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Abstract
The equality between the balanced and the Gauduchon cones is discussed in several situ-
ations. In particular, it is shown that equality does not hold on many twistor spaces, and it 
holds on Moishezon manifolds. Moreover, it is proved that a SKT manifold of dimension 
three on which the balanced cone equals the Gauduchon cone is in fact Kähler.

Keywords  Special hermitian metrics · Balanced cone · Twistor spaces · Moishezon 
manifolds

Mathematics subject classification  53C55 · 32J18 · 32L25 · 32U40

1  Introduction

Let X be a closed complex manifold of dimension n. A class in the Bott-Chern cohomology 
group H1,1

BC
(X,ℝ) is called pseudoeffective if it contains a closed positive current. The set 

of such classes forms a closed convex cone in H1,1

BC
(X,ℝ) called the pseudoeffective cone 

and it is denoted it by E1
BC
. If furthermore X is Kähler manifold, let M ⊆ H

n−1,n−1

BC
(X,ℝ) the 

closure of the convex cone generated by classes of currents of the form p∗(�̃1 ∧⋯ ∧ �̃n−1), 
where p ∶ X̃ → X is some modification and 𝜔̃i are Kähler forms on X̃ . The cone M, called 
the movable cone, was introduced by Boucksom, Demailly, Păun and Peternell [5] who 
made the following conjecture:
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Conjecture 1.1  (Conjecture 2.3, [5]) For any Kähler manifold,

This remarkable conjecture has recently been confirmed for projective manifolds by 
Witt Nyström [27], while the general case is still open. Extending the work of Toma [25] 
from projective to Kähler setting, it was observed by Fu and Xiao [16, Theorem A.2] (see 
also [8, Remark 2.8]) that Conjecture 1.1 implies that for Kähler manifolds the movable 
cone coincides with the balanced cone B of all positive d-closed smooth (n − 1, n − 1)-
forms in Hn−1,n−1

BC
(X,ℝ).

A Hermitian metric g on X with co-closed Kähler form � is called balanced. The class 
of balanced manifolds, i.e., the class of closed complex manifolds carrying balanced met-
rics, was introduced by Michelsohn [19] who observed that prescribing a balanced metric 
(or equivalently its Kähler form) is the same as prescribing a positive d-closed smooth 
(n − 1, n − 1)-form. This class of manifolds has attracted considerable interest in the recent 
years. Most notably, Alessandrini and Bassanelli proved in [2] that unlike the class of 
Kähler manifolds, the class of balanced manifolds is closed under bimeromorphisms. Fur-
thermore, Fu, Li and Yau [14] stressed the importance of balanced manifolds from the 
perspective of heterotic string theory and constructed interesting non-Kähler examples in 
dimension three. Motivated by Conjecture 1.1, Fu and Xiao formulated the following:

Conjecture 1.2  (Conjecture A.4., [16]) For any compact balanced manifold

We give first many counter-examples to Conjecture 1.2. To formulate our result, recall 
that on a closed complex manifold X one can define define the Gauduchon cone G as the 
set of all classes in the Aeppli cohomology group Hn−1,n−1

A
(X,ℝ) which can be represented 

by a Gauduchon metric, i.e, by a 𝜕𝜕̄-closed positive (n − 1, n − 1)-form. Lamari’s positivity 
criterion [18, Lemme 3.3] can be stated as (E1

BC
)∗ = G. Furthermore, let

be the map induced by the identity. Since a balanced metric is also a Gauduchon metric, we 
have 𝜄n−1(B) ⊆ G. Therefore, the claim in Conjecture 1.2 is �n−1(B) = G, provided the ambi-
ent manifold is balanced.

Theorem 1.3  There exists twistor spaces such that �n−1(B) ⫋ G.

Since the twistor spaces are known to carry balanced metrics [19], we obtain many 
counter-examples to the Fu-Xiao conjecture.

On the other hand, based on the main result of Witt Nyström [27], we confirm the valid-
ity of Conjecture 1.2 for Moishezon manifolds. For such manifolds, the 𝜕𝜕̄-lemma holds, 
and so the map �n−1 is an isomorphism. We prove:

Theorem 1.4  For any Moishezon manifold B = G.

In particular, Theorems 1.3 and 1.4 are pieces of evidence in favor of a conjecture of 
Popovici [22, Conjecture 6.1].

(E1
BC
)∗ = M.

(E1
BC
)∗ = B.

�n−1 ∶ H
n−1,n−1

BC
(X,ℝ) → H

n−1,n−1

A
(X,ℝ)
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Conjecture 1.5  If X is a compact complex manifold on which the 𝜕𝜕̄-lemma holds, then 
B = G.

Our last result is motivated by a conjecture of Fino and Vezzoni [12]. Recall that a 
Hermitian metric g with Kähler form � on a compact complex manifold X of dimen-
sion n is called strongly Kähler with torsion (SKT for short) if � is 𝜕𝜕̄-closed. It is 
known that a metric which is both balanced and SKT is d-closed, hence Kähler [3]. 
Moreover, all the known examples of manifolds admitting a balanced metric and a 
SKT metric are Kähler. For instance, in [15] Fu, Li and Yau show that the examples of 
balanced non-Kähler manifolds they constructed do not carry SKT metrics. Verbitsky 
[26] showed that a twistor space with a SKT metric is Kähler. In [6], it is shown that 
a manifold in the Fujiki class C (which is a balanced manifold by [1]) and which sup-
ports a SKT metric is Kähler. In [13], it is proved that a nilmanifold which is balanced 
and SKT is Kähler. It is therefore tempting to make the following conjecture

Conjecture 1.6  (Problem  3, [12]) A balanced and SKT compact complex manifold is 
Kähler.

We address here this conjecture for the class of complex manifolds of dimension 
three satisfying �2(B) = G.

Theorem 1.7  Let X be a compact complex manifold of dimension three such that �2(B) = G. 
If X carries a SKT metric, then X is Kähler.

2 � Preliminaries

Definition 2.1  Let (X,  g) be a compact complex manifold of complex dimension n 
equipped with a Hermitian metric g,  and let � denote its Kähler form. 

i)	 If d(�n−1) = 0, then g is called a balanced metric. A complex manifold which admits a 
balanced metric is called a balanced manifold.

ii)	 If 𝜕𝜕̄𝜔 = 0, then g is called a strongly Kähler with torsion (SKT) metric. A complex 
manifold which admits a SKT metric is called a SKT manifold.

iii)	 If d� = 0, then g is called a Kähler metric. A complex manifold which admits a Kähler 
metric is called a Kähler manifold.

Since the Kähler form of a Hermitian metric determines the metric, by an abuse of 
terminology we will not distinguish between the two notions. Moreover, according 
to Michelsohn [19, page 279], given a positive (n − 1, n − 1)-form Φ on an n-dimen-
sional manifold, there exists a positive (1,  1)-form � such that Φ = �n−1. Therefore, 
prescribing a balanced or a Gauduchon metric is equivalent to prescribing a positive 
(n − 1, n − 1)-form which is d or 𝜕𝜕̄-closed, respectively.
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2.1 � Bott‑Chern and Aeppli cohomologies and positive cones

Given a compact complex manifold X of dimension n, we define the Bott-Chern cohomol-
ogy groups

and the Aeppli cohomology groups

As ℂ-vector spaces, Hp,q

BC
(X,ℂ) and Hp,q

A
(X,ℂ) are finite dimensional for every p, q ≥ 0, as 

it follows from the Hodge theory developed by M. Schweitzer [23].
We use the notation [s] for the class of a d-closed form or current s in H∙,∙

BC
 and {t} for 

the class of a i𝜕𝜕̄-closed form or current t in H∙,∙

A
.

The groups Hp,q

BC
(X,ℂ) and Hn−p,n−q

A
(X,ℂ) are dual via the pairing

Let X be a compact complex manifold of dimension n. The Gauduchon cone of X is

Similarly, we define the balanced cone:

The Gauduchon cone is an open convex cone. According to Gauduchon [17], it is never 
empty. The balanced cone is open and convex. It can be empty, as there are examples com-
pact complex manifolds which do not admit balanced metrics (e.g., see [19]).

The natural morphisms induced by the identity

and

are well-defined, but in general, they are neither injective, nor surjective. They are how-
ever isomorphisms if X is Kähler, or more generally on manifolds satisfying the 𝜕𝜕̄-lemma. 
Nevertheless, we have

and so 𝜄n−1(BX) ⊆ GX .

For # ∈ {BC,A} and p ∈ {1, n − 1} we define the following cones: 

1	 the #−pseudoeffective cone 

H
p,q

BC
(X,ℂ) =

{𝛼 ∈ C∞
p,q
(X) | d𝛼 = 0}

{i𝜕𝜕̄𝛽 | 𝛽 ∈ C∞
p−1,q−1

(X)}
,

H
p,q

A
(X,ℂ) =

{𝛼 ∈ C∞
p,q
(X) | i𝜕𝜕̄𝛼 = 0}

{𝜕𝛽 + 𝜕̄𝛾 | 𝛽 ∈ C∞
p−1,q

(X), 𝛾 ∈ C∞
p,q−1

(X)}

H
p,q

BC
(X,ℂ) × H

n−p,n−q

A
(X,ℂ) → ℂ, ([�], {�}) → ∫X

� ∧ �.

GX = {{Ω} ∈ H
n−1,n−1

A
(X,ℝ), Ω is a Gauduchon metric}

BX = {[Ω] ∈ H
n−1,n−1

BC
(X,ℝ), Ω is a balanced metric}.

�1 ∶ H
1,1

BC
(X,ℝ) → H

1,1

A
(X,ℝ)

�n−1 ∶ H
n−1,n−1

BC
(X,ℝ) → H

n−1,n−1

A
(X,ℝ)

𝜄n−1(BX) ⊆ GX ,
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 where by T we denote here a current.
2	 the #−nef cone 

 where � is the Kähler form of a fixed Hermitian metric on X and �� denotes a smooth 
(p, p)−form.

Remark 2.1  The pseudoeffective and nef cones E1
X,BC

 and N1

X,BC
 were first introduced by 

Demailly [9, Definition 1.3].

We recall next some of the properties and relations between the above cones.

Proposition 2.1  Let X be a compact complex manifold of dimension n. Then 

i)	 The cone E1
X,BC

 is closed and N1

X,BC
⊆ E1

X,BC
.

ii)	  The cones Np

X,#
 are closed, where p ∈ {1, n − 1} and # ∈ {BC,A}.

iii)	 Nn−1
X,A

= GX .

	   Moreover, if X is balanced, then
iv)	 Nn−1

X,BC
= BX .

v)	 E1
X,A

 is closed.

Proof  For complete proofs we refer the interested reader to Lemmas 2.2, 2.3 and 2.5 in [8]. 	
� ◻

We will often use the following result [8, Theorem 2.4] (see also [16, Remark 3.3]), 
which we state for the convenience of the reader:

Theorem 2.2  Let X be a compact complex manifold of dimension n. Then 

i)	 N1

X,BC
= (En−1

X,A
)∗,

ii)	 Nn−1
X,A

= (E1
X,BC

)∗.

	   Moreover, if X is balanced, then
iii)	 N1

X,A
= (En−1

X,BC
)∗,

iv)	 Nn−1
X,BC

= (E1
X,A

)∗.

We conclude this section with the following result which indicates that the balanced 
cone is a natural generalization on balanced manifolds of the movable cone whose defi-
nition is confined to the Fujiki class C manifolds.

Proposition 2.3  Let � ∶ X → Y  be a blow-up with smooth center between two balanced 
compact complex manifolds of dimension n. Then �∗BX = BY .

Proof  The inclusion BY ⊆ 𝜋∗BX is just Corollary 4.9 in [2]. Conversely, let �n−1 be a 
balanced metric on X. From Theorem 2.2 iv), in order to show that the class [�∗�n−1] is 

E
p

X,#
= {� ∈ H

p,p

#
(X,ℝ) |∃T ≥ 0, T ∈ �},

N
p

X,#
= {𝛾 ∈ H

p,p

#
(X,ℝ) |∀𝜀 > 0,∃𝛼𝜀 ∈ 𝛾 , 𝛼𝜀 ≥ −𝜀𝜔p},
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balanced, it is enough to check that ([�∗�n−1], {T}) ≥ 0 where T is an arbitrary (1, 1)-cur-
rent on Y which is positive and 𝜕𝜕̄-closed. By [2], given such a current T, there exists T̃  a 
positive (1, 1)-current on X which is 𝜕𝜕̄-closed, such that �∗T̃ = T  and {T̃} = �∗{T} . Then

The above inequality is strict when the class {T} ≠ 0 , and this shows that [�∗�n−1] is in the 
interior of the cone Nn−1

BC
 , which is the balanced cone. 	�  ◻

Remark 2.2  In [28, Proposition 2.3], Xiao observed that one always has 𝜋∗BX ⊆ BY .

3 � B = G manifolds

Let X be a closed Hermitian manifold such that �n−1(BX) = GX . Imposing such condition has 
several implications on the complex structure of X.

Lemma 3.1  Let X be a complex manifold such that �n−1(BX) = GX . Then �n−1 is onto. If in 
addition X is a SKT manifold, then �1 and �n−1 are isomorphisms.

Proof  Since GX is open and non-empty, we see that X is balanced and that �n−1 is surjective. 
In particular, since X is balanced, it follows that E1

A
 is closed. Since the cones Nn−1

BC
 and 

Nn−1
A

 are the closures of the cones BX and GX respectively, we get that

Dualizing (1), from Theorem 2.2 we obtain that �1(E
1

BC
) = E1

A
 and that �1 is injective. Since 

X is SKT, it follows that the interior of E1
A
 is non-empty, therefore �1 is also onto, hence an 

isomorphism. Therefore, �n−1 is also an isomorphism. 	�  ◻

3.1 � Twistor spaces and counter‑examples to the Fu‑Xiao conjecture

One can interpret Lemma 3.1 as an obstruction to the equality of the balanced and Gauduchon 
cones. We adopt this point of view and disprove next Conjecture A.4 in [16]. The counter-
examples we exhibit are certain twistor spaces.

3.1.1 � Twistor spaces

Let (M,  g) be an oriented Riemannian 4−manifold. The rank-6 vector bundle bundle of 
2-forms Λ2 on M decomposes as the direct sum of two rank-3 vector bundles

By definition, Λ± are the eigenspaces of the Hodge ⋆-operator

([�∗�
n−1], {T}) = ([�n−1], {T̃}) = �X

T̃ ∧ �n−1 ≥ 0

(1)�n−1(N
n−1
BC

) = Nn−1
A

.

Λ2T∗M = Λ+ ⊕ Λ−

⋆ ∶ Λ2T∗M → Λ2T∗M,
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corresponding to the (±1) -eigenvalues of ⋆. The sections of Λ+ are called self-dual 
2-forms, whereas the sections of Λ− are the anti-self-dual 2-forms.

The Riemannian curvature tensor can be thought of as an operator

called be the Riemannian curvature operator. The Riemannian curvature operator decom-
poses under the action of SO(4) as

where W± are trace-free endomorphisms of Λ±, and they are called the self-dual and anti-
self-dual components of the Weyl curvature operator. The scalar curvature s acts by scalar 
multiplication and ◦r is the trace-free Ricci curvature operator.

Definition 3.1  An oriented Riemannian 4−manifold (M,  g) is said to be anti-self-dual 
(ASD) if W+ = 0.

Remark 3.1  This definition is conformally invariant [4], i.e. if (M, g) is ASD, so is (M, ag) 
for any smooth positive function a.

A plethora of anti-self-dual 4−manifolds is rendered by a result of Taubes [24] assert-
ing that for any smooth, compact, oriented, 4-dimensional manifold X, the connect sum 
M = X#kℂℙ2 of X with k copies of the complex projective 2-space equipped with the 
opposite of its complex orientation admits a metric with W+ = 0 for k sufficiently large. In 
particular, one can find ASD manifolds with arbitrarily large first Betti number.

The twistor space of a conformal Riemannian manifold (M, [g]) is the total space of the 
sphere bundle of the rank three real vector bundle of self-dual 2−forms

Atiyah, Hitchin, and Singer [4] show that that Z comes naturally equipped with an almost 
complex structure, which is integrable if and only if W+ = 0.

In [19], Michelsohn states that the twistor space of a closed ASD manifold always car-
ries a balanced metric, a result proved in [20] (see also [8, Sect. 4]).

3.1.2 � Proof of Theorem 1.3

Let Z be the twistor space of a closed anti-self-dual manifold M of real dimension four. If 
BZ = GZ by Lemma 3.1

is surjective. Hence, the natural morphism

is zero. By duality, we obtain that

R ∶ Λ2T∗M → Λ2T∗M,

R =
s

6
Id +W− +W+ +

◦

r,

Z ∶= S(Λ+).

j2 ∶ H
2,2

BC
(Z,ℂ) → H

2,2

A
(Z,ℂ)

𝜕̄ ∶ H
2,2

A
(Z,ℂ) → H

2,3

BC
(Z,ℂ)
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is zero, which in turn implies that the natural morphism

is surjective. Here H∙,∙

𝜕̄
 denotes the usual Dolbeault cohomology. From [11] we know that 

H
1,0

𝜕̄
(Z,ℂ) = 0 , hence H1,0

A
(Z,ℂ) = H

0,1

A
(Z,ℂ) = 0 . On the other hand, the morphism

is always injective, therefore H0,1

𝜕̄
(Z,ℂ) = 0 . But, from Corollary 3.2 in [11], it follows that

where H∙
dR

 denotes the de Rham cohomology.
Summing up, on a twistor space on which BZ = GZ one has H1

dR
(M,ℂ) = 0. Therefore 

on the twistor spaces X over the anti-self-dual 4-folds M with H1

dR
(M,ℂ) ≠ 0 the balanced 

cone cannot be equal to the Gauduchon cone. The existence of such anti-self-dual mani-
folds is ensured by the aforementioned theorem of Taubes [24]. 	�  ◻

3.2 � The balanced and Gauduchon cones on Moishezon manifolds

The result of the previous section indicates that a generalization of Conjecture 2.3 in [5] to 
balanced manifolds fails. For projective manifolds, the recent work of Witt Nyström [27] 
implies that B = G. We extend next Witt Nyström’s result to Moishezon manifolds.

Proposition 3.2  If � ∶ X → Y  is a blow-up with smooth center in Y and if �n−1(BX) = GX , 
then �n−1(BY ) = GY.

Proof  Since the Gauduchon cone on X is never empty, it follows that the balanced cone 
on X is non-empty, hence X is balanced. Therefore Y is balanced [1]. Consequently, E1

A,X
 

and E1
A,Y

 are closed and the equality �n−1(BX) = GX is equivalent to E1
A,X

= E1
BC,X

 ( [8] Theo-
rem 2.4). So let T be a positive current, i𝜕𝜕̄T = 0 on Y. Let �∗T  be its total transform on 
X as defined in [2]. Since E1

A,X
= E1

BC,X
 , the class {�∗T} ∈ H

1,1

A
(X,ℝ) contains a d-closed 

positive (1, 1)-current R. Therefore the class of T = �∗�
∗T  contains �∗R , a d-closed posi-

tive current. 	�  ◻

As a consequence of Proposition 3.2, we have:

Proof of Theorem 1.4  If Y is projective, from [27], as in the proof of Proposition 2.10 in [8] 
we have BY = GY . In general, a Moishezon manifold can be made projective by a sequence 
of blow-ups with smooth centers. For each blow-up in the sequence we can apply Proposi-
tion 3.2 and the conclusion follows. 	�  ◻

Remark 3.2  An interesting question is whether the condition �n−1(B) = G is a bimeromor-
phic invariant, i.e., given X and Y two bimeromorphic compact complex manifolds, is it 
true that �n−1(BX) = GX if and only if �n−1(BY ) = GY?

𝜕̄ ∶ H
1,0

A
(Z,ℂ) → H

1,1

BC
(Z,ℂ)

H
1,0

𝜕̄
(Z,ℂ) → H

1,0

A
(Z,ℂ)

H
0,1

𝜕̄
(Z,ℂ) → H

0,1

A
(Z,ℂ)

dimH
0,1

𝜕̄
(Z,ℂ) = dimH1

dR
(M,ℂ)
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We conclude with the following observation which serves as an introduction to the next 
section.

Proposition 3.3  Let X be a compact complex surface. Then �1(BX) = GX if and only if X is 
Kähler.

Proof  If �1(BX) = GX , since GX ≠ ∅ then BX ≠ ∅ , therefore X is balanced. Therefore X is 
Kähler since a balanced metric on a surface is Kähler. Conversely, if X is Kähler, from 
Proposition 2.7 in [8] it follows that BX = GX . 	�  ◻

4 � B = G on SKT threefolds

According to Popovici’s Conjecture 1.5, every complex manifold on which the 𝜕𝜕̄-lemma 
holds, has the property B = G. In particular, since the Gauduchon cone G is open and non-
empty, the manifold is balanced. While Conjecture 1.5 is still open, there are known exam-
ples on which B = G, and it’s natural to consider the class of manifolds which satisfies that 
condition �n−1(B) = G. We address here Conjecture 1.6 of Fino and Vezzoni on this class of 
balanced manifolds.

Proof of Theorem 1.7  Let � be a SKT metric on X.
Step 1. By Lemma 3.1, �1 is an isomorphism. Hence, there exists a (1, 0) form � on X 

such that 𝛾 = 𝜕̄𝛼 + 𝜂 + 𝜕𝛼̄ is a d-closed (1, 1) form. From �1(E
1

BC
) = E1

A
 it follows that the 

class of � in H1,1

BC
(X,ℝ) is in E1

BC
. This means that there exists a d-closed positive (1, 1)-cur-

rent T such that [�] = [T] in H1,1

BC
(X,ℝ).

Step 2. We will show that [�] is also in N1

BC
 , i.e., that it is nef. If the irreducible compo-

nents of ∪c>0Ec(T) are all smooth, then we can use Théorème 2 in [21]. We have already 
checked that [�] is pseudoeffective, and let Z be an irreducible analytic subset of ∪c>0Ec(T) . 
If Z is a curve, then ∫

Z
� = ∫

Z
� ≥ 0 , hence [�] is nef on Z. If Z is a surface, then (see 

Lemma 2.1 in [6])

and it is well known that in this case Z is a Kähler surface. Let � be a d-closed positive 
(1, 1) form on Z. Then clearly from Stokes’ theorem we have ∫

Z
𝜔 ∧ 𝛾 = ∫

Z
𝜔 ∧ 𝜂 > 0 and 

this implies (see Theorem 4.5 (iii) in [10]) that [�] is nef on Z. This implies that [�] is nef 
on X.

In general, fix g a Hermitian metric on X and let 𝜀 > 0 be arbitrary. Then, from Theo-
rem 3.2 in [10] it follows that there exists a closed current in the same class as � , denoted 
T𝜀 = 𝛾 + i𝜕𝜕̄𝜑𝜀 ≥ −𝜀g and �� ∶ X�

→ X a sequence of blow-ups with smooth centers such 
that

where Di are smooth surfaces in X𝜀, 𝜆i > 0 and �� is a smooth d-closed (1, 1)-form on X�.
Suppose

(2)∫Z

𝛾 ∧ 𝛾 = ∫Z

𝜂 ∧ 𝜂 + 2∫Z

𝜕𝛼 ∧ 𝜕̄𝛼 > 0

(3)�∗
�
T� =

∑

i

�i[Di] + ��



2514	 I. Chiose et al.

1 3

is the sequence of blow-ups �� ∶ X�
→ X and denote by Cj the center of the blow-up 

�j+1 ∶ Xj+1 → Xj and by Ej the exceptional divisor of the blow-up �j ∶ Xj → Xj−1.
Now we construct by induction Hermitian metrics gj on Xj as follows: set g0 = g on 

X0 = X and suppose that gj has been constructed on Xj . It is well-known that one can put 
a metric on the line bundle O(−[Ej+1]) on Xj+1 such that its curvature, denoted �j+1 , is sup-
ported in a small neighborhood of Ej+1 , that �j+1 is positive in a smaller neighborhood of 
Ej+1 , and that, for cj+1 a small enough non-negative constant, gj+1 = �∗

j+1
gj + cj+1�j+1 is a 

Hermitian metric on Xj+1 . We choose cj+1 such that

From (4) and from T� ≥ −�g it follows that

On X� = XN we consider the current TN = �∗
�
T� which is in the same class as �� = �∗

�
� . 

Each of the divisors Di are either proper transforms of divisors on X or else components of 
the exceptional divisor of �� ∶ X�

→ X . In the first case, as above, we have

where �� = �∗
�
� and �� = �∗

�
� , hence Di is a Kähler surface with a Kähler form �i , and 

from

where C is some curve in Di , it follows that [��] is nef on Di . In the second case, Di is the 
projectivization of a rank 2 vector bundle on a curve, hence it is Kähler, and again, from 
the inequalities

it follows that [��] is nef on Di.
Therefore, the current TN = 𝛾𝜀 + i𝜕𝜕̄𝜋∗

𝜀
𝜑𝜀 satisfies TN ≥ −e

�2

6 �gN and its Bott-Chern 
class [��] is nef on each Di . By using the techniques in [21], we can find a C∞ function �N 
on X� such that

Namely, from Lemme 1 in [21], we first find a smooth function f� in a neighborhood of 
∪iDi such that 𝛾𝜀 + i𝜕𝜕̄f𝜀 ≥ −e

𝜋2

6 𝜀gN and then take for �N a regularization of the maximum 
between f� − C and �∗

�
�� , where C is some large constant. Note that �∗�� takes the value 

−∞ on ∪iDi.
Now we construct by induction C∞ functions ��,j on Xj such that

X = X0

�1
⟵X1

�2
⟵…

�N−1
⟵XN−1

�N
⟵XN = X�

(4)gj+1 ≥ e
−

1

(j+1)2 �∗
j+1

gj

TN ≥ −�e
1

12
+

1

22
+⋯+

1

(N−1)2 gN ≥ −e
�2

6 �gN

∫Di

𝛾𝜀 ∧ 𝛾𝜀 = ∫Z

𝜂𝜀 ∧ 𝜂𝜀 + 2∫Z

𝜕𝛼𝜀 ∧ 𝜕̄𝛼𝜀 > 0

�C

�� ≥ 0,�Di

�� ∧ �i ≥ 0

�C

�� = �C

�� ≥ 0,�Di

�� ∧ �i = �Di

�� ∧ �i ≥ 0

𝛾𝜀 + i𝜕𝜕̄𝜓N ≥ −2e
𝜋2

6 𝜀gN



2515Balanced manifolds and SKT metrics﻿	

1 3

where �j is the pull-back of � to Xj.
Set ��,N = �N and suppose that ��,j+1 has been constructed on Xj+1 such that

If Cj is the center of the blow-up �j+1 ∶ Xj+1 → Xj , then �j|Cj is nef since Cj is a curve or a 
point and if Cj is a curve, ∫

Cj
�j ≥ 0 , so from Lemme 1 in [21], there exists Uj a neighbor-

hood of Cj and �j a C∞ function on Uj such that

Pushing forward (6) to Xj we obtain

It is well-known that �j+1,∗�j+1 is i𝜕𝜕̄ exact (since �j+1 is in the same class as −[Ej+1] and the 
push forward of [Ej+1] is 0), so let 𝜋j+1,∗𝛽j+1 = i𝜕𝜕̄𝜇j . Therefore

and, as in [21], using the function �j constructed above, and a function � as in Lemme 2 in 
[21], we obtain a C∞ function ��,j on Xj which satisfies (5).

For j = 0 we obtain a C∞ function ��,0 such that

This means that [�] is nef.
Step 3. From Lemma 2.1 in [6] with k = 3 we obtain

and we can use Theorem 4.1 in [7]. Indeed, [�] is a nef class, of positive self-intersection, 
and X is a 3-fold that supports a SKT metric (see Remark 4.3 in [7]). This implies that X is 
Kähler. 	�  ◻

Remark 4.1  Given Z a singular component of ∪c>0EcT  , it is clear that, if p ∶ X̃ → X is a 
resolution of singularities of Z, then Z̃ (the proper transform of Z) is Kähler and that p∗� 
is nef on Z̃ . This implies that, for every 𝜀 > 0 , there exists �̃� a C∞ function on Z̃ such 
that p∗𝛾 + i𝜕𝜕̄�𝜑𝜀 ≥ −𝜀�g on Z̃ . However, it is not obvious to us that from this data one can 
construct a C∞ function �� on Z which satisfies 𝛾 + i𝜕𝜕̄𝜑𝜀 ≥ −𝜀g (so that it is as in Défini-
tion 3 in [21]) since such a function has to be locally the restriction of a C∞ function on a 

(5)𝛾j + i𝜕𝜕̄𝜓𝜀,j ≥ −2e
𝜋2

6

(
1

20
+

1

21
+⋯ +

1

2N−j

)
𝜀gj

(6)𝛾j+1 + i𝜕𝜕̄𝜓𝜀,j+1 ≥ −2e
𝜋2

6

(
1

20
+

1

21
+⋯ +

1

2N−j−1

)
𝜀gj+1

𝛾j + i𝜕𝜕̄𝜆j ≥ −e
𝜋2

6

(
1 +

1

2
+⋯ +

1

2N−j−1
+

1

2N−j+1

)
𝜀gj

𝛾j + i𝜕𝜕̄𝜋j+1,∗𝜓𝜀,j+1 ≥ −2e
𝜋2

6

(
1 +

1

2
+⋯ +

1

2N−j−1

)
𝜀(gj + cj+1𝜋j+1,∗𝛽j+1)

𝛾j + i𝜕𝜕̄

[
𝜋j+1,∗𝜓𝜀,j+1 + 2e

𝜋2

6

(
1 +

1

2
+⋯ +

1

2N−j−1

)
𝜀cj+1𝜇j

]
≥

−2e
�2

6

(
1 +

1

2
+⋯ +

1

2N−j−1

)
�gj

𝛾 + i𝜕𝜕̄𝜓𝜀,0 ≥ −4e
𝜋2

6 𝜀g

∫X

𝛾3 = ∫X

𝜂3 + 6∫X

𝜂 ∧ 𝜕𝛼 ∧ 𝜕̄𝛼̄ > 0
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neighborhood of Z. This is the reason for looking at the approximation current T� in the 
proof of Theorem 1.7 above instead of working directly with the closed positive current T.

Remark 4.2  In [26] Verbitsky showed that a twistor space which supports a SKT met-
ric is Kähler. Our result does not imply Verbitsky’s result. On a twistor space, it is not 
always true that the balanced cone equals the Gauduchon cone, as noticed in the proof 
of Theorem 1.3.
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