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Abstract

Broadly distributed species experience divergent abiotic conditions across their ranges that may
drive local adaptation. Montane systems where populations are distributed across both latitudinal
and elevational gradients are especially likely to produce local adaptation due to spatial variation
in multiple abiotic factors, including temperature, oxygen availability, and air density. We use
whole genome resequencing to evaluate the landscape genomics of Bombus vancouverensis
Cresson, a common montane bumble bee that is distributed throughout the western part of North
America. Combined statistical approaches revealed several large windows of outlier SNPs with
unusual levels of differentiation across the region and indicated that isothermality and elevation
were the environmental features most strongly associated with these variants. Genes found
within these regions had diverse biological functions, but included neuromuscular function, ion
homeostasis, oxidative stress, and hypoxia that could be associated with tolerance of
temperature, desiccation, or high elevation conditions. The whole genome sequencing approach
revealed outliers occurred in genome regions with elevated linkage disequilibrium, elevated
mean Fstand low intrapopulation nucleotide diversity. Other kinds of structural variations were
not widely associated with environmental predictors but did broadly match geographic
separation. Results are consistent with other studies suggesting that regions of low recombination
may harbor adaptive variation in bumble bees within as well as between species and refine our
understanding of candidate genes that could be further investigated as possible targets of

selection across the B. vancouverensis range.

Key words: Elevation, Local adaptation, Whole genome sequencing, Environmental association

analysis, Population divergence
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Introduction:

A major focus in evolutionary biology is understanding the genetic changes associated
with species adaptation to abiotic conditions throughout their ranges (Manel et al. 2010, Orr
2005, Dillon and Lozier 2019). In broadly distributed species, populations must contend with
different climatic stressors produced by large scale abiotic gradients (Savolainen et al. 2013,
Cayuela et al. 2021), which may require unique adaptations that produce signatures of divergent
selection within the genome (Hoban et al. 2016, Ahrens et al. 2018). Recent technological and
statistical advances have created opportunities for identifying such signatures in wild populations
of non-model organisms (Ellegren 2014, Ahrens et al. 2018, Luo et al. 2021) and the ever-
increasing availability of species-specific reference genomes has made it possible to begin
addressing questions about the genome structure of putative adaptations using whole genome
data (Fuentes-Pardo and Ruzzante 2017, Taylor et al. 2021).

Species that occur in landscapes with substantial variation in environmental conditions
provide opportunities for investigating environmentally associated genomic divergence that can
indicate local adaptation (Joost et al. 2007, Eckert et al. 2010, Jackson et al. 2020, Yadav et al.
2020, Lim et al. 2021). Montane systems are an excellent example of a complex landscape where
latitude and altitude together can produce changes in abiotic conditions over both large and small
spatial scales (Keller et al. 2013, Rahbek et al. 2019). Some variables (e.g., air pressure,
atmospheric oxygen, and temperature) will shift sharply across elevations (Dillon 2006,
Cheviron and Brumfield 2012), while others, such as temperature, can vary with both elevation
and more gradually with latitude. Such changes in environmental conditions and can impose
strong selective pressures that may require physiological adaptations, and montane species with

broad altitudinal and latitudinal ranges offer unique opportunities to sample multiple spatial-
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environmental gradients to identify the genomic signatures of such adaptations (Dillon 2006,
Cheviron and Brumfield 2012, Jackson et al. 2018, 2020, Montejo-Kovacevich et al. 2019,
Pimsler et al. 2020).

In this study we employ whole genome resequencing (WGR) to evaluate genome-wide
patterns of divergence and potential signatures of environmental adaptation in Bombus
vancouverensis Cresson (Ghisbain et al. 2020), a bumble bee (Hymenoptera: Bombus) species
that is abundant in mountainous regions of western North America. Bumble bees are a widely
distributed genus of pollinators that consists of approximately 250 species globally (Cameron et
al. 2007, Cameron and Sadd 2020). The genus is common in many biomes but has an
evolutionary history associated with mountainous regions, which have played an important role
in their diversification (Hines 2008, Williams et al. 2018, Lee et al. 2019, Orr et al. 2020).
Several key traits may facilitate adaptation to complex montane landscapes in bumble bees. For
example, bumble bees have evolved traits to deal with climate extremes, including insulating
hairs (pile) and facultative thermoregulation mechanisms (e.g., “shivering” of flight muscles) for
maintaining activity in cold temperatures, while also having the capacity to shunt excess heat
from the thorax to abdomen to prevent overheating (Heinrich and Kammer 1973, Heinrich 1976,
Heinrich 2004, Woodard 2017). Recent work suggests that intraspecific populations vary in
thermal tolerance across species ranges, especially cold tolerance (Pimsler et al. 2020, Martinet
et al. 2020), and gene expression under thermal stress suggests that populations may exhibit
molecular variation that can facilitate responses to temperature extremes (Pimsler et al. 2020).
Beyond temperature, bumble bees have traits that may facilitate life across elevations, including

for flight at reduced air density and oxygen levels, such as metabolic changes, wing beat
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kinematics and reduced body size or wing loading (Dillon 2006, Dillon and Dudley 2014, Liu et
al. 2020, Lozier et al. 2021).

This study expands on recent population genomics work (Jackson et al. 2018, 2020) that
used RAD-tag sequencing to characterize spatial-environmental drivers of gene flow and identify
selection in B. vancouverensis across the Sierra-Cascade region of the western United States.
Like many North American Bombus species (e.g., Lozier et al. 2011), B. vancouverensis is
characterized by weak population structure (e.g., mean Fsr is < 0.05) (Lozier et al. 2013, Jackson
et al. 2018), although genetic differentiation does increase with distance and with bioclimatic
resistance (Jackson et al. 2018). Environmental Association Analysis (EAA) with these RAD-tag
data has revealed unusual associations with bioclimatic variables for over 100 single nucleotide
polymorphisms (SNPs) in genes that were consistent with signatures of selection across the
genome. Morphological analyses have also found intraspecific body size clines across the region,
with notable reductions in mass and wing loading in bees from the southern High Sierras portion
of the B. vancouverensis range (Lozier et al. 2021), further suggesting the possibility of local
adaptation.

An important caveat to prior population genomic analyses in B. vancouverensis is that
linkage disequilibrium (LD) is weak in Bombus (Stolle et al. 2011, Sadd et al. 2015). In such
situations, RAD-tag data may incompletely survey the genome (Lowry et al. 2017) and a WGR
approach could prove beneficial for identifying localized signals of selection (Fuentes-Pardo and
Ruzzante 2017). Jackson et al. (2020) also relied on mapping reads to the genome of a related
species, Bombus impatiens, but an annotated B. vancouverensis genome has recently been
published (Heraghty et al. 2020), which may improve the ability to detect species-specific

regions harboring locally adaptive variants. Whole genome data also enable examination of other
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aspects of genomic architecture that are relevant in understanding patterns of adaptation and
evolution. Structural variants (SV’s) are a variety of different mutations (e.g. inversions,
deletions, insertions, etc.) that can provide insight in population structure (Dorant et al. 2020,
Cayuela et al. 2021) as well as adaptation (Joron et al. 2011, Wellenreuther et al. 2019). SV’s
have been found to play a role in elevation adaptation in the European Honey Bee Apis mellifera
(Wallberg et al. 2017) and could also be relevant in Bombus. In addition, spatial patterns of
linkage disequilibrium and nucleotide diversity in the genome can give insight into processes of
both adaptation and speciation that may not be visible without whole genome data (Christmas et
al. 2021). Regions of elevated Fst, decreased nucleotide diversity and increased linkage
disequilibrium, often referred to as “Islands of Divergence”, can be produced following
divergence between both populations and closely related species, and may be especially
interesting when observed in the face of gene flow among populations within species (Ellegren et
al. 2012, Papadopulos et al. 2019, Christmas et al. 2021).

We use WGR of B. vancouverensis sampled across a latitudinal montane gradient in the
Sierra-Cascades region of western North America to examine patterns of differentiation across
the genome and refine possible targets of environmentally-associated selection that were
previously suggested from reduced representation sequencing. We combine landscape genomics
approaches that employ Fst outlier detection with Environmental Association Analysis (EAA)
models to identify locally adapted genetic markers candidate SNPs (Hoban et al. 2016, Storfer et
al. 2018, De la Torre et al. 2019, Hartke et al. 2020, Lim et al. 2021). The objectives of this study
are to sample across broad latitudinal and altitudinal gradients to identify genomic variants
(SNPs and SVs) that are associated with environmental variation, especially those that may

contribute to local adaptation to key environmental variables such as temperature and elevation.
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We also aim to evaluate patterns of Fst, nucleotide diversity, and linkage throughout the genome
that may help better characterize the nature of regions exhibiting unusual interpopulation
differentiation. Overall results provide new data on how complex landscapes drive changes in

genomic variants, diversity, and architecture in montane species.

Materials and Methods

Sampling, DNA Extraction, and Whole Genome Resequencing

Bombus vancouverensis workers (diploid females) were selected for whole-genome
resequencing from previously collected samples (Jackson et al. 2018, 2020) representing
populations from environmental extremes across elevation and latitude in the California, Oregon,
and Washington portion of the species range (36°N — 48°N latitude, 49m - 2900m
elevation)(Figure 1, Supp. Table S1). Detailed characterization of sampling localities was
presented in (Jackson et al. 2018, 2020). We attempted to include bees from locations that were
at a relatively high and relatively low elevation across latitudes, but B. vancouverensis is
generally restricted to its highest elevation sites in the southern part of the species range in the
High Sierras, while the lowest elevation sites are in the north. Flying bees were collected at each
site using sweep nets and placed in 100% ethanol on dry ice. Samples were ultimately stored in
ethanol at -80°C.

DNA was extracted from thoracic muscle tissue using the Qiagen DNeasy Blood and
Tissue kit (Hilden, N.R.W., Germany). Genomic DNA libraries were prepared using the
NEBnext Ultra II FS DNA kit (Ipswich, MA, USA) with subsequent 150 bp paired-end
sequencing using an Illumina NovaSeq 6000 (one lane at HudsonAlpha Institute for

Biotechnology, Huntsville, AL, and another one at Psomagen, Rockville, MD).
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Read Mapping and Variant Calling

Raw reads were processed using BBDuk v37.32 (Bushnell 2020) to remove adaptors,
trim low quality bases, and remove short reads (ktrim=r k=23 mink=11 hdist=1 tpe tbo ftm=5
qtrim=rl trimq=10 minlen=25). Trimmed reads were evaluated for quality using FastQC v0.11.5
(Andrews 2010). Reads were then mapped to the B. vancouverensis reference genome (NCBI
RefSeq ID: GCF_011952275.1) (Heraghty et al. 2020) using the BWA-MEM algorithm of BWA
v0.7.15-r1140 (Li and Durbin 2009) and generated alignment (i.e., SAM) files were converted to
the binary (BAM) format using SAMtools v1.10 (Li et al. 2009). Picard tools v2.20.4 (Broad
Institute 2019) was used to sort, mark duplicates, and index the binary alignment (BAM) files.
Single nucleotide polymorphisms (SNPs) were called using freebayes v1.3.2 (Garrison and
Marth 2012). An initial round of variant filtering was conducted on the variant calling file
produced by freebayes using VCFtools v0.1.13 (Danecek et al. 2011) with the following flags: --
remove-indels --min-alleles 2 --max-alleles 2 --minQ 20 --minDP 4 --max-missing 0.75. After
visual inspection of the data, we removed an additional small number of SNPs (n=45,872) with
unusually high coverage (>2x mean coverage) or excess heterozygosity (--hardy flag in
vcfttools) that could indicate repeat regions or paralogous sequences. A final round of variant
filtering was then performed to focus on SNPs from intact scaffolds (>100 kb in size) with minor
allele frequencies (MAF) > 0.05 to remove the influence of low frequency alleles and SNPs in
regions that may have assembly artifacts. SNPs were annotated using SNPeff v4.3 (Cingolani et
al. 2012) and missing data was imputed for some analyses that required a complete matrix using

the phasing function in Beagle v5.1 (Browning et al. 2018).
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Structural variants (SVs) were identified using DELLY v0.8.1 (Rausch et al. 2012) from
the binary alignment (i.e.,BAM) files described above. DELLY was run with the -all parameter
which enables detection of deletions, duplications, inversions and transversions. The DELLY
output was converted (from a bcf to vef format) using BCFtools v1.10.2 (Li et al. 2009) then
filtered to only retain SVs that were supported by multiple high quality reads (PASS) and by split

reads (PRECISE). As for SNPs, we only evaluated SVs on the genome longer than 100 kb.

Environmental Variable Selection and Genome Environment Association Analyses

Environmental conditions at each site were charactered using the 19 Bioclim variables at
0.5 arc minute resolution from the WorldClim v2 database (Fick and Hijmans 2017) via the
raster v3.3-14 R package (Hijams 2021). To select the variables providing unique information
for analysis, we performed item clustering using the iclust function with default settings in the
psych v2.0.12 R package (Revelle 2020). A single variable was then selected from each cluster to
be included in the subsequent modeling approaches. Although elevation is correlated with
environmental conditions, elevation has its own associated stressors, such as reductions in air
density and oxygen availability (Dillon 2006, Cheviron and Brumfield 2012, Lim et al. 2021).
Given the hypothesized importance for bumble bees generally (Dillon et al. 2006) and B.
vancouverensis specifically (Lozier et al. 2021), elevation was also included as a variable for
Environment Association Analysis (EAA) to identify genomic regions that have undetected
unique associations from any other bioclimatic variables.

Environmental association analyses to identify loci with putative signatures of local
adaptation to abiotic variables were performed using latent factor mixed modeling (LFMM2 in

LEA v3.0.0 R package) (Gain and Frangois 2021). LFMM?2 implements a least-squares approach
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to identify SNPs with a significant association with the environmental variables of interest after
controlling for population structure. Utilization of this approach is particularly advantageous in
that it is faster than earlier versions of the software (Caye et al. 2019) and is more conservative in
terms of false positives (Luo et al. 2021). The optimal number of population clusters (k) for
population structure control was determined with SsSMNF (implemented in LEA v3.0.0 R
package) (Frichot and Frangois 2015) as the k represents the smallest cross-entropy. To account
for multiple testing, the g-value v2.20.0 R package (Storey, Bass, Dabney, & Robinson, 2020)
was used to transform the p-values produced by LFMM?2 into g-values. Significant
environmentally-associated loci were considered at a threshold of ¢ < 0.05.

Employing multiple models for methodological cross-validation is a standard practice in
studies to detect local adaptation to further reduce the potential for false positives (De la Torre et
al. 2019, Hartke et al. 2020, Jackson et al. 2020). As a second approach to confirm results from
LFMM2, we used OutFLANK v0.2 (Whitlock and Lotterhos 2015), implemented using the
default settings in the SambaR R package/wrapper v1.00 (de Jong et al. 2021). We selected
OutFLANK as a complementary approach because this method does not depend on associations
with environmental variables like LFMM?2 approach, but rather detects SNPs using an Fst outlier
approach. Individuals were pooled into populations by sampling coordinates and loci with
heterozygosity > 0.1 were used for the OutFLANK analysis (default). The p-values produced by
OutFLANK were corrected for multiple testing by converting to g-values using default threshold
settings to select outliers (¢ < 0.01). Cross-validated loci were then identified as those detected as
significant from both LFMM?2 and OutFLANK approaches.

To analyze the of structural variations detected in the B. vancouverensis genome, SV

categories (deletions, duplications, inversions, and transversions) were separated and analyzed

10



230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

using the RDA function implemented in vegan v2.5-7 (Oksanen et al. 2020). RDA (Redundancy
Analysis) is a robust and flexible approach for a variety of questions in landscape genomics and
is particularly advantageous for analysis of SVs because of the relative low numbers of detected
SVs (Capblancq and Forester 2021). We use (Redundancy Analysis) RDA here because SVs also
represent a novel data type for B. vancouverensis, and RDA provides the opportunity to
simultaneously examine unusual differentiation at individual outlier regions alongside general
patterns of population structure among individuals to compare with prior knowledge of overall
population genetic structure in this species. Overall model significance was assessed using the
anova.cca function in R (from the vegan v2.5.7 package) and each axis was tested for
significance to identify which axes represented non-random variation (Legendre et al. 2011).
Significant axes were then evaluated for outlier SVs based on axis loading exceeding 4 standard

deviations (Forester et al. 2018).

Gene Ontology Enrichment Analysis

Gene Ontology enrichment analysis utilized recently generated species-specific
annotations for B. vancouverensis downloaded from Hymenoptera Genome Database (Walsh et
al. 2021) (Bombus_vancouverensis HGD go annotation.gaf.gz ; last updated 6/29/2021). Genes
without the annotation information in the annotation file were not considered in our analysis. The
GoFuncR v1.8.0 (Grote 2020) R package was used for gene set enrichment analysis (GSEA)
using the go_enrich function. A custom annotation database was created from the downloaded
gene annotation file (in .gaf format) following GoFuncR manual guidelines (Grote 2020). Genes
with cross-validated outlier SNPs (n = 44) were considered as candidate genes for Gene

Ontology (GO) enrichment testing against all other genes as the background set (n = 9,432).
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Statistically significant GO terms (p < 0.01) were retained and then the Revigo web server

(Supek et al. 2011) was used to summarize redundant GO terms using medium stringency filter.

Patterns of Chromosomal Diversity in Outlier Regions

To examine the patterns of diversity and differentiation in environmentally associated
candidate regions relative to genome-wide patterns, fixation index (Fst) for each site was
calculated using the Weir and Cockerham method as implemented in the SNPRelate R package
v1.22.0 (Weir and Cockerham 1984, Zheng et al. 2012) and per-site nucleotide diversity (w) for
each population was calculated with the —site-pi flag in VCFtools v0.1.13 (Danecek et al. 2011)
and averaged to obtain a mean within-population nucleotide diversity (w). For both statistics,
averages were calculated across Skb widows using the GenomicRanges R package v1.40.0
(Lawrence et al. 2013). Visualization of scaffolds with outlier regions and their associated Fst
and © were generated using the Gviz v1.34.1 R package (Ivanek 2016). Linkage disequilibrium
(LD) was calculated for the entire genome and the major candidate outlier regions using
PopLDdecay v3.41 (Zhang et al. 2019) with the max-distance between loci set to 300kb. To
visualize differences in LD patterns between the outlier-dense and outlier-free regions, we also
plotted LD for ten randomly selected scaffolds that did not contain outlier loci (Supp. Table S2).

Previous studies examining the genomics of divergence between bumble bee species,
including that of the B. bifarius-B. vancouverensis species complex, have found that many
putatively adaptive regions of the genome (i.e., “islands of divergence”) between sister species
are maintained in repetitive and low recombination regions along the chromosome (Ghisbain et
al. 2020, Christmas et al. 2021). First, we downloaded the repeat masker output file from the B.

vancouverensis RefSeq assembly (NCBI RefSeq ID: GCF_011952275.1) (Heraghty et al. 2020)

12
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and calculated the number of repeats in same Skb windows used for the Fst calculations above.
Linear regressions (Im function in R) were used to test for a relationship between repeat region
density and Fst in each window (genome-wide and for focal scaffolds). Second, although the B.
vancouverensis assembly is sufficiently intact for most analyses, it does not have chromosome
level integrity. We thus took advantage of the high degree of synteny in Bombus genomes (Sadd
et al. 2015, Sun et al. 2020) to determine probable locations of major candidate regions with
strong cross-validated environmental associations (i.e., scaffolds with multiple outlier regions, or
with genes containing many outlier SNPs) using the chromosome-level assembly for B. terrestris
(RefSeq ID: GCF_000214255.1). For each candidate region, we determined the orthologous B.
terrestris chromosome using BLASTn (Altschul et al. 1990) and aligned the highly divergent
outlier-dense B. vancouverensis scaffolds to the B. terrestris chromosomes using MAUVE

algorithm implemented as a plugin for Geneious v 2021.0.3.

Results

Data Summary

We sequenced 122 female workers from 19 localities to an average estimated coverage of
~40x (32,997,359 + 16,271,517 SD read pairs per library), and 33,439,776 SNPs were called
using Freebayes. The final filtered data set included 1,369,356 SNPs (MAF > 5%, depth > 4x),
with a mean sequencing coverage of 25.3 reads per SNP per individual and a mean of 0.34%
missing data per SNP per individual.

For environmental variables, item clustering analysis identified 4 clusters from the total

set of WorldClim Bioclim variables (Supp. Figure S1). We retained the following variables for
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analysis: annual mean temperature (BIO1), mean diurnal range (BIO2), isothermality (BIO3),

and annual precipitation (BIO12), as well as elevation.

Environmental Association and Fst Outlier Analyses

Two population clusters were identified by sMNF using the minimum cross-entropy
approach and we specified £ = 2 for population structure control in LFMM2 (same as Jackson et
al. 2020). Across all variables, LFMM2 detected a total of 774 unique SNPs that were
significantly associated with one of the environmental variables, representing 154 unique genes
and 66 intergenic regions. Isothermality (BIO3, 646 SNPs) and elevation (340 SNPs) had the
largest number of significant SNP associations (¢ < 0.05). BIO1 (annual mean temperature),
BIO2 (mean diurnal range) and BIO12 (annual precipitation) were associated with 0, 15, and 46
SNPs, respectively. The OutFLANK Fsr outlier approach produced 1,274 outlier SNPs (with
default SambaR settings, g < 0.01). There were 551 cross-validated SNPs (in 44 genes and 24
intergenic regions) shared between the two methods (Table 1, Supp. Table S3); as above, these
were most frequently associated with isothermality and elevation (Table 1).

The densest clusters of cross-validated loci were found on scaffolds NW_022881829.1
and NW_022881902.1 (Fig 2). The most notable group of cross-validated SNPs in the genome
were located on NW_022881829.1 within the adjacent genes LOC117157569 (Sax-3-like,
homologous to dpr20 in D. melanogaster, n = 36 SNPs) and LOC117157568 (synaptogenesis
protein syg-2-like, side-VI in D. melanogaster, n = 66 SNPs) and their intergenic region (n = 364
SNPs) (Table 1, Fig. 2). Two additional dense clusters of cross-validated SNPs were grouped
into two regions on scaffold NW_02991902.1. In the first of these clusters (~350 - 680 kb region

of NW_02991902.1) outliers were present across 11 genes, mostly with one or two SNPs each.
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The gene with the largest number of SNPs in this cluster is LOC117161116 (uncharacterized,
homologous to CG13138 in D. melanogaster, n = 15 SNPs). The second cluster (~1,250 kb —
1,470 kb region of NW_02991902.1) comprised several genes with multiple statistically
significant SNPs. The genes with the largest number of SNPs in this cluster were
LOC117161100 (plasma membrane calcium-transporting ATPase 3, homologous to PMCA in D.
melanogaster, n = 36 SNPs), LOC117161180 (xanthine dehydrogenase/oxidase-like,
homologous to AOX3 in D. melanogaster, n = 36 SNPs), and LOC117161157 (uncharacterized
in B. vancouverensis but homologous to beat-Illc in D. melanogaster, n =5 SNPs). A fourth
notable cluster of statistically significant SNPs was detected on a separate scaffold
(NW_022881786.1) in LOC117156535 (Multidrug resistance-associated protein 4-like, best
BLAST homology to CG5789 and Mrp4 in D. melanogaster, n = 6 SNPs), including five non-
synonymous polymorphisms. This region is particularly interesting as the largest set of SNPs that
were significantly associated with elevation alone and not with any other variables. The
remaining significant SNPs (32 genic, 27 intergenic) were distributed more sparsely, with

relatively few SNPs per gene (Table 1).

Gene Ontology (GO) enrichment analysis of Cross-validated Loci

Gene Ontology enrichment analysis was used to explore general functions of outlier
genes. Our analysis returned an initial list of 87 GO terms (p < 0.01), which was subsequently
reduced to 51 biological terms, 15 cellular terms and 19 molecular terms (Supp. Table S4) using
Revigo summarization web tool. Some outlier loci were excluded from GO analysis due to the
genes having no GO annotations (Walsh et al. 2021). There were several notable trends which

generally reflected the functions of genes in the outlier dense regions. For example, several terms
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were related to ion transport, including GO terms like “calcium ion transport” (GO:0006816) and
“P-type calcium transporter activity involved in regulation of presynaptic cytosolic calcium ion
concentration” (GO:1905056) (reflecting genes like, plasma membrane calcium-transporting
ATPase-3, LOC117161100). “ATPase-coupled transmembrane transporter activity” (GO:
0042626) is associated with genes such as the elevation-specific gene multidrug resistance
protein 4 (LOC117156535). There were also several terms involved with neuron and synapse
function with terms such as “synaptic target recognition” (GO:0008039) (e.g., associated with
LOC117161157, a beatlllc homolog). Several terms were related to cardiac function including
annotations; for example, “regulation of cardiac muscle tissue development” (GO:0055024) and

“cardiac myofibril assembly” (GO:0055003).

Analysis of Structural Variants (SVs)

Our structural variant detection analysis using DELLY detected 7,419 deletions, 226
duplications, and 6,303 inversions. The overall RDA models for all three SV types were
significant and contained significant axes, representing non-random variation (Legendre et al.
2011) (Supp. Table S5). Twenty-two deletion outliers and 3 inversion outliers were identified, all
on axis 1 for their respective model (axis loading > 4 standard deviations). Although the
duplication RDA model was significant, no outliers were identified. Most SVs were less than 1
kb and spanned over at least one gene (Table 2). Clustering patterns for individuals in the RDA
model generally reflected geographic relationships, with samples from nearby localities loading
near one another on the RDA graph (Fig 3). The deletions model best captures the geographic
relationship between samples with relatively clear clustering by state (CA,OR, and WA) (Fig 3).

Mirroring the SNP analysis, the strongest predictive variables were isothermality (16 of 19
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deletions, 2 of 3 inversions) and elevation (3 of 19 deletions, 1 of 3 inversions). The highest
density of outliers was found on scaffold NW_022881829.1 (5 deletions) and occurred in same
region of high outlier SNP density as SNP outliers discussed above. One other notable SV was a
deletion in LOC117160713 (Chaoptin-like, homologous to CG42346 in D. melanogaster) which
also contained an outlier SNP (Table 2). There were several SVs located on scaffold
NW_022881881.1 (3 deletions and 1 inversion), but visual inspection suggested that some of the
detected SV outliers may represent artifacts, highlighting the general challenges to structural
variant calling. For example, two of the SVs on NW_022881881.1 were far larger than average
and spanned over numerous genes; one 385kb deletion falls in a region with a large number of
small repeats (average length 51.3 bp, n = 184) which may complicate calling SVs (Mahmoud et

al. 2019).

Patterns of Chromosomal Diversity in Outlier Regions

The three largest environmentally associated regions containing clusters of cross-
validated SNPs (NW_02881786.1, NW_02881829.1, and NW_02881902.1) exhibited markedly
increased Fst and decreased © (Fig 4). Average Fsr across the genome was low (global Fst =
0.02) but increased to values > 0.4 in localized regions around outliers. Nucleotide diversity
shows the inverse pattern, with average values between 0.002 and 0.004 but dropping to less than
0.001 in windows of environmentally associated regions (Fig 4). Linkage disequilibrium (LD)
was also elevated in these regions relative to the genome wide average (Fig 5). The increased LD
was apparent when averaged across scaffolds with environmental associations vs the overall
genome average, as well as for individual comparisons of the two main outlier-containing

scaffolds against a set of randomly selected comparable scaffolds with no outlier regions (Fig 5).

17



390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

In both sets of comparisons, the mean 72 measure of LD is higher for the environmentally
associated regions, with mean 72 for the genome-wide average and random scaffolds dropping to
zero within a shorter distance (~25 kb), whereas the scaffolds with strong environment
associations showed elevated 7 as far as 300 kb (Fig 5). Scaffold NW_02881829.1, which has
the largest outlier region, also had the highest mean 72 in the genome (Fig 5).

The elevated LD in putative outlier regions is consistent with patterns observed for
interspecies divergence islands identified in the B. vancouverensis — B. bifarius species complex
(Christmas et al. 2021). To localize approximate chromosomal locations of scaffolds with strong
genome environment associations, we aligned the scaffolds to homologous regions of the B.
terrestris linkage groups (near chromosome level assembly). Two regions of interest
(NW_02881829.1 and NW_02881786.1) were mapped to linkage group LG B11 of B. terrestris
(Fig 5). NW_02881829.1, which contained the densest cluster of SNPs in the genome maps
nearly on the end of LG11 (~0-1Mb), suggesting these genes probably also lie near the
chromosome end in B. vancouverensis. NW_02881786.1, which contains one of the top genes
associated only with elevation (LOC117156535, multidrug resistance-associated protein 4-like)
maps to the center of LG B11 (between ~6-8Mb position along LG B11) but does not appear to
be located near the putative centromere (see Christmas et al. 2021). There was a very weak albeit
significant relationship between repeat density and Fsr in 5 kb windows across the genome (R? <
0.001, F1,48354=36.92, p < 0.001), however, not all outlier-dense scaffolds showed this pattern.
NW_022881829.1 (located near a telomere) did show the positive relationship between Fst and
repeat density (R?= 0.0636, F1, 143=9.718, p =0.0022), but neither NW_022881786.1 (R*>=

0.0018, F1,361=0.6564, p = 0.42) or NW_022881902.1 (R*=0.0019, F'1,203= 1.56, p =0.212)
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showed a relationship, suggesting that not all highly differentiated SNPs were in unusually

repeat-rich regions (Fig 5).

Discussion

Using a whole-genome sequencing dataset for the montane bumble bee B.
vancouverensis, we discovered strong associations with environmental variables and unusual
patterns of diversity at several genomic regions based on environmental association analysis
(EAA) of SNPs, structural variants (SVs), and genome-wide patterns of diversity and linkage.
Several regions throughout the genome had large numbers of SNPs that were predominantly
associated with isothermality and/or elevation after controlling for population structure and using
two independent methods, and thus show potential signatures of local adaptation (Fig 2). These
association peaks tended to fall in regions of the genome that had increased linkage (Fig 5), low
7 and elevated F'st (Fig 4) compared to the rest of the genome. Several outlier structural variants
were also found within these regions, and although SVs produced patterns of regional population
structure consistent with prior SNP results (e.g., Jackson et al. 2018), there were relatively few
SV outliers and more work is required to better characterize these mutation types. Many of the
SNP outlier genes detected here have putative functions that would have adaptive value in
montane regions, including neuromuscular development and function, ion transport, and hypoxia
resistance. These putative functions would be relevant for Bombus that must fly and
thermoregulate in landscapes characterized by strong elevational changes and associated abiotic

variation.

19



435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

Patterns of environmental association

Genome regions with unusual patterns of diversity detected by both LFMM?2 and
OutFLANK were predominantly associated with isothermality and elevation, consistent with
prior RAD-Seq data in this species (Jackson et al. 2020). Some of the most notable outlier
containing genes appear to play a vital role in neural development, particularly neuromuscular
synapse formation and muscle formation, with overrepresented terms like “regulation of cardiac
muscle tissue development” and “cardiac myofibril assembly” and “synaptic target recognition”
(Supp. Table S4). For example, two genes LOC117157569 (Sax-3-like; dpr20 in D.
melanogaster) and LOC117157568 (synaptogenesis protein syg-2-like; side-VI in D.
melanogaster) were found in the highly associated region of environmentally associated
differentiation on NW_022881829.1; both genes code for immunoglobin domain proteins related
to synapse formation, especially in muscle (Igsf et al. 2015, Cheng et al. 2019). Notably, another
outlier, LOC117161157 on scaffold NW_022881902.1, is homologous to beat-Illc in D.
melanogaster, which together with side-V1 belong to the beaten path-sidestep interaction
networks involved in neuromuscular development in D. melanogaster (Li et al. 2017). All of
these genes were previously identified in the RAD-Seq data (Jackson et al. 2020). Other cross-
validated SNPs in genes that may be involved in synapse formation were detected outside of the
major environmentally associated regions, including LOC117158593 (SNPs in cilia- and
flagella-associated protein 20-like; Bug2?2 in D. melanogaster) and LOC117153469 (E3
ubiquitin-protein ligase Nedd-4; Nedd4 in D melanogaster) (Schnorrer et al. 2010, Zhong et al.
2011). Related to these neural and muscle function terms, GO analysis also provided support for
the importance of ion homeostasis (e.g., GO term “calcium ion transport”) (Supp. Table S4). For

example, significant SNPs associated with isothermality and elevation were also identified in
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plasma membrane calcium-transporting ATPase 3, which maintains calcium ion levels including
at the neuromuscular junction and could be relevant because of the important role calcium plays
in insect neuromuscular function (Iwamoto 2009) and cold tolerance (Seamus et al. 2018). The
redundancy analysis (RDA) of structural variants (SVs) also detected outliers in genes related to
muscle function that were not found in the SNP analysis, such as a deletion in LOC117165908
(syntaxin-binding protein 5; tomosyn in D. melanogaster) which has a role in motor axon
guidance and synaptogenesis (Kraut et al. 2001).

Neural and muscular function are expected to be highly relevant for bumble bees across
montane landscapes. Muscle function is crucial for thermoregulation to achieve flight in cold
temperatures for bumble bees (e.g., via shivering of thoracic muscles) (Heinrich 2004), and it is
possible that some candidate genes reflect selection related to stresses from varying thermal
conditions across the B. vancouverensis range. Furthermore, analyses in another species from
this region, B. vosnesenskii, found that lower critical thermal limits (CTwmm) correlated strongly
with temperature in populations in replicate elevation transects (Pimsler et al. 2020). Although
such data is not available in B. vancouverensis, CTm in bumble bees and other insects is likely
associated with physiological failure of the neuromuscular junction (Oyen et al. 2016, Overgaard
and MacMillan 2017), providing another possible mechanism by which selection may shape
variation across genes related to neural and muscle function across elevations. Muscle function
also may reflect stresses associated with bumble bee flight itself, which may face challenge in
high elevation populations as environmental conditions related to elevation have been noted to
alter various traits related to bumble bee flight such as wing loading and wing beat amplitude

(Dillon and Dudley 2014, Lozier et al. 2021).
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The largest SNP cluster associated only with elevation and no other Bioclim variable was
in the gene multidrug resistance-associated protein 4-like (MDRP4, LOC117156535) on one of
our focal scaffolds NW_022881786.1. This gene contained six cross-validated SNPs including
five nonsynonymous substitutions. This elevation-specific association is intriguing because in D.
melanogaster, multidrug resistance protein 4 is involved in the response to hypoxia and
oxidative stress (Huang and Haddad 2007) as well as being associated with adaptation to
elevation in alpine stoneflies (McCulloch et al. 2021). Hypoxia is a major challenge associated
with elevation and can be associated with a variety of responses such as changes in tracheal
physiology, metabolism, and activity levels (Harrison et al. 2018). Given that MDRP4 is one of
the few genes with outlier SNPs associated solely with elevation, this gene could be a strong
candidate for future research on elevational adaptation in B. vancouverensis.

Finally, it is notable that we found very few SNPs associated with precipitation (n = 6),
which is interesting given cross-validated SNPs were identified in several genes that had
functions involving the cuticle, which was also reflected in the GO results with terms such as
“cuticle hydrocarbon biosynthetic process” (Ferveur et al. 2018, Krupp et al. 2020). The cuticle
plays an important role in desiccation tolerance by limiting the water loss in response to the
environment (Ferveur et al. 2018). The lack of selective signal associated with precipitation
suggests a different variable may be shaping cuticle development, including a link between
desiccation and thermal tolerance (Sinclair et al. 2013, Nguyen et al. 2017, Manenti et al. 2018)
(please see below for further discussion of issues with assigning causal roles to environmental

variables).
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The Influence of Genomic Architecture on Adaptive Signatures

Many of the genes with outlier SNPs were also discovered in a previous RAD-Seq study
of B. vancouverensis (Jackson et al. 2020). This was somewhat surprising as bumble bees tend
have weak linkage disequilibrium (Sadd et al. 2015, Sun et al. 2020) that should reduce the
likelihood of sequencing SNPs that are or are linked to causal mutations using RAD-Seq
(Fuentes-Pardo and Ruzzante 2017, Lowry et al. 2017). In this case, it appears that RAD-Seq
data were in fact able to capture many of the same signatures of divergence detected here owing
to the large size of the main outlier regions, with LD and interpopulation differentiation within
these regions much larger than is typical in the remaining B. vancouverensis genome (Fig 5). The
whole-genome resequencing approach did identify loci that were not detected in the RAD-Seq
data, however, with the unique elevation-associated peak in MDRP4 being particularly notable,
as well as providing the potential to detect structural variants throughout the genome, although
these appear more limited. Taken together, our results suggest that RAD-Seq may be a useful
tool for capturing many genome-wide patterns of differentiation across large numbers of
populations and individuals in bumble bees, however, utilization of whole genome data will
likely be required to identify signatures of selection outside of high LD regions. At the same
time, if high LD regions harbor many putative adaptive loci, identifying sites targeted by
selection within blocks of linked SNPs will remain a challenge even within whole genome data.

Some of the results presented in our study also parallel recent genome resequencing
experiments that have identified how structural genome divergence may be related to gene flow
barriers in bumble bees, with such regions potentially harboring loci with adaptive significance
during the speciation process (Christmas et al. 2021). In two bumble bee species complexes, one

of which included B. vancouverensis with its sister species B. bifarius, islands of elevated
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divergence between taxa were generally found in areas of low recombination. Our LD analyses
show similar patterns at the intraspecific level within B. vancouverensis, suggesting that genome
architecture may play a role in within-species divergence even under overall general pattern of
low genome-wide differentiation and ongoing gene flow (e.g., Fst = ~0.02 here) and that many
potential signatures of adaptation may reside in regions of low recombination. Placement of
several scaffolds with dense outlier clusters in the B. ferrestris genome indicates that some
highly divergent loci fall in regions that may experience low recombination, such as near the
ends of chromosome LG B11 (Fig 5). Although allopatric divergence in the interspecific
comparisons (Christmas et al. 2020) did not specifically focus on major signatures of divergence
near the ends of chromosomes, regions near telomeres can harbor islands of divergence in other
species (Ellegren et al. 2012). Further research spanning the continuum of divergence from
populations to species will provide important clues into the emergence of islands of divergence
in bumble bees and their potential roles in intraspecific adaptation and speciation (Christmas et
al. 2021).

As mentioned earlier, detected structural variants (SVs) were far more limited than SNPs
both in total number and number of outliers. The lack of SVs in general, as well as some of the
large detected SVs that we suspect are artifacts in repeat-rich or polymorphic regions, may be
explained by the challenges in detecting structural variants from short reads (Mahmoud et al.
2019), so a targeted study using long read sequencing approaches may be required to fully
understand the role of structural variants in relation to the adaptation to environmental variables.
While the lack of outlier SVs relative to outlier SNPs is likely driven by the relatively small
number of SVs, there is a high degree of synteny across the genus (Sun et al. 2020) that may

indicate large adaptive SVs are relatively uncommon in Bombus. That said, prior work on
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elevational selection signatures in honey bees has demonstrated the importance of structural
variation, inversions in particular, for harboring locally adaptive genetic variation (Wallberg et
al. 2017), so additional work on detecting the role of large scale SVs in bumble bees is
warranted. Despite the limited number of outlier SVs, the parallels in results between the SNP
and SV analysis suggest that they may be shaped by similar forces. Both analyses showed
isothermality and elevation as driving evolution and there was considerable overlap between the
genomic regions that had outliers. Some of the genes with only SV outliers, such as
LOC117159534 (innexin shaking-B, ShakB in D. melanogaster) also seemed to have functions
similar to those with SNP outliers, and such functional overlap indicates that SVs and SNPs
could both contribute to local adaptation. It is also of interest that SVs generally captured
patterns of population structure in this species (Jackson et al. 2018), which has been noted in
other species as well, even outperforming SNP based markers (Dorant et al. 2020, Cayuela et al.
2021). Our data supports this prior work as it suggests SVs may be utilized as useful genetic

markers generally for population genomic studies.

Do outlier environmentally associated regions indicate selection?

The cross-validated outlier regions detected in this study are clearly unusually divergent
across the B. vancouverensis range compared to most of the genome; however, assigning
adaptive function to these candidate loci will require additional research. Environmental
variation is commonly spatially autocorrelated so it is important to consider demographic effects
that may produce allele frequency differences among populations (Hoban et al. 2016). EAA
models that explicitly incorporate population structure, like LFMM2, have a reduced false

discovery rate compared to models that are unable to account for population structure or even
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earlier versions of the same methods (Luo et al. 2021). The models employed in our research to
detect outliers and environmental associations are both relatively robust to population structure,
with LFMM?2 incorporating the number of population clusters (k) to account for the underlying
genetic differentiation that could arise from population structure or isolation by distance and
OutFLANK also having low false positive rates under a range of demographic models (Whitlock
and Lotterhos 2015, Luo et al. 2021). Since the two methods have different statistical
assumptions, in combination, they add support for many of the detected outliers being true
positives. The low diversity and elevated Fist in the cross-validated outlier regions are also
consistent with selective sweeps, but it is important to consider that outlier “islands of
divergence” can arise due to neutral processes (Quilodran et al. 2020), especially in regions of
low recombination (Booker et al. 2020). Using the genome data alone it is difficult to determine
whether any of the outlier regions in high linkage regions harbor loci under selection, and
certainly the large number of linked outlier SNPs or SVs within certain genes (e.g.
LOC11515769, LOC117157568) are not all adaptive. Most SNPs in outlier regions were
noncoding and the co-localization with structural variants could indicate these are “structural
islands” that result from neutral processes and do not necessarily have adaptive value (Ravinet et
al. 2017), but could also be subject to hitchiking from a recent selective sweep in the region
(Kim & Nielsen 2004). Further, the non-coding SNPs may fall in regulatory regions and have
regulatory implications (Wittkopp and Kalay 2012) so this does not necessarily preclude a role
for selection. That said, some outlier regions (e.g., the elevation-associated multidrug resistance
protein 4) include non-synonymous changes, a unique association with an environmental
variable, and little evidence for strong linkage or elevated repeat structure. We thus find it likely

that outliers regions detected in our study do harbor loci that may be contributing to local
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adaptation, but also may contain loci that are being shaped by other processes (e.g. barriers to
gene flow) (Ravinet et al. 2017).

A similar issue that results from autocorrelation of environmental variables is that
bioclimatic variables included in analyses may not be the direct selective pressure influencing
outlier SNP frequencies (Ahrens et al. 2018, Jackson et al. 2020). Using abiotic variable
reduction helps with correlations for modeling but assigning adaptive significance in the face of
such correlations remains a general challenge. The variables used in the models can provide
important insight into the factors shaping the biology of B. vancouverensis even if the direct
causal variable is not included. Isothermality, which had the largest number of outlier loci,
represents the size of the average daily temperature range relative to the annual temperature
range (O’Donnell and Ignizio 2012) and thus could capture the biological phenomena relating to
season length, day length, or elevation, in addition to effects on thermal tolerance (CTmin)(Wang
and Dillon 2014, Diamond and Chick 2018, Jackson et al. 2020). Given the seeming importance
of CTwmin variation across Bombus species ranges (Pimsler et al. 2020, Martinet et al. 2021), it is
possible that bumble bees in thermally variable environments that experience a wider array of
temperature fluctuations may require genetic changes relating to thermoregulation (Heinrich
2004). However, pinpointing the specific abiotic factor driving potentially adaptive shifts in
allele frequency at outlier loci with respect to any predictor variable will require physiology
experiments on populations from throughout the B. vancouverensis range.

In conclusion, we detected several regions within the genome with outlier variants that
have associations with environmental variables of interest in B. vancouverensis. Our results
provide detailed data on the factors shaping within species genetic diversity within this bumble

bee across its range and provide a useful starting point for rigorous field and lab-based
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experiments to assess if these candidate genes play a role in adaptation and how they might alter
fitness for niche-specific adaptation. Although lab rearing of wild bumble bees is particularly
challenging, improving techniques to maintain laboratory colonies of montane species have
increased the feasibility of geographically comprehensive common garden experiments (e.g.,
Pimsler et al. 2020) and developmental studies (Tian et al. 2019, Rahman et al. 2021b). For
instance, given our detection of outlier SNPs relating to neuromuscular function, cuticle
composition, and hypoxia resistance, further studies could be designed to evaluate differences in
physiology between individuals from different regions of the range examining the various
properties of muscle function or exoskeleton composition. Our results also provide novel insights
into population divergence across complex landscapes, which could play an important role in
addressing evolutionary questions and might be especially helpful to contend with more practical
conservation related issues such as understanding how current and future environmental changes
from the global warming and climate change may shape the future distributions of species and

their underlying adaptive genetic variation.
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Figure Captions

Figure 1: Map of sampling locations (white circles) superimposed on a Maxent species
distribution model of the Bombus vancouverensis range generated following Cameron et al.
(2011). Areas of high suitability (darker colors) indicate the area inhabited by Bombus

vancouverensis. Inset image shows a picture of Bombus vancouverensis

Figure 2: Plot of -log(g-values) from OutFLANK across all scaffolds 100kb or lager (scaffolds

are of different sizes but x-axes are scaled here for graphical purposes, see Table 2 to find precise

SNP locations). The solid black line in each scaffold represents the g-value threshold of 0.01.
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Point coded as “BOTH?” are significant in both model outputs (LFMM?2 and OutFLANK). Points
coded as “LFMM” were significant in the LFMM?2 model only, otherwise points above the black

line were found to be significant only in OutFLANK.

Figure 3: Ordination plots of significant models (p < 0.05) from Redundancy analysis (RDA)
showing the population structure of samples based on the different SV types; Deletions,
Duplications, and Inversions. Large colored points show sample state of origin and small grey

points show individual SVs.

Figure 4: Global Fst and average within-population nucleotide diversity (n) averaged over 5 kb
windows for outlier-dense focal scaffolds NW_02881786.1, NW_02881829.1, and

NW_02881902.1 with outlier regions in the highlighted boxes

Figure 5: A) Smoothed average linkage across two largest outlier scaffolds (NW_02881829.1
and NW_02881902.1) (dark colored line) versus genome wide linkage (light colored line). B)
Same as (A), but showing the average linkage per base-pair across largest outlier scaffolds (top)
versus genome wide linkage (bottom). C) Smoothed average of outlier scaffolds
(NW_02881829.1 and NW_02881902.1 in dark color) versus collection of 10 randomly
scaffolds (Supp. Table S2) that did not contain outliers (light color). D) Diagram of positioning
of B. vancouverensis scatfolds with outlier regions against LG11 of Bombus terrestris. Scaffold
NW_022881902.1 was unplaced in the B. ferrestris genome and is not shown. E) Relationship
between Fsr and repeat content across the genome as well as across select scaffolds with high

outlier density (NW_022881786.1, NW _022881829.1, and NW_022881902.1). All plots include
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Table 1: All cross validated SNPs from the output of LFMM2 and OutFLANK. Table shows: the NCBI Gene ID number and name for

each gene (or the genes on either side of an intergenic region), the homologous gene in D. melanogaster, the number of cross

validated SNPs found in each gene or intergenic region, the environmental variable associated with the SNP based on LFMM?2, and

the scaffold the SNP falls on.

Environmental
Gene ID Gene Name Fly Homolog No. SNPS  Variable(s) Scaffold
LOC117153469 E3 ubiquitin-protein ligase Nedd-4 Nedd4 1 BIO3 NW _022881760.1
LOCI117153944- zinc finger protein 100-like - uncharacterized #N/A - #N/A 1 BIO3 NW_022881760.1
LOC117155827
LOC117158937 heterogeneous nuclear ribonucleoprotein A3 #N/A 1 BIO3 NW_022881761.1
homolog 2-like
LOC117166763 calcium/calmodulin-dependent 3',5'-cyclic Pdelc 1 BIO3 NW_022881765.1
nucleotide phosphodiesterase 1-like
UTP--glucose-1-phosphate uridylyltransferase UGP 2 BIO3 NW _022881773.1
LOC117154601
LOC117154414 NADPH--cytochrome P450 reductase Cpr 1 BIO3 NW _022881773.1
LOC117154436 uncharacterized #N/A 2 BIO3, Elev NW_022881773.1
LOC117154435 cilia- and flagella-associated protein 47-like #N/A 2 BIO3, Elev NW_022881773.1

46



Environmental

Gene ID Gene Name Fly Homolog No. SNPS  Variable(s) Scaffold
LOC117154605- m7Gpppx diphosphatase - uncharacterized CG2091 - #N/A BIO3 NW _022881773.1
LOC117154606
LOC117154606- uncharacterized - macoilin #N/A - CG30389 BIO3 NW_022881773.1
LOC117154599
LOC117154426- protein TAPT1 homolog - elongation of very long CG7218 - #N/A BIO3 NW_022881773.1
LOC117154433 chain fatty acid protein 6-like
LOCI117154433- elongation of very long chain fatty acid protein 6- #N/A - #N/A BIO3 NW_022881773.1
LOC117154432 like - elongation of very long chain fatty acid
protein 6-like
LOCI117155271 E3 ubiquitin-protein ligase Rnf220-like CG4813 BIO3 NW_022881777.1
LOC117155885 mitochondrial sodium/calcium exchanger protein- CG14744 BIO3, BIO12  NW _022881780.1
like
LOC117155870- uncharacterized - chr end 2mit - #N/A BIO3 NW_022881780.1
CHR_END
LOC117156425 GTPase-activating protein RasGAPI BIO3, Elev NW_022881785.1
LOCI117156434 glutamic acid-rich protein-like Asph BIO3,Elev NW_022881785.1
LOCI117156445 uncharacterized #N/A Elev NW_022881785.1
LOCI117156425- GTPase-activating protein - glutamic acid-rich RasGAPI1 - Asph BIO3,elev NW_022881785.1
LOC117156434 protein-like
LOCI117156686 DENN domain-containing protein 1A CG18659 Elev NW_022881786.1
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Environmental

Gene ID Gene Name Fly Homolog No. SNPS  Variable(s) Scaffold
LOCI117156494 nuclear pore complex protein Nup133 Nupl133 1 Elev NW_022881786.1
LOC117156535 multidrug resistance-associated protein 4-like CG5789 6 Elev NW _022881786.1
LOC117156538- uncharacterized - multidrug resistance-associated CG32206 - #N/A 1 elev NW _022881786.1
LOC117156535 protein 4-like

LOC117157367 uncharacterized #N/A 1 BIO3 NW _022881796.1
LOCI117157569 protein sax-3-like dpr20 36 BIO3,Elev NW_022881829.1
LOC117157568 synaptogenesis protein syg-2-like side-VI 66 BIO3,Elev NW _022881829.1
LOC117157569- protein sax-3-like - synaptogenesis protein syg-2- dpr20 - side-VI 263  BIO3.elev NW _022881829.1
LOC117157568 like

LOCI117157921 UDP-glucuronosyltransferase 2B17-like Ugt35C1 1 BIO3 NW_022881833.1
LOCI117158648 tyrosine-protein kinase Drl Drl-2 3 BIO3 NW_022881846.1
LOC117158660 protein sister of odd and bowel-like CG4374 1 BIO3 NW _022881846.1
LOC117158593 cilia- and flagella-associated protein 20-like Bug2?2 1 BIO3,Elev NW_022881846.1
LOCI117158711 UPF0489 protein C5o0rf22 homolog MESRG6 3 BIO3 NW_022881847.1
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Environmental

Gene ID Gene Name Fly Homolog No. SNPS  Variable(s) Scaffold
LOC117158916 uncharacterized #N/A 2 BIO3 NW _022881848.1
LOCI117159416- leucine-rich repeat-containing protein 24-like - kek2 - #N/A 5 BIO3,elev NW_022881861.1
LOC117159440 uncharacterized

LOC117160564 5-hydroxytryptamine receptor-like RYa-R 1 BIO3 NW_022881886.1
LOC117160713 chaoptin-like CG42346 1 BIO3 NW_022881888.1
LOC117160671 ATP-binding cassette sub-family G member 1 CG5853 1 BIO3 NW _022881888.1
LOC117160670- ATP-binding cassette sub-family G member 1-like - CG9663 - kdm4b 2 BIO3 NW _022881888.1
LOC117160662 lysine-specific demethylase 4c-like

LOC117160794 fatty acyl-CoA reductase 1-like CG5065 1 BIO3 NW_022881895.1
LOCI117160785- uncharacterized - zinc finger protein 184-like #N/A - #N/A 1 BIO3 NW_022881895.1
LOC117160792

LOCI117160792- zinc finger protein 184-like - vicilin-like seed #N/A - #N/A 1 BIO3 NW_022881895.1
LOC117160793 storage protein At2g18540

LOC117160794- fatty acyl-CoA reductase 1-like - fatty acyl-CoA #N/A - #N/A 1 BIO3 NW _022881895.1
LOC117160795 reductase 1-like

LOC117160795- fatty acyl-CoA reductase 1-like - chr end #N/A - #N/A 2 BIO3 NW _022881895.1
CHR_END

LOC117161190 pro-resilin-like Cpr50Cb 2 BIO3 NW_022881902.1
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Environmental

Gene ID Gene Name Fly Homolog No. SNPS  Variable(s) Scaffold

LOCI117161192 N66 matrix protein-like Cpr50Cb 2 BIO3 NW_022881902.1
LOC117161197 uncharacterized #N/A 3 BIO3 NW _022881902.1
LOC117161196 60S ribosomal protein L35 RpL35 1 BIO3 NW_022881902.1
LOC117161193 L-selectin CG6055 1 BIO3 NW _022881902.1
LOC117161103 adenomatous polyposis coli protein-like Apc 1 BIO3 NW _022881902.1
LOCI117161064 ras-related protein Rab-11A Rabl1 1 BIO3 NW_022881902.1
LOC117161116 uncharacterized CGI13138 15 BIO3 NW _022881902.1
LOCI117161115 low-density lipoprotein receptor-related protein 2 mgl 2 BIO3 NW_022881902.1
LOC117161235 transmembrane emp24 domain-containing protein bai 1 BIO3 NW_022881902.1

bai

LOCI117161224 protein cordon-bleu-like CG2841 1 BIO3 NW_022881902.1
LOCI117161157 uncharacterized beat-Illc 5 BIO3,BIO12 NW_022881902.1
LOCI117161181 phosphatidylinositol-binding clathrin assembly lap 2 BIO3 NW_022881902.1

protein LAP
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Environmental

Gene ID Gene Name Fly Homolog No. SNPS  Variable(s) Scaffold

LOC117161180 xanthine dehydrogenase/oxidase-like AOX3 36 BIO3 NW _022881902.1

LOC117161100 plasma membrane calcium-transporting ATPase 3 PMCA 36 BIO3,Elev NW_022881902.1

LOCI117161197- uncharacterized - unconventional refolding RPB5 #N/A - uri 1 BIO3 NW_022881902.1

LOC117161189 interaction-like protein

LOCI117161194- MIIP18 family protein galla-1 - alanine galla-1 - CG1640 2 BIO3 NW_022881902.1

LOC117161188 aminotransferase 1

LOC117161103- adenomatous polyposis colii protein-like - small #N/A - SmD3 1 BIO3 NW _022881902.1

LOC117161251 nuclear ribonucleoprotein Sm D3

LOCI117161081- protein tramtrack, beta isoform-like - rib - #N/A 3 BIO3 NW_022881902.1

LOC117161088 uncharacterized

LOCI117161080- synembryn-A - brain tumor protein-like rica8a - mei-P26 2 BIO3 NW_022881902.1

LOC117161076

LOC117162971- probable serine/threonine-protein kinase MARK-A  #N/A - #N/A 1 elev NW _022882360.1

LOC117162978 - uncharacterized

LOC117164862 mannosyl-oligosaccharide 1,2-alpha-mannosidase alpha-Man-Ia 1 BIO3 NW_022882548.1
1A

CHR_START- chr start - uncharacterized #N/A - #N/A 1 BIO3 NW_022882562.1

LOC117165093

LOCI117165093- uncharacterized - uncharacterized #N/A - #N/A 1 BIO3 NW_022882562.1

LOC117165099

LOC117165099- uncharacterized - uncharacterized #N/A - #N/A 2 BIO3 NW_022882562.1

LOC117165101
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Table 2: All outlier SVs identified from the Redundancy analysis (RDA). The table notes: the type of SV as either a deletion (Del) or
inversion. (Inv), the scaffold the SV is located on, the start position of the SV, the NCBI gene ID and name of gene(s) spanned by the

SV, and the total length of the SV in bp.
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SV

Type Scaffold Start Location Length
Del NW_022881761.1 4656001 LOCI117164506 (peptide-N(4)-(N-acetyl-beta-glucosaminyl) asparagine 65
amidase
Del NW _022881772.1 3192657 LOCI 17)154137 (uncharacterized loci) 10126
Del NW _022881829.1 507180 intergenic 137
Del NW _022881829.1 518415 intergenic 158
Del NW _022881829.1 549109 intergenic 47
Del NW_022881829.1 649945 LOCI117157568 (synaptogenesis protein Syg-2-like) 65
Del NW_022881829.1 661084 LOCI117157568 (synaptogenesis protein Syg-2-like) 107
Del NW _022881832.1 2130734 intergenic 249
Del NW _022881861.1 2754083 intergenic 1462
Del NW _022881862.1 2343632 LOCI117159534 (innexin shaking-B) 112
Del NW _022881865.1 581715 intergenic 52
Del NW_022881877.1 854738 LOCI117160152 (uncharacterized loci) 571
Del NW_022881879.1 378524 LOCI117160263 (RNA-binding protein Musashi homolog Rbp6) 94
Del NW_022881881.1 715676 LOCI117160393 (cadherin EGF LAG seven-pass G-type receptor 1-like) 69
Del* NW _022881881.1 895567  multiple genes 385647
Del NW _022881881.1 1165612 LOCI117160315 (tyrosine-protein. Kinase Btk29A) 73
Del NW _022881888.1 733080 LOCI117160713 (calcium-binding mitochondrial carrier protein 281
SCaMC-2)
Del NW 022881991.1 365611 LOCI117162117 (uncharacterized) 1133
Del NW _022882286.1 2868480 LOC117162727 (cadherin-23) 867
Del NW_022882406.1 6267958 LOCI117163555 (sex determination protein fruitless)/LOC117163556 126
(uncharacterized)
Del NW _022882540.1 1089009 multiple genes 23855
Del NW _022882918.1 4984008 LOCI117165908 (syntaxin-binding protein 5) 864
Inv NW _ 022881784.1 372519 LOCI117156304 (hemicentin-1-like) 136
Inv NW _022881881.1 1233941 LOCI117160315 (tyrosine-protein kinase Btk29A) 47273
Inv NW _022882023.1 165412  intergenic 662

Footnote: * May represent an artefact in the reference genome or an issue with alignment due to large size of SV.
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