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Abstract

The research on gradual typing has led to many variations on the Gradually Typed Lambda Calculus
(GTLC) of Siek & Taha (2006) and its underlying cast calculus. For example, Wadler and Findler
(2009) added blame tracking, Siek et al. (2009) investigated alternate cast evaluation strategies, and
Herman et al. (2010) replaced casts with coercions for space efficiency. The meta-theory for the
GTLC has also expanded beyond type safety to include blame safety (Tobin-Hochstadt & Felleisen,
2006), space consumption (Herman et al., 2010), and the gradual guarantees (Siek et al., 2015).
These results have been proven for some variations of the GTLC but not others. Furthermore,
researchers continue to develop variations on the GTLC, but establishing all of the meta-theory
for new variations is time-consuming. This article identifies abstractions that capture similarities
between many cast calculi in the form of two parameterized cast calculi, one for the purposes of lan-
guage specification and the other to guide space-efficient implementations. The article then develops
reusable meta-theory for these two calculi, proving type safety, blame safety, the gradual guarantees,
and space consumption. Finally, the article instantiates this meta-theory for eight cast calculi includ-
ing five from the literature and three new calculi. All of these definitions and theorems, including the
two parameterized calculi, the reusable meta-theory, and the eight instantiations, are mechanized in
Agda making extensive use of module parameters and dependent records to define the abstractions.

1 Introduction

The theory of gradual typing has grown at a fast pace, since the idea crystallized in the mid
2000s (Sick & Taha, 2006a; Tobin-Hochstadt & Felleisen, 2006; Matthews & Findler,
2007; Gronski et al., 2006). Researchers have discovered many choices regarding the
design and formalization of gradually typed languages. For example, a language designer
can choose between runtime casts that provide lazy, eager, or even partially eager seman-
tics (Siek et al., 2009; Garcia-Pérez et al., 2014). Alternatively, the designer might apply
the methodology of Abstracting Gradual Typing (AGT) to derive the semantics (Garcia
et al., 2016). When a runtime casts fails, there is the question of who to blame, using either
the D or UD blame-tracking approaches (Siek ef al., 2009). Furthermore, with the need to
address the problems of space efficiency (Herman ef al., 2010), one might choose to use
threesomes (Sick & Wadler, 2010), supercoercions (Garcia, 2013), or coercions in one of
several normal forms (Siek & Garcia, 2012; Sick ef al., 2015a).
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2 J. G. Siek and T. Chen

The last decade has also seen tremendous progress in the mechanization of program-
ming language theory (Aydemir et al., 2005). It has become routine for researchers to use
proof assistants such as Coq (The Coq Dev. Team, 2004), Isabelle (Nipkow et al., 2007),
or Agda (Bove et al., 2009) to verify the proofs of the meta-theory for a programming
language. From the beginning, researchers in gradual typing used proof assistants to verify
type safety (Siek & Taha, 2006c,b; Tobin-Hochstadt & Felleisen, 2008). They continue to
mechanize the type soundness of new designs (Siek & Vitousek, 2013; Chung et al., 2018)
and to mechanize proofs of new properties such as open-world soundness and the gradual
guarantee (Siek et al., 2015b; Vitousek & Siek, 2016b; Xie ef al., 2018).

While machine-checked proofs provide the ultimate degree of trust, they come at a high
development cost. With this in mind, it would be useful to reduce the cost by reusing defi-
nitions, theorems, and proofs about gradually typed languages. Agda provides particularly
nice support for reuse: its combination of parameterized modules, dependent types, and
more specifically, dependent records, provide a high degree of flexibility at a relatively low
cost in complexity. For this reason, we choose to develop a new mechanization in Agda
instead of building on prior mechanizations of gradual typing in other proof assistants.

The research on gradual typing has revealed subtle and complex interactions between
gradual typing and other language features such as

e mutable state (Herman ef al., 2010; Siek et al., 2015¢c; Toro & Tanter, 2020),

e subtyping (Siek & Taha, 2007; Garcia et al., 2016; Chung ef al., 2018; Banados
Schwerter et al., 2021),

e classes and objects (Takikawa et al., 2012; Allende et al., 2013; Vitek, 2016;
Takikawa, 2016; Muehlboeck & Tate, 2017; Chung ef al., 2018),

e parametric polymorphism (Ahmed et al., 2011, 2017; Toro et al., 2019; New et al.,
2019),

e type inference (Siek & Vachharajani, 2008; Garcia & Cimini, 2015; Castagna et al.,
2019),

e set-theoretic types (Castagna & Lanvin, 2017),

e dependent types (Eremondi et al., 2019; Lennon-Bertrand ef al., 2020),

e and many more.

This article starts at the beginning, focusing on a language with first-class functions and
constants, that is, the Gradually Typed Lambda Calculus (GTLC) (Siek & Taha, 2006a),
with the addition of pairs and sums whose presence helps to reveal some patterns that
require abstraction.

The Gradually Typed Lambda Calculus. We present a formalization of the static
semantics of the GTLC in Section 2, including the type system and definitions of important
relations such as consistency and type precision. We present a proof of the static gradual
guarantee: that changing type annotations to be less precise preserves typing. This is not
the first mechanization of the static gradual guarantee for the GTLC (Siek et al., 2015b); it
is here for the sake of completeness.

The dynamic semantics of the GTLC is defined by translation to a cast calculus. We
present that translation in Section 4 and prove that it preserves types and is monotone
with respect to precision. There are many different cast calculi to choose from, with subtle
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Parameterized cast calculi and reusable meta-theory 3

variations in semantics and dramatic variations in efficiency. This article identifies the sim-
ilarities between many cast calculi in the form of the Parameterized Cast Calculus and the
Space-Efficient Parameterized Cast Calculus. The former is for the purposes of language
specification, whereas the later is meant as an guide to implementation. We discuss both
in more detail below.

The Parameterized Cast Calculus. The first part of the article designs the Parameterized
Cast Calculus. It is parameterized with respect to the cast representation and operations on
casts. It can therefore model a range of cast calculi, from ones that represent a cast with a
source type, target type, and a blame label such as the Blame Calculus (Wadler & Findler,
2009), to other calculi that represent casts using the Coercion Calculus of (Henglein, 1994).
The article proves the following theorems about the Parameterized Cast Calculus, with
mechanizations in Agda.

e type safety,
e blame-subtyping, and
e the dynamic gradual guarantee.

This article instantiates the Parameterized Cast Calculus to produce definitions and
results for cast calculi in the literature as well as new cast calculi. We produce the type sys-
tems, reduction relations, and proofs of type safety and blame safety for all of the following
systems.

The cast calculus of Siek & Taha (2006a) (Section 5.1).

A variant that classifies a function cast applied to a value as a value (Section 5.2).
The Blame Calculus AB of Siek ef al. (2015a) (Section 5.3).

A coercion-based version of Siek and Taha’s cast calculus (Section 5.4).

A lazy D coercion-based calculus (Siek ef al., 2009) (Section 5.5).

The AC calculus of Siek et al. (2015a) (Section 5.6).

AN o e

Our parameterized proof of the dynamic gradual guarantee was completed only recently;
we have instantiated it on two variants of AB.

Scope of the Parameterized Cast Calculus. How many of the designs in the literature on
gradually typed languages are instances of the Parameterized Cast Calculus? Although the
constructive examples above give some evidence to its breadth, we do not yet have a com-
plete answer to this question. However, we can make some informal statements about our
intentions. The Parameterized Cast Calculus is designed to model sound gradual languages,
and not unsound ones such as optional type systems (Bracha, 2004) that compile grad-
ual programs to dynamically typed programs via type erasure (Bracha & Griswold, 1993;
Chaudhuri; Maidl ef al., 2014; Verlaguet & Menghrajani; Bierman et al., 2014; Greenman
& Felleisen, 2018). The Parameterized Cast Calculus is only applicable to languages that
use casts for runtime enforcement, and not other mechanisms such as the checks in tran-
sient semantics (Vitousek & Siek, 2016a; Vitousek ef al., 2017; Greenman & Felleisen,
2018; Greenman & Migeed, 2018; Vitousek et al., 2019; Greenman, 2020). We expect
that several, different, parameterized cast calculi are needed to capture the large design
space present in the literature. We encourage other researchers to join us in this project

https://doi.org/10.1017/50956796821000241 Published online by Cambridge University Press



4 J. G. Siek and T. Chen

of developing reusable meta-theory for gradually typed languages. We conjecture that the
Parameterized Cast Calculus, with some minor modifications, could model the intrinsic
calculi used in the AGT methodology (Toro & Tanter, 2020).

An important consideration regarding the design of an abstraction such as the
Parameterized Cast Calculus is where to draw the line between the generic versus the
specific. The Parameterized Cast Calculus makes a natural choice regarding where to draw
the line: at the representation of casts and the operations on them. However, there are two
competing principles that influence the design:

1. The more generic the design, the more instances can be accommodated, which
increases reuse.

2. The more generic the design, the less meta-theory can be carried out generically,
which reduces reuse.

More experimentation with these design choices is needed to better understand the trade-
offs. The Parameterized Cast Calculus of this article is one data point.

Space-efficient gradual typing. The second part of the article develops the Space-
Efficient Parameterized Cast Calculus, which compresses sequences of casts to obtain
space efficiency. To support this compression, the cast representation is required to pro-
vide a compose operator. We instantiate this calculus to produce results for a specific cast
calculi in the literature as well as a new cast calculi. In particular, we produce definitions
and proofs of space efficiency in Agda for

1. the AS calculus of Siek et al. (2015a) (Section 7.1), and
2. anew cast calculus based on hypercoercions (Lu ef al., 2020) (Section 7.2).

Correctness of space-efficient calculi. Concurrently to the development of this article,
and with an overlapping set of authors, Lu et al. (2020) investigate the semantics of
parameterized cast calculi using abstract machines. They define two parameterized CEK
machines (Felleisen & Friedman, 1986), one to define the semantics and the other to imple-
ment casts in a space-efficient manner. The main result is a parameterized proof in Agda
of a weak bisimulation between the two machines, under the assumptions that both cast
representations satisfy certain laws specific to the lazy D semantics (Lu, 2020). They
instantiate this generic theorem to prove the correctness of hypercoercions. Generalizing
this correctness result to include cast semantics other than lazy D is future work.

Mechanization in Agda. The language definitions and proofs are mechanized in Agda
version 2.6.2 following the style in the textbook Programming Language Foundations in
Agda (Wadler & Kokke, 2019) and is publicly available in the following github repository,
at release version 2.1.

https://github.com/jsiek/gradual-typing-in-agda

This project depends on the Abstract Binding Trees library, at release version 1.0.

https://github.com/jsiek/abstract-binding-trees
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Fig. 1. Gradual types, typing contexts, consistency, join, and matching.

2 Gradually Typed Lambda Calculus

In this section, we formalize the static semantics of the GTLC of Siek & Taha (2006a) with
the addition of products and sums. We use de Bruijn representation of variables and define
the terms by leveraging the Abstract Binding Tree library. Their typing rules are defined
as an Agda data type. The dynamic semantics of the GTLC is defined by translation to a
cast calculus in Section 4.

Types. Figure 1 defines the set of types T of the GTLC, which includes function types,
product types, sum types, and atomic types. The atomic types include the base types (nat-
ural numbers, Booleans, etc.) and the unknown type, written ? (aka. the dynamic type). As
usual, the unknown type represents the absence of static type information. Figure 1 defines
typing contexts I, which are sequences of types, that is, they map variables (represented
by de Bruijn indices) to types.

Figure 1 defines the consistency relation at the heart of gradual typing. We say that
two types are consistent, written 4 ~ B, if they are equal except in spots where either type
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6 J. G. Siek and T. Chen

contains the unknown type. For example,
Nat — Bool ~ ? — Bool

Because ? ~ Nat and Bool ~ Bool. The rules for consistency in Figure 1 are labeled with
their proof constructors. For example, the following is a proof of the above example:

Fun~ (UnkL~[Nat]) (Base~[Bool])

5, <

We use a colon for Agda’s “proves” relation, which can also be read as a “has-type” rela-
tion thanks to the Curry—Howard correspondence (Howard, 1980). In the rule Fun~, the 4
and A’ flip in the premise, which is unusual but does not matter; it just makes some of the
Agda proofs easier.

Figure 1 also defines a join function |_| that computes the least upper bound of two types
with respect to the precision relation = (with ? at the bottom) (Siek & Taha, 2006a; Siek
& Vachharajani, 2008), which is defined in Figure 4 of Section 2.1. The join function is
typically defined on a pair of types and is a partial function where it is defined if and only
if the two types are consistent. Here, we instead make |_| a total function over proofs of
consistency.

Finally, Figure 1 defines the matching relation 4 > B that is used in the typing rules for
eliminators (such as function application and accessing elements of a pair). The matching
relation handles the situation where the function or pair expression has type ?.

Variables. The function V, defined in Figure 3, maps a typing context I' and type A4 to the
set of all variables that have type 4 in context I". As stated above, variables are de Bruijn
indices, that is, natural numbers where the number x refers to the xth enclosing lambda
abstraction. There are two constructors for variables: Z (zero) and S (plus one). The two
rules in Figure 3 correspond to the signatures of these two constructors, where premises
(above the line) are the parameter types and the conclusion (below the line) is the result
type. The variable Z refers to the first lexical position in the enclosing context, so Z takes
no parameters, and its result type is V I" 4 if I is a non-empty typing context where type 4
is at the front. A variable of the form S x refers to one position further out than that of x. So
the constructor S has one parameter, a variable in VI 4 for some I" and 4, and its result
type is a variable in V (I" - B) 4, for any type B. An expression formed by combinations of
the constructors Z and S is a proof of a proposition of the form V I 4. For example, S S Z is
aproof of V (/- Bool - Nat - Int) Bool because Bool is at position 2 in the typing context
() - Bool - Nat - Int.

Constants. We represent the constants of GTLC by a particular set of Agda values. First,
we carve out the subset of GTLC types that a constant is allowed to have, which are the
base types and n-ary functions over base types. We call them primitive types and induc-
tively define the predicate P 4 in Figure 3 to identify them. We then define a mapping [-]
from P 4 to Agda types (elements of Set), also in Figure 3.

Terms. The syntax of GTLC terms is defined in Figure 2 and their typing rules are pre-
sented in Figure 3. Terms, ranging over L, M, and N, are defined using the Abstract Binding
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blame labels l

GTLCterms L, M,N == S$k|‘x|A[AIN|(LM),|if, LM N |
consMN|nfM,ie{l,2}|
inl[B]M | inr[A] M | casey[B,C]LM N

Fig. 2. Syntax of the Gradually Typed Lambda Calculus (GTLC).

Tree library, so they are extrinsically typed. As usual, we define the typing judgment as
[ M : A, represented by an Agda data type.

The constant $k has type P in context I provided that the Agda value & has type [P] and
P proves that 4 is a primitive type. A variable ‘x has type 4 in context I" if x is a de Bruijn
index in V I" 4 (explained above).

As usual, a lambda abstraction (A[4A] M) has type 4 — B in context I" provided that M
has type B in context I" - 4. Lambda abstraction does not include a parameter name because
we represent variables as de Bruijn indices. An application (L M), has type B if L has some
type A that matches a function type 4 — A4,, M has some type B, and B is consistent with
A;. The blame label £ is a unique identifier for this location in the source code. Each blame
label has a complement £ and the complement operation is involutive, that is, £ = £.

The term if, L M N requires that the type of L is consistent with Bool, M and N have
consistent types, and the type of the if as a whole is the join of the types of M and N. The
rules for pairs and projection are straightforward. Regarding sums, in case, L M N, the
type of L is consistent with the sum type B; + C;. A variable of type B goes into scope for
the branch M and a variable of type C; goes into scope for N. The types of the branches,
B, and C,, must be consistent and the type of the case is the join of B, and Cj,.

Examples. The following are a few example terms and their typing derivations in the

GTLC.
b kg cons $2 $3 : Nat x Nat
3 kg ((A[?]°2) $4),, : Nat
# Fg casey, (inr[Bool] $true)(‘Z) ($—‘Z),, Bool

2.1 Static gradual guarantee

Figure 4 presents the definitions of the precision relations on GTLC types, terms, and
typing contexts. In particular, a type A is less precise than A’, written A C 4’, if 4 and A’
are equal except in the places where A has type ?.

The precision relation C°* between typing contexts is straightforward. We require that
each variable has types that are related by T in the respective typing contexts. We say term
M’ in GTLC is more precise than M if the type annotations in the former are more precise
than the corresponding annotations in the latter, written M = M’. For example,

#-2C*@ - Int
((\[7]°2) $42), CO (A[Nat] °Z) $42),
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8 J. G. Siek and T. Chen

VI A
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[Int] =Z [PFun[b] P] = [b] — [P]
[Unit] =T
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 I'k¢A TrFgB . T'Fg A
cons : TFro AxD g Tro 4, A> Ay x Ay
) ) I'Fg A ) ) I'te¢ B
U e sy iy e sy
T'teA T-BiFgBy, T-CibgC, A~ (Bi+C),
By,Ch):
casey[B1,C1] T L(bo) be: By ~ Ch

Fig. 3. Typing rules of the Gradually Typed Lambda Calculus (GTLC).

An important property of a gradual type system is that reducing the precision of type
annotations in a well-typed term should yield a well-typed term, a property known as the
static gradual guarantee (Siek et al., 2015b). Here, we extend this result for the GTLC to
include products and sums.

Lemma 1. Suppose T °T*T". If x: VI’ 4', there exists type A such that x:V T A and
AC A

Proof sketch. By induction on x. 0

Theorem 2 (Static Gradual Guarantee). Suppose M’ is well-typed T'' =g M’ : A" . If T C*
I and M T M, there exists type A such thatT' g M A and AT A'.

Proof sketch. By the induction on the typing derivation I ¢ M’ : A’. We briefly describe
the main idea of the interesting cases, since the full proof is mechanized in Agda.

Case ‘x By Lemma 1 and typing rule Fvar.
Case A N’ By the induction hypothesis for N’ and the extended typing context.
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AC A
AC A BLCB
TCA bCb A—-BCA =B
AC A BLCB AC A BLCB
AxBC A x B A+BC A+ B
MC% M
$k CC $k o CC
AC A NCCN Lc¢r MCcE M
AA] N CE A\[ATN/ (L M), C% (L' M")p

Lcér Mcé M NCON
if, LM N C% ify L' M' N’

MCE M NCCN M CC M’ MCC M
cons M N C€ cons M’ N’ m MCC o M mo M CC o M’
BC B MCC M AC A MCC M
inl[B] M C€ inl[B'| M’ inr[A] M C€ inr[A'] M’

B,CB, C,CcCy LCL MCM NCCN
casey[B1,C1] LM N C€ casey[B),C}] L' M' N’

ACA TCTY
heo M-Ac 1.4

Fig. 4. Precision on GTLC types, terms, and typing contexts.

Case L' M’ The induction hypothesis for L' produces two subcases: The term L in
LM CEC L' M can be either of ? or of function type. If L is of type ?, the theorem is
proved by type matching and ? being less precise than any type. On the other hand, if L
is of function type, it is proved by the fact that the codomain types satisfy the precision
relation.

Other cases follow the same structure as function application: by the induction hypotheses
for subterms and casing on whether the left side of a precision relation can be ? whenever
necessary. O

3 Parameterized Cast Calculus

Recall that the dynamic semantics of the GTLC is defined by translation to a cast calculus.
There are many cast calculi in the literature with differing semantics and efficiency guar-
antees. In this section, we define the Parameterized Cast Calculus CC(=) that captures
the similarities in many of those calculi, for the purposes of language specification. (As a
guide to implementation, we present the Space-Efficient Parameterized Cast Calculus in
Section 6.) This section begins with the static semantics of CC(=) and a number of param-
eters packaged into PreCastStruct (Section 3.1), which is then used to express the notion
of Value, evaluation contexts (Section 3.2), and eta-style cast reductions (Section 3.3). We
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$k:Wk:[[P]],P:IF’A ‘x:ﬁw:VFA
" T'HA-B ’ 'k Ay
if - I'FBool T'FB THEB
' I'B
cops - LEA TEB - TEA XA
' I'AxB v I A;

. . r-A . . r-B
WB: oy W s
case : F'_A1+A2 F}‘A]%B F'_A2—>B

’ I'-B
. I'HA . .
7<C>'7I‘I—B c:A=B blame /( : T4

Fig. 5. Term constructors for the Parameterized Cast Calculus CC(=).

introduce another parameter, for applying a cast to a value, in CastStruct (Section 3.4), and
then define the dynamic semantics of CC(=>), with definitions of substitution (Section 3.5)
and the reduction semantics (Section 3.6).

We present CC(=>) as an intrinsically typed calculus with de Bruijn representation of
variables, analogous to the formalization of the Simply Typed Lambda Calculus in the
DeBruijn Chapter of PLFA. As such, the terms are represented by derivations of their
typing judgment. The judgment has the form I' - 4, which says that type 4 can be inhabited
in context I'. So terms, ranged over by L, M, N, are proofs of propositions of the form I" -
A. For example, a typing judgment normally written I = M : 4 here has the form M : " - 4.

The term constructors for CC(=>) are defined in Figure 5. Like most cast calculi, CC(=>)
extends the Simply Typed Lambda Calculus with the unknown type ? and explicit runtime
casts. Unlike other cast calculi, the CC(=>) calculus is parameterized over the representa-
tion of casts, that is, the parameter = is a function that, given a source and target type,
returns the representation type for casts from 4 to B. So ¢ : 4 = B says that c is a cast from
Ato B.

The types and variables of the Parameterized Cast Calculus are the same as those of
the GTLC (Section 2). The intrinsically typed terms of the Parameterized Cast Calculus
are defined in Figure 5. Cast application is written M (c) where the cast representation ¢
is not concrete but is instead specified by the parameter =. In the literature, some cast
calculi annotate the cast application form with a blame label. In other cast calculi, such
as coercion-based calculi or threesomes, blame labels instead appear inside the cast c.
For purposes of uniformity, we place the responsibility for blame tracking inside the cast
representation, which means they do not appear directly in the cast application form of the
Parameterized Cast Calculus. As usual there is an uncatchable exception blame ¢.

3.1 The PreCastStruct structure

We introduce the first of several structures (as in algebraic structures) that group together
parameters needed to define the notion of values, frames, and the reduction relation for the
Parametric Cast Calculus. The structures are represented in Agda as dependent records.
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Parameterized cast calculi and reusable meta-theory 11

The PreCastStruct structure includes the operations and predicates that do not depend
on the terms of the cast calculus so that this structure can be reused for different cast
calculi, such as the space-efficient cast calculus in Section 6. The CastStruct structure
extends PreCastStruct with the one additional operation that depends on terms, which is
applyCast.

One of the main responsibilities of the PreCastStruct structure is categorizing casts as
either active or inert. An active cast is one that needs to be reduced by invoking applyCast
(see reduction rule (cast) in Figure 8). An inert cast is one that does not need to be reduced,
which means that a value with an inert cast around it forms a larger value (see the definition
of Value in Figure 6). Different cast calculi may make different choices regarding which
casts are active and inert, so the PreCastStruct structure includes the two predicates Active
and Inert to parameterize these differences. The proof of Progress (Theorem 14) needs to
know that every cast can be categorized as either active or inert, so PreCastStruct also
includes the ActiveOrlnert field which is a (total) function from casts to their categorization
as active or inert.

The reduction semantics must also identify casts whose source and target type have
the same head type constructor, such as a cast from 4 x B to C x D. We refer to such
casts as cross casts and include the Cross predicate in the PreCastStruct structure. When
a cross cast is inert, the reduction semantics must decompose the cast when reducing the
elimination form for that type. For example, when accessing the £st element of a pair V'
that is wrapped in an inert cast ¢, we decompose the cast using an operator, also called
fst, provided in the PreCastStruct structure. Here is the relevant reduction rule, which is
(fst-cast) in Figure 8:

fst (V{c)) — (fst V){fstcx)

Finally, the proof of Progress (Theorem 14) also needs to know that the cast is a cross
cast when the target type of an inert cast is a function, product, or sum type. Thus, the
PreCastStruct includes the fields InsertCross—, InsertCrossx, and InsertCross+. The
target type of an inert cast may not be a base type (field baseNotlnert) to ensure that
the canonical forms at base type are just constants.

The fields of the PreCastStruct record as follows:

—=—:T > T — Set
Given the source and target type, this returns the Agda type for casts.

Inert:VAB.A = B — Set
This predicate categorizes the inert casts, that is, casts that when combined with a value,
form a value.

Active : VAB. A = B — Set
This predicate categorizes the active casts, that is, casts that require a reduction rule to
specify what happens when they are applied to a value.

ActiveOrlnert : VAB. (¢ : A = B) — Active c W Inert ¢
All casts must be active or inert, which is used in the proof of Progress.

Cross: VAB. A = B — Set
This predicate categorizes the cross casts, that is, casts from one type constructor to
the same type constructor, such as 4 — B = C — D. This categorization is needed to
define other fields below, such as dom.
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12 J. G. Siek and T. Chen

InertCross— : VABC.(c: A= B—C)— Inertc — Crossc x ¥A14,. A=A,— A4,
An inert cast whose target is a function type must be a cross cast. This field and the
following two fields are used in the proof of Progress.

InertCrossx : VABC.(c: A= B x C) — Inert¢ — Crossc x XA14,. A=A X A,
An inert cast whose target is a pair type must be a cross cast.

InertCross+ : VABC.(c: A= B+ C) — Inert ¢ — Crossc X X414, A=A, + A,
An inert cast whose target is a sum type must be a cross cast.

baseNotlnert : VAb. (¢ : A = b) — —lnertc
A cast whose target is a base type must never be inert. This field is used in the proof of
Progress.

dom :VA,4,B1B;. (c: (4] — A3) = (B) — B;)) — Crossc — By = A4,
Given a cross cast between function types, dom returns the part of the cast between
their domain types. As usual, domains are treated contravariantly, so the result is a cast
from B to 4.

cod :VA14,B1B;. (¢: (A; — Ay) = (B — B,)) — Crossc — A = B,
Given a cross cast between function types, cod returns the part of the cast between the
codomain types.

fst:VA142B1B;. (c: (A1 X A2) = (By X By)) — Crossc — A; = B
Given a cross cast between pair types, fst returns the part of the cast between the first
components of the pair.

snd : VA14,B1B;. (¢ : (A) x A;) = (By X By)) — Crossc — 4, = B,
Given a cross cast between pair types, snd returns the part of the cast between the
second components of the pair.

inl :VA1A,B1B;. (¢ : (41 + A2) = (By + B3)) = Crossc — A = B
Given a cross cast between sum types, inl returns the part of the cast for the first branch.

inr:VA1A,B1B;.(c: (A + 43) = (B + B)) = Crossc — 4, = B,
Given a cross cast between sum types, inr returns the part of the cast for the second
branch.

3.2 Values and frames of CC(=)

This section is parameterized by a PreCastStruct. So, for example, when we refer to =
and Inert, we mean those fields of the PreCastStruct.

The values of the Parameterized Cast Calculus are defined in Figure 6. The judgment
Value M says that the term M is a value. Let V' and W range over values. The only rule
specific to gradual typing is Vcast which states that a cast application V' {c) is a value if ¢
is an inert cast.

A value of type ? must be a cast application where the cast is inert and its target type is ?.

Lemma 3 (Canonical Form for type ?). If M : T' - ? and Value M, then M = M’ {c) where
M :THA c:A=?, and Inert c.

In the reduction semantics, we use single-term evaluation contexts, called frames, to col-
lapse the many congruence rules that one usually finds in a structural operational semantics
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V(T A) — Set

—_— ) t: ——
Value (AM) cons Value ($k)

Value M Value N
Value (cons M N)

Vpair :
Value M Vinr : Value M
Value (inl[B] M) " Value (inr[A] M)

Value M
Value (M {(c))

Vinl :

Vcast Inert ¢

M:Tt+ (A— B)
TFA— B

'A TFA
I'FBool — A

Value M

. THA ,
C)rase=s D¢

ifd — —:

M:THA y . I'-B
TrD o Axp vAveM  comsU—: e

m O

cons —[J:

F}*A1><A2>—>A7j

inl[B]O: inr[A]O:

'A— AxB

I'trA—-C TFB—=C
'rA+B—C

'B— AxB

cased — — O): —=——+——=c:A=>B

'-A— B

[plug : VDAB. (T A) > (TF A B) - (U - B)|

plug L (O M
plug M (L O

)= (L M)
)= (L M)
plug L(AfOMN)=if LM N
plug N(cons M O) = cons M N
plug M(consON) = cons M N
plug M (m; 0)
plug M(inl[B]0) = inl[B| M
plug M (inr[A]O) = inr[A] M
plug L(caseOM N) = case LM N
plug M(D(e)) = M(0)

=m M

Fig. 6. Values and frames of CC(=).

into a single congruence rule. Unlike regular evaluation contexts, frames are not recursive.
Instead that recursion is in the congruence reduction rule.

The definition of frames for the Parameterized Cast Calculus is given in Figure 6. The
definition is typical for a call-by-value calculus. We also define the plug function at the
bottom of Figure 6, which replaces the hole in a frame with a term, producing a term.

The plug function is type preserving. This is proved in Agda by embedding the statement
of this lemma into the type of plug (see Figure 6) and then relying on Agda to check that
the definition of plug satisfies its declared type.

Lemma 4 (Frame Filling). fM :T'FAand+ F : A— B, then plugM F : T+ B.
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14 J. G. Siek and T. Chen

3.3 The eta cast reduction rules

This section is parameterized by a PreCastStruct.

Some cast calculi include reduction rules that resemble n-reduction (Flanagan, 2006;
Siek & Taha, 2006a). For example, the following rule reduces a cast between two function
types, applied to a value V, by n-expanding V' and inserting the appropriate casts:

V({A—B = C—D) —> MV (‘Z(C = 4)))(B = D)

Here, we define three auxiliary functions that apply casts between two function types, two
pair types, and two sum types, respectively. Each of these functions requires the cast ¢ to
be a cross cast. These auxiliary functions are used by cast calculi that choose to categorize
these cross casts as active casts.

eta— : VI'4ABCD.(M :T'+A—B) — (c: (A—B)= (C—D))
— Crossc— (' C — D)

eta—>Mcx = A((renameS M) (‘Z{dom cx)))(cod cx)

etax : VI'ABCD.(M:T'HA X B)— (c: (4 x B)=(C x D))
— Crossc— (' C x D)

etax Mcx = cons(mM){fstcx) (mM)(sndcx)

eta+ : VIABCD.(M:TFA+B)— (c:(4+B)=(C+ D))
— Crossc— (' C+ D)

eta+ Mcx = caseM (Ainl[D](Z(inl cx))) (Ainr[C](Z(inr cXx)))

3.4 The CastStruct structure

The CastStruct record type extends PreCastStruct with one more field, for applying an
active cast to a value. Thus, this structure depends on terms of the cast calculus:

applyCast:VI'dB. (M : T+ A) — ValueM — (¢: A= B) — Activec - T+ B

3.5 Substitution in CC(=)

We define substitution functions (Figure 7) for CC(=>) in the style of PLFA (Wadler &
Kokke, 2019), due to Conor McBride. A renaming is a map p from variables (natural num-
bers) to variables. A substitution is a map o from variables to terms. The notation M[N]
substitutes term N for all occurrences of variable Z inside M. Its definition relies on several
auxiliary functions. Renaming extension, ext p, transports p under one lambda abstraction.
The result maps Z to itself, because Z is bound by the lambda abstraction. For any other
variable, ext p transports the variable above the lambda by subtracting one, looking it up
in p, and then transports it back under the lambda by adding one. Simultaneous renaming,
rename p M, applies p to all the free variables in M. Substitution extension, exts o, trans-
ports o under one lambda abstraction. The result maps Z to itself. For any other variable,
exts o transports the variable above the lambda by subtracting one, looking it up in o, and
then transporting the resulting term under the lambda by incrementing every free variable,
using simultaneous renaming. Simultaneous substitution, subst o M, applies o to the free
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renamepk =k
renamepz = p(x)
rename p (A M) = X (rename (ext p) N)
rename p (M N) = (rename p M) (renamep N)
renamep (if L M N) = if (renamep L) (rename p M) (renamep N)
rename p (cons M N) = cons (rename p M) (rename p N)
rename p (m; M) = m; (rename p M)
rename p (inl[B] M) = inl[B] (rename p M)
rename p (inr[A] M) = inr[A] (rename p M)
rename p (case L M N) = case (renamep L) (rename p M) (rename p N)
rename p (M {c)) = (rename p M){(c)
) =

rename p (blame ¢) = blame ¢

extpZ =12 extsocZ =12
extp(Sz) =Sp(x) extso (Sx) = renameS (ox)

substo k =k
substo x = o(z)
subst o (A\. M) = \.subst (extso) M
substo (M N) = substo M substa N
subst p (if L M N) = if (subst p L) (subst p M) (subst p N)
subst p (cons M N) = cons (subst p M) (subst p N)
subst p (m; M) = m; (subst p M)
subst p (inl[B] M) = inl[B] (subst p M)
subst p (inr[A] M) = inr[A] (subst p M)
subst p (case L M N) = case (subst p L) (subst p M) (subst p N)
subst o (M{(c)) = subst o M (c)
subst o (blame £) = blame ¢

e

substZero N Z = N

substZero N (S ) — M[N] = subst (substZero N') M

Fig. 7. Substitution and its auxiliary functions.

variables in M. The notation M[N] is meant to be used for 8 reduction, where M is the
body of the lambda abstraction and N is the argument. What M[N] does is substitute Z for
N in M and also transports M above the lambda by incrementing the other free variables.
All this is accomplished by building a substitution substZero N (also defined in Figure 7)
and then applying it to M.

Substitution is type preserving, which is established by the following sequences of lem-
mas. As usual, we prove one theorem per function. In Agda, these theorems are proved by
embedding their statements into the types of the four functions. Given a sequence S, we
write S!i to access its ith element. Recall that I and A range over typing contexts (which
are sequences of types).
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16 J. G. Siek and T. Chen

Lemma 5 (Renaming Extension). Suppose that for position x in T, I'lx = Alp(x).
Foranyyand B, (T - B)ly = (A - B)!(ext p)(»).

Lemma 6 (Renaming Variables). Suppose that for any x, I''lx = Alp(x).
IfM T+ A, thenrename p M : A+ A.

Lemma 7 (Substitution Extension). Suppose that for any x, o(x): A+ T'lx.
ForanyyandB, o(y):(A-B)F- (I -B)ly.

Proposition 8 (Simultaneous Substitution). Suppose that for any x, o(x) : A+ T'lx.
IfM :T A, then substo M : A+ A.

Corollary 9 (Substitution). I[f M : T -B-Aand T =N : B, then M[N]: T F A.

3.6 Reduction semantics of CC(=)

This section is parameterized by CastStruct.

Figure 8 defines the reduction relation for CC(=>). The last eight rules are typical of
the Simply-Typed Lambda Calculus, including rules for function application, conditional
branching, projecting the first or second element of a pair, and case analysis on a sum.
The congruence rule (&) says that reduction can happen underneath a single frame. The
rule (¢§-blame) propagates an exception up one frame. Perhaps the most important rule is
(cast), for applying an active cast to a value. This reduction rule simply delegates to the
applyCast field of the CastStruct. The next four rules (fun-cast, fst-cast, snd-cast,
and case-cast) handle the possibility that the CastStruct categorizes casts between func-
tions, pairs, or sums as inert casts. In such situations, we need reduction rules for when
cast-wrapped values flow into an elimination form. First, recall that the PreCastStruct
record includes a proof that every inert cast between two function types is a cross cast. Also
recall that the PreCastStruct record includes fields for decomposing a cross cast between
function types into a cast on the domain and codomain. Putting these pieces together, the
reduction rule (fun-cast) says that applying the cast-wrapped function V' (c) to argument
W reduces to an application of V' to W{dom c x) followed by the cast cod ¢ x, where x is
the proof that c is a cross cast. The story is similar for for pairs and sums.

3.7 Determinism of CC(=)

The reduction relation of the Parameterized Cast Calculus is deterministic. We prove this
fact by defining a function named hop that maps any term that is not a value to the same
term that would result from one step of reduction. (See the Agda formalization for details.)

hop:VA,M : 3+ A — —ValueM — - A4
Indeed, if M reduces to N, then hop M is N.

Lemma 10. [fM —> N and p : —=Value M, then hopM p=N.
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M—M
plugM F —> plugM' F

plug (blame ) FF —> blame ¢

:Acti
V{c) —> applyCast V ca @:Actvec

x:Crossc, Inert ¢

Vicy W — (V W{dom cx)){cod c x)

x:Crossc, Inert ¢

fst (V{c)) — (fst V){fstcx)

x:Crossc, Inertc
snd (V{c)) —> (snd V)(snd c x)

case (V{c)) W\ Wy, —> case V W| W,
x:Crossc, Inert ¢
where W| = A(rename S W) (Z(inl c x))
W, = A(rename S W) (Z({inr ¢ x))

OM)V — M[V]

if $trueM N — M

if $falseM N — N

fst(consVW)— TV

snd (cons VW) — W

case(inl V)LM — LV

case(inr V)LM — MV

kK — K] [F]

17

é)

(£-blame)

(cast)

(fun-cast)

(fst-cast)

(snd-cast)

(case-cast)

®)

(B-true)

(B-false)

(B-fst)

(B-snd)

(B-casel)

(B-caseR)

Q)

Fig. 8. Reduction for the Parameterized Cast Calculus CC(=), parameterized by the CastStruct

structure.
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Of course, a term that reduces cannot be a value.
Lemma 11. [fM — N, then —Value M.

The determinism of the Parameterized Cast Calculus follows directly from these
lemmas.

Theorem 12. (Determinism). [f M —> N and M —> N', then N = N'.

Proof. By Lemma 11, M is not a value, with proof p. So by Lemma 10, we have hop M
p =N and also hop M p = N'. Therefore, N =N'. O

3.8 Type safety of CC(=)

The Preservation theorem is a direct consequence of the type that we give to the reduction
relation and that it was checked by Agda.

Theorem 13 (Preservation). [f M :T'+A4 and M —> M', then M’ : T = A.

We prove the Progress theorem by defining an Agda function named progress that takes
a closed, well-typed term M and either (1) returns a redex inside M, (2) identifies M as a
value, or (3) identifies M as an exception.

Theorem 14 (Progress). If M : - A, then

1. M — M’ for some M’,
2. Value M, or
3. M =blame /.

Proof sketch. To convey the flavor of the proof, we detail the cases for function applica-
tion and cast application. The reader may read the proofs of the other cases in the Agda
development.

Case M M, The induction hypothesis for M, yields the following subcases.
Subcase M; —> M. By rule (§), we conclude that

M1 M2 — M{ M2
Subcase M| =blame £. By rule (§-blame), we conclude that
(blame ¢) M, —> blame £

Subcase Value M. The induction hypothesis for M, yields three subcases.
Subcase M, —> M. By rule (§), using Value M}, we conclude that

M] M2—>M| Mé
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Subcase M, =blame £. By rule (§-blame), using Value M|, we conclude
that

M (blame ) —> blame ¢

Subcase Value M,. We proceed by cases on Value M;, noting it is of func-
tion type.
Subcase M| = AM,;. By rule (B), using Value M,, we conclude that

(AM11) My — M1 [M;]

Subcase M; =V {c) and i : Inert c. The field InertCross— of record
PreCastStruct gives us a proof x that ¢ is a cross cast. So by rule
(fun-cast), we have

V{c) My —> (V M, {(dom ¢ x)){cod c x)

Subcase M| = k;. We proceed by cases on Value M;, most of which lead
to contradictions and are therefore vacuously true. Suppose M, = k;. By
rule (8), we conclude that

k] k2 —_— [[kl]] [[kzﬂ

Suppose M, = M,;{(c) and c is inert. Then ¢ is a cast on base types,
which contradicts that ¢ is inert thanks to the baseNotlnert field of
PreCastStruct.

Case M{(c) The induction hypothesis for M yields three subcases.
Subcase M —> M’. By rule (&), we conclude that

M{c) — M'{c)
Subcase M = blame ¢. By rule (§-blame), we conclude that
(blame £)(c) —> blame ¢

Subcase Value M. Here we use the ActiveOrlnert field of the PreCastStruct on
the cast c¢. Suppose c is active, so we have a: Active c. By rule (cast), using
Value M, we conclude that

M {c) —> applyCast M ca

Suppose c is inert. Then, we conclude that Value M (c). 0

3.9 The CC(=) variant

Siek et al. (2015b), in their Isabelle mechanization of the GTLC and the dynamic gradual
guarantee, make a syntactic distinction between cast applications as unevaluated expres-
sions versus cast applications that are part of values. (The paper glosses over this detail.) In
particular, they introduce a term constructor named Wrap for casts between function types
that are part of a value and another term constructor named Inj for casts into ? that are part
of a value. The reason they make this distinction is to enable a smaller simulation relation
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in their proof of the dynamic gradual guarantee.' To aid the proof the Dynamic Gradual
Guarantee in Section 3.11, we introduce a variant of CC(=>), named CC'(=) (Figure 9),
that makes a syntactic distinction between arbitrary casts and inert casts. We write inert
cast application as M{(c)). Instead of making the further distinction as in Wrap and Inj,
we rely on the source and target types of the casts to distinguish those cases. With the
addition of inert casts, we change the definition of Value M, removing the Vcast rule and
replacing it with Vwrap, which states that V' {(c)) is a value if ¢ is inert. We also change
the reduction rules (fun-cast), (fst-cast), (snd-cast), and (case-cast) to eliminate
values of the form V' {(c)) instead of V' {(c). This change regarding inert casts does not affect
the observable behavior of programs with respect to CC(=).

We also change case expressions to include the variable binding, so all of the reduc-
tion rules for case must be changed. We change the rules (8-casel), (8-caseR), and
(case-cast) to the rules (B-caseL-alt), (8-caseR-alt), and (case-cast-alt), which
use substitution. This change allows us to avoid relating terms to their n-expansions. We
conjecture that this change is not necessary for the proof but would require a more com-
plex simulation relation to take n-expansion into account. The change to (case-cast) is
an observable difference. Consider an expression of the form:

case (inl ){ch) M N

Suppose variable Z does not occur in M and the cast (inlcx) always fails. With
(case-cast), there is an error but with (case-cast-alt) there is not.

3.10 Blame-Subtyping Theorem for CC (=)

Recall that the Blame-Subtyping Theorem (Siek et al., 2015b) states that a cast from 4 to B
cannot be blamed (cause a runtime error), if the source type is a subtype of the target type,
that is, 4 <: B. We identify a cast with a blame label £. Thanks to the Blame-Subtyping
Theorem, a programmer or static analyzer can inspect the source type, the target type, and
the blame label of a cast and decide whether the cast is entirely safe or whether it might
cause a runtime error. During execution, casts with different labels can be composed (see
Section 6), producing casts that contain multiple blame labels. So more generally, a cast is
safe w.r.t a label £ if the cast will not give rise to a runtime error labeled .

In this section, we develop a parameterized proof of the Blame-Subtyping Theorem for
the Parameterized Cast Calculus CC'(=) following the approach of Wadler & Findler
(2009). The idea is to use a preservation-style proof but preserve cast safety instead of typ-
ing. However, the appropriate subtyping relation and definition of safety for casts depends
on the representation and semantics of casts (Siek ef al., 2009), which is a parameter of
CC'(=). Thus, the definition of safety is a parameter of the proof: the CastBlameSafe
predicate. The proof is not parameterized on the subtyping relation, clients of the proof
typically use subtyping to define the CastBlameSafe predicate.

We require that applying a blame-safe cast to a value does not raise a runtime error,
that is, if ¢ is blame-safe for ¢, then applyCast V' ¢ a # blame . However, to handle the
application of casts to higher-order values, we must generalize this requirement. The output

I Wadler & Findler (2009) make similar distinctions for different reasons in the Blame Calculus.
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'H4,+4, TI-A\FB T -AHB

case:
I'~'B
—{c) - 4 c:A= B, Inertc
I'~B
|Va|ue (THA)— Set|
Value M

Vwrap: Inertc

Value (M {c})))

rename p M

rename p (case L M N) = case (rename p L) (rename (ext p) M) (rename (ext p) N)
rename p (M {c))) = (rename p M){c)

subst p (case L M N) = case (subst p L) (subst (exts p) M) (subst (exts p) N)
subst p (M {(c))) = (subst p M){c)

M— N
Inert ¢ wra
Vi — Vi) (vrap)
x:Crossc, Inert ¢ (fun-cast-alt)
V{ch W —> (V W{dom cx))(cod cx)
x:Crossc, Inert ¢ (fst-cast-alt)
fst (V{c)) — (fst V){fstcx)
x: Crossc, Inert ¢ (snd-cast-alt)

snd (V' {c))) —> (snd V)(snd cx)

case-cast-alt
case (V{c)) MN —> case VM' N’ ( )

x:Crossc, Inertc
where M’ = (rename (ext S) M)[‘Z{inl ¢ x)]
N’ = (rename (ext S) N)[‘Z{inr ¢ x)]

case(inl V)L M — L[V] (B-casel-alt)

- -alt
case (inr V) LM — M[V] (B-caseR-alt)

Fig. 9. The CC'(=) Variant.
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M safe for ¢
CastBlameSafe ¢ £ M safe for ¢
(M (c)) safe for £ (‘x) safe for ¢
N safe for £ L safe for ¢ M safe for ¢
(AN) safe for ¢ (L M) safe for ¢

M safe for { N safe for ¢
($%) safe for ¢ (cons M N) safe for ¢

L safe for ¢ M safe for /N safe for ¢
(if L M N) safe for ¢

M safe for £ M safe for £
(fst M) safe for ¢ (snd M) safe for £
M safe for £ M safe for £

(inl[B] M) safe for ¢ (inr[A] M) safe for ¢

L safe for ¢ M safe for ¢ N safe for £
(case L M N) safe for ¢

£

(blame ¢') safe for ¢

Fig. 10. The predicate that a term contains only blame-safe casts.

of applyCast can be any term, so in addition to ruling out blame £ we also need to rule out
terms that contain casts that are not blame-safe for £. Thus, we define a predicate, written
M safe for £ (Wadler & Findler, 2009), that holds if all the casts in M are blame-safe for
¢, defined in Figure 10. Most importantly, blame ¢’ is safe for £ only when £ #~ ¢'. The
other important case is the one for casts: M {c) is safe for £ if CastBlameSafe ¢ £ and M is
recursively safe for £.

We also require that CastBlameSafe should be preserved under the operations on casts:
dom, cod, fst, snd, inl, and inr.

We capture these requirements in two structures:

1. PreBlameSafe and
2. BlameSafe.

The first structure includes the CastBlameSafe predicate and the fields that preserve
blame safety under the casts operations (Figure 11). The second structure includes the
requirement that applyCast preserves blame safety.

The structure BlameSafe extends PreBlameSafe and CastStruct. It also includes the
following field which, roughly speaking, requires that applying a blame-safe cast to a
blame-safe value V' results in a blame-safe term.

applyCast-pres-allsafe : V[ ABL. (V : T+ A) — Value V — (¢: 4= B)
—> (a : Active ¢) — CastBlameSafe c ¢
— V safe for £

— (applyCast V ¢ a) safe for £
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CastBlameSafe : VAB. A = B — Label — Set
Predicate for blame-safe casts, i.e. casts that never cause runtime errors.

VAlAQBlBQ. (C : (A1 — AQ) = (Bl — B2)) — CastBlameSafe ¢ ¢
— (a : Cross ¢) — CastBlameSafe (dom ¢ z) ¢

Given a cross cast between function types that is blame-safe, domBlameSafe
returns a proof that the cast between the domain types is blame-safe.

domBlameSafe :

VA1 A3B1Bs. (c: (A1 — As) = (B1 — Bs)) — CastBlameSafe ¢ ¢
— (z : Cross ¢) — CastBlameSafe (cod ¢ z) £
Similar to the above but for the codomain.

VA1AsB1B>. (C : (Al X Ag) = (Bl X Bg)) — CastBlameSafe ¢ /¢
— (z : Cross ¢) — CastBlameSafe (fst ¢ z) ¢

Given a cross cast between product types that is blame-safe, fstBlameSafe
returns a proof that the cast between the first components of the pair is
blame-safe.

codBlameSafe :

fstBlameSafe :

VAlAzBlBQA (C : (A1 X Ag) = (Bl X Bg)) — CastBlameSafe ¢ /¢
— (a : Cross ¢) — CastBlameSafe (snd ¢ ) ¢
Similar to the above but for the second component of the pair.

VA1 A2B1Bs. (c: (A1 + As) = (B + Bz)) — CastBlameSafe ¢ ¢
— (x : Cross ¢) — CastBlameSafe (inl ¢ x) ¢

Given a cross cast between sum types that is blame-safe, inIBlameSafe returns
a proof that the cast for the first branch is blame-safe.

sndBlameSafe :

inIBlameSafe :

VA1 AaB1Bs. (c: (A1 + As) = (B + By)) — CastBlameSafe ¢ £
— (z : Cross ¢) — CastBlameSafe (inr ¢ z) ¢
Similar to the above but for the second component of the sum.

inrBlameSafe :

Fig. 11. PreBlameSafe extends PreCastStruct (Section 3.1).

We turn to the proof of blame safety. We first prove that “safe for” is preserved
during reduction (Lemma 15). The proof depends on a number of technical lemmas
about renaming and substitution. They are omitted here but can be found in the Agda
formalization.

Lemma 15 (Preservation of Blame Safety). If M : T =4, M': T+ A, M safe for £, and
M — M, then M’ safe for ¢.

Using Preservation of Blame Safety (Lemma 15), we prove the following Blame-
Subtyping Theorem. The theorem says that if every cast with label £ is blame-safe in M,
then these casts never fail and ¢ is guaranteed not to be blamed.

Theorem 16 (Blame-Subtyping Theorem). If M : T' - A and M safe for £, then —(M —*
blame ).

Proof sketch. By induction on the reduction sequence and by inversion on the “safe for”
predicate. 0

3.11 Dynamic gradual guarantee

Recall that the dynamic gradual guarantee (Siek et al., 2015b) states that changing type
annotations in a program to be more precise should either result in the same observable
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behavior or, in the event of a conflict between the new type annotation and some other
part of the program, the program could produce a runtime cast error. On the other hand,
changing the program to be less precise should always result in the same observable
behavior.

Our proof of the dynamic gradual guarantee follows the same structure as that of Siek
et al. (2015b). Their proof involves two main lemmas: (1) compilation from GTLC to its
cast calculus preserves precision and (2) a more-precise program in the cast calculus sim-
ulates any less-precise version of itself. In this article, the proof that compilation preserves
precision is in Section 4. Our proof of the simulation is in this section and is parameterized
with respect to the cast representation, using two new structures, so that it can be applied
to different cast calculi.

The second of those structures, CastStructWithPrecision, consists of five properties
that must be proved for each cast representation. The proofs of these properties together
account for approximately one half of the total effort of proving the dynamic gradual
guarantee for a particular calculus. This places a higher burden on each cast repre-
sentation compared to the generic proofs of type safety (Section 3.8), blame-subtyping
(Section 3.10), and the space efficiency theorem (Section 6.5). So far we have proved that
AB satisfies CastStructWithPrecision (Section 5.3.3) but we have not yet had the time for
the proofs for the other cast calculi. An interesting open question is whether there exists
a better structure that enables more of the proof of the dynamic gradual guarantee to be
generic with respect to cast representations.

3.11.1 Precision structures and precision for CC'

The definition of term precision relies on a notion of precision for the cast representa-
tion, so precision for casts must be a parameter of the proof. In particular, we define
PreCastStructWithPrecision as an extension of PreCastStruct in Figure 12. This structure
includes three fields that define the precision relation between two casts and precision
between a cast and a type (on the left or right). The record also includes four requirements
on those relations that correspond to the precision rules in Figure 9 of Siek et al. (2015b):
C—Ipit corresponds to the forward direction of the bottom right rule, while Ipii—C,
Ipit—LC, and Ipti— E are inversion properties about the top left, bottom right, and bottom
left rules, respectively.

We define the precision relation between CC'(=) terms in Figure 13. The rules CastCC,
CastLCY, and CastREC correspond to the precision rules for casts in Figure 9 of Siek
et al. (2015b). The rule WrapCC corresponds to the rules p_wrap wrap and p_inj in
the Isabelle mechanization of Siek ef al. (2015b). The side condition that B = ? implies
B’ =7 ensures that our WrapZ=C rule handles the same cases as p_inj (where both B =
? and B =?) and p_wrap_wrap (where neither B=? nor B’ =?). The WrapLCC rule
corresponds to the rules p_wrap r and p_injr.? The WrapRCC rule corresponds to the
rule p_wrap_|. The side condition 4 # ? prevents overlap with the Wrap=® rule which
we explain as follows. If 4 = ?, then by Lemma 3 the term M would be an injection and
therefore the WrapC® rule would apply. (For the same reason, there is no p_injl rule in

2 The precision ordering in Siek ez al. (2015b) is flipped with respect to our which explains the switching of left
versus right.
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(=) E (=) : Ve . Inerte — Inert ¢ — Set
The precision relation between two inert casts.

(=) E —:Ve.Inertc — T — Set
The precision relation between an inert cast and a type.

—C (=) :VY. T — Inertd — Set
The precision relation between a type and an inert cast.

C—lpit :

VABA'.(c: A= B) > (i:lnert¢c) > AC A - BLC A" — (i) C A’

If the source and target of an inert cast are less precise than another type, then
so is the inert cast.

Ipii—C :
VABA'B'.(c: A= B) = (¢ : A= B’) — (i : Inert ¢) — (' : Inert )
= (@ EL) - (ACA) x (BC B
If an inert cast is less precise than another, then its source and target are too.

Ipit—LC :

VAA'B.(c: A= B) = (i:lnertc) - (i) CTA - (AC A)x (BC A")
If an inert cast is less precise than a type, then so are its source and target.

Ipti—C :

VAA'B'. (¢ : A" = B') = (i’ 1 lnert ') = AC {(i')) = (AC A)x (AC B)
If a type is less precise than an inert cast, then it is less precise than the source

and target.

Fig. 12. PreCastStructWithPrecision extends PreCastStruct.

the mechanization of Siek et al. (20155b).) The term blame £ is treated as more precise than
any term, just as in Siek et al. (2015b). The rest of the rules are equivalent to the precision
rules for GTLC (Figure 4).

There are five technical lemmas of Siek et al. (2015b) used in the simulation proof that
directly involve the cast representation, so those too become structure fields. We extend
CastSruct to create the structure CastStructWithPrecision in Figure 14

3.11.2 Proof of the simulation

This section is parameterized by CastStructWithPrecision and contains two lemmas that
lead up to the proof of the simulation. The first lemma states that a term that is less precise
than a value will catch up by reducing to a value.

Lemma 17 (Catchup to Value). Suppose M:T'+-A and V' :T'FA". If MCEC V', then
M —*V and V EC V' for some V.

Proof sketch. The proof is by induction on the precision relation M =€ 7. All the cases

are trivial, using induction hypotheses about subterms, except the one case for CASTL.
Suppose M = N({c). By the induction hypothesis for N, we have N —* V' for some V" and

https://doi.org/10.1017/50956796821000241 Published online by Cambridge University Press



26 J. G. Siek and T. Chen
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AN CC AN’
Lcer Mcé M Lc°ry McémM NCON
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BCB MCCM AC A McCCM
inl1[B] M C€ inl[B'| M’ inr[A] M € inr[A'] M’

AC A ACcA, LC°L MCM NCON
case LM N C€ case L’ M' N’
L:THA +A) LT - A, + A

/ / C agt!
ACA BCB MC™M c:A=DB,d: A =D

Cast;c :
M(c) E¢ M'(c')
’ ’ / C !
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M(c) € M’
/ / ) C gt
CastReC; _AEAT ACB MCUM \0py g p

M CC M'{()
(i) Sy McC M
M@y £ M (")

iy A MEC M
M) C€ M’
AC (") MCC M
M CC M'{(i")

i:A=B,i': A= B ,(B=7)—(B'=7)

Wrapgc :

M TR A

WIapLEC :

M:THAA£?

WIapREC :

ACA

mlﬂ :THAblame/: T - A’
1C ame

Fig. 13. Precision between CC'(=) terms and between substitutions.

V' =€ V' For V{c), we case on whether cast ¢ is inert or active: if inert, then V (c) —> V(i)
where i : Inert ¢ by rule wrap; if active, then it is proved by the field applyCast-catchup of

CastStructWithPrecision (Figure 14). O
Next, we prove that substitution preserves precision.
Lemma 18 (Substitution Preserves =€). Ifo C* ¢’ and N E€ N/,
then subst o N C€ subst o’ N'.
O

Proof sketch. The proof is by induction on the precision relation N = N'.
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applyCast-catchup :
VIT'AA'B.(V:THA) — (V':T"FA) = (c: A= B)
— (a : Active ¢) — Value V — Value V'
—+ACA -BCA VoV
— IW.(Value W) x (applyCast V ca —* W) x (W C€ V')
sim-cast :
VAA'BB' . (V:0FA) - (V' :0FA) = (c: A= B)—= (¢ : A= B)
— Value V' — Value V' — (@’ : Active ¢)
—ACA 5BCB »VECV
— 3N.(V{c) —* N) x (N £ applyCast V' ¢ o)
sim-wrap :
VAA'BB' . (V:0FA) - (V' : 0 A) = (c: A= B)— (¢ : A= B’)
— Value V — Value V' — (i’ : Inert ¢)
—+ACA 5BCB -»VvLCYV
— 3N.(V{c) —* N) x (N T V(i)

castr-cast :
VAAB.(V:0FA) - (V' : 0 A) = (d: A= B)
— Value V' — Value V' — (@’ : Active ¢)
—+ACA - ACB -VvCoV
— V C€ applyCast V' ¢ o
castr-wrap :

VAAB.(V:0FA) - (V' :0FA") = (- A= B)
— Value V' — Value V' — (i’ : Inert ¢)
S ACA »ACB -vCoV
SV EC VY

Fig. 14. The CastStructWithPrecision structure extends CastStruct.

We come to the proof of the main lemma that a program simulates any more-precise
version of itself.

Lemma 19 (Simulation of More Precise Programs). Suppose M, : 3+ A and M| : A’
and M : 0+ A" If M, ¢ M| and M{ — M;, then My —* M, and M, EcMz’for some
M.

Proof sketch. The proof is by induction on the precision relation M; T M;. The full proof
is in Agda; we briefly describe a few cases here.

Application (M, =L M and M| = L' M"). We case on the reduction L' M’ — M}, which
yields seven subcases:

Subcase &, where frame F' = (L1 _). By the induction hypothesis about the precision
between L and L', there exists L, such that L —>* L, and L, satisfies the precision
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relation. Since multi-step reduction is a congruence, there exists M, = L, M that
satisfies M; —>* M, and M, °€ M),

Subcase £, where frame F = (_[]). By Proposition 17, there exists L, such that: 1) L,
is avalue; 2) L —* L; 3) L, € L. By the induction hypothesis about M and M,
there exists N, such that M —* N, and N, satisfies the precision relation. Since
multi-step reduction is a congruence and is transitive, there exists M, = L, N, that
satisfies M| —>* M, and M, C€ Mj.

Subcase £-blame, where frame F' = ((J ). L M itself satisfies the precision relation
since blame is more precise than any term, so there exists M, =L M.

Subcase £-blame, where frame F' = (_[]). Same as the previous case.

Subcase 8. Using Proposition 17 twice, L M —* V' W, where V' and W are both val-
ues and V' CC L', W =€ M. We know that L' = A N’ for some N’ due to . By
induction on the precision relation V' CC A N and inversion on Value V, it further
generates two sub subcases:

Sub-subcase: ' is VA Suppose V' = A N, then there exists M, = N[W] that satis-
fies both the reduction (from V' W by B) and the precision.
Sub-subcase: V' is Vwrap Suppose V' = V(i) for some value V| and i : Inert c:

Vi{iy W — (V1 W{dom c)){cod c), by fun-cast.
By using Proposition 17 and congruence of reduction:
(V1 W{dom ¢)){cod ¢) —>* V| Wi{cod c)

for some value ;. Note that }/|, and | are now both values, about which by
induction hypothesis there exists N such that V; W, —* N and N satisfies
the precision relation.

Subcase 5. Similar to the previous case, by repeatedly using Proposition 17 (“catch-
up”) and the induction hypothesis.

Subcase fun—cast. Similar to the previous case, by repeatedly using Proposition 17
(“catch-up”) and the induction hypothesis.

Cast (M, =M(c) and M| =M'(c’)). We case on the reduction M’(c’) — M}, which
yields four subcases:

Subcase &. By the induction hypothesis about subterms M and M’ and that multi-step
reduction is a congruence.

Subcase £-blame. M(c) itself satisfies the precision relation since blame is more
precise than any term.

Subcase cast. By Proposition 17 and that M’ is value, there exists value V' such that
M —*V and V E€ M’. Then this case is directly proved by the field sim-cast of
CastStructWithPrecision (Figure 14).

Subcase wrap. Similar to the previous case, first use Proposition 17 and then use field
sim-wrap of CastStructWithPrecision (Figure 14).

Similarly, fields castr-cast and castr-wrap of CastStructWithPrecision are used in the
case for castr, which is omitted since the idea is the same as the cast case described
above.

https://doi.org/10.1017/50956796821000241 Published online by Cambridge University Press



Parameterized cast calculi and reusable meta-theory 29

C[-]:VI'A.(M : Term) = I'c M : A—-TFA
C'[-]:VPA.(M : Term) > T'H, M : A—TH A

C[$k] F1it =k
Clz] tvar =2
CIA[A] M] (Flam M) = A (C[M] M)
C[(L M)] (app L FM) = (C[L] FL){c) (C[M] -M)(d)
where
I'FeL:ATF;M:B,Av Aj—A,,
c=(A= (A=A d=(B= A"
C[if¢ L M N] (Fif FLEM EN) = if ((C[L] FL){c))
((C[M] FM)({dy)) ((CINT EN)(d2))
where
PhoL: AT o M:B,TFy N: By,
¢= (A = Bool)",
dy = (B1 = By UBy),dy = (B> = By UBy)*
C[cons M N] (Fcons M =N) = cons (C[M] M) (C[N] -N)
Clxt M (Fm; M) = m; (C[M] FM)(c))
where
Dhe M: A Ab Ay x Ag,c= (A= Ay x Ay)*
C[in1[B] M] (Finl M) = inl (C[M] -M)
C[inr[A] M] (Finr FM) = inr (C[M] M)
C[case¢[B1,C1] L M NJ (Fcase FL M FN) = case (C[L] FL){c)
(MC[M] =M)(dr)) (AC[NT EN)(d2))
where
IPheL: AT -BibgM:By,T'-Ci kg N:Cy
c=(A= B +C)*
dy = (By = By UCy)*, do = (Co = Bo LU Cy)*
C'[case([B1,C1] L M NJ (Fcase FL =M =N) = case (C[L] FL){c)
(CIM] FM){dy) (CINT FN)(dz)

Fig. 15. Compilation from GTLC to CC(=) and CC'(=).

Wrap (M, = M (i) and M| =M'{i")). We case on the reduction M'{i"}) —> M, which
yields two subcases:
Subcase £. By the induction hypothesis about subterms M and M’ and that multi-step
reduction is a congruence.
Subcase £-blame. M (i) itself satisfies the precision relation since blame is more
precise than any term. -

4 Compilation of GTLC to CC(=) and CC(=)

This section is parameterized by the cast representation = and by a cast constructor, writ-
ten (4= B[)e, that builds a cast from a source type A4, target type B, blame label ¢, and
(implicitly) a proof that 4 and B are consistent.

The compilation functions C[—] and C'[—] are defined in Figure 15 and map a well-
typed term of the GTLC to a well-typed term of the Parameterized Cast Calculus CC(=)
or CC'(=), respectively. The two functions are the same except in the equation for case,
so we only show that equation for C'[—]. The Agda type signatures of the compilation
functions ensure that they are type preserving.

Lemma 20 (Compilation Preserves Types).

1. fTgM: A, then C[M] : T F A.
2 IfT oM : A, then C'[M]:TH A.
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The compilation functions also preserve precision, which is an important lemma in
the proof of the dynamic gradual guarantee. This lemma is parameterized over the
PreCastStructWithPrecision structure (Figure 12).

Lemma 21 (Compilation Preserves Precision). Suppose TgM A and T =g M’ 2 A, If
FCT and M TC M/, then C'[M] CCC'[M'] and AT A'.

5 A half-dozen cast calculi

We begin to reap the benefits of creating the Parameterized Cast Calculus by instantiating
it with six different implementations of CastStruct to produce six cast calculi.

5.1 Partially Eager “D” casts with Active cross casts (EDA)

The cast calculus defined in this section corresponds to the original one of Siek & Taha
(2006a), although their presentation used a big-step semantics instead of a reduction
semantics and did not include blame tracking. In the nomenclature of Siek et al. (2009),
this calculus is partially eager and uses the “D” blame tracking strategy. As we shall see
shortly, this calculus categorizes cross casts as active, so we refer to this cast calculus as
the partially eager “D” cast calculus with active cross casts (EDA).

We define the EDA calculus and prove that it is type-safe and blame-safe by instantiating
the meta-theory of the Parameterized Cast Calculus. This requires that we define instances
of the structures PreCastStruct, CastStruct, PreBlameSafe, and BlameSafe.

We begin by defining the cast representation type = as a data type with a single con-
structor also named = that takes two types, a blame label, and a proof of consistency:

A='B:———— 4~B
= A=B
The cast constructor is defined trivially as follows:

(4= B)' =4 ="B)

(Recall that the cast constructor is used during compilation in Section 4.)

5.1.1 Reduction semantics and type safety

We categorize the casts whose target type is ? as inert casts.

Inert ¢

—— A #?
Inert (4 =*?) #

We categorize casts between function, pair, and sum types as cross casts.

Cross ¢

Cross®: ®e{—, x,+}
Cross (4 ® B=*C ® D)
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We categorize the identity, projection, and cross casts as active.

ActlId: - ActProj: - B#?
Active (a = a) Active (? = B)
ActCross: ﬂ
Active ¢

Lemma 22. For any types A and B, ¢ : A = B is either an active or inert cast.

Proof. The cast ¢ must be of the form 4 =* B where 4 ~ B. We proceed by cases on
A~ B.

Case A ~? If A =7, then c is active by ActId. Otherwise c is inert.

Case ? ~ B If B=7, then c is active by ActId. Otherwise c is active by ActProj.
Case b~ b cisactive by ActId.

Case AQ B~ A ® B where ® €{—,x,+}. ¢ is active by ActCross and
Cross®. ([l

Next we show that inert casts into non-atomic types are cross casts.
Lemma 23. [fc: A= (BQ® C) and Inert ¢, then Cross c and A= D Q E for some D and E.

Proof. There are no inert casts whose target type is B ® C (it must be ?), so this lemma is
vacuously true. (]

Continuing on the topic of cross casts, we define dom, cod, etc. as follows. (The second
parameter x is the evidence that the first parameter is a cross cast.)

dom@d—-B='C—D)x=C="4
codd—B='C—D)x=B='D
fst(AxB=>'CxD)x=4='C
snd(d x B=CxD)yx=B='D
inlA+B="C+D)x=4="C
infA+B='C+D)x=B='D

We check that a cast to a base type is not inert.
Lemma 24. A cast c: A= b is not inert.
Proof. This is easy to verify because b # ?. (]
Proposition 25. The EDA calculus is an instance of the PreCastStruct structure.

We import and instantiate the definitions and lemmas from Section 3.2 (values and
frames) and Section 3.3 (eta-like reduction rules).

Next we define the applyCast function by cases on the proof that the cast is active.
The case below for ActProj relies on Lemma 3 to know that the term is of the form
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C<:A B<:D

A<:? b<:b A—B<:.C—D
A<:C B<:D A<:C B<:D
AxB<:CxD A+B<:C+D

Fig. 16. Subtyping for “D” blame tracking.

M{4=47).
applyCast:VI'dB. (M : T+ A) — ValueM — (c: A = B) — Activec— T+ B

applyCast M v A=>%4) Actld = M
M{A=%B) if4d~B
applyCast M{A=%7?) v (?=%2B) ActProj = ( ) ]
blame ¢, otherwise
applyCast M v ¢ Act® = eta® M cCross®

Proposition 26. The EDA calculus is an instance of the CastStruct structure.

We instantiate from CC(=>) the reduction semantics (Section 3.6) and proof of type
safety (Section 3.8) to obtain the following definition and results.

Definition 27 (Reduction for EDA). The reduction relation M — N for the EDA calcu-
lus is the reduction relation of CC(=) instantiated with EDA’s instance of CastStruct.

Corollary 28 (Preservation for EDA). If M :T A and M — M’, then M’ : T A.

Corollary 29 (Progress for EDA). If M : J\- A, then

1. M — M for some M’,
2. Value M, or
3. M =blame.

Let EDA’ be the variant of EDA obtained by instantiating CC’ instead of CC.

5.1.2 Blame-subtyping

Because the EDA’ calculus uses the “D” blame-tracking strategy, the subtyping relation
that corresponds to safe casts is the one in Figure 16 where the unknown type ? is the top
of the subtyping order.

We define the CastBlameSafe predicate as follows:

A<:B L#EL
CastBlameSafe (4 = B) ¢ CastBlameSafe (4 = B) ¢

Lemma 30 (Blame Safety of Cast Operators). Suppose CastBlameSafec ¢ and ¢ is a
cross cast, that is, x : Cross c.
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e [fx=Cross —, then CastBlameSafe (dom ¢ x) £ and CastBlameSafe (cod ¢ x) £.
e [fx=Crossx, then CastBlameSafe (fst ¢ x) £ and CastBlameSafe (snd ¢ x) €.
e [fx=Cross+, then CastBlameSafe (inl ¢ x) £ and CastBlameSafe (inr ¢ x) €.

Proposition 31. EDA’ is an instance of the PreBlameSafe structure.

Lemma 32 (applyCast preserves blame safety in EDA’). If CastBlameSafec ¢ and a:
Active c and V safe for £ and v : Value V, then (applyCast V v c a) safe for ¢.

Proof. The proof is by cases on a (the cast being active and if a cross cast, cases on the
three kinds) and then by cases on CastBlameSafe ¢ £, except that if the cast is an identity
cast, then there is no need for casing on CastBlameSafe ¢ £. So there are nine cases to
check, but they are all straightforward. (]

Proposition 33. EDA’ is an instance of the BlameSafe structure.

We instantiate Theorem 16 with this BlameSafe instance to obtain the Blame-Subtyping
Theorem for EDA’.

Corollary 34 (Blame-Subtyping Theorem for EDA’). If M : T = A and M safe for £, then
—(M —>* blame ¢).

5.2 Partially Eager “D” casts with Inert cross casts (EDI)

Many cast calculi (Wadler & Findler, 2007, 2009; Siek et al., 2009; Siek & Wadler, 2010;
Siek et al., 2015a) categorize terms of the form:

V{Ad— B= C— D)
as values and then define the reduction rule:
Vid—B=C— D)W — (V(W{C= A))){B= D)

That is, these calculi categorize cross casts as inert instead of active. In this section, we
take this approach for functions, pairs, and sums, but keep everything else the same as
in the previous section. We conjecture that this cast calculus is equivalent in observable
behavior to EDA. We refer to this calculus as EDI, where the I stands for “inert.”

So the cast representation type is again made of a source type, target type, blame label,
and consistency proof.

A='B:— A~B
= 2 TISB
The cast constructor is defined as follows:

(4= B)=U=>"'B)
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5.2.1 Reduction semantics and type safety

Again, we categorize casts between function, pair, and sum types as cross casts.

®e{—=,x,+}
Cross (4 ® B="C ® D)

But for the inert casts, we include the cross casts this time.

Inert ¢

Cross®:

A#?
InInj: ; InCross: _Crossc
Inert (4 =°?) Inert ¢

The active casts include just the identity casts and projections.
B#?
Active (? = B)

Actld: - ActProj:
Active (a = a)

Lemma 35. For any types A and B, c : A = B is either an active or inert cast.

Proof. The proof is similar to that of Lemma 22, except the cross casts are categorized as
inert instead of active. 0

Lemma 36. Ifc: A= (B® C)and Inert ¢, then Cross c and A= D Q E for some D and E.
Proof. We proceed by cases on Inert c.
Case InInj: The target type is ?, not B ® C, so we have a contradiction.

Case InCross: We have Cross c. By cases on Cross ¢, we have 4 = D ® E for some D
and E. O

The definitions of dom, cod, etc. are exactly the same as in Section 5.1.
Lemma 37. A cast c: A= b is not inert.

Proof. The inert casts in this section have a target type of either ? or a non-atomic type
A1 ® A, but not a base type. O

Proposition 38. The EDI calculus is an instance of the PreCastStruct structure.
Again, we define the applyCast function by cases on the proof that the cast is active,

but this time there is one less case to consider (the cross casts). The cases for ActId and
ActProj are the same as in Section 5.1.

applyCast:VI'AB.(M : T +A4) — ValueM — (c: 4 = B) — Activec—>T'FB
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applyCast M v (@a='a) Actld = M
M{A=%B) ifA~B
applyCast M{(A=%7) v (?=%2B) ActProj = { ) .
blame £, otherwise

Proposition 39. The EDI calculus is an instance of the CastStruct structure.

We instantiate from CC(=) the reduction semantics (Section 3.6) and proof of type
safety (Section 3.8) for EDI to obtain the following definition and results.

Definition 40. (Reduction for EDI). The reduction relation M — N for the EDI calculus
is the reduction relation of CC(=) instantiated with EDI’s instance of CastStruct.

Corollary 41 (Preservation for EDI). If M :T'+A and M —> M’, then M’ : T - A.

Corollary 42 (Progress for EDI). If M : 3+ A, then

1. M — M’ for some M’,
2. Value M, or
3. M =blame /.

Let EDI’ be the variant of EDI obtained by instantiating CC’ instead of CC.

5.2.2 Blame-subtyping

We define the CastBlameSafe predicate for EDI exactly the same way as for EDA’, using
the subtyping relation of Figure 16.

Because the cast operators for EDI are defined exactly the same as for EDA, Lemma 30
also applies to EDI, that is, the cast operators such as dom preserve blame safety.

Proposition 43. EDI is an instance of the PreBlameSafe structure.

Lemma 44 (applyCast preserves blame safety in EDI'). [f CastBlameSafec ¢ and a:
Active c and V safe for £ and v : Value V, then (applyCast V v ¢ a) safe for ¢.

Proof. The proof of this lemma is much shorter than the corresponding one for EDA’
because there are fewer casts categorized as active. So there are just three straightforward
cases to check. d

Proposition 45. EDI is an instance of the BlameSafe structure.

We instantiate Theorem 16 with this BlameSafe instance to obtain the Blame-Subtyping
Theorem for EDI'.

Corollary 46 (Blame-Subtyping Theorem for EDI'). If M :T" - A and M safe for £, then
—(M —>* blame ¢).
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5.3 The AB Blame Calculus

This section generates the AB variant (Siek ef al., 2015a) of the Blame Calculus (Wadler
& Findler, 2009) as an instance of the Parameterized Cast Calculus. It also extends AB
in Siek et al. (2015a) with product types and sum types. We explore treating cross casts
on products and sums both as active and inert casts in Section 5.3.1. Compared to the
previous sections, the main difference in AB is that all injections and projections factor
through ground types, defined as follows:

Ground Types G,H :=b|7—=?7|7x?|?2+7?

The cast representation type consists of a source type, target type, blame label, and
consistency proof.

A={Bi— 4~B
= P TS B

The cast constructor is defined as follows:

(4=B)'=A="'B)

5.3.1 Reduction semantics and type safety

We categorize casts between function, pair, and sum types as cross casts.

Cross®: ®e{—, x,+}
Cross (4 ® B='C ® D)

Regarding inert casts in AB, an injection from ground type is inert and a cast between
function types is inert. As for casts between product types and sum types, there are two
choices, either to make them inert or to make them active. This yields two variants of AB:
Variant 1 where all cross casts are inert and Variant 2 where only function casts are inert.

| Inert ¢. Variant 1 |

InInj: InCross: _Crossc
Inert (G =*?) Inert ¢

| Inert ¢. Variant 2 |

Inln InFun:
. Inert (G =*?) Inert (4 — B=*C — D)

The active casts in both AB variations include injections from non-ground type, pro-
jections, and identity casts. In Variant 2, we categorize only function casts as active, so
compared to Variant 1 we have an additional rule Act® for casts between product types
and sum types being active.
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Active c. Variant 1 |

ActId: ActInj: A#£? AG.A=G
Active (a = a) . Active (4 =¢?) =07

ActProj: B#£?
. Active (? ="' B) *

Active c. Variant 2 |

ActlId: ActInj: A#£?, AG.A=G
Active (a =% a) 3" Active A=)
ActProj: B#£7?
. Active (? = B) *
Act®: ® € {x, +}

Active (A ® B=*C® D)

Lemma 47. For any types A and B, ¢ : A = B is either an active or inert cast.

Lemma 48. [fc: A= (B® C)and Inert ¢, then Cross c and A= D Q E for some D and E.
Lemma 49. A cast c: A= b is not inert.

Proposition 50. Both variants of AB are instances of the PreCastStruct structure.

We define the following partial function named gnd (short for “ground”). It is defined

on all types except for ?.

gndb=5
gndA®B=?®°? for ® € {—, x, +}

Also, we use the following shorthand for a sequence of two casts:
M{A="B="C)=M(4=" B)(B="C)
The following is the definition of applyCast for AB Variant 1:
applyCast: VI'dB. (M : T+ A) — ValueM — (¢c: A= B) — Activec - T'+B

applyCast M v (a=%a) Actld = M
applyCast M v A=Y?) ActInj = M{A='gndd='?)
applyCast M(G=%7?) v (?=%B) ActProj = M’
where
M ifB=gndB=G
M' = { blame ¢, ifB=gndB#G

M(G=%?="%gnd B=" B) otherwise
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The definition of applyCast for AB Variant 2 has two additional cases, for Actx and
Act+, respectively:

applyCast : VI'AB. (M : T+ A) — ValueM — (¢c: A= B) — Activec—>T'+B

applyCast M v (@a='a) ActId = M
applyCast M v (A=Y?) ActInj = M{A='gndd="?)
applyCast M v ¢ Actx = etax M cCrossx
applyCast M v ¢ Act+ = etat+ M cCross+
applyCast M(G=%7?) v (?=%2B) ActProj = M’
where
M ifB=gndB=G
M’ = {blame ¢, ifB=gndB#G

M(G="?=%2gnd B=%B) otherwise
Proposition 51. Both variants of LB are instances of the CastStruct structure.

We import and instantiate the reduction semantics and proof of type safety from
Sections 3.6 and 3.8 to obtain the following definition and results.

Definition 52 (Reduction for AB). The reduction relation M — N for AB is the reduction
relation of CC(=) instantiated with AB’s instance of CastStruct.

Corollary 53 (Preservation for AB). If M :T A and M — M’, then M’ : T F A.

Corollary 54 (Progress for AB). If M : - A, then

1. M — M’ for some M’,
2. Value M, or
3. M =blame£.

Let AB’ be the variant of AB obtained by instantiating CC’ instead of CC.

5.3.2 Blame-subtyping

AB’ uses the “UD” blame-tracking strategy (Wadler & Findler, 2009; Siek et al., 2009),
so the subtyping relation that corresponds to safe casts is the one in Figure 17. In this
subtyping relation, a type A is a subtype of ? only if it is a subtype of a ground type. For
example, Int — Int #:? because Int — Int £:? — ? because ? £: Int.

The CastBlameSafe predicate is defined as it was for EDA in Section 5.1.2, except using
the subtyping relation of Figure 17.

The cast operators for AB’ are defined exactly the same as for EDA, so Lemma 30 also
applies to AB’, that is, the cast operators such as dom preserve blame safety.
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A< G C<:A B<:D
?<:? b<:b A<:? A—B<.C—D

A<:C B<:D A<:C B<:D
AxB<:CxD A+B<:C+D

Fig. 17. Subtyping for “UD” blame tracking.

Proposition 55. AB' is an instance of the PreBlameSafe structure.

Lemma 56 (applyCast preserves blame safety in both variants of AB').
If CastBlameSafect and a:Activec and V safefort and v:ValueV, then
(applyCast V v c a) safe for L.

Proposition 57 Both variants of AB" are an instance of the BlameSafe structure.

We instantiate Theorem 16 with this BlameSafe instance to obtain the Blame-Subtyping
Theorem for both variants of AB’'.

Corollary 58 (Blame-Subtyping Theorem for both variants of AB').
If M : T+ A and M safe for €, then —(M — * blame ¢).

5.3.3 Dynamic gradual guarantee

We now turn to proving the dynamic gradual guarantee for both variants of AB. This
involving defining precision on casts and then proving the lemmas required to show that
AB is an instance of CastStructWithPrecision. We then instantiate the generic Lemma 19
to obtain the required simulation result and prove the main theorem.

We define the precision relations between two casts and between a cast and a type,
corresponding to the first three fields in PreCastStructWithPrecision (Figure 12).

| (i) E (7). Variant 1 |

A—-BCA—-B C—DCC—D
i:lnert(4d - B=*C— D)
itlnert(G=Y?) i :lnert(G=Y?) i/ :Inert(d — B = C' - D)

() E () () E )
AxBCA xB CxDCC xD A+BCA+B C+DCEC+D
i:lnert (4 x B='C x D) i:lnert(4+B=‘C+D)

i :Inert (4’ x B = C' x D)) i :Inert (4’ + B = C'+ D))

() @ (i) @
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| (i) © A4'. Variant 1 |

A—BCA B C—DCA—PB

i:lnert(G='?) GCA i:lnert(4 - B='C— D)
(A (hycd —pB
AxBCEA xB CxDCA xB A+BCA+B C+DCA+PB
i:lnert (4 x B=*C x D) i:lnert(4+B=*C+D)
(YEA4 xB (iyEA+B

AT {7'). Variant 1 |

A—BCA —-B A—BCC —>D AxBCA xB AxBEC xD
i:lnert(4 - B ='C' = D) i/ :lnert (4’ x B =¢C' x D)
A— BT (i) (AxB)Ci
A+BCA+B A+BCEC+D
i :lnert (4’ +B =¢C' + D)
(A+B)ET
The precision relations for Variant 2 have fewer cases compared to Variant 1, since the
casts between product types and sum types are active:

| (@) € (7). Variant 2 |

A—-BCA—-B C—-DCC—D
i:lnert(4 — B='C— D)
iilnert(G='?) i :lnert(G="?) i lnert (4’ — B' =Y C'— D))
((=n(cH) ((a=n(cH)

| (i) E4'. Variant 2 |

A—BCA—->B C—>DCA —>PB
i:lnert(G=?) GCA i:lnert(4— B=*C— D)
(= (ycd4 -8

AC ({'). Variant 2 |

A—-BCA—-B A—BCC —D
i/ :lnert (4 - B = C’'— D))
A— BT (i)
Then, we instantiate and prove the four lemmas that correspond to the last four fields in
PreCastStructWithPrecision (Figure 12). They are forward direction and inversion lem-
mas about the precision relations defined above between casts and between a cast and a

type.

Lemma 59 (Type Precision Implies Cast-Type Precision). Suppose c:A= B and i
Inertc. FAC A, BC A, then (i) T A
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Lemma 60 (Cast-Cast Precision Implies Type Precision). Supposec: 4= B, ¢ :A' = B,
i:lnerte ¢ :lnert . If (i) C (i), then AT A’ and BC B'.

Lemma 61 (Cast-Type Precision Implies Type Precision). Suppose c: A= B and i:
Inertc. If (i) T A, then AC A and BC 4’

Lemma 62 (Type-Cast Precision Implies Type Precision). Suppose ¢’ : A" = B’ and i’ :
Inertc. If AT (i), then AT A" and AT B'.

We instantiate PreCastStructWithPrecision using the definitions of precision and their
related lemmas (Lemmas 59, 60, 61, and 62).

Proposition 63 AB’ is an instance of the PreCastStructWithPrecision structure.

We instantiate Lemma 21 to prove that compilation of the GTLC into AB’ preserves the
precision relation.

Corollary 64 (Compilation into AB’ Preserves Precision). Suppose ' M : 4 and T ¢
M A . IfTCT and M 6 M/, then C'[M] CC€C'[M'] and AT A'.

Lemma 65 (applyCast Catches Up to the Right). Suppose V' :TV+A', ¢c: A= B, and
a:Activec. [fFAC A, BEA', and VEC V', then applyCast V ca —* W and W€ V'
for some value W.

Proof sketch. We briefly describe the proof for Variant 1, since the proof methodology is
the same for both variants.
By induction on the premise Active c, it generates three cases:

ActId. Since c is identity cast, W = V satisfies the reduction and W cCy.

ActInj. We follow the branch structure of applyCast and proceed.

ActProj. We follow the branch structure of applyCast and case on whether the target
type B of the projection is ground. If B is ground, then the proof is straightforward
by inversion on the canonical form of the projected value. Otherwise, if the B is not
ground, applyCast expands the cast by routing through a ground type, from where we
proceed using the induction hypothesis.

Lemma 66 (Simulation Between Cast and applyCast). Suppose c:A=B, ¢ : 4’ =
B, and d :Activec’. If ACA', BCB', and VECV', then V(c) —*N and NCC¢
applyCast V' ¢’ d’ for some N.

Proof sketch. We case on Active ¢’ and generate three cases that are all straightforward. (J
Lemma 67 (Simulation Between Cast and Wrap). Suppose c: A= B, ¢’ : A" = B, and

i'Inertc. IfAC A, BC B, and VEC V', then V{c) —* N and N °C V' (i) for some
N.
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Proof sketch. We case on the premise Inert ¢’:

InInj. In this case, by inversion on 4 T A" and BT B’, A can be either ? or ground. If
A is ?, an identity cast ? = ? is active so we use rule cast and proceed; otherwise,
the cast is inert so we use rule wrap and proceed.

InCross. Similar to the InInj case, by inversion on the two type precision
relations. U

Lemma 68 (Simulation Between Value and applyCast). Suppose V 0+ A4, ¢':4' = B,
and d : Activec. IfAC A, AC B, and V CC V', then V =€ applyCast V' ¢ a'.

Proof sketch. Straightforward. By case analysis on @’ : Active ¢'. g

Lemma 69 (Simulation Between Value and Wrap). Suppose V :0F A, ¢ : 4" = B', and
i lnertc. IFAC A, AT B, and VEC V', then V CC V' ((i').

Proof sketch. Straightforward. By case analysis on 7’ : Inert ¢’ and by inversion on the type
precision relations. 0

We prove that both variants of AB" are instances of CastStructWithPrecision using
Lemmas 65, 66, 67, 68, and 69.

Proposition 70 Both variants of AB' are an instance of the CastStructWithPrecision
structure.

We instantiate Lemma 19 (Simulation of More Precise Programs) with the AB’ instances
of CastStructWithPrecision (Proposition 70) to obtain the main lemma of the dynamic
gradual guarantee for both variants of AB’.

Corollary 71 (Simulation of More Precise Programs for AB"). Suppose M, : @+ A and
M{:0-A4 and M, QA If M, c¢ M| and M| — M,, then M, —* M, and M, ECMé
for some M,.

We prove the dynamic gradual guarantee for AB" following the reasoning of Siek ef al.
(2015b). We give the full proof here.

Theorem 72 (Dynamic Gradual Guarantee for both variants of AB").
Suppose MEC N and T FgM :Aand T g N : B.

1. IfC[N] —>* W, then C[M] —* V and V CC W.

2. IfC[N] diverges, so does C[M].

3. IfC[M] —>* V, then either C[N] —* W and V °€ W, or C[N] —* blame £ for
some £.

4. If C[M] diverges then either C[N] diverges or C[N] —>* blame £ for some £.
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Proof.

1. By Corollary 64, we have C[M] =€ C[N]. Then by induction on C[N] —* W
and Corollary 71, we have C[M] —* M’ and M’ °€ W for some M’. Finally, by
Lemma 17 (instantiated for AB"), we have M’ —>* V and V € W,

2. By Corollary 64, we have C[M] T C[N]. Then by Corollary 71, C[M] also
diverges.

3. Because AB’ is type safe (Corollaries 53 and 54), we have the following cases.

e Case C[N] —>* W for some W. Then by Part 1 of this theorem and because
reduction is deterministic, ¥ =€ .
e Case C[N] —* blame ¢ for some £. We immediately conclude.
e Case C[N] diverges. Then by Part 1, C[M] also diverges, but that contradicts the
assumption that C[M] —* V.
4. Again because AB’ is type safe (Corollaries 53 and 54), we have the following cases.

e Case C[N] —>* W for some W. Then by Part 1, C[M] —>* V for some V but
that contradicts the assumption that C[M] diverges.

e Case C[N] —>* blame ¢ for some £. We immediately conclude.

e Case C[N] diverges. We immediately conclude. U

5.4 Partially Eager “D” Coercions (EDC)

The next three cast calculi use cast representations based on the Coercion Calculus of
Henglein (1994). We start with one that provides the same behavior as the cast calculus of
Siek & Taha (2006a), that is, partially eager casts with active cross casts (Section 5.1). We
use the abbreviation EDC for this cast calculus.

We define coercions as follows, omitting sequence coercions because they are not nec-
essary in this calculus.

. CA#? . B#?

Id.m A!.A—:{? B?.‘?:—B
_,_._C=4 B=D o . _A=>C B=D
T T TUS B = (C—D) O UeB = e 2o

The cast constructor is defined by applying the coerce function (defined later in this
section) to the implicit proof of consistency between 4 and B and the blame label £:

(4= B)" {p:A4~B}=coercep?

5.4.1 Reduction semantics and type safety

Injections are categorized as inert casts.

Inert ¢

Inert A!
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The coercions between function, pair, and sum types are categorized as cross casts.
Cross ¢

C I
ross® Cross(c®d) ® € {—, x,+}

We categorize the identity, projection, and cross casts as active.

Actld: —————— ActProj: —————— ActCross: &
Active id Active 47¢ Active ¢

Lemma 73. For any types A and B, c : A = B is either an active or inert cast.
Lemma 74. Ifc: A= (B® C) and Inert ¢, then Cross c and A= D ® E for some D and E.

The cast operators dom, cod, etc. are defined as follows:
dom(c—>d)x=c
cod(c—>d)yx=d
fst(cxd)x=c
snd(cxd)yx=d
inlc+d)yx=c
inf(c+d)yx=d

Lemma 75. A cast c: A =>b is not inert.
Proposition 76 The EDC calculus is instance of the PreCastStruct structure.

To help define the applyCast function, we define an auxiliary function named coerce for
converting two consistent types and a blame label into a coercion. (The coerce function is
also necessary for compiling from the GTLC to this calculus.)

coerce:YVAB.A~B — Label > 4=1RB
id ifB=?
BY B#£?

id ifd=?
A A£?

coerce UnkL~[B] ¢ = {

coerce UnkR~[A4] ¢ = {

coerce Base~[b] £ =id
coerce (Fun~ d; ds) £ = (coerce d; £) — (coerce d, {)
coerce (Pair~d d;) £ = (coerce d; £) x (coerced, {)
coerce (Sum~ d; dy) £ = (coerce d; £) + (coerce d, £)

The structure of coercions is quite similar to that of the active casts but a bit more
convenient to work with, so we define the applyCast function by cases on the coercion.
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(£
CastBlameSafeid ¢ CastBlameSafe 4! ¢ CastBlameSafe B?Y ¢

CastBlameSafec ¢  CastBlameSafed ¢

CastBlameSafe (c ® d) ¢ Q €{—, x,+}

Fig. 18. Definition of the CastBlameSafe predicate for EDC’.

We omit the case for injection because that coercion is not active.

applyCast:VI'dB. (M : T+ A) — ValueM — (¢c: A= B) —> Activec— '+ B

applyCast M v id a = M
. M{coerceabt) ifab:A~B
applyCast M{4!) v B? a = )
blame ¢ otherwise
applyCast M v ¢c®d a = etaQ@McCross®

Proposition 77. The EDC calculus is an instance of the CastStruct structure.

We import and instantiate the reduction semantics and proof of type safety from
Sections 3.6 and 3.8 to obtain the following definition and results.

Definition 78 (Reduction for EDC). The reduction relation M — N for the EDC calcu-
lus is the reduction relation of CC(=) instantiated with EDC’s instance of CastStruct.

Corollary 79 (Preservation for EDC). If M :T' A and M —> M’, then M’ : T - A.

Corollary 80 (Progress for EDC). If M : (- A, then

1. M — M’ for some M’,
2. Value M, or
3. M =Dblame /.

Let EDC’ be the variant of EDC obtained by instantiating CC’ instead of CC.

5.4.2 Blame-subtyping

The CastBlameSafe predicate for EDC’ is defined in Figure 18.

Lemma 81 (Blame Safety of Cast Operators). Suppose CastBlameSafec ¢ and ¢ is a
cross cast, that is, x : Cross c.

e [fx=Cross —, then CastBlameSafe (dom ¢ x) £ and CastBlameSafe (cod ¢ x) £.
e [fx=Crossx, then CastBlameSafe (fst ¢ x) £ and CastBlameSafe (snd ¢ x) €.
e [fx=Cross+, then CastBlameSafe (inl ¢ x) £ and CastBlameSafe (inr ¢ x) €.

Proof. By inversion on Cross ¢ and the CastBlameSafe predicate. O
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Proposition 82. EDC’ is an instance of the PreBlameSafe structure.

Lemma 83 (coerce is blame safe). Suppose £ #¢'. If ab: A ~ B,
then CastBlameSafe (coerce ab ¢') ¢.

Lemma 84 (applyCast preserves blame safety in EDC’). If CastBlameSafec £ and a:
Active c and V safe for € and v : Value V, then (applyCast V v c a) safe for ¢.

Proof. The proof is by cases on Activec and inversion on CastBlameSafec ¢, using
Lemma 83 in the case for projection. O

Proposition 85. EDC' is an instance of the BlameSafe structure.

We instantiate Theorem 16 with this BlameSafe instance to obtain the Blame-Subtyping
Theorem for EDC'.

Corollary 86 (Blame-Subtyping Theorem for EDC'). If M : T - A and M safe for £, then
—(M —*blame ¢).

5.5 Lazy “D” Coercions (LDC)

The Lazy “D” Coercions sometimes catch inconsistencies later in the execution of a pro-
gram compared to the partially eager and eager calculi. For example, the following term
does not immediately trigger a cast failure:

(A°Z)(Nat — Nat = Bool — Bool)

It would instead trigger an error if/when it is applied to an argument. In this respect, Lazy
“D” Coercions are similar to AB (Section 5.3) and AC (Section 5.6). The lazy behavior of
the Lazy “D” Coercions is acheived by changing the definition of applyCast to use shallow
consistency instead of consistency (via the definition of the cast constructor (4 = B)°),
which only inspects the head constructors of the source and target type. However, Lazy
“D” Coercions differs from AB and AC with respect to how it performs blame tracking.
In particular, a cast from any type to the unknown type ? is a safe cast with the “D”
blame-tracking strategy.

The Lazy “D” Coercions (Siek et al., 2009) are syntactically similar to the coercions of
Section 5.4 except that include a failure coercion, written _L¢.

: A#? B#?
1t d: Al b, — 7~
A=B O Ta=a A= 7= B
C=4 B=D A=C B=D
— —®—: ®e{x,+
(A— B)=(C— D) (A®B)= (C® D) { )
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The cast constructor is defined as follows, using the coerce function defined later in this
section:

coercedt? ifd:A—B

¢_
A=B) = 1t

otherwise

5.5.1 Reduction semantics and type safety
Injections are categorized as inert casts.

Inert ¢

Inert 4!
The coercions between function, pair, and sum types are categorized as cross casts.

CFOSS® . m@ S {_); X, +}

In addition to the identity and projection coercions and the cross casts, the failure coercions
are also active.

Actld: ————— ActProj: ———— ActCross: &
Active id Active A?¢ Active ¢

ActFail: —
Active L¢

Lemma 87. For any types A and B, ¢ : A = B is either an active or inert cast.

Lemma 88. [fc: 4= (B® C)and Inert ¢, then Cross c and A= D Q E for some D and E.
The definition of cast operators such as dom are the same as in Section 5.4.

Lemma 89. A cast c: A= b is not inert.

Proposition 90. The LDC calculus is an instance of the PreCastStruct structure.

We define shallow consistency, written 4 — B, as follows:
UnkL—[B]:?—B UnkR—[B]:4—? Base—[b]:b—b
®—[4,B,C,D]: (A ® B)— (CQ D)

The coerce function differs from that of the EDC calculus (Section 5.4) in that we
only require the source and target types to be shallowly consistent. The coerce function
is mutually defined with the function (4 = B))¢ that was presented earlier in this section:
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coerce:VAB.A— B — Label > 4= B
id ifB=?

BY B#£?

id ifd=?

A A£?

coerce UnkL—[B] ¢ = {

coerce UnkR—[4] ¢ = {

coerce Base—[b] £ =id
coerce (Fun—[4, B, C, D)) £ = (C = A)* — (B = D)"
coerce (Pair—[4, B, C,D]) £ = (4= C)* x (B= D)"
coerce (Sum—[4, B, C, D)) £ = (4 = C)" + (B = D)*

The definition of applyCast is similar to the one for EDC (Section 5.4) except that there
is an additional case for L* and the projection case checks for shallow consistency instead

of consistency, using (4 = B)*:

applyCast:VI'4AB. (M : T +A4) — Value M — (¢: 4= B) — Activec—>T'FB

applyCast M v id a = M

applyCast M({A!) v B?* a = M{(A=B)"
applyCast M v ¢c®d a = eta@McCross®
applyCast M v Lt a blame £

Proposition 91. The LDC calculus is an instance of the CastStruct structure.

We import and instantiate the reduction semantics and proof of type safety from

Sections 3.6 and 3.8 to obtain the following definition and results.

Definition 92 (Reduction for LDC). The reduction relation M — N for the LDC calcu-
lus is the reduction relation of CC(=) instantiated with LDC'’s instance of CastStruct.

Corollary 93 (Preservation for LDC). I[f M :T'+-A4 and M — M’, then M’ : T - A.

Corollary 94 (Progress for LDC). If M : O+ A, then

1. M — M’ for some M’,
2. Value M, or
3. M =blame.

Let LDC’ be the variant of LDC obtained by instantiating CC’ instead of CC.

5.5.2 Blame-subtyping

The CastBlameSafe predicate for LDC' is the same as for EDC’ (Section 5.4) except that

there is an additional rule for failure coercions:
£
CastBlameSafe 1.¢ ¢
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Lemma 95 (Blame Safety of Cast Operators). Suppose CastBlameSafec{ and ¢ is a
cross cast, that is, x : Cross c.

e [fx=Cross —, then CastBlameSafe (dom c x) £ and CastBlameSafe (cod ¢ x) .
e [fx=CrossX, then CastBlameSafe (fst ¢ x) £ and CastBlameSafe (snd ¢ x) £.
e [fx=Cross+, then CastBlameSafe (inl ¢ x) £ and CastBlameSafe (inr ¢ x) €.

Proposition 96. LDC' is an instance of the PreBlameSafe structure.

Lemma 97. (coerce is blame safe). Suppose € # ¢’

1. CastBlameSafe (4 = B) ¢.
2. Ifab: A — B, then CastBlameSafe (coerce ab ¢') ¢.

Lemma 98. (applyCast preserves blame safety in LDC’). If CastBlameSafec £ and a:
Active ¢ and V safe for £ and v : Value V, then (applyCast V v c a) safe for ¢.

Proof. The proof is by cases on Active ¢ and inversion on CastBlameSafe ¢ £, using
Lemma 97 in the case for projection. (]

Proposition 99. LDC' is an instance of the BlameSafe structure.

We instantiate Theorem 16 with this BlameSafe instance to obtain the Blame-Subtyping
Theorem for LDC'.

Corollary 100 (Blame-Subtyping Theorem for LDC'). If M : T+ A and M safe for £, then
—(M —* blame ?).

5.6 The LC Coercion Calculus

This section instantiates the Parametric Cast Calculus to obtain the AC calculus of Siek
et al. (2015a). Again we represent casts as coercions, but this time we must include
the notion of sequencing of two coercions, written ¢ ; d, to enable the factoring of casts
through the ground type. As part of this factoring, injections and projections are restricted
to ground types. We omit the failure coercion because it is not necessary for AC.

A=B B=C

id: G!: HY: —— .
! a=a G=7? 7=H ’ A=C
_,_._C=4 B=D o . _A=>C B=D

T T T US B S (Co D) e o e 2ot
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The cast constructor is defined as follows:

5.6.1 Reduction semantics and type safety

The coercions between function, pair, and sum types are categorized as cross casts. We
do not categorize sequence coercions as cross casts, which, for example, simplifies the
definition of the dom and cod functions.

C L S ) s
ross® Crossc®d ®e (=)

Injections and function coercions are categorized as inert casts.

Inert ¢

InInj: ——— InFun: ————
J Inert G! Inertc — d

The active casts in AC include identity casts, projections, and sequences. The AC calculus
did not include pairs and sums (Siek ef al., 2015a), but here we choose to categorize casts
between pairs and sums as active casts, as we did for Variant 2 of AB in Section 5.3.

ActId: ————— ActProj:

ActSeq:
Active id 4

Active H?* Active (c; d)

ActQ: ——QR € s
e SEUe

Lemma 101. For any types A and B, c : A = B is either an active or inert cast.

Lemma 102. [fc:4A= (B® C) and Inertc, then Crossc and A=D ® E for some D
and E.

The definition of the functions such as dom are the usual ones, but note that the x param-
eter plays an important role in this definition. We did not categorize sequence casts as cross
casts, so the following functions can omit the cases for (c ; d):

dom (¢ — d) Cross— =c¢

cod (¢ - d)Cross— =d
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fst (¢ x d)Crossx =c¢
snd (¢ x d)Crossx =d
inl (c+d)Cross+=c
inr(c+d)Cross+=d

Lemma 103. A cast c: A= b is not inert.
Proposition 104. The AC Calculus is an instance of the PreCastStruct structure.

We define the applyCast function for AC as follows:
applyCast : VI'4B. (M : T +A) — ValueM — (¢c: A= B) — Activec—T'+B

applyCast M v id a = M
. M ifG=H
applyCast M(G!) v H? a = .
blame £ otherwise
applyCast M c;d a = Mc){d)
applyCast M cxd a = etax McCrossx
applyCast M c+d a = etat+McCross+

Proposition 105. The AC calculus is an instance of the CastStruct structure.

We import and instantiate the reduction semantics and proof of type safety from
Sections 3.6 and 3.8 to obtain the following definition and results.

Definition 106 (Reduction for AC). The reduction relation M —> N for AC is the
reduction relation of CC(=) instantiated with AC’s instance of CastStruct.

Corollary 107 (Preservation for AC). If M :T'+=A and M — M’, then M' : T+ A.

Corollary 108 (Progress for AC). If M : # - A, then

1. M —> M for some M’,
2. Value M, or
3. M =blame.

Let AC' be the variant of AC obtained by instantiating CC” instead of CC.

5.6.2 Blame-subtyping

The CastBlameSafe predicate for AC’ is the same as the one for EDC’ (Figure 18) except
for the additional rule for sequence coercions:

CastBlameSafec ¢  CastBlameSafed ¢
CastBlameSafe (c; d) ¢
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Lemma 109 (Blame Safety of Cast Operators). Suppose CastBlameSafe ¢ £ and ¢ is a
cross cast, that is, x : Cross c.

e [fx=Cross —, then CastBlameSafe (dom c x) £ and CastBlameSafe (cod ¢ x) £.
e [fx=Crossx, then CastBlameSafe (fst ¢ x) £ and CastBlameSafe (snd ¢ x) £.
e [fx=Cross+, then CastBlameSafe (inl ¢ x) £ and CastBlameSafe (inr ¢ x) £.

Proposition 110. AC' is an instance of the PreBlameSafe structure.

Lemma 111 (applyCast preserves blame safety in AC’). If CastBlameSafec{ and a:
Active c and V safe for € and v : Value V, then (applyCast V v c a) safe for ¢.

Proof. The proof is by cases on Active ¢ and inversion on CastBlameSafe ¢ £. 0
Proposition 112. AC' is an instance of the BlameSafe structure.

We instantiate Theorem 16 with this BlameSafe instance to obtain the Blame-Subtyping
Theorem for AC'.

Corollary 113 (Blame-Subtyping Theorem for AC). If M : T - A4 and M safe for £, then
—(M —>* blame ¢).

6 Space-Efficient Parameterized Cast Calculus

The cast calculi in Section 5 all suffer from a space efficiency problem (Herman et al.,
2010). When a cast is applied to a higher-order value such as a function, these calculi
either wrap it inside another function or wrap the cast itself around the value. Either
way, the value grows larger. If a value goes through many casts, it can grow larger in
an unbounded fashion. This phenomenon causes significant space and time overheads in
real programs, for example, changing the worse-cast time complexity of quicksort from
O(n?) to O(n*) (Takikawa et al., 2016; Kuhlenschmidt et al., 2019).

Herman et al. (2010) proposed solving this problem by replacing casts with the coer-
cions of Henglein (1994). Any sequence of coercions can normalize to just three coercions,
thereby providing a space-efficient representation. Siek et al. (2015a) define an algorithm
for efficiently normalizing coercions and use it to define the AS calculus.

Siek & Wadler (2010) propose another approach that compresses a sequence of casts
into two casts where the middle type is the least upper bound with respect to precision.
The AGT methodology uses a similar representation (Garcia et al., 2016) and was proved
space-efficient (Toro & Tanter, 2020; Bafiados Schwerter ez al., 2021).

In this section, we develop a space-efficient version of the Parameterized Cast Calculus,
which we name SC(=). As a sanity check, prove that SC(=) is type-safe, but more impor-
tantly, we prove that SC(=>) is indeed space-efficient provided that the cast representation
is an instance of the structures defined later in this section. In Section 7, we instantiate
SC(=) two different ways to reproduce the AS calculus and to define a new calculus that
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more directly maps to a compact bit-level encoding. We then instantiate the meta-theory
for SC(=) to produce proofs of type safety and space efficiency for both of these calculi.

6.1 Space-efficient values

This subsection is parameterized over the PreCastStruct structure.

To prepare for the definition of space-efficient cast calculi, we define a notion of value
that may be wrapped in at most one cast. We accomplish this by stratifying the non-cast
values, that is the simple values S, from the values V' that may be wrapped in a cast.
| S: (I 4)— Set|

- Sconst: ————— Spair ValueM  Value N
Simple (AM) ~ Simple ($k) P Simple (cons M N)

Value M . Value M

Sinl: - Sinr: -
Simple (inl[B] M) Simple (inr[4] M)

| V:(T = A4) > Set|

) Simple M Simple M
Vsimp: ————  Vcast: ———  Inertc
Value M Value (M {c))

Lemma 114. [fSimple M and M : T & A, then A £ ?.

Lemma 115 (Canonical Form for type ?). If M : T +? and Value M, then M = M’ {c)
where M' :T A, c:A=?, Inertc, and A # .

Lemma 116. [f'Simple M and M : T & b, then M = k for some k : []

6.2 The ComposableCasts structure

The ComposableCasts structure extends PreCastStruct with two more fields, one for
applying a cast to a value (like CastStruct) and one for composing two casts into a single,
equivalent cast, for the purposes of achieving space efficiency.? It would seem reasonable
to have this structure extend CastStruct instead of PreCastStruct, but the problem is that
the notion of value is different. Here, we use the definition of Value from Section 6.1.

The two fields of the ComposableCasts are

applyCast: VI'AB. (M : T A) — SimpleValue M — (¢: 4 = B)
— Activec—>T'FB
—§—:VABC.A=B—>B=C—>4=C

3 The ComposableCasts structure is named EfficientCastStruct in the Agda development.
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M:TH(A— B
©-) F(AF:E)HB -0): FFA(H; ) Value s
cons —[1: % Value M cons [ —: %
(e ey
in1[B]O inr[A]0

I'FB— AxB

r-rA—c¢ T+FB—~C
'FA+B—C

I'A— AxB

cased — —

|plug : ¥WTAB. (U - A) - (T - A~ B) - (T - B)]

plug L (O M
plug M (L O
plug L (if OM N) = if LM N
plug N(cons M ) = cons M N

)= (L M)
)=
)=
)=
plug M (consON) = cons M N
0)
0) =
0) =
)=

(L M)

plug M (m; 0) = m; M
plug M (inl[B] nl[B| M
plug M (inr[A]O) = 1nr[ | M
plug L(caseOM N) =case LM N

Fig. 19. Frames of SC(=).

6.3 Reduction semantics of SC(=)

This section is parameterized by ComposableCasts and defines the Space-Efficient
Parameterized Cast Calculus, written SC(=). The syntax is the same as that of the
Parameterized Cast Calculus (Figure 5).

The frames of SC(=) and the plug function are defined in Figure 19. The definitions
are quite similar to those of the Parameterized Cast Calculus (Figure 6), with the notable
omission of a frame for casts, which are handled by special congruence rules.

A space-efficient reduction semantics must include a reduction rule for compress-
ing adjacent casts to prevent the growth of long sequences of them. In particular, the
(compose) rule compresses two adjacent casts into a single cast:

M(c){d) — M(csd)

Furthermore, the semantics must ensure that this reduction rule is triggered frequently
enough to prevent long sequences from forming. To date, the way to accomplish this in
a reduction semantics has been to define evaluation contexts in a subtle way, with two
mutual definitions (Herman et al., 2007, 2010; Siek & Wadler, 2010; Siek et al., 2015a).
Here, we take a different approach that we believe is simpler to understand and that fits into
using frames to control evaluation order. The idea is to parameterize the reduction relation
according to whether a reduction rule can fire in any context or only in non-cast contexts,
that is, when the immediately enclosing term is not a cast. We define reduction context
RedCtx as follows. (It is isomorphic to the Booleans but with more specific names.)
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Any: ——— NonCast : ————
™ TRedCtx onvas RedCtx

So the reduction relation takes the form:
ctxtEM — N

To prevent reducing under a sequence of two or more casts, the congruence rule for casts
(£-cast) requires a non-cast context. Further, the inner reduction must be OK with a cast
context (i.e. Any context). The congruence rule (&) for all other language features can fire
in any context, and the inner reduction can require either any context or non-cast contexts.
The rule for composing two casts can only fire in a non-cast context, which enforces an
outside-in strategy for compressing sequences of casts. For the same reason, the rule for
applying a cast to a value can only fire in a non-cast context. All other reduction rules can
fire in any context. The reduction semantics for SC(=>) is defined in Figure 20.

6.4 Type safety of SC(=)

Our terms are intrinsically typed, so the fact that Agda checked the definition in Figure 20
gives us Preservation.

Theorem 117 (Preservation). [f M :T'+A4 and M — M’, then M’ : T - A.

Next, we prove Progress. First we define the following predicate for identifying when a
term is a cast and prove a lemma about switching from NonCast to Any when the redex is
not a cast.

IsCast (M {c))

Lemma 118. [fNonCastM — M’, then IsCast M.

Theorem 119 (Progress). If M : - A, then

1. ctxt=M — M’ for some M’ and ctx,
2. Value M, or
3. M =Dblame /.

Proof. The proof is quite similar to that of Theorem 14 except in the case for casts, so we
explain just that case here.

Case M {c) The induction hypothesis for M yields three subcases.

Subcase ctx = M —> M’. Suppose ctx = Any. By rule (£-cast), we conclude
that

Any M (c) — M’{(c)
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ctx M — M’
Any b plugM F — plug M’ F
AnyHFM — M’
NonCast =M {(c) — M’'{c)

Any F plug (blame £) FF —> blame ¢

NonCast I (blame £)(c) —> blame ¢

a: Active ¢

NonCast - S(c) — applyCastSca

NonCast - M{c){d) —> M{c3d)

x: Crossc

Any +V{c) W — (V W{dom cx)){cod ¢ x)

x: Crossc

Any - fst (V{c)) — (fst V){fstcx)

x: Crossc

Any - snd (V{c)) —> (snd V){snd c x)

Any b case (V{c)) Wi Wy —> case V W[ W}
x: Cross ¢
where W[ = A(rename S W) (Z{inl c x))
W} = A(rename S W3) (Z{inr c x))

Any = (AM) V — M[V]

Any b if StrueM N — M

Any+ if $false M N — N

Any - fst(cons VW)—V

Any snd (cons VW) — W

Anylcase(inl V)LM — LV

Anytcase(inr V)LM — MV

Any - kK — [k]) [£']

)

(§-cast)
(§-blame)
(-cast-blame)
(cast)
(compose)
(fun-cast)
(fst-cast)

(snd-cast)

(case-cast)

(B)
(B-true)
(B-false)
(B-fst)
(B-snd)
(B-caseL)

(B-caseR)

©)

Fig. 20. Reduction for the Space-Efficient Parameterized Cast Calculus SC(=).
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On the other hand, suppose ctx = NonCast. By Lemma 118, IsCast M, so we have
M = M, (d). By rule (compose), we conclude that

NonCast F M, (d){c) — M {d 3 c)
Subcase M =blame ¢. By rule (§-cast-blame), we conclude that
NonCast F (blame £){c) —> blame ¢

Subcase Value M. Here, we use the ActiveOrlnert field of the PreCastStruct on
the cast c. Suppose c is active, so we have a: Active c. By rule (cast), using
Value M, we conclude that

NonCast - M{(c) —> applyCast M ca

Suppose c is inert. From Value M, we know that M is either a simple value or a
cast. If M is a simple value, then we conclude that Value M (c). Otherwise, M =
M, (d) and we conclude by rule (compose):

NonCast F M, (d){c) — M {d 3 c) -

6.5 Space efficiency of SC(=)

We follow the space efficiency proof of Herman et al. (2010) but refactor it into two
parts: (1) generic lemmas about the reduction of SC(=>) that appear in this section and
(2) lemmas about specific casts and coercions, which appear in Section 7. We clarify a
misleading statement by Herman ez al. (2010) and fill in details needed to mechanize the
proof in Agda.

The theorem we aim to prove is that, during execution, the program’s size is bounded
above by the program’s idealized size multiplied by a constant. The idealized size does not
include any of the casts. The following are excerpts from the definitions of real-size and
ideal-size :

real-size(M (c)) = size(c) + real-size(M)

ideal-size(M{c)) = ideal-size(M)

We shall prove that the size of every cast is bounded above by a constant, so we can
simplify some of the technical development by using the following alternative definition
of size that uses 1 as the size of each cast:

size(M(c)) = 1 + size(M)

Regarding reduction of SC(=), the key property is that the reduction rules prevent the
accumulation of long sequences of adjacent casts. In their proof, Herman et al. (2010) state
that there is never a coercion adjacent to another coercion.

“During evaluation, the [E-CCAST] rule prevents nesting of adjacent coercions in any term
in the evaluation context, redex, or store. Thus the number of coercions in the program state
is proportional to the size of the program state.”

https://doi.org/10.1017/50956796821000241 Published online by Cambridge University Press



58 J. G. Siek and T. Chen

n|bk M ok

SCast1 n| false Mok n<2 SCasta : " | true = M ok n<1
astl : ast2 :
n+ 1| false - M{c) ok n+ 1| true - M{c) ok
Sy n | true F N ok n|bkLok m|bk Mok
ar :
1]bF @ ok 0]bF AN ok 0]bF L M ok

n|bF Lok m|truet Mok k|truet N ok

0[bF Sk ok 0|bF if, ok LM N
n|bFMok m|bk N ok n|bk M ok n|bk M ok
0]bk cons M N ok 0|bF fst M ok 0]bF snd M ok
n|br M ok n|br M ok
0| bk inl[B] M ok 0] bt inr[B] M ok

n|bkLok m|truet Mok k|truek N ok
0|bF case L M N ok 0| bt blame/ ok

Fig. 21. The Size Predicate limits the number of adjacent casts.

Of course, for the rule [E-CCAST] to apply in the first place, there must be two adjacent
coercions. So perhaps we could amend the statement of Herman et al. (2010) to instead
say that there are never more than two. However, even that would be technically incor-
rect. Consider the following example that begins with three separated coercions but a
B-reduction brings them together:

(A “0(Int?)) (1(Int!)))(Int!) —> $1(Int!)(Int?")(Int!)

This turns out to be the worst-case scenario. In the following, we prove that the [E-CCAST]
rule, that is, the (compose) rule in this article, together with rules about the order of
evaluation, prevent nesting of more than three adjacent coercions.

We define the Size Predicate on terms in Figure 21 which only includes terms with
no more than three adjacent coercions. The judgment is written # | b+ M ok where M is
a term, n counts the number of cast application expressions at the top of the term, and
b indicates with true or false whether this term is in a delayed context, that is, inside
a A-abstraction or a branch of a conditional expression. The above example with three
coercions satisfies the predicate when outside of a delayed context:

3 | false - $1(Int!)(Int?%)(Int!) ok

The rule SCast1 for cast application expressions adds one to the count of adjacent casts
and makes sure that the count does not exceed three.

For terms in a delayed context, the rule (SCAST2) restricts the number of adjacent casts
to two instead of three. To see why, consider the next example in which there are three
adjacent casts inside the A-abstraction and a S-reduction yields a term with four adjacent
casts:

((x $8(Int!)(Int?) (Int!)) 1)(Int??) —> $8(Int!)(Int?")(Int!)(Int?%2)

The rule SVar starts the count at one even though a variable is obviously not a cast
application. The reason is that a value substituted for a variable may have one cast at the
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top. If we did not count variables as one, then a variable could be surrounded by two casts
inside of a A-abstraction which could reduce to a term with four adjacent casts as in the
following example:

((* “0(Int?“)(Int!)) (1(Int!))(Int?2) — 1(Int!)(Int?")(Int!)(Int?2)

We turn to the proof of the space consumption theorem, starting with the necessary
lemmas.

The Size Predicate guarantees that the number of adjacent casts is less than or
equal to 3.

Lemma 120 (Maximum of 3 Adjacent Casts). If n| b+ M ok, then n <3.

The Size Predicate guarantees that a term’s size is bounded above by its ideal size
multiplied by a constant, plus 3.

Lemma 121 (Size Predicate and Ideal Size).
If n| bt M ok then size(M) < 10 - ideal-size(M) + 3.

The compilation of source programs (GTCL) to the cast calculus produces terms that
satisfy the Size Predicate.

Lemma 122 (Cast Insertion Size).
IfTEgM:Athenn|bt C[M] ok for some n < 1.

Reduction preserves the Size Predicate. The proof of this lemma involves a number of
technical lemmas about substitution, evaluation contexts, and values, which can be found
in the Agda formalization.

Lemma 123 (Size Preservation). I[f M: T +A4 and M’ :T - A and n | falset- M ok and
M — M, then m | false = M’ ok for some m.

The next piece needed for the space efficiency theorem is to place a bound on the size of
the casts. We require their size to be bounded by their height, as in Herman ef al. (2010),
so it remains to show that the heights of all the coercions does not grow during execution.
To prove this, we must place further requirements on the specific cast calculi, which we
formulate as a structure named CastHeight in Figure 22 that extends the ComposableCasts
structure in Section 6.

We define the cast height of a term, written c-height(M), to be the maximum of the
heights of the all the casts in term M. The cast height of a term monotonically decreases
under reduction.

Lemma 124 (Preserve Height). If M:T+A4, M':TF A, and ctxt-M — M’, then
c-height(M’) < c-height(M).
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height : VAB. (c: A= B) - N
size: VAB. (c: A= B) = N

VABC.(c:A=B)— (d: B=C)

compose-height : ' ioht(c 3 d) < max(height(c), height(d))

VI'ABn. (M :TFA) = (c: A= B)
applyCastSize : — n | false = M ok — (v : Value M)
— Im. m | false b (applyCast M vec) ok x m < 2+n

VTABV. (v : Value V)

applyCastHeight : — height(applyCast V' v ¢) < max(height(V'), height(c))

(¢c:A— B=C— D)— (z: Cross c)

dom-height :  * height(dom ¢ ) < height(c)
cod-height : (j:h‘;g?tgojciglali;t((ﬂz): Cross ¢)
fst-height : (j:hgg?tl(gf;}ci)ngh)eghE(xc): Cross c)
snd-height : (jzhfig?t?s:; fg g)h:géf(;)cross €)
in-height - (j:hg;wt%n:l} ci)JrSDh)ei;ht(.(Tc): cros)
inr-height : (c:A+B=C+D)— (z:Cross c)

— height(inr ¢ ) < height(c)
size-height : k1 ko. VAB. (¢ : A = B) — size(c) + k1 < kg  2height(c)

Fig. 22. CastHeight extends ComposableCasts (Section 6.2).

The size of any cast ¢ is bounded above by k, - 2"i8"() (according to the size-height
member of CastHeight), so the real-size of a term is bounded above by k, . 2¢-height()
multiplied by its size.

Lemma 125 (Real Size Bounded by Size).
If M :T A, then real-size(M) < k, - 2¢ight) . size(M).

With the above lemmas in place, we proceed with the main theorem. The size of the
program (including the casts) is bounded above by its ideal size (not including casts)
multiplied by a constant.

Theorem 126 (Space Consumption). If M : T A, then there exists ¢ such that for any
M’ :T A where ctx = C[M] —* M’, we have real-size(M") < ¢ - ideal-size(M").

Proof. (The formal proof of this theorem is in the Agda development. Here we give a
proof that is less formal but easier to read.) By Lemma 122, there is an n such that
n | false = C[M] ok

Using Lemma 123 and an induction on the reduction sequence ctx - C[M] —>* M’, there
is an m such that

m | false = M ok
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We establish the conclusion of the theorem by the following inequational reasoning:

real-size(M’) < k, - 25PN M) gize(M") by Lemma 125
< (ky - 2¢eight ) (3 4 10 - ideal-size(M")) by Lemma 121
< 3k, - 2cheightM) | 10, . peheightM) e size(M")
< 3k, - 26 heightCIMD) 4 10, . 2heightCIMD . jdeal-size(M') by Lemma 124
< 13k, - 2¢heightCM]) | ideal-size(M")

So we choose 13k, - 26-eightCIMD g4 the witness for c. O

We observe that the space consumption theorem of Herman et al. (2010) (as well as the
above theorem) has a limitation in that it does not prevent a cast calculus that uses the eta
cast reduction rules, as discussed in Section 3.3, from consuming an unbounded amount of
space. To capture the space used by the eta cast rules, one would need to mark the terms
introduced by the eta cast rules so that they can be excluded from the ideal-size of a term.
We do not pursue that direction at this time, but note that the calculi that we introduce in
the next section do not use eta cast rules.

7 Space-efficient cast calculi

We instantiate the Efficient Parameterized Calculus SC(=) with two different instances of
the ComposableCasts and CastHeight to obtain definitions and proofs of type safety and
space efficiency for two cast calculi: AS of Siek et al. (2015a) and the hypercoercions of
Lu et al. (2020).

7.1 1S

The cast representation in AS are coercions in a particular canonical form, with a three-part
grammar consisting of top-level coercions, intermediate coercions, and ground coercions,
defined in Figure 23. A top-level coercion is an identity cast, a projection followed by
an intermediate coercion, or just an intermediate coercion. An intermediate coercion is a
ground coercion followed by an injection, just a ground coercion, or a failure coercion. A
ground coercion is an identity on base type or a cross cast between function, pair, or sum

types.
The cast constructor is also defined in Figure 23.

7.1.1 Reduction semantics and type safety
Casts between function, pair, and sum types are categorized as cross casts.

C I — € s El
ross® Cross (c ® d) ® (=, x )

The inert casts include casts between function types, injections, and the failure coercion.

Inert ¢

Inertc —d Inert g; G! Inert L ¢
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H=; B A=; B
i - 2L _y . i _. i
id: 7=7 (H?5=): ?=B ' A=B
—G A:>9G . A:>QB Lf‘
T A= " A=, B " A=,B
- _,_._C=A B=D
b=y " A-B=,C—=D
x_..A=C B=>D  _,  _A=>C B=>D
" AxB=,CxD " A+B=,C+D

[(A=B)f =c.(A=G)' =g, (H = A)’ = g]

Z=2"=id
(A=7)"=(A=a)45a" where G = gnd A, A #?
(7= A)=H? (H = A)* where H =gnd A, A #?
b=10)"=id

(A—B=A - B)' =(A = A)' - (B= B)*
(AxB= A'x B)! = (A = A)* x (B= B')*
(A+B= A" +B)' = (A = A +(B=B)*

Fig. 23. Coercions of AS and its cast constructor.

There are five kinds of active coercions: the identity on ?, projections, failures, cross
casts on pairs and sums, and identity on base types.

Aid: ———— Aproj: Afail: —————
Active id PEOY T active (G?%;0) Active L*
® e {x,+}
—————  Abase:————
Active (c ® d) Active id

Lemma 127. For any types A and B, c : A = B is either an active or inert cast.

Lemma 128. [f c: A= (B® C) and Inertc, then Crossc and A=D ® E for some D
and E.

The definition of dom, etc., for AS is given below:

dom (¢ — d)Cross— =c¢
cod (¢ > d)Cross— =d
fst (¢ x d) Crossx =c¢
snd (¢ x d)Crossx =d
inl (c+d) Cross+ =c¢

inr (¢ +d)Cross+=d
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Lemma 129. A cast c: A= b is not inert.
Proposition 130. AS is an instance of the PreCastStruct structure.

To support space efficiency, we define a composition operator for the coercions of AS.
The operator uses two auxiliary versions of the operator for intermediate and ground coer-
cions. The operator that composes an intermediate coercion with a coercion always yields
an intermediate coercion. The operator that composes two ground coercions always returns
a ground coercion. Agda does not automatically prove termination for this set of mutually
recursive functions, so we manually prove termination, using the sum of the sizes of the
two coercions as the measure.

[csd][r34) 7]

ided=d
(G?3i)5d =G5 (i3d)

(g;G)sid=g; G!
gs(h H)=(gsh); H!
(g G5 (G?5i)=g3i

(g; G s (H?;i)=1"° ifG£H
1led=1"
gsLli=1"
idgid =id

(cir—=d)s(ca—=>dr))=(c28c1)— (d) 3 dy)

(c1 xdi)§(ca x dr)=(c15¢2) X (d1 5d>)

(cr +d)s(c2+do)=(c15¢2)+(d15d>)

We define applyCast for AS by cases on the coercion.
applyCast : VI'4B. (M : T + A) — SimpleValue M — (¢: 4 = B) — Activec - ' - B

applyCast M v id a = M

applyCast M v L* a = Dblame/

applyCast M/{c) v (G?%0) a = M(c3(G?;i)
applyCast (cons V1 V3) v ¢xd a = cons(Vi{c) (Va(d))
applyCast (inl V) v c+d a = inl (V{c))
applyCast (inr V) v c+d a inr (V{d))

Proposition 131. AS is an instance of the ComposableCasts structure.

We import and instantiate the reduction semantics and proof of type safety from
Section 6 to obtain the following definitions and results for AS.
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Definition 132 (Reduction). The reduction relation ctxt= M — s N of AS is the reduction
relation of SC(=) instantiated with AS’s instance of the ComposableCasts structure.

Corollary 133 (Preservation for AS). [f M : T = A and M —> s M’, then M’ : T - A.

Corollary 134 (Progress for AS). If M : )\ A, then

1. M —>g M for some M’,
2. Value M, or
3. M =blame£.

7.1.2 Space efficiency

Next, we establish that AS is an instance of the CastHeight structure so that we can apply
Theorem 126 (Space Consumption) to obtain space efficiency for AS.
We define the height of a coercion as follows:
height(id) =0
height(L%) =0
height(G?°; i) = height(i)
height(g; G!) = height(g)
height(c — d) = 1 4+ max(height(c), height(d))
height(c x d) = 1 + max(height(c), height(d))
height(c + d) = 1 + max(height(c), height(d))
The size of a coercion is given by the following definition:
size(id) =0
size(L) =0
size(G?"; i) = 2 + size(i)
size(g; G!) =2 + size(g)
size(c — d) =1 + size(c) + size(d)
size(c x d) =1 4+ size(c) + size(d)
size(c + d) = 1 + size(c) + size(d)

The cast height of the result of applyCast applied to a simple value S and coercion c is
less than the max of the cast height of S and the height of c.

Lemma 135. c-height(applyCast S ¢) < max(height(S), height(c))

The dom, cod, fst, snd, inl, and inr operators on coercions all return coercions of equal
or lesser height than their input.

Lemma 136.

1. height(dom ¢ x) < height(c)
2. height(cod ¢ x)) < height(c)
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[9%)

. height(fst ¢ x) < height(c)
height(snd ¢ x) < height(c)
height(inl ¢ x) < height(c)
height(inr ¢ x) < height(c)

AN

The size of a coercion ¢ is bounded by 9 - 2"¢8"t() We prove this by simultaneously
proving the following three facts about the three kinds of coercions.

Lemma 137.

1. size(c) + 5 <9 . 2height(©)
2. size(i)+7 <9 . 2height()
3. size(g)+9<9- 2height(g)

The above lemmas and definitions establish the following.
Proposition 138. AS is an instance of the CastHeight structure.
We apply Theorem 139 (Space Consumption) to obtain the following result for AS.

Corollary 139 (Space Consumption for AS). If M : Tt A, then there exists ¢ such that
for any M' :T' = 4 where ctx = C[M] — ¢ M, we have real-size(M") < c - ideal-size(M").

7.2 Hypercoercions

This section develops an alternative formulation of AS using a new representation, called
hypercoercions and written AH, that more directly maps to a compact bit-level encod-
ing. We presented hypercoercions at the Workshop on Gradual Typing (Lu et al., 2020).
Hypercoercions are inspired by the supercoercions of Garcia (2013).

The idea behind hypercoercions is to choose a canonical representation in which a coer-
cion always has three parts, a beginning p, middle m, and end i. The beginning part p
may be a projection or an identity. The middle part m is a cross cast or an identity cast
at base type. The end part i may be an injection, failure, or identity. The definition of
hypercoercions, given in Figure 24, factors the definition into these three parts.

The cast constructor is also defined in Figure 24.

7.2.1 Reduction semantics and type safety

A hypercoercion whose middle is a cast between function, pair, or sum types, is a cross
cast, provided the hypercoercion begins and ends with the identity.

C : , X,
ross® Cross (id; c ® d; id) ®e(=, x4

A hypercoercion that begins with identity and ends with an injection to ? is inert. A

hypercoercion that begins and ends with identity, but whose middle is a cast between
function types, is also insert.
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|e.d: A= Bl[p: A=, B|[m: A=, B|[i: A= B]

A=,B B=,C (C=;D

ld:W (—§—§_): A= D
i L H?é:—
R 7=, H
S .. _C=A B=D
= T T TASBS,C—oD
_x_._A=C B=D I A=C B=D
" AxB=,CxD " A+B=,C+D
i l. £,
== Gz Sy

|GA:>B[)“:c,(]A®B:>A’®B’[)ﬁn:m|

(?=7)"=

(A= 7)f = (]A = G)%,; Gl where G = gnd A
(2= A)* = H?; (H = A)’,;id where H = gnd A
(b= b)* = id;id;id

(A9 B= A @B) =id; (Ao B= A'® B)’,;id
(A—B=A"— B) (]A’éAD — (B = B')*
(Ax B= A"x B')!, = (A= A')* x (B> B')*
(A+ B= A"+ B!, = (A= A) +(B=> B')*

3
m
3
m
3
m

Fig. 24. Hypercoercions.

Inert ¢

Inert (id; m; G!) Inert (id; ¢ — d; id)

There are four kinds of active hypercoercions. The identity hypercoercion is active, as
is a hypercoercion that begins with a projection from ? or ends with a failure coercion.
Furthermore, if the hypercoercion begins and ends with identity, and the middle is either
the identity or a cast between pair or sum types, then it is active.

Aid: ———————— Aproj: Afail:
Active id Active (H?; m; i) Active (p; m; 1Y)
® € ix, + Abase:
Active (id; c ® d; id) " Active (id; id; id)

Lemma 140. For any types A and B, ¢ : A = B is either an active or inert cast.

Lemma 141. If c: A= (BQ® C) and Inertc, then Crossc and A=D Q E for some D
and E.
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csid=c
ids (p;m;i) = p;m;i

(p1;ma;id) s (Id ma;ia) = p;(my §ma);is

(p1;ma; GY) § (G755 masia) = pu; (M1 §ma);ia
(p1;m1;G) 3 (Hﬂ mas i) = prymy; Lf ifG#H
(pl;ml;i ) § (p2;masia) = pryma; LY

idgid =

((1 — dl) ((,2 — dz) ((,2 3 L]) ((11 9 dg)
(01 X dl) (Cz X dz ((,1 9 LQ d] 9 dz)
(1 4+d1)s(c2+da) = (Cl s¢2) + (di 5do)

=

Fig. 25. Composition of Hypercoercions.

The definition of dom, etc. for hypercoercions is given below:

dom (id; ¢ — d;id) Cross— =¢
cod (id; ¢ — d; id) Cross— =d
fst (id; ¢ x d; id) Crossx =¢
snd (id; ¢ x d; id) Crossx =d
inl (id; ¢+ d; id) Cross+=¢
inr (id; ¢ + d; id) Cross+=d

Lemma 142. A cast c: A= b is not inert.
Proposition 143. Hypercoercions are an instance of the PreCastStruct structure.

To support space efficiency, we define the composition operator on hypercoercions in
Figure 25. For the most part, this operator compares the end of the first coercion with the
beginning of the second. For example, if the end of the first coercion is an injection G!
and the beginning of the second is the corresponding projection G?¢, then the injection and
projection are discarded and the resulting hypercoercion is formed using the beginning of
the first, the composition of the middles, and the end of the second. The composition oper-
ator handles identity coercions and failure coercions as special cases. An identity coercion
composed on the left or right is discarded. A failure coercion on the left causes the coer-
cion on the right to be discarded. The composition operator is a mutually recursive with
the definition of composition on the middle parts. Thankfully, Agda’s termination checker
approves of this definition even though the contravariance in function coercions means that
it is not technically structurally recursive.

We define the applyCast function for hypercoercions by cases onActive c.

https://doi.org/10.1017/50956796821000241 Published online by Cambridge University Press



68 J. G. Siek and T. Chen

applyCast : V['AB. (M : T+ A) — SimpleValue M — (¢ : 4 = B) — Activec—T' B

applyCast M v id Aid = M

applyCast  M{c) v (H?;m;i) Aproj = M(cs(H?;m;i))
applyCast M v (id;m; LY Afail = Dblame/

applyCast (cons Vi1 V3) v (id;cx d;id) Ax = cons (V1(c)) (V2(d))
applyCast (inl V) v (id;c+d;id) A+ = inl (V{c))
applyCast (inr V) v (id;c+d;id) A+ = inr (V{d))
applyCast M v (id;id;id) Abase = M

Proposition 144. Hypercoercions are an instance of the ComposableCasts structure.

We import and instantiate the reduction semantics and proof of type safety from
Section 6 to obtain the following definition and results.

Definition 145 (Reduction). The reduction relation ctxt=M — y N of AH is the reduc-
tion relation of SC(=) instantiated with AH’s instance of the ComposableCasts structure.

Corollary 146 (Preservation for A\H). [f M :T A and M —y M,
then M’ : T A.

Corollary 147 (Progress for AH). If M : @\ A, then

1. M —>y M for some M,
2. Value M, or
3. M =blame /.

7.2.2 Space efficiency

Next, we establish that AH is an instance of the CastHeight structure so that we can apply
Theorem 126 (Space Consumption) to obtain space efficiency for AH.
We define the height of a hypercoercion to be the height of its middle part:

height(id) =0
height(p; m; i) = height(m)
height(c — d) = 1 4+ max(height(c), height(d))
height(c x d) = 1 + max(height(c), height(d))
height(c + d) = 1 + max(height(c), height(d))

The size of a hypercoercion is given by the following definition:
size(id) =0
size(L9 =0
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size(G)=1
size(G?) =1
size(p; m; i) = 2 + size(p) + size(m) + size(i)
size(c - d) =1 + size(c) + size(d)
size(c x d) =1 + size(c) + size(d)
size(c + d) = 1 + size(c) + size(d)

69

The cast height of the result of applyCast applied to a simple value S and coercion c is

less than the max of the cast height of S and the height of c.

Lemma 148. c-height(applyCast S ¢) < max(height(S), height(c))

The dom, cod, fst, snd, inl, and inr operators on coercions all return coercions of equal

or lesser height than their input.

Lemma 149.

height(dom ¢ x) < height(c)
height(cod ¢ x)) < height(c)
height(fst ¢ x) < height(c)
height(snd c x) < height(c)
height(inl ¢ x) < height(c)
height(inr ¢ x) < height(c)

S N

The size of a hypercoercion ¢ is bounded by 9 - 2"¢i8"(©) We prove this by simultane-

ously proving the following three facts about the four kinds of hypercoercions.

Lemma 150.

size(c) + 5 < 9 - 2height(©)
size(p) <1

size(i) <1

size(m) + 9 < 9 - 2height(m)

AW~

The above lemmas and definitions establish the following.

Proposition 151. AH is an instance of the CastHeight structure.

We apply Theorem 139 (Space Consumption) to obtain the following result for AH.

Corollary 152 (Space Consumption for AH). If M : T = A, then there exists c such that
Jor any M : T & A where ctx = C[M] —> 5, M', we have real-size(M") < ¢ - ideal-size(M").
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8 Conclusion

In this paper, we present two parameterized cast calculi, CC(=) and its space-efficient
partner SC(=). We prove type safety, blame safety, and the gradual guarantee for the
former. We prove type safety and space efficiency for the later. We instantiate CC(=)
a half-dozen ways to reproduce some results from the literature but to also fill in many
gaps. We instantiate SC(=) two different ways to reproduce AS and to create a new space-
efficient calculus based on hypercoercions. All of this is formalized in Agda.
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