate the downcasting, but
then the method setNext would only be allowed to take the receiver as the argument,
making the method useless. If Java adopted MyType from TOOPL, the Java code above
would become:
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public class Node { public class DNode extends Node{
MyType next = null; MyType prev = null;
/* VAT Y
c. @0verride
*/ public void setNext(MyType next) {
public void setNext(MyType next){ super.setNext(next);
this.next = next; next.setPrev(this);
} }
} }

In the new implementation, the type of next in setNext is modified to be MyType.
Inside the two classes, MyType is interpreted as Node and DNode respectively. This
ensures setPrev on line 6 of DNode can be safely called without dynamic downcasting.

Existing Languages Industrial products such as TypeScript, Flow, Hack, Sorbet, as
we have shown in the second section, chose to skip sound type checking on method
extraction. Java developers can extract methods from a class via reflection API and
invoke them with objects and other arguments dynamically. However, type checking
in this approach is weak. Developers must rely on exceptions to ensure the run-time
safety of programs:

try {
Method setNext = Node.class.getMethod("setNext", Node.class);
setNext.invoke(new DNode(42), new Node(10));
} catch (NoSuchMethodException e) {
err.format("class Node doesn't have a method named setNext");
} catch (IllegalAccessException e) {
e.printStackTrace();

}

In C++ [25], it is possible to create and invoke so-called “pointer-to-member” func-
tions, by using the std: : invoke operation. However, while this allows supplying a
receiver argument, these functions are statically dispatched and do not participate in
inheritance-based subtyping. Thus, the programs considered here are either statically
rejected or dispatched to a super class method, ignoring the presence of an overriding
declaration.

EJ conclusion

In this paper, we have described how the integration of occurrence typing and ex-
istential types is used to soundly type check method extraction. The combination
allows programmers to continue the scripts-to-programs progress by adding strong
static guarantee with little or no modification to original code. We have surveyed
how existing gradual type systems are unsound in the presence of method extraction.
We have also presented a formal model and soundness proof. Our evaluation on the
impact of release of the feature of Typed Racket on existing packages shows our design
goals have been met. In the future, we aim to build on this success to give types to
Racket’s generic methods.
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N Full Formal Model

op ::= not | addl | nat? | ...

| x| sn|sp
| n | true | false | op
| Ax:T.e | (ee)
| (ifeee)
| (let (xe)e)
| (let-struct ((x x x) (snt (sp—ej)) e)
| (let-struct-property ((sp x x) (x 7))) e)
| (consee)
| (fste) | (snde)
vi=
| n | true | false | op
| v, v) | [p, Ax:T.€]
|sn(v:z,3pV)
| pd(sp)
| so
50 1=

| ctor(x, T, 5pV) | pred(sn(t,sp)) | acc(sn(t, sP))

| p-pred(sp) | p-acc(sp, 7)
T,0 =
| T
IN|T|F|Tx7t
[J7)
| sn(7,sP)
| Prop(<)
| Has-Prop(sp)
| Self
| X
| 3X.x:1 >R
Y =
| TT | FF
loet|o¢T
YA [y

1= fst | snd

S

D = W ux
R
mEEGR S
<%

B Figure5 Syntax
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Primitive Ops
Expressions
variable
base values
abstraction, application
conditional
local binding
structure binding
structure property binding
pair construction
field access
Values
base values
pair, closure
structure instance
struct property descriptor
struct related operations
Struct-Related-Operations
ops for structure instance
ops for structure properties
Types
universal type
basic types
untagged union type
struct type
struct property type
has struct property type
the receiver type
type variable
existential function type
Propositions
trivial/absurd prop
atomic prop
compound props
Fields
Symbolic Objects
null object
variable reference
object field reference
Environment Elements
Type Result
Environments
Runtime Environments
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T-NaT T-TRUE
I'n:(N; TT|FF; @) T+ true:(T; TT|FF; @)

T-FALSE T-PROPERTY-DESCRIPTOR
[+ false : (F; FF|TT; 0) I'+ pd(sp) : (Prop(7); TT |FF; 0)
T-STRUCT-INSTANCE T-STRUCT-RELATED-OPERATIONS
I'sn(v:t,5pv,) : (sn(7,58); TT|FF; @) T so :(As(so); TT|FF; @)
T-VAR T-ABs

'-xer~ Ixethre:R
F'x:(t;x¢F|xeF;x) T+ Ax:t.e : (3X.x:1 —>R; TT|FF; @)

T-SUBSUME
THe:R TR <:R TPRIM
I'+op :(A(op); TT | FF; 9)
'~e:R

T-IF T-LET

Tep :(T5 914 (15 0) T'ep (715 Y1y [P1-; 01)
I,14 e R Yy =(xgFAyY)v(xeFay; )
I,Y,_Fes:R I,xetT,x=0q,Y, e :Ry
't (ifejezes) :R T+ (let(x e;) e5) : Ry[x = 01]

T-LET-STRUCT-PROPERTY
T, = Prop(7)
Tpred = X: T — (B; x € Has-Prop(sp) | x ¢ Has-Prop(sp) ; #)
T, = x:Has-Prop(sp) — 3X. (7[Self = X]; x e X | TT; o05)
L,8p, X, € Tp, Xpred € Tpred> Xacc € Ta - € IR
X#T X # sp#7T

I (let—struct-property ((xp Xpred xacc) (Sp T))) e) : R[Sp = Qj] [xpred = Qj] [xacc = g]

T-LET-STRUCT

I'+sp : (Prop(t,); TT |FF; @)
T'te, : (t,[Self = sn(t,3P)]; ¥, [Y_; 01)
T.n=x:7T — (sn(t,sp); TT|FF; @)
T, =x:T — (B; x €sn(t,5p) | x ¢sn(7,5p); 0)
Ta=x:sn(7,5p) — (7; TT|FF; 0)
L, Xctor € Tes Xpred € TpsXaec € Ta - € R

I'+ (let'StrUCt ((xctor Xpred xacc) (STl T (Sp €p 3)) 6’) : R[xctor = g] [xpred = Qj] [xacc = ¢]

M Figure 6 Typing Judgment
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T-App
Thep :(x:T > 3X.R; Y1y [P 0)

Lo ey (05 Yoy [V s 03)
o<t X#o0 X#+Y,;, X#T

T = (61 ez) :R[X fg} 02]

T-Cons
I'ey :(t1; TT|TT; o4)
[,key :(T9; TT|TT; o0y)

T (conse;ey) : (T1xTy; TT|TT; @)

T-FsT T-SnD

e :(tyxTq; TT|TT; o) e :(tyxTy; TT|TT; o)

R=(71; TT|TT; (fstx)) R=(74; TT|TT; (snd x))
I'+ (fste) :R[x;)o] '+ (snde) :R[xtT:2>o]

M Figure7 Typing Judgment Continued

Ag(ctor(sn, T,5pv,)) = x:1 — (sn(7,5p); TT|FF; 0)

Ag(acc(sn(T, sp))) =x:sn(t,sp) — (t; TT|TT; 0)

Ag(pred(sn(t,5p))) =x:T — (B; xesn(t,sp)|x ¢sn(t,sp); 0)
Ag(p-pred(sp;)) = x:T — (B; x € Has-Prop(sp;) | x ¢ Has-Prop(sp;) ; 0)
A (p-acc(sp;, 7)) = x:Has-Prop(sp;) — 3X.(7; x € X | TT; @)

M Figure 8 Types of Operations on Struct-related Values

A(not) =x:T—>B;xeF|x¢F; 0
A(addl) =x:N— (N; TT|FF; @)

A(nat?) =x:T—>(B;xeN|x¢N; )
A(bool?) =x:T—(B;xeB|x¢B; 0)
A(pair?) =x:T—>B;xeTxT|x¢TxT;0)

M Figure9 Types of Primitive Operations

Base Values T-NAT shows any natural number has type N, and since an N is a non-
false value, its true proposition is TT with the false proposition being FF. Rules for
other non-false values such as T-TRUE follow a similar specification, while T-FALSE
is different. The value is false, therefore its propositions are the opposite of those
of non-false values. T-PriM assigns function types to primitives by referring to the
metafunction A described in figure 9. Since there is no object referencing the portion
of the runtime environment, the object parts of those rules are @.

Structure Related Values T-PROPERTY-DESCRIPTOR shows the named property pd(sp)
has type Prop(7). T-STRUCT-INSTANCE shows the structure instance sn(v : 7, spv,)
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has type sn(t, sp ). Through the metafunction A,, T-STRUCT-RELATED-OPERATIONS
assigns function types to primitive operations for structure instances and structure
type properties. Figure 8 describes the definition of A;.

Variable T-VAR assigns type 7 to variable x if the proof system can show that x has
type 7. The true and false propositions reflect the two groups of values x referred to
in the runtime environment: non-false values and false. The object part follows the
definition of the judgment.

Conditionals In T-IF, the condition expression e, is first checked. If it is well typed,
the resulting true proposition and false proposition are used to extend the typing
environment to ensure that the two branch expressions e, and e; are also well-typed
respectively. The true proposition in the final type result is a disjoint union of those
from the type results of e, and e3, and so is the false proposition.

Local Bindings

» T-LET first checks if e; is well-typed, and assign the type of e; to x. ¢, accounts
for one of the following cases: if x refers to a non-false value, then ), holds;
Otherwise, v _ holds. Then the rule extends the typing environment with x’s type,
Y, the equivalence relation between 0, and x to ensure e, is well-typed. The final
type result is that of e, with substitution of o; for x.

= With the expected type 7, T-LET-STRUCT-PROPERTY creates a named structure
property sp along with its property predicate and access procedure. The property
descriptor has type Prop(7), where 7 is the expected type for property values. The
predicate procedure’s type is similar to other type predicates’: if the argument
passes the predicate, it is of type Has-Prop(sp). The accessor’s type is built on an
existential function type, whose body is type T where the receiver type Self is
replaced with the existential quantifier X. Lastly, the rule assigns these three types
to three variables and extends the type environment to ensure e is well typed. The
final type result has all the bindings erased.

= T-LET-STRUCT is similar to T-LET-STRUCT-PROPERTY. It creates a structure type
with the name sn, field type 7, and a collection of property names sp and value
expressions e, . Then it checks if the type of each property value match the expected
type from the property name. If the latter contains the receiver type Self, the type
checker will substitute it with the current structure type. The types of the resulting
constructor and field accessor procedure are straightforward: the former takes an
argument of the field type and returns an instance of the structure, whereas the
latter does the opposite. The predicate procedure’s type is no different from other
type predicates’ except for the specific type in the latent propositions. Lastly, the
rule assigns these three types to three variables and extends the typing environment
to ensure e is well typed. The final type result has all the bindings erased.

Abstraction T-ABs first checks if the body of the expression has type result R in the
typing environment extended with the bound variable x of type 7. R consists of four

6:30



Yuquan Fu and Sam Tobin-Hochstadt

parts: the return type 1, the true proposition v, which reveals type information
about the bound variable x when the return value is non-false, the false proposition
1 _ otherwise, and a symbolic object. Then the lambda is assigned type 3X.x:7 — R.
This rule also shows X might appear in 7 and R.

Application T-App handles function application. It checks if e; is a function, and
it extends the type environment with v, to ensure the type of e, is a subtype
of the argument type of e;. After doing capture-avoiding substitution of o, for the
occurrences of x in the existential type result 3X.R, it automatically unpacks the type
result if X appears in R. Otherwise, the quantifier is simply ignored. The automatic
unpacking is crucial to type checking method extraction. Consider function application
((custom-write-accessor ins) ins). The type of custom-write-accessor is
x:Has-Prop(sp,,) — 3X;. ((x:X; — Void; ¥, |¢_; 0); x € X, | TT; o') and ins has
type Has-Prop(sp,, ). (custom-write-accessor ins) extracts a method from ins.
The method’s type describes that the argument of the previous method extraction is
the method receiver, i.e. it has a unique type so that we cannot later apply any value
of type Has-Prop(sp,,,) other than ins.

Pairs T-Cons introduces a pair type by ensuring its two components are well typed.
T-FsT and T-SnD eliminate a pair type. If an argument is a pair, they include the first
and second argument type in their the final type results respectively in addition to
prepending an extra path to the symbolic object in the type result of the argument.

Subsumption and Subtyping T-SuBsuUME lifts the type result of an expression to a
larger one through subtyping rules, which are defined in the usual manner. Our
extension adds two new rules: 1. S-FUN arranges the argument types and type results
in existential functions the same way as those in normal functions as long as the type
variable appears in the same place 2. S-STRucT describes a structure type is a subtype
of each well-typed property attached to the structure.

Proof System Figure 11 describes the logic rules for our calculus. They are directly
inherited from A;p with modifications. The first eight rules are introduction and
elimination forms that resemble their counterpart in propositional logic. L-SuB says
if a typing environment proves an object has a subtype of a larger type, then it also
proves the object has the larger type. In L-Nor, if a typing environment is incompatible
with an object’s type, then we can conclude that the object doesn’t have the type.
L-Bor, serving as “ex falso quodlibet” of sorts in our system, allows us to derive any
conclusion if an object has type empty. By L-UppATE+ and L-UPDATE—, we are able
to use multiple positive and negative type statements on an object to refine its type.
The refinement is done through the metafunction described in figure 12. Roughly
speaking, the metafunction updates the type of some field of an object by doing a
conservative intersection of two types when it has the knowledge of the field’s type,
while computing their difference when it knows the field doesn’t have the type.
Aprr also extends the reduction rules of A; with three rules for structures and
structure type properties. B-LET-STRUCT-PROPERTY extends the environment with a
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S-UNION-SUB

SO-NuLL S-REFL S-Top VTinZ.TE1<:0
I'~o<:0 Tr7<:7 Tr-7t<:T
r-(J% <o
S-PAIR S-Fun
1y <i7y 1y <ty X#T S-UNION-SUPER
[0y <:09 [LxeTy+ Ry <:Ry JoinG.TH1T<:0

I'HFTix01<:T9%x05 T'+H3IX.x:7;y >Ry <:3IX.x:79 =R, I—r1<: (U&)

S-REsuLT
T — T1 <. To F,’l/)1+ }_ ¢2+ S-STRUCT
[0, <:0y T Yy ['+sp : (Prop(t); TT|FF; o)

T (T15 Y14 Y125 01) <i (725 Yoy [Yo_; 05) Tisn(t,sp) <: Has-Prop(sp)

M Figure 10 Subtyping

L-ATom LT L-ABsurRD L-ANDI L-ANDEI L-ANDE2
Yerl F_'_R,IHY,]II‘AL I'-FF [y Ty, TEY1AY, TEYPAY,
| ST T T Ay, T, T,y
L-OrE
L-OrI T=Yivy,
Ty, orT=vYy, T, or Ty =1
T vy, 'Y
L-Sus L-Not L-Bot
'oeo r-o<:vt lNoet FF 'oel
l'oert 'Hoé¢r 'y
L-UPDATE+ L-UPDATE—-

l'oen '-(go)eo l'oen I'(go)¢o

o€ update;r('r, @,0) I'|- o € update. (7,$,0)

B Figure 11 Proof system

property descriptor, its accessor procedure and predicate procedure to evaluate the
body. B-LET-STRUCT evaluates the body in the same way after it gets the values of
the property expressions. B-STRUCT-RELATED-OPERATIONS describes function appli-
cation of those generated procedures for structure instances. Figure 14 details the
metafunction &;,.
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update;—r(rlxrz,@::fst,a) = updatef:r(rl,@‘,a)x'rz
update%(flxqrz,@’::snd,a) = Tlxupdate;?r(fz,@,o)
updateff(r, €,0) = restrictr(7,0)

update;. (7,€,0) = remover(T,0)
updatef (U %), @, 0) = (U update; (1, 3,0))
restrictp(7,0) =liftno=y

restrictp (%), o) = (U restricty(t,0))

restrictp (7, 0) =1t ifl—7r<o

restrictp(7,0) =0 otherwise

remover(T,0) =1 iflr—r<o
remover((|J7), o) = (|Jremover(t,0))

remover(T,0) =7 otherwise

B Figure 12 Metafunction Update

6:33



Type Checking Extracted Methods

B-LET
B, B-VAR pe v BA
VL o=y plxi—wee by BARS
pEviv pHAx:te | [p,Ax:T.€]
prHx{v pH(let(xeq)ey) | v
B-BETA B-Prim
pter{[p,Ax:te] pie |op
B-FsT B-SND pHeylvy piey v

prellvi,vy) prelv,vy) pelx:=wlr-elv  &(op,vy)=v
pt(fste)lvi pH(snde) vy  pi(erez) v pt(erez) v

B-IFTRUE

pe v B-IFFALSE B-PaIrR
vy # false p eq | false pewn
pe|v pe3|v peylv

pt(ifejeses) | v pr(ifeyeses) f v p i (conse;ey) | vy, vp)
B-LET-STRUCT

—_——
pHe, v,
Veor = Ctor(sn, T, X, v,)

Vored = pred (sn)
Vaee = acc(sn)

p[xctor = vctor] [xpred = Vpred] [xacc L= Vacc] Helv

p = (let'StrUCt ((Xctor Xpred xacc) (Sn Tf (Xp ep))) e) Jv

B-LET-STRUCT-PROPERTY
v, = pd(x,)
Vored = p-pred (xp)
Vaee = P-acc(xp, T)
p[Sp = Vp] [xpred = Vpred] [xacc = vacc] Felv

p + (let-struct-property ((sp Xpreq Xacc) (Xp 7)) €) | v

B-STRUCT-RELATED-OPERATIONS
pHep|so

peylv
05(s0,v1) = vy

p(erez) I vy

B Figure 13 Big-step Reduction
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,(ctor(sn, T, X, v,), V) =sn(v:T, X, V)
5s(acc(sn(t,sp)), sn(v: 7, X,v,)) =V
5(pred(sn(t,sp)), sn(v: 7, X, v,)) =true
5, (pred(sn(t,sp)), v) = false ifv#sn(v:t, X, vp)
6(p-pred(x,,), sn(v: T, X, vp)) = true
6(p-pred(x,,), v) = false ifv#sn(v:t, X, )
65(p-acc(xp,, 7), sn(v: T, X, vp)) =V,
M Figure 14 Operations on struct-related values
M-AND
M-Or pEY; P =Y
M-Top pEY;,or pEY, Type variables are distinct in; and v,
p =TT
pEY1vYy P EY1AY,y
M-TypPE M-TypENOT M-ALIAS
Fp(o):t Fplo):o ont=g p(o)=p(oy)
pEoOET pEOET pEOL =0,

M Figure 15 Satisfaction Relation

6 (not, false) = true
6 (not, v) = false
6(addl, n) =n+1
6(nat?, n) = true
6(nat?, v) = false
6(bool?, true) = true
6(bool?, false) = true
6(bool?, v) = false
6(pair?, (v,v)) =true
& (pair?, v) = false

M Figure 16 Primitives

6:35



Type Checking Extracted Methods

IE} Full Proof for Soundness

To prove the soundness of our calculus, we add to our typing judgement a store to
track free type variables: T e :R| T

Lemmai1. If p =T and T+ v, then p =

Proof. Do structural induction on derivations of I' - ¢:
L-Trivial By M-TOP, p &= TT.
L-Atom since ¢ €T, p = 1) by assumption.
L-Absurd since p  FF, this case is impossible to prove
L-Andl By IH, p =1; and p &= 5. By M-AND, p = ¢ A,
L-AndE1 and L-AndE2 By IH, p &= ¢; A,. By inversion on it, p =1, and p =1,
L-ORI By IH, p =1, or p =1,. By M-OR, p =1 Vv,
L-ORE ByIH, p =4y, 0or p =,.Since p =T, p =T,2; or p =T,4y, and so p =
etc...
O

Lemmaz. IfTe :(t;¢, |Y_; o)| T, p=Tand p e | v then dll of the following
hold:

. 0=0@orp(o)=v
2. either v #falseand p =T,v ., orv=falseand p =T, _
3.and v :(7; ;]1/)’_;0’)|?forsomezp’,1/)’_ and o’

Proof. We are applying induction on the derivation of p | e || v. Since the corre-
sponding typing derivation for each evalution rule can have the non-subsumption rule
and T-SUBSUME as its last two rules. To simplify the following proof by cases, we
first prove the lemma holds for T-SUBSUME and evaluation derivations if it holds for
non-subsumption rules:

By inversion on T-SUBSUME, T - e : (07; ¢’ [¢” ; ox]l? ST (o9 (Yl x) <
(7; ¥4 [Y_; o). Assume our lemma holds for I' - e : (o; Y’ [’ ; e,) | T, Then we
are able to prove:

1. 0 = @. Otherwise, o = o,.. Then by IH, p(0,) =v and so p(0) = v

2. We need to show p = T,2, if v # false: By IH p = T,%)’ . By inversion on S-
RESULT: T',%)’, -1 . By Lemma 3, I',%’, -T,% . Then by Lemma 1, p =T, .
For proving p & I',1_ if v = false, the reasoning is similar.

3. ByIH,THv:(o;vy, |y ;x)| T.ThenT v :(t;9, [ _;0)| T

Now proceed by cases from induction on the derivation of p - e || v regardless of
T-SUBSUME:

= B-Val p - v || v Do structral induction on v:

- Case v = n: Two rules can be derived as the last one in the typing derivation:
T-NaT,T-IEXI. Proceed by cases.
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T-NaT T-TRUE
I'tn:(N; TT|FF; @)|o T+ true:(T; TT|FF; @)|o

T-FALSE T-PROPERTY-DESCRIPTOR
[+ false : (F; FF|TT; @) | o T+ pd(sp) : (Prop(t); TT|FF; @) | o

T-STRUCT-INSTANCE T-STRUCT-RELATED-OPERATIONS
I'sn(v:t,5pv,) : (sn(7,58); TT|FF; @) |o T kso :(A(so); TT|FF; @) o

T-VAR T-ABs
T'xer T,xetrHe:R| T
F'x:(t;x¢F|xeF;x)|o FI—AX:T.e2(3X.XZT—>R;TT‘FF;¢)|?
T-SUBSUME
T'-e:R|T TER <R ?‘PRIM (A(op): TT|FF: 9)|
— Fop : op); 5 o
FT'e:R|T
T-Ir N T-LET .
FF€1;)[T;1/)1+\’L/J1—;@)|T1 Thep (T Y1g Y- 00) | Ty
1",11),1/)1+ ) 3R|12) ll)x_f (X¢FA¢1+)V(X€FA¢1—_))
[,T,¢Y1_Fe3 :R[T; [,T,x€eT,x=0,Y e :Ry| T,

I'(ife;epe3) :RI Ty + Tp + T3 ' (let(xeq)ey) :Rz[xéol]lﬁ%—ﬁ)

T-LET-STRUCT-PROPERTY
T, = Prop(7)
Tpred = X: T — (B; x € Has-Prop(sp) | x ¢ Has-Prop(sp) ; @)
T, = x:Has-Prop(sp) — 3X. (7[Self = X|; x e X | TT; 03)
F,Sp, xp € Tp:xpred € Tpred;xacc ETqe ‘R | ?
X#T X # sp#T

I (let-struct—property ((xp Xpred xacc) (Sp T))) e) : R[Sp = g] [xpred = g] [xacc = ﬂ] | T

T-LET-STRUCT

T'+sp : (Prop(ty,); TT|FF; @) |c
T'ke, : (7,[Self = sn(7,5P)]; Y4 [P_; 0] |0
T.n=x:T — (sn(t,sp); TT |FF; @)

T, =Xx:T — (B; x esn(t,5p) | x ¢ sn(t,57); 0)
To=x:sn(7,5p) — (7; TT|FF; @)

T, Xetor € Tes Xpred € Tp> Xace € Ta e :Rl o

I (let'StrUCt ((xctor Xpred xacc) (STl T (Sp €p 3)) 6) : R[xctor = Qj] [xpred = g] [xacc = Qj] | 0

B Figure 17 Typing Judgement
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T-App
The (07— 3IX.R; 4y |Yi_; 0)| Ty

TPy e i (05 Yoy |25 05) | Ty
'o<it X#o0 X#+Y,, X#T

T (erey) :R[x 2 0,] | Ty + T,

T-Cons N
I'te; :(t1; TT|TT; 04) | T4
F,T{,l—ez :(Tz;']I"]I‘|']I"]I‘;02]|T2)

' (consejey) : (T;xTy; TT|TT; §)| Ty + T,

T-FsT N T-SND N
e :(tyxTy; TT|TT;0)| T I'e:(tyxTy; TT|TT;0)| T
R=(t,; TT|TT; (fstx)) R=(t5; TT|TT; (snd x))
T+ (fste) :R[x =>o0]| T T+ (snde) :R[x =2 0]| T

T-IEXI
X#T X#T
T'—v:RX=1]| T
T—v:R|T,X

B Figure 18 Typing Judgement Continued

* Subcase T-NaT: T'+-n : (N; TT |FF; @) | o
1.0=0
2. since n # false, by M-Top p = I, TT trivially.
3. By assumption, +n : (N; TT|FF; @) | o
* Subcase T-IEXI:
By inversion, T'+n : (N; TT |FF; @) | 0,X
The rest follows the same argument to the previous subcase.
- Casev =sn(v:71,35pv):
Two rules can be derived as the last one in the typing derivation:
T-STRUCT-INSTANCE, T-IEXI. Proceed by cases.

* Subcase T-STRUCT-INSTANCE:
1.0=0
2. since sn(v: T, spv) # false, by M-Top p = T, TT trivially.
3. By assumption, T -sn(v: 7, 5pv,) : (sn(7,5p) ; TT|FF; @) | o
* Subcase T-IEXI: follow a similiar argument to subcase T-IEXI in Case v = n.
- The rest cases follow an similar argument.

= BVarprx|v
Two rules can be derived as the last one in valid typing derivation: T-VAR.
By inversion, I' - x e T
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1. By inversion on the evaluation derivation, v = p(x)

2. Toshowp =xeForpEx¢F:
By M-TYPE, if v = false, p = x € F. Otherwise, v # f alse. Do structural induction
on v.
a. subcase: v = n. By M-NOT-TYPE, since v : (N; 1/)’+ |y 5 0)] T and there
is no overlap betweenan Nand an F, p =T, x ¢ F
b. the rest subcases follow a similar argument
3. Since I' -+ x € 7, by Lemma 1, p = x € 7. Then by inversion on M-TYPE, | v :
(Ts " [y ;0| T for some Y’ 4" and o
B-Abs p - Ax:T.e | [p,Ax:T.e]
T+ Ax:T.e : (3X.x:T —R; TT|FF; )| T,R=(7o; Ysy [s_; 0)
By inversion on the typing rule: T,X,x€Te :R| T .
1.0=0
2. By lemma 1 and because [p,Ax:t.e] ¢ F, p =T, TT
3. By assumption and T-CLOSURE, T - [p, Ax:T.e| : (3X.x:t »>R; ), |FF; @)| T
B-Struct-Related-Operation p e, || so,p e, || v,6,(s0,v;) =V
The valid typing derivation is T-APP: e = (e; e3), 0 = of[x = 03], Yy =Psi[x =
05, Y- =[x = 0]
By inversion on T-App, we know:
- The :(3X.x:0 >R; Yy [Y1_500) | Ty
- DT,y beg i (005 Yoy [Ya 5 05)| Ty
-T'+oy<io
R=(ts; sy |Ys_; of)
- T=T+T;
Doing induction on so. Proceed by cases:

1. so = ctor(sn, 0, 5pv,) and v =sn(v; : T, 5p V) :
By applying IHto I' e, : (x:0 — 3X.R; Y1, | ¢P1_; 01) | T, and p + e; | so,
we know:
- T'\-ctor(sn, 7,5p Vv, ) : (x:0 — 3IX.R; TT | FF; 9T,
- R— (sn(0,5F) ; TT | FF; )
- X doesn’t appear anywhere in the bodies.
Then we are able to show:
a.o=0
b. since sn(v; : 7, 5pv,) # false, p = TT trivially by M-TOP
. Fsn(vy:7,5pvy) : (sn(o,sp); TT|FF; 0) | T
2. 50 = acc(sn(o,sp)v,) and v; =sn(v: o, 5pvy):
By applying IHto I' e, : (x:0 — 3X.R; Y1, |Y1_; 01) | T, and p + e; |} so,
we know:
- T+~ acc(sn(t,5pv,)) : (x:sn(7,5pv,) — IX.R; TT|FF; @) | T
- R=(o; TT|TT; 9)

6:39



Type Checking Extracted Methods

- X doesn’t appear anywhere in the bodies.
a.o=0
b. either v = false or v # false, by M-TOP, p =T, TT.
. Fv:(t;TT|TT;0)| T
3. 50 = p-acc(sp;, Tp,), V1 =sn(v,: 0, 5pV,), and v = v,
By applying IHto I' e, : (x:0 — 3X.R; Y1, |¢P1_; 01) | T, and p e, || so,
we know:

—

- T'\- p-acc(sp;, Tp,) : (x:Has-Prop(sp;) — 3Self.R; ' |vy_; o')| Ty

- R= (7, ; x€Self |TT; of)

- T v, :R[oy = x][Self = sn(7,,5p7,)]| T,

a. if 0y =@ or oy = @, 0 = @. Otherwise, o # @. Since p(os) = Vp., X is absent
and the variable in o, is also bound in p, p(0) = v,,.

b. Subcase v # false : Since the variable in o, is bound in p, p =T, 0, € Self.

Subcase v = false : p = I', TT by M-Top.
c. by IEXL, T |- v, : R[o = x]| T,,Self

4. The rest subcases follow a similar argument to the previous subcases

« B-Betap - ¢; | [pe, Axiteec, p - ey b vy, pelxi= vl e b,
The last rule in the typing derivation is T-ApP: e = (e5 e5), 0 = 0¢[x = 0], Y, =

(o) o)
Yri[x=o00], Y =p_[x = 0y
By inversion on T-App, we know:

-The :(x:0 >3IX.R; Y1 |[YP1_s0)| Ty

- 0T, Y0y ey (005 Yoy [Ya 5 05)| Ty

-Tko,<:io

~R=(7p;Ysq[Ys_;0f)

T 4T

ByIHonT te; : (x:0 —» 3X.R; Y1, |[Y1_; 01) ] T, and p - e; | [p, Ax:7T..e.],

T+ [peAxioel] : (x:0 = IX.R; Yy, |15 00) | T,

By inversion on T-CLOSURE,

Ir.p. =T and I’ - Ax:o.e : (x:0 — IX.R; Y1, |13 01) | T;

By inversion on T-ABs, I",x € 0 \-ef : (T; Yy [ ; 0f) | T,

1. if 0, = @ or of = @, 0 = @. Otherwise, o, # @. Extend p. with o0, and v,, and
substitute x in o : p [0, := V;](0) = v. Since x is no longer present in p, and o
and the free variable in o is also bound in p, p(0) = v.

2. By applying IHto p [x := V] -e | vand ', x e o -ef : (T5 4, |Yp_; of)lﬁ,
if v # false then p [x :=v,] = I",7);,, or v = false then p [x := v, = T", ¢ _.
If 0, = @, by subsitutition, v [0, = x] = TT if v # false or s _[0, = x] = TT,
Then p =T, TT by M-TOP trivially.
Otherwise, 0, # @. In this case, by substitution , x doesn’t appear in 1 s , [0, = x]
or;_[oy = x] any more. Extend p. with 0, and vy: p.[05 := v,] E T, % [05 =
x] or p [0y :=v,] = T",%;_[0y = x]. Since the variable in o, is bound p such
that p(o,) = v, and also it is well typed under T, p = T, [0, = x] or
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p ET,¢¢_[0y= x]. Since T, x € 0 -, orT,x € o - ¢;_ and after substi-
tution x doesn’t exist any more, I' - T, ¢ [0y = x] or T - T,%¢_[0y = x] by
Lemma 3. By Lemma 1, p E T, [0y = x] or p =T, ¢_[0; = x].

3.ByIH, v :(t;¢, |¢Y_;0)| T

B-IF-TRUE p -e; | v;,v; #false,p ey | v

The last rule in the valid typing derivation is T-IF: e = (ife; ey e3), Y, = Yo, vP3,

Yo =1y vip3

By inversion, we know

ey o (Ts g |15 0) | T7

- 0T, Y1 bey (7540 [Ya_;0)| Ty

- T, T, bes : (7554 |35 0) | T3

- T =T, +T,+T,

BylHonp ey | v andI‘l—_)el (T g W)l—;gﬂﬁzpfzriﬁw

BylHonp ey, | vand I, T, ey & (T;5 Yoy |YPo_; 0)| Ty, we are able to

prove the following:

1. o=@orp(o)=v

2. if v # false, since p =T,v¢,, by Lemma1 p =1, . By M-OR, p = ¢, vi3,.

3.ByIH, v :(t;¢, |¢Y_;0)| T

B-IF-False p |- e; || v;,v; = false,p - e3 | v Follow an argument similar to B-IF-

TRUE while doing IH on the else branch.

B-Letpte vy, p[x:=vi]ey v

The last rule in the typing derivation is T-LET: e = (let (x e;) e5), 0 = 05[x => 01],

Y =1y [x=o01], Y =1y [x=04]

By inversion on this rule, we know

- Ther (T Y Y- 0) | Th

- Y= EFAY ) v(xeFAY; )

-T,T;,xeT,x=0p,Y, ey :R| T,

- R=(72; Yoy |2 ; 09)

By applying IHto p - e; | vy and T - ey : (715 914 [91_5 01) | T1, p =1y or

pEY_. N N

By applying IH to p[x :=v;| ey | vand I, T;,x € T1,x = 01, ey 1 R| Ty,

plx :=v1] By, or p[x :=v;] E1,_. Then we can show:

1. if o7 = @ or 05 = @, 0 = @. Otherwise, 0, # @. Since p[x := v;]|(0,) = v, by
substituting x with 01 in 04, p[x := v;](05[x = 01]) = v. Since x =01, p(07) =W,
by M-ALiAs. Because the variable in o, is already bound in p, p(05[x = 0;]) =V

2. if v = false, we need to show: p = T',v,, [x = 0;]. Since p[x :=v;]| ET, ¢, ,
plx :=vi] =T, ¢, [x = 0] by substituting x with o;. Since x = 04, p(07) =W,
by M-ALias. Because the variable in o is already bound in p, p =T, 95 [x = 0]

3. ByIH, v i (t; ¢, [¢_;0)|o

B-Let-Struct-Property v, = pd(sp), Vyreq = p-pred(sp), Vaec = p-acc(sp, 7), p[sp :=

Vp] [xpred = vpred][xacc = Vacc] Helv
This case can be trivially proved by IH
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= B-Let-Struct Vp = pd(sp), Vpred = p—pred(Sp),vacc = p-acc(sp, T):p[sp = Vp][xpred =
vpred][xacc = vacc] Felv
This case can be trivially proved by IH
= B-Fstor B-Snd: p e | (vi,v,)
These two cases can be trivially proved by IH
= B-Pair: pe; | vi,pHey | vy
Trivially proved by IH and subsumption.
. B-Prim: P H €1 U op,p = D) U V2:5(0p> VZ) =V
The valid typing derivation is T-APp: T' i~ (ej e5) : (75 94 [Y_; of) | T.
Do case-by-case proof on op and follow an argument similar to B-Struct-Values
O

Lemma 3. If T,v’ v, then T,9’ T,

Proof. By definition, I',4)’ - I'. By M-ANDI, T',2)’ - T'A). Since T =T, , T,2)’ I
Iy O
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