
Mechanized Type Safety for
Gradual Information Flow
Tianyu Chen

Computer Science

Indiana University

Bloomington, USA
chen512@iu.edu

Jeremy G. Siek
Computer Science

Indiana University

Bloomington, USA
jsiek@indiana.edu

Abstract—We model a security-typed language with gradual
information flow labels in a proof assistant, demonstrate its
potential application to parsing and securing sensitive user input
data, present the semantics as a definitional interpreter, and prove
type safety. We compare the language features and properties of
various existing gradual security-typed languages, shedding light
on future designs.

Index Terms—gradual typing, information flow security, mech-
anized metatheory

I. INTRODUCTION

In this paper, we prove type safety for a language with
gradual information flow labels. That is, a language in which
the programmer can request that information flow be checked
statically or they can defer such checking until runtime by
using the unknown information flow label, written ¿, in
type annotations. We describe how information-flow secure
language could be applied to constructing a parser that pro-
tects sensitive user input. Specifically, we focus on GLIO,
a language introduced by de Amorim et al. [1], who prove
that it satisfies noninterference [1, section 5] and the gradual

guarantees [1, section 6]. However, there are several more
properties that one expects of such a language: type safety,
blame safety, conservativity, and dynamic embedding [2]. In
this paper we focus on the first of those properties, type safety.
Unfortunately, the denotational semantics of GLIO given by
de Amorim et al. [1] does not distinguish between trapped and
untrapped errors, which makes it impossible to formulate the
type safety property. To remedy this we present a definitional
interpreter for GLIO that distinguishes between two kinds of
trapped errors (failure of a no-sensitive-upgrade (NSU) check
or a cast from high to low security) and the other errors which
are untrapped. Our type safety proof, as usual, guarantees that
untrapped errors never occur. The definitional interpreter and
the proof of type safety are mechanized in the Agda proof
assistant.

Broadly speaking, we are interested in confidentiality, that
is, restricting information access to authorized parties only,
which forms a triad together with integrity and availability
as the foundation of information security [3]. From the per-
spective of a programming language, confidentiality is often
formalized as satisfying noninterference, a theorem stating that

high-security input must not affect publicly observable low-
security outputs [4].

Modern software applications often accept user input where
selected fields are sensitive, whose confidentiality is required
during both parsing and processing. Suppose we have a web
application that receives three fields from its user: 1) first
name 2) last name 3) social security number, the grammar of
which is defined in figure 1, where terminals are divided into
low-security and high-security. The digits d for social security
number, being confidential to users of the web application, are
of high-security, so they are marked red, while other terminals,
such as the keys of the record and the strings w for first name
/ last name, being safe to disclose, are all of low-security,
marked in blue.

〈RECORD〉 ::={FirstName=〈ID〉;

LastName=〈ID〉;

SSN=〈SSN〉}

〈ID〉 ::=w,w ∈ {A, ...Z, a, ...z}+

〈SSN〉 ::=〈D〉〈D〉〈D〉-〈D〉〈D〉-〈D〉〈D〉〈D〉〈D〉

〈D〉 ::=d, d ∈ {0, ...9}

Fig. 1: Example grammar for user input

Consider the following user input:
{FirstName=Mad;LastName=Hatter;SSN=012-34-5678}

The author of the web application could implement a parser
for the grammar in Figure 1 in a language that enforces
information flow security. Each terminal in the grammar would
be labeled with a security level and the language would
guarantee that the high-security information is only present
in those parts of the output parse tree that are marked as high-
security. For example, according to the grammar in figure 1,
the example user input string is parsed into the parse tree
in figure 2, where the terminal nodes that represent digits
of the social security number are of high-security, while the
terminals that compose the rest of the input string are of low-
security. The confidentiality of SSN is guaranteed during data
processing since the language enforces noninterference. When
the web application interacts with the outside world, such as
making a foreign function interface (FFI) call or storing into

���

�����*&&&�4ZNQPTJVN�PO�4FDVSJUZ�BOE�1SJWBDZ�8PSLTIPQT

¥�����
�5JBOZV�$IFO��6OEFS�MJDFOTF�UP�*&&&�
%0*���������418����������������

Authorized licensed use limited to: Indiana University. Downloaded on October 07,2022 at 20:45:28 UTC from IEEE Xplore. Restrictions apply.

〈RECORD〉

}〈SSN〉

〈D〉

8

〈D〉

7

〈D〉

6

〈D〉

5

-〈D〉

4

〈D〉

3

-〈D〉

2

〈D〉

1

〈D〉

0

;SSN=〈ID〉

Hatter

;LastName=〈ID〉

Mad

{FirstName=

Fig. 2: The parse tree generated from the example user input. All terminals are represented as labeled values: the red ones, such as the digits of SSN, are of
high-security, while the blue ones, such as the keys of the record and first name / last name, are of low-security.

a database, the conceptual language need to encrypt whatever
values labeled as high security before they are passed into a
foreign routine.

The interest in enforcing confidentiality and regulating the
flow of information in a computer program arises with its
defense applications in the 1970s [5]. Denning [6] builds a
information flow model using a lattice of security labels and
Denning and Denning [7] discuss the certification technique
in further detail, with a proof that a certified program will
not give away confidential input from non-confidential output.
Volpano et al. [8] propose a typed-based approach to enforcing
information flow, by defining a type system for an imperative
programming language and proving its security with a type
soundness proof. This idea is further developed by Zdancewic
and Myers [9]. Such a protection scales well since type
checking is compositional [10]. There are projects that apply
similar techniques but to other languages such as bytecode
intermediate languages [11], object-oriented languages [12],
and reactive programming languages [13]. Although the afore-
mentioned languages are mostly theoretical, efforts have also
been made to integrate information flow control into widely-
used existing languages such as Jif for Java [14] and Flow

Caml for OCaml [15, 16].
While type systems rule out undesired flows statically, it

is also possible to do so at runtime. Li and Zdancewic [17]
add flow control to Haskell by utilizing existing language fea-
tures, specifically arrow and typeclass, to implement checks.
Similarly, the LIO library employs a labeled IO monad to
keep track of the current privilege level, which restricts both
the observability and the security effect [18, 19]. LIO also
provides 1) first-class labels so that labels are values and can
be manipulated by the programmer on-the-fly, and 2) coarse-
grained labeling so that a programmer may choose to label a
value when it is necessary to impose flow control policies and
omit the labels for security-insensitive parts of the program.

The HLIO [20] library introduces hybrid checking of in-
formation flow, whereby a programmer can choose between
static or dynamic checking in different parts of the program.
By default the checking is static, but a programmer can insert
a defer clause to say that the security constraints should be
checked at runtime.

Gradual typing [21, 22, 23] is a paradigm that combines
static typing and dynamic typing - checks are performed at

the boundaries between statically and dynamically typed code
fragments. The most obvious difference from static typing is
that a gradual type system usually contains a dynamic type
that stands for the type that is statically unknown - in our
case, it is a dynamic information flow label written ¿. Unlike
the hybrid approach discussed above, the programmer does not
insert casts or defer clauses to mark the transitions between
static and dynamic.

Recently there has been increasing interest in building
gradual security-typed languages. The benefit of having a
gradual security-typed language is that the programmer can
choose when it is appropriate to put in the effort to pass
the static security checks and when it is appropriate to defer
such enforcement to runtime - where information flow viola-
tions will appear as trapped errors. Gradual typing facilitates
migration between the static and dynamic checking because,
roughly speaking, changes in type annotations are guaranteed
to preserve program behavior, a property called the gradual
guarantee [2].

GLIO [1], on which this paper is based, is comparable to
HLIO in that both enable deferring information flow checks
to runtime and have similar features to the LIO language
mentioned above. They are different in that the latter is
gradual instead of hybrid, checks are guided by type and
a developer does not need to embed explicit casts into the
program. Additionally, GLIO satisfies criteria of a gradually-
typed language, such as dynamic and static gradual guarantees,
making the migration between paradigms easy. Apart from
GLIO, there are a few other noteworthy designs: Disney and
Flanagan [24] explore the idea of adding explicit casts to
enable dynamic flow control for a purely functional security-
typed language called λgif . Fennell and Thiemann [25] present
a similar cast calculus, ML-GS, with mutable references, a
feature that λgif lacks. The heap of ML-GS stores both values
and types, a model that GLIO follows. Toro et al. [26] derive
a language, GSLRef , leveraging the AGT framework [27].
GSLRef contains both a surface language and a cast calculus.
NSU checks are derived from their static counterparts during
the cast-insertion (called elaboration in GSLRef) procedure.
The authors also show that the typing rules of GSLRef stay
relatively similar to its fully static version SSLRef , other than
a few relations being replaced by their gradual counterparts.

With the growth in gradual security-typed language designs,

���

Authorized licensed use limited to: Indiana University. Downloaded on October 07,2022 at 20:45:28 UTC from IEEE Xplore. Restrictions apply.

we find it beneficial to make a thorough comparison between
them. We are interested in their language features and proper-
ties. Additionally, their heap models are also worth studying,
since a few of the designs store additional information beside
a value at each memory cell.

To summarize, the contributions of this work are:

• A definitional interpreter for GLIO that distinguishes
between different types of trapped errors.

• We prove type safety using the aforementioned semantics:
a well-typed GLIO program never gets stuck and always
evaluates to a well-typed machine configuration.

• We compare various existing gradual security-typed pro-
gramming languages and discuss their design choices. We
provide insight into which criteria future designs should
satisfy.

II. REVIEW OF THE GLIO LANGUAGE

In this section, we briefly review the syntax of GLIO [1]
and the type system in the form of Agda code 1. Agda

is a dependently-typed programming language and proof
assistant [28]. The code and machine-checked proofs in
this paper are available at https://github.com/Gradual-Typing/
lambda-sec/tree/master/glio.

A. GLIO by Example

GLIO is a gradually-typed language. Gaps between the
statically-typed fragments and the dynamically-typed frag-
ments are bridged by implicit casts, which also serve as
runtime information flow checks. Consider the program in
listing 1 that demonstrates how a function g, whose parameter
has a dynamic information flow label, interacts with a statically
typed region of code. Suppose there are two security levels:
Low and High. The type annotation on each let binding is
omitted and defaults to the type of the expression on the
right-hand side. The program counter annotation of each λ-
abstraction defaults to Low. A value with type T protected by
a certain information flow label ℓ inhabits Lab ℓ T; the label
may optionally be determined at runtime, written Lab ¿ T,
where the ¿ means a statically unknown label.

let f = λ x : (Lab Low Bool) . display x in
let g = λ x : (Lab ¿ Bool) . (f x) in
let v = to-label High true in
g v

Listing 1: Example of casts

Listing 1 shows a well-typed program. However, it may
leak information, since function f publishes a low-security
variable, while the value passed through function g, whose
parameter is of a statically unknown security level, is a high-
security boolean. To ensure security, GLIO terminates the
execution due to a failed cast and prevents the high-security
value from being disclosed. At the application g v, the
boolean labeled High that variable v is bound to is cast from
Lab High Bool to Lab ¿ Bool, which is permitted. The

1Agda 2.6.1.2 and standard library 1.4

application f x in the body of g, on the other hand, attempts
to cast a high-security boolean from Lab ¿ Bool to Lab

Low Bool, which errors due to a failed runtime check.
If every annotation is decorated with a concrete label, GLIO

can discover illegal information flows during type checking,
just like a statically security-typed language. Consider the
following program, Low and High:

let f = λ x : (Lab Low Bool) . x in
let v = to-label High true in
f v

Listing 2: Example of a statically-typed program, rejected

This program is unsafe since a high-security boolean is
passed into the identity function f which takes a low-security
boolean, ruled out by the type system. To make the program
type check, the programmer may lower the label on v like in
a statically security-typed language:

let f = λ x : (Lab Low Bool) . x in
let v = to-label Low true in
f v

Listing 3: Example of a statically-typed program, fixed

GLIO is a coarse-grained security-typed language, which
means that not all types and values are labeled. Values of
unlabeled types default to publicly visible. It also provides
first-class labels (labels as values). Consider the following
variation of the examples in listings 2 and 3:

let ℓ = (user-input) in
let f = λ x : (Lab Low Bool) . x in
let v = to-label-dyn ℓ true in
f v

Listing 4: Example of dynamically labeled value

There are two changes in the example above compared with
its static variants: 1) The to-label clause is replaced with
to-label-dyn. 2) A variable ℓ, bound to the user’s input,
is provided instead of a concrete label. If the user input label is
High when the program executes, a check happens during the
application, casting a boolean value labeled as high-security
to the type Lab Low Bool, which fails and triggers a cast
error, thus preventing the program from leaking information. If
the user input is Low instead, the program finishes successfully
and returns a boolean of low-security.

Similarly, consider the following example, where a new
heap location is created to store a secret:

let x = to-label High true in
let y = unlabel x in
new Low y

Listing 5: Creating labeled reference, statically rejected

The boolean is labeled as High, unlabeled and then written
to a new heap location when security level Low. It contains an
unsafe information flow from high-security to low-security and
is ruled out by the type checker. We may assign the secrecy
of the newly created heap cell at runtime:

���

Authorized licensed use limited to: Indiana University. Downloaded on October 07,2022 at 20:45:28 UTC from IEEE Xplore. Restrictions apply.

let ℓ = (user-input) in
let x = to-label High true in
let y = unlabel x in
new-dyn ℓ y

Listing 6: Creating dynamically labeled reference

If the input label ℓ is High when the program runs, it
finishes successfully since the information is flowing from
high-security to high-security; otherwise if ℓ is Low, an NSU
error occurs due to a failed runtime check, preventing the
program from leaking information. We explain different types
of errors in further detail in section III.

B. Defining the Syntax in Agda

The information flow label is defined as a datatype L with
constructor l that takes a natural number privilege level:
data L : Set where
l : N → L

It forms a lattice with the order 4, join ⊔, and meet ⊓ ,
which are analogous to their natural number counterparts ≤,
⊔n, and ⊓n . We use L̂ for the type of a gradual label - it can
be either a concrete label or dynamic ¿:

data L^ : Set where
¿ : L^
l^ : L → L^

For Low and High, we have the following shorthand:
L = l 0; L^ = l^ L; H = l 1; H^ = l^ H

The definitions of gradual join of labels (g) and types
(∨), gradual meet of labels (f) and types (∧), and consistent
subtyping of labels (-) and types (.) are all defined the same
as in de Amorim et al. [1] and thus omitted.

The types are defined using the gradual label datatype L̂:
data T : Set where

`⊤ : T -- Unit

`B : T -- Bool

`L : T -- Label

Ref : L^ → T → T -- Reference

Lab : L^ → T → T -- Labeled

[]⇒[_]_ : T → L^ → L^ → T → T -- Function

Most cases are straightforward. The label on the reference
type denotes the secrecy level of the heap location. There are
two labels decorated on a function type, which serve as the
static program counters before and after the computation of
the body of a λ-abstraction, corresponding to the two labels
on the signature of the typing rule (introduced below).

The terms of the GLIO are defined in Agda us-
ing the abstract binding tree library (https://github.com/
jsiek/abstract-binding-trees). The terms are extrinsically
typed; a term M that is typed T under typing con-
text Γ and program counter labels ℓ̂1 and ℓ̂2 is written
Γ [ℓ^1 , ℓ^2]⊢ M ⦂ T. The typing context is defined
as a list of types (List T), since we use De Bruijn notation
for variables. The two program counter labels ℓ̂1 and ℓ̂2 are for
the security effects before and after the computation, which
restrict heap operations in their respective scopes. We omit the
complete definitions of typing rules since they are ported from
the GLIO paper [1]; A-normal form is used so that the syntax
stays close.

III. INTERPRETING GLIO

In this section we present the interpreter for GLIO.

A. Modeling the Heap

A heap (Store) is defined as a list of cells; each cell maps
a location to a type-value pair:
data Cell (X : Set) : Set where
_ 7→_ : Location → X → Cell X

Store = List (Cell (T × Value))

A location is defined as a 3-tuple consisting of an index
number that is unique to each cell, a stored program counter
label at allocation, and a security level. It is intentionally kept
close to the definition in de Amorim et al. [1]:
Location = N × L × L

The result of the interpreter is a value, which can be a unit,
a boolean, a label, a heap reference, a labeled value, a closure
, or a function proxy. A function proxy is a function-typed
value wrapped together with the source type, the target type,
and the proofs that the source is the consistent subtype of the
target:
data Value : Set where
V-tt : Value
V-true : Value
V-false : Value
V-label : L → Value
V-clos : Clos → Value
V-proxy : (S T S′ T′ : T) → (ℓ^1 ℓ^2 ℓ^1′ ℓ^2′ : L^)
→ S′ . S → T . T′ → ℓ^1′ - ℓ^1 → ℓ^2 - ℓ^2′
→ Value
→ Value

V-ref : Location → Value
V-lab : L → Value → Value

A closure is a well-typed term with an environment. An en-
vironment is a list of values. If there are multiple occurrences
of the same address, the heap lookup function picks the first
match in the list. Consequently for heap update, we simply
cons a new type-value pair onto the heap.

B. The Machine Configuration

A configuration is defined as a 3-tuple that combines a
heap, the resulting value, and a program counter label after the
evaluation: Conf = Store × Value × L. An execution
can either succeed with a valid configuration or fail, by either
running out of time or reporting an error:
data Result (X : Set) : Set where
timeout : Result X
error : Error → Result X
result : X → Result X

The interpreter is defined as a function in Agda, which must
be total. Any finite execution can be obtained by increasing the
argument k [29]. There are three types of errors: cast errors,
NSU errors, and untrapped errors:
data Error : Set where
stuck : Error
castError : Error
NSUError : Error

We define a monadic bind (≫=) to thread the computation,
which proceeds if the result from the last step is a valid
configuration and aborts otherwise.

���

Authorized licensed use limited to: Indiana University. Downloaded on October 07,2022 at 20:45:28 UTC from IEEE Xplore. Restrictions apply.

V : ∀ Γ T ℓ̂1 ℓ̂2 . (γ : Env)→ (M : Term)→ (µ : Store)→ (pc : L)→ (k : N)→ Result Conf

V _ _ _ _ 0 = timeout

V γ (‘ x) µ pc (k + 1) =

{

result 〈µ, v, pc〉 , if γ[x] ≡ v

error stuck , if γ[x] is undefined

V γ (if (‘ x) M N) µ pc (k + 1) =































































do

〈µ′, vm, pc′〉 ← V γ M µ pc k

〈µ′′, _, pc′′〉 ← castL µ′ pc′ ℓ̂2 (ℓ̂2 g ℓ̂′2)

castT µ′′ pc′′ T T ′′ vm , if γ[x] ≡ Vtrue

do

〈µ′, vn, pc
′〉 ← V γ N µ pc k

〈µ′′, _, pc′′〉 ← castL µ′ pc′ ℓ̂′2 (ℓ̂2 g ℓ̂′2)

castT µ′′ pc′′ T ′ T ′′ vn , if γ[x] ≡ Vfalse

error stuck , otherwise

, where T ∨ T
′ ≡ T

′′

V γ (λ N) µ pc (k + 1) = result 〈µ, Vclos N γ, pc〉

V γ ((‘ x) · (‘ y)) µ pc (k + 1) =



























do

〈µ′, w′, pc′〉 ← castT µ pc T ′ T w

〈µ′′, _, pc′′〉 ← castL µ′ pc′ ℓ̂′1 ℓ̂1

apply γ v w′ µ pc k , if γ[x] ≡ v , γ[y] ≡ w

error stuck , otherwise

, where Γ[x] ≡ T
ℓ̂1,ℓ̂2−−−→ S, Γ[y] ≡ T

′, Γ ⊢ℓ̂′
1
,ℓ̂2

(‘ x) · (‘ y) : S

apply : Env → Value → Value → Store → (pc : L)→ (k : N)→ Result Conf

apply γ (Vclos N ρ) w µ pc k = V (w :: ρ) N µ pc k

apply γ (Vproxy S
ℓ̂1,ℓ̂2−−−→ T S

′
ℓ̂′
1
,ℓ̂′

2−−−→ T
′

v) w µ pc k = do

〈µ1, w
′

, pc1 〉 ← castT µ pc S
′

S w

〈µ2, _, pc2 〉 ← castL µ1 pc1 ℓ̂
′

1 ℓ̂1

〈µ3, v1, pc3 〉 ← apply γ v w
′

µ2 pc2 k

〈µ4, _, pc4 〉 ← castL µ3 pc3 ℓ̂2 ℓ̂
′

2

castT µ4 pc4 T T
′

v1

apply γ _ w µ pc k = error stuck

Fig. 3: The definitional interpreter of GLIO: timeout, variable, if, abstraction, and application

C. The Definitional Interpreter of GLIO

The interpreter is defined as a total function V that depends
on two helpers, castL and castT, whose definitions are
detailed in appendix A. There are cases where castT could
possibly get stuck. We show that those cases are never
encountered by proving type safety in section IV.

For simplicity, we show only the interesting cases of V ,
which are split into three parts: abstraction and application
(figure 3), heap access (figure 4), and labeling operations
(figure 5). The interpreter V takes an environment γ, a well-
typed term M , an original store µ, a program counter pc, and
a natural number k called gas which makes V total.

If gas runs out, V returns a timeout, shown in the first
case of figure 3. Variable lookup is straightforward, which
simply returns the value that variable x corresponds to in the

environment γ. If the lookup fails, it means that the term is
open and we get stuck. When evaluating if, we dispatch on
the value of the condition x. We go to the first branch if x is
V-true, the second if it is V-false, and get stuck if it is
neither. In either case, the sub-term is evaluated, the label is
cast to be the gradual join of the two branches, and the value
from the sub-term is then cast to the gradual join of types
from both branches.

In λ-abstraction’s case, we build a closure by wrapping the
well-typed body N and the current environment γ in V-clos.
Function application is defined leveraging an auxiliary helper
apply that applies a value which is either a V-clos or a V-
proxy and otherwise gets stuck. If the value is a closure, we
directly dive into the body N with an extended environment
w :: ρ, where ρ is the environment wrapped in the closure. On

���

Authorized licensed use limited to: Indiana University. Downloaded on October 07,2022 at 20:45:28 UTC from IEEE Xplore. Restrictions apply.

V : ∀ Γ T ℓ̂1 ℓ̂2 . (γ : Env)→ (M : Term)→ (µ : Store)→ (pc : L)→ (k : N)→ Result Conf

V γ (get (‘ x)) µ pc (k + 1) =



















{

castT µ (pc ⊔ ℓ2) T
′ T v , if µ[〈n, ℓ1, ℓ2〉] ≡ 〈T ′, v〉

error stuck , if µ[〈n, ℓ1, ℓ2〉] is undefined

, if γ[x] ≡ Vref 〈n, ℓ1, ℓ2〉

error stuck , otherwise

, where Γ[x] ≡ Ref ℓ̂ T

V γ (set (‘ x) (‘ y)) µ pc (k + 1) =





































































do

〈µ′, v′, pc′〉 ← castT µ pc T ′ T v

〈µ′′, v′′, pc′′〉 ← castT µ′ pc′ T T ′′ v′

setmem µ′′ 〈n, ℓ1, ℓ2〉 pc
′′ 〈T ′′, v′′〉 , if µ[〈n, ℓ1, ℓ2〉] ≡ 〈T ′′, _〉

error stuck , if µ[〈n, ℓ1, ℓ2〉] is undefined
, if γ[x] ≡ Vref 〈n, ℓ1, ℓ2〉 and γ[y] ≡ v

error stuck , otherwise

, where Γ[x] ≡ Ref ℓ̂ T , Γ[y] ≡ T
′

V γ (new ℓ (‘ y)) µ pc (k + 1) =



















{

result 〈〈n, pc, ℓ〉 7→ 〈T, v〉 :: µ, Vref 〈n, pc, ℓ〉, pc〉 , where n is fresh, if γ[y] ≡ v

error stuck , otherwise

, if pc 4 ℓ

error NSUError , otherwise

, where Γ[y] ≡ T

V γ (newdyn (‘ x) (‘ y)) µ pc (k + 1) =



















{

result 〈〈n, pc, ℓ〉 7→ 〈T, v〉 :: µ, Vref 〈n, pc, ℓ〉, pc〉 , where n is fresh, if pc 4 ℓ

error NSUError , otherwise

, if γ[x] ≡ Vlabel ℓ and γ[y] ≡ v

error stuck , otherwise

, where Γ[y] ≡ T

setmem : (µ : Store)→ Location → (pc : L)→ T× Value → Result Conf

setmem µ 〈n, ℓ1, ℓ2〉 pc tv =

{

result 〈〈n, ℓ1, ℓ2〉 7→ tv :: µ, Vtt, pc〉 , if pc 4 ℓ2

error NSUError , otherwise

Fig. 4: The definitional interpreter of GLIO: heap memory operations

the other hand if the value is a function proxy, we first cast the
type of the domain and the program counter at the beginning
of the computation, after which we recursively call apply.
Then we cast the program counter after the computation and
the type of the codomain, on the value after the application. In
short, applying a proxy unwraps one layer of V-proxy into
casts. The application case of V casts the domain on the value
w and the program counter and subsequently calls apply.

The semantics for heap operations are shown in figure 4,
When reading from a heap location 〈n, ℓ1, ℓ2〉 typed Ref ℓ̂

T, we first look it up in µ. If the index is out-of-bound, we
run into a memory access error and the evaluation gets stuck.
Otherwise if the type-value pair on heap µ is 〈T ′, v〉, we cast
the value v from T ′ to T , since we expect a T from the heap
reference. When writing to a heap location, we use an auxiliary
function setmem to check for NSU error, since writing to a
location that is less secure than the current program counter
must be strictly ruled out. If the index is out-of-bound, we

get stuck. Otherwise, we cast the value to store from its
original type T ′ to the type on the reference, T , and then
to the type annotation on the heap cell, T ′′. Finally we invoke
setmem to write the value to the heap. The operation new

and new-dyn create a new cell on the heap. The difference is
whether the label of secrecy ℓ comes statically from the term
or dynamically from the environment γ.

Figure 5 shows the cases for unlabel and to-label.
When unlabeling a value, apart from peeling off the label ℓ

and retrieving the unwrapped value v, we need to upgrade the
program counter by joining with ℓ - this is why the example
program in listing 6 may fail at runtime. The cases for to-
label and to-label-dyn are the same except that in the
former the label ℓ comes from the term while in the latter
ℓ comes from the environment γ - similar to the difference
between new and new-dyn. The two labeling operations both
evaluate the sub-term M , perform an NSU check, and return
the value v labeled with ℓ.

���

Authorized licensed use limited to: Indiana University. Downloaded on October 07,2022 at 20:45:28 UTC from IEEE Xplore. Restrictions apply.

V : ∀ Γ T ℓ̂1 ℓ̂2 . (γ : Env)→ (M : Term)→ (µ : Store)→ (pc : L)→ (k : N)→ Result Conf

V γ (unlabel (‘ x)) µ pc (k + 1) =

{

result 〈µ, v, pc ⊔ ℓ〉 , if γ[x] ≡ Vlab ℓ v

error stuck , otherwise

V γ (tolabel ℓ M) µ pc (k + 1) =



























{

result 〈µ′, Vlab ℓ v, pc〉 , if pc′ 4 pc ⊔ ℓ

error NSUError , otherwise

, if V γ M µ pc k ≡ result 〈µ′, v, pc′〉

error err , if V γ M µ pc k ≡ error err

timeout , if V γ M µ pc k ≡ timeout

V γ (tolabeldyn (‘ x) M) µ pc (k + 1) =









































































{

result 〈µ′, Vlab ℓ v, pc〉 , if pc′ 4 pc ⊔ ℓ

error NSUError , otherwise

, if V γ M µ pc k ≡ result 〈µ′, v, pc′〉

error err , if V γ M µ pc k ≡ error err

timeout , if V γ M µ pc k ≡ timeout

, if γ[x] ≡ Vlabel ℓ

error stuck , otherwise

Fig. 5: The definitional interpreter of GLIO: labeling

Well-typed environment:

[];µ ⊢ []

µ ⊢ v : T Γ;µ ⊢ γ

T :: Γ;µ ⊢ v :: γ

Well-typed heap:

µ ⊢ []

µ ⊢ v : T µ ⊢ σ

µ ⊢ 〈n, ℓ1, ℓ2〉 7→ 〈T, v〉 :: σ

Well-typed computation result:

µ ⊢ µ µ ⊢ v : T

⊢ result 〈µ, v, pc〉 : T ⊢ timeout : T

⊢ error castError : T ⊢ error NSUError : T

Fig. 6: Well-typed environment, heap, and computation result

We can see that our interpreter follows a similar structure
to the denotational semantics in de Amorim et al. [1, figure.
13], except than the authors use CPO sets to represent the
denotation of terms and casts, while we present the semantics
as an interpreter that employs a machine configuration monad,
which is easier to reason about in a proof assistant, since
the mechanized proof simply follows the branches in the
interpreter’s code. Another benefit is that we can view the
evaluation in action - in fact, all the examples shown in section
II are runnable in this interpreter.

IV. MECHANIZED TYPE SAFETY PROOF IN Agda

We are now ready to prove type safety with the operational
semantics in section III. It is proved by showing the com-
putation result of the interpreter is always well-typed, given
well-typed input.

The definitions of well-typedness for environment, heap,
computation, and value are given in figure 6 and 7. The typing

of environment is quantified by a typing context Γ and a store
typing µ. We use the heap itself as the store typing context, as
we store the type of each cell together with the value. A well-
typed environment means that each value in it is well-typed
according to its corresponding type in Γ. The typing of value
is quantified by the store typing µ, which is necessary due
to mutable reference. In the two cases of reference, we only
require that the heap location is valid; the type in the cell may
not necessarily be the same as the one on the reference. The
typing of heap is straightforward; since we store types directly
on heap, the type and value need to jive in each cell. Finally,
every result may be well-typed except stuck - we would like
to prove that the program never gets stuck. For a configuration
〈µ, v, pc〉 to be well-typed, both the heap µ and the value v

must be well-typed.
The statement of type safety is in theorem 2, which is a

corollary of proposition 1.

Proposition 1 (The interpreter V is type safe). If the initial

heap is well-typed µ ⊢ µ, the initial environment is well-typed

Γ;µ ⊢ γ, and the term is well-typed [] ⊢
ℓ̂1,ℓ̂2

M : T , then the

evaluation result is well-typed ⊢ V γ M _ µ pc k : T .

The detailed proof is discussed in appendix B.

Theorem 2 (Type safety). If term M is well-typed:

[] ⊢
ℓ̂1,ℓ̂2

M : T

, then evaluating M gets a well-typed result:

⊢ V [] M _ [] pc k : T

Proof. This theorem is a special case of proposition 1, where
the initial environment and heap are both empty, which are
trivially well-typed. �

���

Authorized licensed use limited to: Indiana University. Downloaded on October 07,2022 at 20:45:28 UTC from IEEE Xplore. Restrictions apply.

Unit
µ ⊢ Vtt : ‘⊤

Label
µ ⊢ Vlabel ℓ : ‘L

True
µ ⊢ Vtrue : ‘B

False
µ ⊢ Vfalse : ‘B

Closure
Γ;µ ⊢ γ T :: Γ ⊢ℓ̂1,ℓ̂2 M : S

µ ⊢ Vclos M γ : T
ℓ̂1,ℓ̂2−−−→ S

Proxy
µ ⊢ v : S

ℓ̂1,ℓ̂2−−−→ T

µ ⊢ Vproxy S
ℓ̂1,ℓ̂2−−−→ T S′

ℓ̂′
1
,ℓ̂′

2−−−→ T ′ v : S′
ℓ̂′
1
,ℓ̂′

2−−−→ T ′

Ref
µ[〈n, ℓ1ℓ2〉] ≡ 〈T, v〉

µ ⊢ Vref 〈n, ℓ1, ℓ2〉 : Ref ℓ2 T ′
RefDyn

µ[〈n, ℓ1ℓ2〉] ≡ 〈T, v〉

µ ⊢ Vref 〈n, ℓ1, ℓ2〉 : Ref ¿ T ′

Lab
µ ⊢ v : T ℓ 4 ℓ′

µ ⊢ Vlab ℓ v : Lab ℓ′ T
LabDyn

µ ⊢ v : T

µ ⊢ Vlab ℓ v : Lab ¿ T

Fig. 7: Value typing

V. COMPARING GRADUAL SECURITY-TYPED LANGUAGE

DESIGNS

In this section we compare four noteworthy designs - λgif

[24], ML-GS [25], GSLRef [26], and GLIO [1].

A. Language Features

Table I compares the features of the four languages, which
fall into three categories: the design of the language (whether
it provide implicit or explicit casts, which is the distinction
between a gradually typed surface language versus a cast cal-
culus that is meant to serve as an intermediate language), the
heap model (how the language handles mutable references),
and the labeling granularity (in what places information flow
labels may appear).

a) Language design: λgif and ML-GS provide explicit
casts but no implicit ones, so they are cast calculi. GSLRef

provides implicit casts; it is a gradually-typed language that is
derived from its statically-typed sister language SSLRef . GLIO

also provides implicit casts as we discussed in section II. It
does not have a statically-typed sister language.

b) Heap model: λgif does not have mutable reference.
Both ML-GS and GLIO choose to store a value together with
its type on heap and generate a cast from the heap type to the
type of the reference at runtime. GSLRef , on the other hand,
stores casts represented as evidence on the heap. Although the
approach of GLIO sounds similar to the one of ML-GS, there
is a type invariant of GLIO that ML-GS lacks. In GLIO the
type of a cell stays the same across updates, which is enabled
by reading the type from the address first, followed by casting
the value into that type. As shown in figure 4, the T ′′ stays
unchanged in the set case. The heap model of ML-GS does
not enforce this invariant; the R−Asgn rule makes it possible
to completely replace the raw type of a cell, so the cast may
fail when reading from a reference.

These heap models that insert casts at runtime when reading
and writing create a challenge for assigning blame. GLIO does
not perform blame tracking. On the other hand, ML-GS does
perform blame tracking and propagates blame labels through
the heap to assign blame when dereferencing. However, this
creates a problem regarding the statement of the blame theo-
rem, which usually says that if each cast labeled p in term M

of the cast calculus is a safe cast, then M will not reduce to

blame p. But the types stored on the heap are only known
when a program executes. Although the authors of ML-GS

conjecture that “an extension” of the blame theorem could
hold, they do not provide a theorem statement or a proof.

c) Labeling granularity: GLIO has first-class labels since
it is based on the LIO library, where labels are treated as
values. GLIO also follows LIO and HLIO and employs coarse-
grained labeling, in which not all values are labeled by default
and a programmer need to use to-label to explicitly protect
a value. However, it is proved that coarse-grained labeling is
equally expressive as fine-grained labeling, where every value
is labeled [30].

d) Language Feature Summary: Overall GLIO and
GSLRef are the more feature-rich languages among the four.
GLIO supports coarse-grained labeling and first-class labels,
which makes it easier to migrate from legacy code that does
not have information flow labels. However, GLIO does not
perform blame tracking, so it can’t satisfy a blame theo-
rem. Adding blame tracking it challenging because of the
heap model, though perhaps the ideas of Siek et al. [31]
may be applicable. GSLRef offers insight into deriving the
gradual security-typed language from its statically typed sister
language. Although it lacks first-class labels, its fine-grained
labeling scheme means a label comes with each value.

B. Theorems and Properties

Table II summarizes the metatheoretic properties that the
four languages satisfy. The “maybe” option is for properties
that are either conjectured by the authors or that we suspect
they would satisfy. Noninterference and type safety are sat-
isfied by all of the languages. We discuss the other three
properties in further detail:

a) Gradual guarantees: The static gradual guarantee
states lowering the type precision of a term does not introduce
a static type error. The dynamic gradual guarantee states
that lowering the type precision of a term does not change
its runtime behavior. On the other hand, increasing the type
precision of a term may trigger a cast error (e.g. by adding
an incorrect type annotation) but otherwise the behavior re-
mains unchanged. Neither λgif nor ML-GS discuss the gradual
guarantees, as they preceeded the invention of the gradual
guarantees. GSLRef satisfies the static gradual guarantee but

���

Authorized licensed use limited to: Indiana University. Downloaded on October 07,2022 at 20:45:28 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Comparison of language features

System Implicit Casts Explicit Casts Mutable reference First-class label Labeling scheme

λgif ✗ No ✓ Yes ✗ No ✗ No Fine
ML-GS ✗ No ✓ Yes ✓ Yes ✗ No Fine
GSLRef ✓ Yes ✓ Yes ✓ Yes ✗ No Fine

GLIO ✓ Yes ✗ No ✓ Yes ✓ Yes Coarse

TABLE II: Comparison of language properties

System Noninterference Type Safety Gradual guarantees Blame theorem Space efficiency

λgif ✓ Yes ✓ Yes ✲ Maybe ✓ Yes ✗ No
ML-GS ✓ Yes ✓ Yes ✲ Maybe ✲ Maybe ✗ No
GSLRef ✓ Yes ✓ Yes ✗ No ✗ No ✲ Maybe

GLIO ✓ Yes ✓ Yes ✓ Yes ✗ No ✗ No

not the dynamic gradual guarantee, which the authors claim is
in tension with noninterference. GLIO resolves this tension by
having casts check labels only, without classifying the data.

b) Blame theorem: The blame theorem says that if every
cast labeled by p in a term M is safe by satisfying a subtyping
relation, then M will not reduce to blame p. The authors
of λgif proved the blame theorem but λgif lacks mutable
references. The authors of ML-GS conjecture that the language
satisfies a blame theorem but do not state the theorem or give
a proof. Neither GSLRef nor GLIO performs blame tracking.

c) Space efficiency: The operational semantics of λgif ,
ML-GS, and GLIO both use function proxies that can build
up, so they are not space efficient. GSLRef utilizes the AGT
framework which can in principle enable space efficiency [32,
33], but space efficiency is not discussed in the GSLRef paper.

VI. CONCLUSION AND FUTURE WORK

In this paper we briefly reviewed the design of a gradual
security-typed language, GLIO, defined its semantics with a
definitional interpreter and provided a mechanized proof of
type safety in Agda. Based on our comparison and analysis of
four existing language designs, we recommend that a gradual
security-typed language have the following characteristics.

• A gradual language and a cast calculus. The language
design should include both a gradual surface language
with implicit casts and a cast calculus with explicit casts.

• Information flow control with fine-grained labeling.

Since fine-grained labeling and coarse-grained labeling
are equally expressive, we choose fine-grained labeling,
where each value is labeled and (gradual) labels are
embedded into the types, thus providing a more uniform
syntax. Different from GSLRef but similar to GLIO,
values should have a concrete label. An unlabeled value
should be shorthand for a default low-security label. We
conjuncture that this alleviates the problem with GSLRef ,
where values can become dynamically typed and lose
their original label when changing type annotations to
be less precise.

• Embedding of static and dynamic information flow

control. The gradual language should include include

both static and dynamic information flow control. This
means that the NSU checks should be expressed as
casts, similar to the path that GSLRef follows. We are
able to formally define the static and dynamic extremes
leveraging this approach.

• Mutable reference and proxies. The language should
support mutable reference. However, unlike ML-GS and
GLIO, the standard approach involving reference proxies
and a simple heap (that maps addresses to values) should
be investigated [34].

• Blame tracking. The language should support blame
tracking.

• Space efficiency. The language should be space efficient.

We plan to investigate a language with these characteristics
and develop its metatheory. Hopefully it will meet all the
criteria discussed in section V-B.

REFERENCES

[1] A. A. de Amorim, M. Fredrikson, and L. Jia, “Recon-
ciling noninterference and gradual typing,” in Logic in

Computer Science, ser. LICS, July 2020.
[2] J. G. Siek, M. M. Vitousek, M. Cimini, and J. T. Boyland,

“Refined criteria for gradual typing,” in SNAPL: Summit

on Advances in Programming Languages, ser. LIPIcs:
Leibniz International Proceedings in Informatics, May
2015.

[3] W. Stallings, L. Brown, M. D. Bauer, and A. K. Bhat-
tacharjee, Computer security: principles and practice.
Pearson Education Upper Saddle River, NJ, USA, 2012.

[4] J. A. Goguen and J. Meseguer, “Security policies and
security models,” in 1982 IEEE Symposium on Security

and Privacy. IEEE, 1982, pp. 11–11.
[5] D. E. Bell and L. J. La Padula, “Secure computer system:

Unified exposition and multics interpretation,” MITRE
CORP BEDFORD MA, Tech. Rep., 1976.

[6] D. E. Denning, “A lattice model of secure information
flow,” Communications of the ACM, vol. 19, no. 5, pp.
236–243, 1976.

���

Authorized licensed use limited to: Indiana University. Downloaded on October 07,2022 at 20:45:28 UTC from IEEE Xplore. Restrictions apply.

[7] D. E. Denning and P. J. Denning, “Certification of
programs for secure information flow,” Communications

of the ACM, vol. 20, no. 7, pp. 504–513, 1977.
[8] D. Volpano, C. Irvine, and G. Smith, “A sound type

system for secure flow analysis,” Journal of computer

security, vol. 4, no. 2-3, pp. 167–187, 1996.
[9] S. A. Zdancewic and A. Myers, Programming languages

for information security. Cornell University, 2002.
[10] A. Sabelfeld and A. C. Myers, “Language-based

information-flow security,” IEEE Journal on selected

areas in communications, vol. 21, no. 1, pp. 5–19, 2003.
[11] G. Barthe and T. Rezk, “Non-interference for a jvm-like

language,” in Proceedings of the 2005 ACM SIGPLAN

international workshop on Types in languages design and

implementation, 2005, pp. 103–112.
[12] T. Amtoft, S. Bandhakavi, and A. Banerjee, “A logic

for information flow in object-oriented programs,” ACM

SIGPLAN Notices, vol. 41, no. 1, pp. 91–102, 2006.
[13] A. Bohannon, B. C. Pierce, V. Sjöberg, S. Weirich, and

S. Zdancewic, “Reactive noninterference,” in Proceed-

ings of the 16th ACM conference on Computer and

communications security, 2009, pp. 79–90.
[14] A. C. Myers, “Jflow: Practical mostly-static information

flow control,” in Proceedings of the 26th ACM SIGPLAN-

SIGACT symposium on Principles of programming lan-

guages, 1999, pp. 228–241.
[15] F. Pottier and V. Simonet, “Information flow inference for

ml,” in Proceedings of the 29th ACM SIGPLAN-SIGACT

symposium on Principles of programming languages,
2002, pp. 319–330.

[16] V. Simonet and I. Rocquencourt, “Flow caml in a nut-
shell,” in Proceedings of the first APPSEM-II workshop,
2003, pp. 152–165.

[17] P. Li and S. Zdancewic, “Arrows for secure information
flow,” Theoretical Computer Science, vol. 411, no. 19,
pp. 1974 – 1994, 2010, mathematical Foundations
of Programming Semantics (MFPS 2006). [Online].
Available: http://www.sciencedirect.com/science/article/
pii/S0304397510000502

[18] D. Stefan, A. Russo, J. C. Mitchell, and D. Mazières,
“Flexible dynamic information flow control in haskell,”
in Proceedings of the 4th ACM symposium on Haskell,
2011, pp. 95–106.

[19] ——, “Flexible dynamic information flow control in the
presence of exceptions,” arXiv preprint arXiv:1207.1457,
2012.

[20] P. Buiras, D. Vytiniotis, and A. Russo, “Hlio: Mixing
static and dynamic typing for information-flow control
in haskell,” in Proceedings of the 20th ACM SIGPLAN

International Conference on Functional Programming,
ser. ICFP 2015. New York, NY, USA: Association
for Computing Machinery, 2015, pp. 289–301. [Online].
Available: https://doi.org/10.1145/2784731.2784758

[21] J. G. Siek and W. Taha, “Gradual typing for functional
languages,” in Scheme and Functional Programming

Workshop, September 2006, pp. 81–92.

[22] S. Tobin-Hochstadt and M. Felleisen, “Interlanguage
migration: From scripts to programs,” in Dynamic Lan-

guages Symposium, 2006.
[23] J. Matthews and R. B. Findler, “Operational seman-

tics for multi-language programs,” in The 34th ACM

SIGPLAN-SIGACT Symposium on Principles of Pro-

gramming Languages, January 2007.
[24] T. Disney and C. Flanagan, “Gradual information flow

typing,” in International workshop on scripts to pro-

grams, 2011.
[25] L. Fennell and P. Thiemann, “Gradual security typing

with references,” in 2013 IEEE 26th Computer Security

Foundations Symposium, June 2013, pp. 224–239.
[26] M. Toro, R. Garcia, and E. Tanter, “Type-driven gradual

security with references,” ACM Trans. Program. Lang.

Syst., vol. 40, no. 4, pp. 16:1–16:55, Dec. 2018.
[Online]. Available: http://doi.acm.org/10.1145/3229061

[27] R. Garcia, A. M. Clark, and E. Tanter, “Abstracting
gradual typing,” in Proceedings of the 43rd Annual

ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, ser. POPL 2016. New York,
NY, USA: ACM, 2016, pp. 429–442. [Online]. Available:
http://doi.acm.org/10.1145/2837614.2837670

[28] A. Bove, P. Dybjer, and U. Norell, “A brief overview
of agda — a functional language with dependent types,”
in Proceedings of the 22Nd International Conference on

Theorem Proving in Higher Order Logics, ser. TPHOLs
’09. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 73–
78.

[29] N. Amin and T. Rompf, “Type soundness proofs
with definitional interpreters,” in Proceedings of the

44th ACM SIGPLAN Symposium on Principles of

Programming Languages, ser. POPL 2017. New York,
NY, USA: ACM, 2017, pp. 666–679. [Online]. Available:
http://doi.acm.org/10.1145/3009837.3009866

[30] V. Rajani and D. Garg, “Types for information flow con-
trol: Labeling granularity and semantic models,” in 2018

IEEE 31st Computer Security Foundations Symposium

(CSF). IEEE, 2018, pp. 233–246.
[31] J. G. Siek, M. M. Vitousek, M. Cimini, S. Tobin-

Hochstadt, and R. Garcia, “Monotonic references for
efficient gradual typing,” in European Symposium on

Programming, ser. ESOP, April 2015.
[32] M. Toro and É. Tanter, “Abstracting gradual references,”

Science of Computer Programming, vol. 197, p. 102496,
2020. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0167642320301052

[33] F. Bañados Schwerter, A. M. Clark, K. A. Jafery, and
R. Garcia, “Abstracting gradual typing moving forward:
Precise and space-efficient,” Proc. ACM Program.

Lang., vol. 5, no. POPL, Jan. 2021. [Online]. Available:
https://doi.org/10.1145/3434342

[34] D. Herman, A. Tomb, and C. Flanagan, “Space-efficient
gradual typing,” in Trends in Functional Prog. (TFP),
April 2007, p. XXVIII.

���

Authorized licensed use limited to: Indiana University. Downloaded on October 07,2022 at 20:45:28 UTC from IEEE Xplore. Restrictions apply.

APPENDIX A
DETAILED DEFINITIONS OF CASTS BETWEEN LABELS AND

TYPES

Figure 8 shows the definitions of the cast functions.
Vclos M γ denotes a closure value with a well-typed body M

and an environment γ. Vproxy S
ℓ̂1,ℓ̂2
−−−→ T S′

ℓ̂′
1
,ℓ̂′

2−−−→ T ′ v stands
for a function proxy - a value wrapped with two function types
and a proof that the source is the consistent subtype of the
target. castL guarantees the runtime program counter pc is
the consistent subtype of the static one ℓ̂2. castT casts a value
v from T1 to T2. It checks whether T1 is the consistent subtype
of T2. There are some additional label checks in the Ref ℓ̂

T and Lab ℓ̂ T cases. A reference value V-ref 〈n, ℓ1, ℓ2〉,
whose secrecy is denoted by ℓ2, can inhabit either Ref ¿ T

or Ref ℓ2 T for some T . Similarly, a labeled value V-lab ℓ

v can inhabit Lab ℓ̂ T for some T provided that ℓ - ℓ̂. If any
of these checks fails, the cast results in a castError. For
example, if we attempt to make V-lab High v to inhabit
Lab Low T for some v, T . When casting a value of function
type, we use function proxy and wrap the source type, the
target type, and a proof that the source is the consistent subtype
of the target using V-proxy. In figure 3, in the function
application case of V , we have showed how a function proxy
is consumed.

APPENDIX B
DETAILED LEMMAS AND PROOFS OF SECTION IV

A. Supplementary Lemmas

Lemma 3 (Variable lookup). If the environment is well-typed

Γ;µ ⊢ γ and Γ[x] ≡ T , then:

∃v.γ[x] ≡ v ∧ µ ⊢ v : T

Proof. By induction on the De Bruijn index x:

If x = 0, the first value in a well-typed environment is always
well-typed.

If x = suc k for some k, it is proved by the induction
hypothesis about k.

�

Lemma 4 (Heap lookup). If the heap is well-typed σ ⊢ µ

and µ[〈n, ℓ1, ℓ2〉] ≡ 〈T, v〉 for some location 〈n, ℓ1, ℓ2〉, then

σ ⊢ v : T .

Proof. By induction on σ ⊢ µ:

If the heap is empty, this is impossible because there is no
〈T, v〉 pair.

If the µ is not empty, there are two possibilities. If the
location to lookup is the same as the index of the first
cell, then v is typed at T since the heap is well-typed.
If not, it is proved by the induction hypothesis about the
rest of the heap.

�

Lemma 5 (Cast castT’ is well-typed). If T1 . T2, with a

well-typed heap µ ⊢ µ and a well-typed value µ ⊢ v : T1, we

have:

⊢ castT ′ µ pc T1 T2 _ v : T2

Proof sketch. By induction on the typing derivation of the
value v. Since v is well-typed, we never go into the stuck

branches. The complete proof is mechanized in Agda. �

Lemma 6 (Updating preserves well-typed heap). If heap

σ is well-typed µ ⊢ σ, the address to update is valid

µ[〈n, ℓ1, ℓ2〉] ≡ 〈T, v〉, the new value is well-typed µ ⊢ w : T ,

then:

〈n, ℓ1, ℓ2〉 7→ 〈T,w〉 :: µ ⊢ σ

Proof sketch. By induction on µ ⊢ σ. The complete proof is
mechanized in Agda. �

Lemma 7 (Creating new cell preserves well-typed heap). If

heap σ is well-typed µ ⊢ σ, the index n is fresh, the new value

is well-typed µ ⊢ v : T , then:

〈n, ℓ1, ℓ2〉 7→ 〈T, v〉 :: µ ⊢ σ

Proof sketch. By induction on µ ⊢ σ. The complete proof is
mechanized in Agda. �

B. Proving That the Interpreter Is Safe

The interesting cases in the proof of proposition 1 are
detailed below.

Proof sketch. The complete proof is formalized in Agda. We
only detail a few cases here. If the evaluation times out, it
is trivially well-typed. Otherwise, by induction on the typing
derivation of the term M :

Case variable (‘ x): The environment γ is well-typed so
this case is proved by lemma 3.

Case if: By lemma 3, there are only two possibilities that
x typed ‘B may correspond to: V-true or V-false,
so the program does not get stuck during the lookup of
x. If x is V-true and we go to the then-branch M ,
we case on the evaluation result of M - if M times out
or errors by either castError or NSUError then the
result is trivially well-typed; evaluating M does not get
stuck because of the induction hypothesis. If it returns a
machine configuration, we proceed with castL, which
either errors by a castError, which is well-typed,
or evaluates to a configuration. The final castT either
errors by a castError, which is again trivially well-
typed, or invokes castT’, the well-typedness of which
is proved by lemma 5. The proof of the else-branch N

follows the same structure.
Case get: By lemma 3, the value that x with a reference

type corresponds to must be of form V-ref 〈n, ℓ1, ℓ2〉,
whose typing may follow either the Ref rule or the
RefDyn rule (in figure 7). In either case, we conclude
that µ[〈n, ℓ1, ℓ2〉] ≡ 〈T, v〉, so the interpreter does not
get stuck due to a failed heap lookup. Since the result
of castT is well-typed (a corollary of lemma 5), the

���

Authorized licensed use limited to: Indiana University. Downloaded on October 07,2022 at 20:45:28 UTC from IEEE Xplore. Restrictions apply.

castL : (µ : Store)→ (pc : L)→ (ℓ̂1, ℓ̂2 : L̂)→ Result Conf

castL µ pc ℓ̂1 ℓ̂2 =

{

result 〈µ, Vtt, pc〉 , if pc - ℓ̂2

error castError , otherwise

castT ′ : (µ : Store)→ (pc : L)→ (T1, T2 : T)→ (v : Value)→ Result Conf

castT
′

µ pc ‘⊤ ‘⊤ Vtt = result 〈µ, Vtt, pc〉

castT
′

µ pc ‘⊤ ‘⊤ _ = error stuck

castT
′

µ pc ‘B ‘B Vtrue = result 〈µ, Vtrue, pc〉

castT
′

µ pc ‘B ‘B Vfalse = result 〈µ, Vfalse, pc〉

castT
′

µ pc ‘B ‘B _ = error stuck

castT
′

µ pc ‘L ‘L (Vlabel ℓ) = result 〈µ, Vlabel ℓ, pc〉

castT
′

µ pc ‘L ‘L _ = error stuck

castT
′

µ pc (Ref ℓ̂1 T
′

1) (Ref ℓ̂2 T
′

2) (Vref 〈n, ℓ1, ℓ2〉) =

{

result 〈µ, Vref 〈n, ℓ1, ℓ2〉, pc〉 , if ℓ̂2 is ¿ or ℓ̂2 ≡ ℓ2

error castError , otherwise

castT
′

µ pc (Ref ℓ̂1 T
′

1) (Ref ℓ̂2 T
′

2) _ = error stuck

castT
′

µ pc (Lab ℓ̂1 T
′

1) (Lab ℓ̂2 T
′

2) (Vlab ℓ v) =



















do

〈µ′, v′, pc′〉 ← castT ′ µ pc T ′

1 T ′

2 v

result 〈µ′, Vlab ℓ v′, pc′〉 , if ℓ - ℓ̂2

error castError , otherwise

castT
′

µ pc (Lab ℓ̂1 T
′

1) (Lab ℓ̂2 T
′

2) _ = error stuck

castT
′

µ pc S
ℓ̂1,ℓ̂2−−−→ T S

′
ℓ̂′
1
,ℓ̂′

2−−−→ T
′

v =











result 〈µ, Vproxy S
ℓ̂1,ℓ̂2−−−→ T S′

ℓ̂′
1
,ℓ̂′

2−−−→ T ′ v, pc〉

, if v is Vclos or Vproxy
error stuck , otherwise

castT : (µ : Store)→ (pc : L)→ (T1, T2 : T)→ (v : Value)→ Result Conf

castT µ pc T1 T2 v =

{

castT ′ µ pc T1 T2 v , if T1 . T2

error castError , otherwise

Fig. 8: Casts between labels and types

final result of get is well-typed (note that the heap is
not modified by castT or castL).

Case set: The reasoning is similar to that of get. If the two
casts both return valid configurations, we need to prove
that the configuration after setmem is still well-typed. If
the NSU check in setmem fails, an NSUError is well-
typed. Otherwise, the well-typedness of the updated heap
is justified by lemma 6.

Case new-dyn: Similar to get and set, we know that
both variables correspond to well-typed values. If the
NSU check fails, an NSUError is well-typed. Other-
wise, the resulting configuration contains a heap extended
with the new cell and a returned reference. The well-
typedness of the extended heap is proved using 7. The
reference is well-typed due to the RefDyn rule.

Case new: Similar to new-dyn.

�

���

Authorized licensed use limited to: Indiana University. Downloaded on October 07,2022 at 20:45:28 UTC from IEEE Xplore. Restrictions apply.

APPENDIX C
COMPLETE DEFINITIONS AND PROOFS IN Agda

TABLE III: Mapping definitions and theorems in the paper to Agda code

Definition or theorem File Agda function or datatype

Label join (⊔) StaticsGLIO.agda Operator _⊔_
Label meet (⊓) StaticsGLIO.agda Operator _⊓_

Label partial order (4) StaticsGLIO.agda Operator _4_
Gradual label join (g) StaticsGLIO.agda Operator _g_
Gradual label meet (f) StaticsGLIO.agda Operator _f_

Gradual label intersection (
∏

) StaticsGLIO.agda Operator _
∏

_
Label consistent subtyping (-) StaticsGLIO.agda Operator _-_

Type join (∨) StaticsGLIO.agda Operator _∨_
Type meet (∧) StaticsGLIO.agda Operator _∧_

Type intersection (∩) StaticsGLIO.agda Operator _∩_
Consistent subtyping (.) StaticsGLIO.agda Operator _._

Typing rules StaticsGLIO.agda Datatype _[_,_]⊢_⦂_
Value and heap Store.agda Datatype Location, Value, Cell, and Store

Heap lookup Store.agda Function lookup

Machine configuration Interp.agda Datatype Conf and Result
Casts Interp.agda Function castL and castT

Interpreter (figure 8, 3, 4, and 5) Interp.agda Function V
Value typing WellTypedness.agda Datatype _⊢v_⦂_

Well-typed environment WellTypedness.agda Datatype _|_⊢e_
Well-typed heap (store) WellTypedness.agda Datatype _⊢s_

Well-typed result WellTypedness.agda Datatype ⊢r_⦂_
Variable lookup lemma 3 WellTypedness.agda Function ⊢γ→∃v and ⊢γ→⊢v

Heap lookup lemma 4 WellTypedness.agda Function lookup-safe and lookup-safe-corollary
castT’ is well-typed (lemma 5) WellTypedness.agda Function ⊢castT′

Heap update lemma 6 WellTypedness.agda Function ext-update-pres-⊢s
Heap new lemma 7 WellTypedness.agda Function ext-new-pres-⊢s

V is type safe (prop 1) InterpSafe.agda Function V-safe
Type safe (theorem 2) TypeSafety.agda Function type-safety

Example in listing 1 Example.agda Module FunExample
Examples in listing 2 and listing 4 Example.agda Module LabExample
Examples in listing 5 and listing 6 Example.agda Module RefExample

���

Authorized licensed use limited to: Indiana University. Downloaded on October 07,2022 at 20:45:28 UTC from IEEE Xplore. Restrictions apply.

