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Abstract 24 

Broadly distributed species experience divergent abiotic conditions across their ranges that may 25 

drive local adaptation. Montane systems where populations are distributed across both latitudinal 26 

and elevational gradients are especially likely to produce local adaptation due to spatial variation 27 

in multiple abiotic factors, including temperature, oxygen availability, and air density. We use 28 

whole genome resequencing to evaluate the landscape genomics of Bombus vancouverensis 29 

Cresson, a common montane bumble bee that is distributed throughout the western part of North 30 

America. Combined statistical approaches revealed several large windows of outlier SNPs with 31 

unusual levels of differentiation across the region and indicated that isothermality and elevation 32 

were the environmental features most strongly associated with these variants. Genes found 33 

within these regions had diverse biological functions, but included neuromuscular function, ion 34 

homeostasis, oxidative stress, and hypoxia that could be associated with tolerance of 35 

temperature, desiccation, or high elevation conditions. The whole genome sequencing approach 36 

revealed outliers occurred in genome regions with elevated linkage disequilibrium, elevated 37 

mean FST and low intrapopulation nucleotide diversity. Other kinds of structural variations were 38 

not widely associated with environmental predictors but did broadly match geographic 39 

separation. Results are consistent with other studies suggesting that regions of low recombination 40 

may harbor adaptive variation in bumble bees within as well as between species and refine our 41 

understanding of candidate genes that could be further investigated as possible targets of 42 

selection across the B. vancouverensis range. 43 
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Introduction: 48 

 A major focus in evolutionary biology is understanding the genetic changes associated 49 

with species adaptation to abiotic conditions throughout their ranges (Manel et al. 2010, Orr 50 

2005, Dillon and Lozier 2019). In broadly distributed species, populations must contend with 51 

different climatic stressors produced by large scale abiotic gradients (Savolainen et al. 2013, 52 

Cayuela et al. 2021), which may require unique adaptations that produce signatures of divergent 53 

selection within the genome (Hoban et al. 2016, Ahrens et al. 2018). Recent technological and 54 

statistical advances have created opportunities for identifying such signatures in wild populations 55 

of non-model organisms (Ellegren 2014, Ahrens et al. 2018, Luo et al. 2021) and the ever-56 

increasing availability of species-specific reference genomes has made it possible to begin 57 

addressing questions about the genome structure of putative adaptations using whole genome 58 

data (Fuentes-Pardo and Ruzzante 2017, Taylor et al. 2021).  59 

 Species that occur in landscapes with substantial variation in environmental conditions 60 

provide opportunities for investigating environmentally associated genomic divergence that can 61 

indicate local adaptation (Joost et al. 2007, Eckert et al. 2010, Jackson et al. 2020, Yadav et al. 62 

2020, Lim et al. 2021). Montane systems are an excellent example of a complex landscape where 63 

latitude and altitude together can produce changes in abiotic conditions over both large and small 64 

spatial scales (Keller et al. 2013, Rahbek et al. 2019). Some variables (e.g., air pressure, 65 

atmospheric oxygen, and temperature) will shift sharply across elevations (Dillon 2006, 66 

Cheviron and Brumfield 2012), while others, such as temperature, can vary with both elevation 67 

and more gradually with latitude. Such changes in environmental conditions and can impose 68 

strong selective pressures that may require physiological adaptations, and montane species with 69 

broad altitudinal and latitudinal ranges offer unique opportunities to sample multiple spatial-70 
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environmental gradients to identify the genomic signatures of such adaptations (Dillon 2006, 71 

Cheviron and Brumfield 2012, Jackson et al. 2018, 2020, Montejo-Kovacevich et al. 2019, 72 

Pimsler et al. 2020). 73 

In this study we employ whole genome resequencing (WGR) to evaluate genome-wide 74 

patterns of divergence and potential signatures of environmental adaptation in Bombus 75 

vancouverensis Cresson (Ghisbain et al. 2020), a bumble bee (Hymenoptera: Bombus) species 76 

that is abundant in mountainous regions of western North America. Bumble bees are a widely 77 

distributed genus of pollinators that consists of approximately 250 species globally (Cameron et 78 

al. 2007, Cameron and Sadd 2020). The genus is common in many biomes but has an 79 

evolutionary history associated with mountainous regions, which have played an important role 80 

in their diversification (Hines 2008, Williams et al. 2018, Lee et al. 2019, Orr et al. 2020). 81 

Several key traits may facilitate adaptation to complex montane landscapes in bumble bees. For 82 

example, bumble bees have evolved traits to deal with climate extremes, including insulating 83 

hairs (pile) and facultative thermoregulation mechanisms (e.g., “shivering” of flight muscles) for 84 

maintaining activity in cold temperatures, while also having the capacity to shunt excess heat 85 

from the thorax to abdomen to prevent overheating (Heinrich and Kammer 1973, Heinrich 1976, 86 

Heinrich 2004, Woodard 2017). Recent work suggests that intraspecific populations vary in 87 

thermal tolerance across species ranges, especially cold tolerance (Pimsler et al. 2020, Martinet 88 

et al. 2020), and gene expression under thermal stress suggests that populations may exhibit 89 

molecular variation that can facilitate responses to temperature extremes (Pimsler et al. 2020). 90 

Beyond temperature, bumble bees have traits that may facilitate life across elevations, including 91 

for flight at reduced air density and oxygen levels, such as metabolic changes, wing beat 92 
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kinematics and reduced body size or wing loading (Dillon 2006, Dillon and Dudley 2014, Liu et 93 

al. 2020, Lozier et al. 2021).  94 

This study expands on recent population genomics work (Jackson et al. 2018, 2020) that 95 

used RAD-tag sequencing to characterize spatial-environmental drivers of gene flow and identify 96 

selection in B. vancouverensis across the Sierra-Cascade region of the western United States. 97 

Like many North American Bombus species (e.g., Lozier et al. 2011), B. vancouverensis is 98 

characterized by weak population structure (e.g., mean FST is < 0.05) (Lozier et al. 2013, Jackson 99 

et al. 2018), although genetic differentiation does increase with distance and with bioclimatic 100 

resistance (Jackson et al. 2018). Environmental Association Analysis (EAA) with these RAD-tag 101 

data has revealed unusual associations with bioclimatic variables for over 100 single nucleotide 102 

polymorphisms (SNPs) in genes that were consistent with signatures of selection across the 103 

genome. Morphological analyses have also found intraspecific body size clines across the region, 104 

with notable reductions in mass and wing loading in bees from the southern High Sierras portion 105 

of the B. vancouverensis range (Lozier et al. 2021), further suggesting the possibility of local 106 

adaptation.  107 

An important caveat to prior population genomic analyses in B. vancouverensis is that 108 

linkage disequilibrium (LD) is weak in Bombus (Stolle et al. 2011, Sadd et al. 2015). In such 109 

situations, RAD-tag data may incompletely survey the genome (Lowry et al. 2017) and a WGR 110 

approach could prove beneficial for identifying localized signals of selection (Fuentes-Pardo and 111 

Ruzzante 2017). Jackson et al. (2020) also relied on mapping reads to the genome of a related 112 

species, Bombus impatiens, but an annotated B. vancouverensis genome has recently been 113 

published (Heraghty et al. 2020), which may improve the ability to detect species-specific 114 

regions harboring locally adaptive variants. Whole genome data also enable examination of other 115 
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aspects of genomic architecture that are relevant in understanding patterns of adaptation and 116 

evolution. Structural variants (SV’s) are a variety of different mutations (e.g. inversions, 117 

deletions, insertions, etc.) that can provide insight in population structure (Dorant et al. 2020, 118 

Cayuela et al. 2021) as well as adaptation (Joron et al. 2011, Wellenreuther et al. 2019). SV’s 119 

have been found to play a role in elevation adaptation in the European Honey Bee Apis mellifera 120 

(Wallberg et al. 2017) and could also be relevant in Bombus. In addition, spatial patterns of 121 

linkage disequilibrium and nucleotide diversity in the genome can give insight into processes of 122 

both adaptation and speciation that may not be visible without whole genome data (Christmas et 123 

al. 2021). Regions of elevated FST, decreased nucleotide diversity and increased linkage 124 

disequilibrium, often referred to as “Islands of Divergence”, can be produced following 125 

divergence between both populations and closely related species, and may be especially 126 

interesting when observed in the face of gene flow among populations within species (Ellegren et 127 

al. 2012, Papadopulos et al. 2019, Christmas et al. 2021).   128 

 We use WGR of B. vancouverensis sampled across a latitudinal montane gradient in the 129 

Sierra-Cascades region of western North America to examine patterns of differentiation across 130 

the genome and refine possible targets of environmentally-associated selection that were 131 

previously suggested from reduced representation sequencing. We combine landscape genomics 132 

approaches that employ FST outlier detection with Environmental Association Analysis (EAA) 133 

models to identify locally adapted genetic markers candidate SNPs (Hoban et al. 2016, Storfer et 134 

al. 2018, De la Torre et al. 2019, Hartke et al. 2020, Lim et al. 2021). The objectives of this study 135 

are to sample across broad latitudinal and altitudinal gradients to identify genomic variants 136 

(SNPs and SVs) that are associated with environmental variation, especially those that may 137 

contribute to local adaptation to key environmental variables such as temperature and elevation. 138 
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We also aim to evaluate patterns of FST, nucleotide diversity, and linkage throughout the genome 139 

that may help better characterize the nature of regions exhibiting unusual interpopulation 140 

differentiation. Overall results provide new data on how complex landscapes drive changes in 141 

genomic variants, diversity, and architecture in montane species.  142 

 143 

 Materials and Methods 144 

Sampling, DNA Extraction, and Whole Genome Resequencing 145 

 Bombus vancouverensis workers (diploid females) were selected for whole-genome 146 

resequencing from previously collected samples (Jackson et al. 2018, 2020) representing 147 

populations from environmental extremes across elevation and latitude in the California, Oregon, 148 

and Washington portion of the species range (36°N – 48°N latitude, 49m - 2900m 149 

elevation)(Figure 1, Supp. Table S1). Detailed characterization of sampling localities was 150 

presented in (Jackson et al. 2018, 2020). We attempted to include bees from locations that were 151 

at a relatively high and relatively low elevation across latitudes, but B. vancouverensis is 152 

generally restricted to its highest elevation sites in the southern part of the species range in the 153 

High Sierras, while the lowest elevation sites are in the north. Flying bees were collected at each 154 

site using sweep nets and placed in 100% ethanol on dry ice. Samples were ultimately stored in 155 

ethanol at -80°C.  156 

 DNA was extracted from thoracic muscle tissue using the Qiagen DNeasy Blood and 157 

Tissue kit (Hilden, N.R.W., Germany). Genomic DNA libraries were prepared using the 158 

NEBnext Ultra II FS DNA kit (Ipswich, MA, USA) with subsequent 150 bp paired-end 159 

sequencing using an Illumina NovaSeq 6000 (one lane at HudsonAlpha Institute for 160 

Biotechnology, Huntsville, AL, and another one at Psomagen, Rockville, MD). 161 
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 162 

Read Mapping and Variant Calling 163 

 Raw reads were processed using BBDuk v37.32 (Bushnell 2020) to remove adaptors, 164 

trim low quality bases, and remove short reads (ktrim=r k=23 mink=11 hdist=1 tpe tbo ftm=5 165 

qtrim=rl trimq=10 minlen=25). Trimmed reads were evaluated for quality using FastQC v0.11.5 166 

(Andrews 2010). Reads were then mapped to the B. vancouverensis reference genome (NCBI 167 

RefSeq ID: GCF_011952275.1) (Heraghty et al. 2020) using the BWA-MEM algorithm of BWA 168 

v0.7.15-r1140 (Li and Durbin 2009) and generated alignment (i.e., SAM) files were converted to 169 

the binary (BAM) format using SAMtools v1.10 (Li et al. 2009). Picard tools v2.20.4 (Broad 170 

Institute 2019) was used to sort, mark duplicates, and index the binary alignment (BAM) files. 171 

Single nucleotide polymorphisms (SNPs) were called using freebayes v1.3.2 (Garrison and 172 

Marth 2012). An initial round of variant filtering was conducted on the variant calling file 173 

produced by freebayes using VCFtools  v0.1.13 (Danecek et al. 2011) with the following flags: --174 

remove-indels --min-alleles 2 --max-alleles 2 --minQ 20 --minDP 4 --max-missing 0.75. After 175 

visual inspection of the data, we removed an additional small number of SNPs (n=45,872) with 176 

unusually high coverage (>2x mean coverage) or excess heterozygosity (--hardy flag in 177 

vcfttools) that could indicate repeat regions or paralogous sequences. A final round of variant 178 

filtering was then performed to focus on SNPs from intact scaffolds (>100 kb in size) with minor 179 

allele frequencies (MAF) ≥ 0.05 to remove the influence of low frequency alleles and SNPs in 180 

regions that may have assembly artifacts. SNPs were annotated using SNPeff v4.3 (Cingolani et 181 

al. 2012) and missing data was imputed for some analyses that required a complete matrix using 182 

the phasing function in Beagle v5.1 (Browning et al. 2018).  183 
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 Structural variants (SVs) were identified using DELLY v0.8.1 (Rausch et al. 2012) from 184 

the binary alignment (i.e.,BAM) files described above. DELLY was run with the -all parameter 185 

which enables detection of deletions, duplications, inversions and transversions. The DELLY 186 

output was converted (from a bcf to vcf format) using BCFtools v1.10.2 (Li et al. 2009) then 187 

filtered to only retain SVs that were supported by multiple high quality reads (PASS) and by split 188 

reads (PRECISE). As for SNPs, we only evaluated SVs on the genome longer than 100 kb.  189 

 190 

Environmental Variable Selection and Genome Environment Association Analyses 191 

 Environmental conditions at each site were charactered using the 19 Bioclim variables at 192 

0.5 arc minute resolution from the WorldClim v2 database (Fick and Hijmans 2017) via the 193 

raster v3.3-14 R package (Hijams 2021). To select the variables providing unique information 194 

for analysis, we performed item clustering using the iclust function with default settings in the 195 

psych v2.0.12 R package (Revelle 2020). A single variable was then selected from each cluster to 196 

be included in the subsequent modeling approaches. Although elevation is correlated with 197 

environmental conditions, elevation has its own associated stressors, such as reductions in air 198 

density and oxygen availability (Dillon 2006, Cheviron and Brumfield 2012, Lim et al. 2021). 199 

Given the hypothesized importance for bumble bees generally (Dillon et al. 2006) and B. 200 

vancouverensis specifically (Lozier et al. 2021), elevation was also included as a variable for 201 

Environment Association Analysis (EAA) to identify genomic regions that have undetected 202 

unique associations from any other bioclimatic variables. 203 

Environmental association analyses to identify loci with putative signatures of local 204 

adaptation to abiotic variables were performed using latent factor mixed modeling (LFMM2 in 205 

LEA v3.0.0 R package) (Gain and François 2021). LFMM2 implements a least-squares approach 206 
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to identify SNPs with a significant association with the environmental variables of interest after 207 

controlling for population structure. Utilization of this approach is particularly advantageous in 208 

that it is faster than earlier versions of the software (Caye et al. 2019) and is more conservative in 209 

terms of false positives (Luo et al. 2021). The optimal number of population clusters (k) for 210 

population structure control was determined with sMNF (implemented in LEA v3.0.0 R 211 

package) (Frichot and François 2015) as the k represents the smallest cross-entropy. To account 212 

for multiple testing, the q-value v2.20.0 R package (Storey, Bass, Dabney, & Robinson, 2020) 213 

was used to transform the p-values produced by LFMM2 into q-values. Significant 214 

environmentally-associated loci were considered at a threshold of q ≤ 0.05. 215 

Employing multiple models for methodological cross-validation is a standard practice in 216 

studies to detect local adaptation to further reduce the potential for false positives (De la Torre et 217 

al. 2019, Hartke et al. 2020, Jackson et al. 2020). As a second approach to confirm results from 218 

LFMM2, we used OutFLANK v0.2 (Whitlock and Lotterhos 2015), implemented using the 219 

default settings in the SambaR R package/wrapper v1.00 (de Jong et al. 2021). We selected 220 

OutFLANK as a complementary approach because this method does not depend on associations 221 

with environmental variables like LFMM2 approach, but rather detects SNPs using an FST outlier 222 

approach. Individuals were pooled into populations by sampling coordinates and loci with 223 

heterozygosity > 0.1 were used for the OutFLANK analysis (default). The p-values produced by 224 

OutFLANK were corrected for multiple testing by converting to q-values using default threshold 225 

settings to select outliers (q ≤ 0.01). Cross-validated loci were then identified as those detected as 226 

significant from both LFMM2 and OutFLANK approaches.  227 

To analyze the of structural variations detected in the B. vancouverensis genome, SV 228 

categories (deletions, duplications, inversions, and transversions) were separated and analyzed 229 
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using the RDA function implemented in vegan v2.5-7 (Oksanen et al. 2020). RDA (Redundancy 230 

Analysis) is a robust and flexible approach for a variety of questions in landscape genomics and 231 

is particularly advantageous for analysis of SVs because of the relative low numbers of detected 232 

SVs (Capblancq and Forester 2021). We use (Redundancy Analysis) RDA here because SVs also 233 

represent a novel data type for B. vancouverensis, and RDA provides the opportunity to 234 

simultaneously examine unusual differentiation at individual outlier regions alongside general 235 

patterns of population structure among individuals to compare with prior knowledge of overall 236 

population genetic structure in this species. Overall model significance was assessed using the 237 

anova.cca function in R (from the vegan v2.5.7 package) and each axis was tested for 238 

significance to identify which axes represented non-random variation (Legendre et al. 2011). 239 

Significant axes were then evaluated for outlier SVs based on axis loading exceeding 4 standard 240 

deviations (Forester et al. 2018).  241 

 242 

Gene Ontology Enrichment Analysis 243 

 Gene Ontology enrichment analysis utilized recently generated species-specific 244 

annotations for B. vancouverensis downloaded from Hymenoptera Genome Database (Walsh et 245 

al. 2021) (Bombus_vancouverensis_HGD_go_annotation.gaf.gz ; last updated 6/29/2021). Genes 246 

without the annotation information in the annotation file were not considered in our analysis. The 247 

GoFuncR v1.8.0 (Grote 2020) R package was used for gene set enrichment analysis (GSEA) 248 

using the go_enrich function. A custom annotation database was created from the downloaded 249 

gene annotation file (in .gaf format) following GoFuncR manual guidelines (Grote 2020). Genes 250 

with cross-validated outlier SNPs (n = 44) were considered as candidate genes for Gene 251 

Ontology (GO) enrichment testing against all other genes as the background set (n = 9,432). 252 
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Statistically significant GO terms (p < 0.01) were retained and then the Revigo web server 253 

(Supek et al. 2011) was used to summarize redundant GO terms using medium stringency filter. 254 

 255 

Patterns of Chromosomal Diversity in Outlier Regions 256 

To examine the patterns of diversity and differentiation in environmentally associated 257 

candidate regions relative to genome-wide patterns, fixation index (FST) for each site was 258 

calculated using the Weir and Cockerham method as implemented in the SNPRelate R package 259 

v1.22.0 (Weir and Cockerham 1984, Zheng et al. 2012) and per-site nucleotide diversity (p) for 260 

each population was calculated with the –site-pi flag in VCFtools v0.1.13 (Danecek et al. 2011) 261 

and averaged to obtain a mean within-population nucleotide diversity (p). For both statistics, 262 

averages were calculated across 5kb widows using the GenomicRanges R package v1.40.0 263 

(Lawrence et al. 2013). Visualization of scaffolds with outlier regions and their associated FST 264 

and p were generated using the Gviz v1.34.1 R package (Ivanek 2016). Linkage disequilibrium 265 

(LD) was calculated for the entire genome and the major candidate outlier regions using 266 

PopLDdecay v3.41 (Zhang et al. 2019) with the max-distance between loci set to 300kb. To 267 

visualize differences in LD patterns between the outlier-dense and outlier-free regions, we also 268 

plotted LD for ten randomly selected scaffolds that did not contain outlier loci (Supp. Table S2).  269 

Previous studies examining the genomics of divergence between bumble bee species, 270 

including that of the B. bifarius-B. vancouverensis species complex, have found that many 271 

putatively adaptive regions of the genome (i.e., “islands of divergence”) between sister species 272 

are maintained in repetitive and low recombination regions along the chromosome (Ghisbain et 273 

al. 2020, Christmas et al. 2021). First, we downloaded the repeat masker output file from the B. 274 

vancouverensis RefSeq assembly (NCBI RefSeq ID: GCF_011952275.1) (Heraghty et al. 2020) 275 
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and calculated the number of repeats in same 5kb windows used for the FST calculations above. 276 

Linear regressions (lm function in R) were used to test for a relationship between repeat region 277 

density and FST in each window (genome-wide and for focal scaffolds). Second, although the B. 278 

vancouverensis assembly is sufficiently intact for most analyses, it does not have chromosome 279 

level integrity. We thus took advantage of the high degree of synteny in Bombus genomes (Sadd 280 

et al. 2015, Sun et al. 2020) to determine probable locations of major candidate regions with 281 

strong cross-validated environmental associations (i.e., scaffolds with multiple outlier regions, or 282 

with genes containing many outlier SNPs) using the chromosome-level assembly for B. terrestris 283 

(RefSeq ID: GCF_000214255.1). For each candidate region, we determined the orthologous B. 284 

terrestris chromosome using BLASTn (Altschul et al. 1990) and aligned the highly divergent 285 

outlier-dense B. vancouverensis scaffolds to the B. terrestris chromosomes using MAUVE 286 

algorithm implemented as a plugin for Geneious v 2021.0.3.  287 

 288 

Results 289 

Data Summary 290 

 We sequenced 122 female workers from 19 localities to an average estimated coverage of 291 

~40x (32,997,359 ± 16,271,517 SD read pairs per library), and 33,439,776 SNPs were called 292 

using Freebayes. The final filtered data set included 1,369,356 SNPs (MAF ≥ 5%, depth > 4x), 293 

with a mean sequencing coverage of 25.3 reads per SNP per individual and a mean of 0.34% 294 

missing data per SNP per individual. 295 

 For environmental variables, item clustering analysis identified 4 clusters from the total 296 

set of WorldClim Bioclim variables (Supp. Figure S1). We retained the following variables for 297 
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analysis: annual mean temperature (BIO1), mean diurnal range (BIO2), isothermality (BIO3), 298 

and annual precipitation (BIO12), as well as elevation.  299 

 300 

Environmental Association and FST Outlier Analyses 301 

Two population clusters were identified by sMNF using the minimum cross-entropy 302 

approach and we specified k = 2 for population structure control in LFMM2 (same as Jackson et 303 

al. 2020). Across all variables, LFMM2 detected a total of 774 unique SNPs that were 304 

significantly associated with one of the environmental variables, representing 154 unique genes 305 

and 66 intergenic regions. Isothermality (BIO3, 646 SNPs) and elevation (340 SNPs) had the 306 

largest number of significant SNP associations (q < 0.05). BIO1 (annual mean temperature), 307 

BIO2 (mean diurnal range) and BIO12 (annual precipitation) were associated with 0, 15, and 46 308 

SNPs, respectively. The OutFLANK FST outlier approach produced 1,274 outlier SNPs (with 309 

default SambaR settings, q < 0.01). There were 551 cross-validated SNPs (in 44 genes and 24 310 

intergenic regions) shared between the two methods (Table 1, Supp. Table S3); as above, these 311 

were most frequently associated with isothermality and elevation (Table 1).  312 

The densest clusters of cross-validated loci were found on scaffolds NW_022881829.1 313 

and NW_022881902.1 (Fig 2). The most notable group of cross-validated SNPs in the genome 314 

were located on NW_022881829.1 within the adjacent genes LOC117157569 (Sax-3-like, 315 

homologous to dpr20 in D. melanogaster, n = 36 SNPs) and LOC117157568 (synaptogenesis 316 

protein syg-2-like, side-VI in D. melanogaster, n = 66 SNPs) and their intergenic region (n = 364 317 

SNPs) (Table 1, Fig. 2). Two additional dense clusters of cross-validated SNPs were grouped 318 

into two regions on scaffold NW_02991902.1. In the first of these clusters (~350 - 680 kb region 319 

of NW_02991902.1) outliers were present across 11 genes, mostly with one or two SNPs each. 320 
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The gene with the largest number of SNPs in this cluster is LOC117161116 (uncharacterized, 321 

homologous to CG13138 in D. melanogaster, n = 15 SNPs). The second cluster (~1,250 kb – 322 

1,470 kb region of NW_02991902.1) comprised several genes with multiple statistically 323 

significant SNPs. The genes with the largest number of SNPs in this cluster were 324 

LOC117161100 (plasma membrane calcium-transporting ATPase 3, homologous to PMCA in D. 325 

melanogaster, n = 36 SNPs), LOC117161180 (xanthine dehydrogenase/oxidase-like, 326 

homologous to AOX3 in D. melanogaster, n = 36 SNPs), and LOC117161157 (uncharacterized 327 

in B.  vancouverensis but homologous to beat-IIIc in D. melanogaster, n = 5 SNPs). A fourth 328 

notable cluster of statistically significant SNPs was detected on a separate scaffold 329 

(NW_022881786.1) in LOC117156535 (Multidrug resistance-associated protein 4-like, best 330 

BLAST homology to CG5789 and Mrp4 in D. melanogaster, n = 6 SNPs), including five non-331 

synonymous polymorphisms. This region is particularly interesting as the largest set of SNPs that 332 

were significantly associated with elevation alone and not with any other variables. The 333 

remaining significant SNPs (32 genic, 27 intergenic) were distributed more sparsely, with 334 

relatively few SNPs per gene (Table 1).  335 

 336 

Gene Ontology (GO) enrichment analysis of Cross-validated Loci 337 

Gene Ontology enrichment analysis was used to explore general functions of outlier 338 

genes. Our analysis returned an initial list of 87 GO terms (p < 0.01), which was subsequently 339 

reduced to 51 biological terms, 15 cellular terms and 19 molecular terms (Supp. Table S4) using 340 

Revigo summarization web tool. Some outlier loci were excluded from GO analysis due to the 341 

genes having no GO annotations (Walsh et al. 2021). There were several notable trends which 342 

generally reflected the functions of genes in the outlier dense regions. For example, several terms 343 
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were related to ion transport, including GO terms like “calcium ion transport” (GO:0006816) and 344 

“P-type calcium transporter activity involved in regulation of presynaptic cytosolic calcium ion 345 

concentration” (GO:1905056) (reflecting genes like, plasma membrane calcium-transporting 346 

ATPase-3, LOC117161100). “ATPase-coupled transmembrane transporter activity” (GO: 347 

0042626) is associated with genes such as the elevation-specific gene multidrug resistance 348 

protein 4 (LOC117156535). There were also several terms involved with neuron and synapse 349 

function with terms such as “synaptic target recognition” (GO:0008039) (e.g., associated with 350 

LOC117161157, a beatIIIc homolog). Several terms were related to cardiac function including 351 

annotations; for example, “regulation of cardiac muscle tissue development” (GO:0055024) and 352 

“cardiac myofibril assembly” (GO:0055003).  353 

 354 

Analysis of Structural Variants (SVs)   355 

 Our structural variant detection analysis using DELLY detected 7,419 deletions, 226 356 

duplications, and 6,303 inversions. The overall RDA models for all three SV types were 357 

significant and contained significant axes, representing non-random variation (Legendre et al. 358 

2011) (Supp. Table S5). Twenty-two deletion outliers and 3 inversion outliers were identified, all 359 

on axis 1 for their respective model (axis loading ≥ 4 standard deviations). Although the 360 

duplication RDA model was significant, no outliers were identified. Most SVs were less than 1 361 

kb and spanned over at least one gene (Table 2). Clustering patterns for individuals in the RDA 362 

model generally reflected geographic relationships, with samples from nearby localities loading 363 

near one another on the RDA graph (Fig 3). The deletions model best captures the geographic 364 

relationship between samples with relatively clear clustering by state (CA,OR, and WA) (Fig 3). 365 

Mirroring the SNP analysis, the strongest predictive variables were isothermality (16 of 19 366 
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deletions, 2 of 3 inversions) and elevation (3 of 19 deletions, 1 of 3 inversions). The highest 367 

density of outliers was found on scaffold NW_022881829.1 (5 deletions) and occurred in same 368 

region of high outlier SNP density as SNP outliers discussed above. One other notable SV was a 369 

deletion in LOC117160713 (Chaoptin-like, homologous to CG42346 in D. melanogaster) which 370 

also contained an outlier SNP (Table 2). There were several SVs located on scaffold 371 

NW_022881881.1 (3 deletions and 1 inversion), but visual inspection suggested that some of the 372 

detected SV outliers may represent artifacts, highlighting the general challenges to structural 373 

variant calling. For example, two of the SVs on NW_022881881.1 were far larger than average 374 

and spanned over numerous genes; one 385kb deletion falls in a region with a large number of 375 

small repeats (average length 51.3 bp, n = 184) which may complicate calling SVs (Mahmoud et 376 

al. 2019).  377 

 378 

Patterns of Chromosomal Diversity in Outlier Regions 379 

 The three largest environmentally associated regions containing clusters of cross-380 

validated SNPs (NW_02881786.1, NW_02881829.1, and NW_02881902.1) exhibited markedly 381 

increased FST and decreased p (Fig 4). Average FST across the genome was low (global FST = 382 

0.02) but increased to values > 0.4 in localized regions around outliers. Nucleotide diversity 383 

shows the inverse pattern, with average values between 0.002 and 0.004 but dropping to less than 384 

0.001 in windows of environmentally associated regions (Fig 4). Linkage disequilibrium (LD) 385 

was also elevated in these regions relative to the genome wide average (Fig 5). The increased LD 386 

was apparent when averaged across scaffolds with environmental associations vs the overall 387 

genome average, as well as for individual comparisons of the two main outlier-containing 388 

scaffolds against a set of randomly selected comparable scaffolds with no outlier regions (Fig 5). 389 
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In both sets of comparisons, the mean r2 measure of LD is higher for the environmentally 390 

associated regions, with mean r2 for the genome-wide average and random scaffolds dropping to 391 

zero within a shorter distance (~25 kb), whereas the scaffolds with strong environment 392 

associations showed elevated r2 as far as 300 kb (Fig 5). Scaffold NW_02881829.1, which has 393 

the largest outlier region, also had the highest mean r2 in the genome (Fig 5).  394 

The elevated LD in putative outlier regions is consistent with patterns observed for 395 

interspecies divergence islands identified in the B. vancouverensis – B. bifarius species complex 396 

(Christmas et al. 2021). To localize approximate chromosomal locations of scaffolds with strong 397 

genome environment associations, we aligned the scaffolds to homologous regions of the B. 398 

terrestris linkage groups (near chromosome level assembly). Two regions of interest 399 

(NW_02881829.1 and NW_02881786.1) were mapped to linkage group LG B11 of B. terrestris 400 

(Fig 5). NW_02881829.1, which contained the densest cluster of SNPs in the genome maps 401 

nearly on the end of LG11 (~0-1Mb), suggesting these genes probably also lie near the 402 

chromosome end in B. vancouverensis. NW_02881786.1, which contains one of the top genes 403 

associated only with elevation (LOC117156535, multidrug resistance-associated protein 4-like) 404 

maps to the center of LG B11 (between ~6-8Mb position along LG B11) but does not appear to 405 

be located near the putative centromere (see Christmas et al. 2021). There was a very weak albeit 406 

significant relationship between repeat density and FST in 5 kb windows across the genome (R2 < 407 

0.001, F1, 48354 = 36.92, p ≤ 0.001), however, not all outlier-dense scaffolds showed this pattern. 408 

NW_022881829.1 (located near a telomere) did show the positive relationship between FST and 409 

repeat density (R2 = 0.0636, F1, 143 = 9.718, p =0.0022), but neither NW_022881786.1 (R2 = 410 

0.0018, F1, 361 = 0.6564, p = 0.42) or NW_022881902.1 (R2 = 0.0019, F1, 293 = 1.56, p =0.212) 411 
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showed a relationship, suggesting that not all highly differentiated SNPs were in unusually 412 

repeat-rich regions (Fig 5).  413 

 414 

Discussion 415 

 Using a whole-genome sequencing dataset for the montane bumble bee B. 416 

vancouverensis, we discovered strong associations with environmental variables and unusual 417 

patterns of diversity at several genomic regions based on environmental association analysis 418 

(EAA) of SNPs, structural variants (SVs), and genome-wide patterns of diversity and linkage. 419 

Several regions throughout the genome had large numbers of SNPs that were predominantly 420 

associated with isothermality and/or elevation after controlling for population structure and using 421 

two independent methods, and thus show potential signatures of local adaptation (Fig 2). These 422 

association peaks tended to fall in regions of the genome that had increased linkage (Fig 5), low 423 

p and elevated FST (Fig 4) compared to the rest of the genome. Several outlier structural variants 424 

were also found within these regions, and although SVs produced patterns of regional population 425 

structure consistent with prior SNP results (e.g., Jackson et al. 2018), there were relatively few 426 

SV outliers and more work is required to better characterize these mutation types. Many of the 427 

SNP outlier genes detected here have putative functions that would have adaptive value in 428 

montane regions, including neuromuscular development and function, ion transport, and hypoxia 429 

resistance. These putative functions would be relevant for Bombus that must fly and 430 

thermoregulate in landscapes characterized by strong elevational changes and associated abiotic 431 

variation.  432 

 433 

 434 
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Patterns of environmental association 435 

 Genome regions with unusual patterns of diversity detected by both LFMM2 and 436 

OutFLANK were predominantly associated with isothermality and elevation, consistent with 437 

prior RAD-Seq data in this species (Jackson et al. 2020). Some of the most notable outlier 438 

containing genes appear to play a vital role in neural development, particularly neuromuscular 439 

synapse formation and muscle formation, with overrepresented terms like “regulation of cardiac 440 

muscle tissue development” and “cardiac myofibril assembly” and “synaptic target recognition” 441 

(Supp. Table S4). For example, two genes LOC117157569 (Sax-3-like; dpr20 in D. 442 

melanogaster) and LOC117157568 (synaptogenesis protein syg-2-like; side-VI in D. 443 

melanogaster) were found in the highly associated region of environmentally associated 444 

differentiation on NW_022881829.1; both genes code for immunoglobin domain proteins related 445 

to synapse formation, especially in muscle (Igsf et al. 2015, Cheng et al. 2019). Notably, another 446 

outlier, LOC117161157 on scaffold NW_022881902.1, is homologous to beat-IIIc in D. 447 

melanogaster, which together with side-VI belong to the beaten path-sidestep interaction 448 

networks involved in neuromuscular development in D. melanogaster (Li et al. 2017). All of 449 

these genes were previously identified in the RAD-Seq data (Jackson et al. 2020). Other cross-450 

validated SNPs in genes that may be involved in synapse formation were detected outside of the 451 

major environmentally associated regions, including LOC117158593 (SNPs in cilia- and 452 

flagella-associated protein 20-like; Bug22 in D. melanogaster) and LOC117153469 (E3 453 

ubiquitin-protein ligase Nedd-4; Nedd4 in D melanogaster) (Schnorrer et al. 2010, Zhong et al. 454 

2011). Related to these neural and muscle function terms, GO analysis also provided support for 455 

the importance of ion homeostasis (e.g., GO term “calcium ion transport”) (Supp. Table S4). For 456 

example, significant SNPs associated with isothermality and elevation were also identified in 457 
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plasma membrane calcium-transporting ATPase 3, which maintains calcium ion levels including 458 

at the neuromuscular junction and could be relevant because of the important role calcium plays 459 

in insect neuromuscular function (Iwamoto 2009) and cold tolerance (Seamus et al. 2018). The 460 

redundancy analysis (RDA) of structural variants (SVs) also detected outliers in genes related to 461 

muscle function that were not found in the SNP analysis, such as a deletion in LOC117165908 462 

(syntaxin-binding protein 5; tomosyn in D. melanogaster) which has a role in motor axon 463 

guidance and synaptogenesis (Kraut et al. 2001).  464 

Neural and muscular function are expected to be highly relevant for bumble bees across 465 

montane landscapes. Muscle function is crucial for thermoregulation to achieve flight in cold 466 

temperatures for bumble bees (e.g., via shivering of thoracic muscles) (Heinrich 2004), and it is 467 

possible that some candidate genes reflect selection related to stresses from varying thermal 468 

conditions across the B. vancouverensis range. Furthermore, analyses in another species from 469 

this region, B. vosnesenskii, found that lower critical thermal limits (CTMIN) correlated strongly 470 

with temperature in populations in replicate elevation transects (Pimsler et al. 2020). Although 471 

such data is not available in B. vancouverensis, CTMIN in bumble bees and other insects is likely 472 

associated with physiological failure of the neuromuscular junction (Oyen et al. 2016, Overgaard 473 

and MacMillan 2017), providing another possible mechanism by which selection may shape 474 

variation across genes related to neural and muscle function across elevations. Muscle function 475 

also may reflect stresses associated with bumble bee flight itself, which may face challenge in 476 

high elevation populations as environmental conditions related to elevation have been noted to 477 

alter various traits related to bumble bee flight such as wing loading and wing beat amplitude 478 

(Dillon and Dudley 2014, Lozier et al. 2021).  479 
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The largest SNP cluster associated only with elevation and no other Bioclim variable was 480 

in the gene multidrug resistance-associated protein 4-like (MDRP4, LOC117156535) on one of 481 

our focal scaffolds NW_022881786.1. This gene contained six cross-validated SNPs including 482 

five nonsynonymous substitutions. This elevation-specific association is intriguing because in D. 483 

melanogaster, multidrug resistance protein 4 is involved in the response to hypoxia and 484 

oxidative stress (Huang and Haddad 2007) as well as being associated with adaptation to 485 

elevation in alpine stoneflies (McCulloch et al. 2021). Hypoxia is a major challenge associated 486 

with elevation and can be associated with a variety of responses such as changes in tracheal 487 

physiology, metabolism, and activity levels (Harrison et al. 2018). Given that MDRP4 is one of 488 

the few genes with outlier SNPs associated solely with elevation, this gene could be a strong 489 

candidate for future research on elevational adaptation in B. vancouverensis.  490 

Finally, it is notable that we found very few SNPs associated with precipitation (n = 6), 491 

which is interesting given cross-validated SNPs were identified in several genes that had 492 

functions involving the cuticle, which was also reflected in the GO results with terms such as 493 

“cuticle hydrocarbon biosynthetic process” (Ferveur et al. 2018, Krupp et al. 2020). The cuticle 494 

plays an important role in desiccation tolerance by limiting the water loss in response to the 495 

environment (Ferveur et al. 2018). The lack of selective signal associated with precipitation 496 

suggests a different variable may be shaping cuticle development, including a link between 497 

desiccation and thermal tolerance (Sinclair et al. 2013, Nguyen et al. 2017, Manenti et al. 2018) 498 

(please see below for further discussion of issues with assigning causal roles to environmental 499 

variables).  500 

 501 

 502 
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The Influence of Genomic Architecture on Adaptive Signatures  503 

Many of the genes with outlier SNPs were also discovered in a previous RAD-Seq study 504 

of B. vancouverensis (Jackson et al. 2020). This was somewhat surprising as bumble bees tend 505 

have weak linkage disequilibrium (Sadd et al. 2015, Sun et al. 2020) that should reduce the 506 

likelihood of sequencing SNPs that are or are linked to causal mutations using RAD-Seq 507 

(Fuentes-Pardo and Ruzzante 2017, Lowry et al. 2017). In this case, it appears that RAD-Seq 508 

data were in fact able to capture many of the same signatures of divergence detected here owing 509 

to the large size of the main outlier regions, with LD and interpopulation differentiation within 510 

these regions much larger than is typical in the remaining B. vancouverensis genome (Fig 5). The 511 

whole-genome resequencing approach did identify loci that were not detected in the RAD-Seq 512 

data, however, with the unique elevation-associated peak in MDRP4 being particularly notable, 513 

as well as providing the potential to detect structural variants throughout the genome, although 514 

these appear more limited. Taken together, our results suggest that RAD-Seq may be a useful 515 

tool for capturing many genome-wide patterns of differentiation across large numbers of 516 

populations and individuals in bumble bees, however, utilization of whole genome data will 517 

likely be required to identify signatures of selection outside of high LD regions.  At the same 518 

time, if high LD regions harbor many putative adaptive loci, identifying sites targeted by 519 

selection within blocks of linked SNPs will remain a challenge even within whole genome data. 520 

 Some of the results presented in our study also parallel recent genome resequencing 521 

experiments that have identified how structural genome divergence may be related to gene flow 522 

barriers in bumble bees, with such regions potentially harboring loci with adaptive significance 523 

during the speciation process (Christmas et al. 2021). In two bumble bee species complexes, one 524 

of which included B. vancouverensis with its sister species B. bifarius, islands of elevated 525 
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divergence between taxa were generally found in areas of low recombination. Our LD analyses 526 

show similar patterns at the intraspecific level within B. vancouverensis, suggesting that genome 527 

architecture may play a role in within-species divergence even under overall general pattern of 528 

low genome-wide differentiation and ongoing gene flow (e.g., FST = ~0.02 here) and that many 529 

potential signatures of adaptation may reside in regions of low recombination. Placement of 530 

several scaffolds with dense outlier clusters in the B. terrestris genome indicates that some 531 

highly divergent loci fall in regions that may experience low recombination, such as near the 532 

ends of chromosome LG B11 (Fig 5). Although allopatric divergence in the interspecific 533 

comparisons (Christmas et al. 2020) did not specifically focus on major signatures of divergence 534 

near the ends of chromosomes, regions near telomeres can harbor islands of divergence in other 535 

species (Ellegren et al. 2012). Further research spanning the continuum of divergence from 536 

populations to species will provide important clues into the emergence of islands of divergence 537 

in bumble bees and their potential roles in intraspecific adaptation and speciation (Christmas et 538 

al. 2021). 539 

As mentioned earlier, detected structural variants (SVs) were far more limited than SNPs 540 

both in total number and number of outliers. The lack of SVs in general, as well as some of the 541 

large detected SVs that we suspect are artifacts in repeat-rich or polymorphic regions, may be 542 

explained by the challenges in detecting structural variants from short reads (Mahmoud et al. 543 

2019), so a targeted study using long read sequencing approaches may be required to fully 544 

understand the role of structural variants in relation to the adaptation to environmental variables. 545 

While the lack of outlier SVs relative to outlier SNPs is likely driven by the relatively small 546 

number of SVs, there is a high degree of synteny across the genus (Sun et al. 2020) that may 547 

indicate large adaptive SVs are relatively uncommon in Bombus. That said, prior work on 548 
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elevational selection signatures in honey bees has demonstrated the importance of structural 549 

variation, inversions in particular, for harboring locally adaptive genetic variation (Wallberg et 550 

al. 2017), so additional work on detecting the role of large scale SVs in bumble bees is 551 

warranted. Despite the limited number of outlier SVs, the parallels in results between the SNP 552 

and SV analysis suggest that they may be shaped by similar forces. Both analyses showed 553 

isothermality and elevation as driving evolution and there was considerable overlap between the 554 

genomic regions that had outliers. Some of the genes with only SV outliers, such as 555 

LOC117159534 (innexin shaking-B, ShakB in D. melanogaster) also seemed to have functions 556 

similar to those with SNP outliers, and such functional overlap indicates that SVs and SNPs 557 

could both contribute to local adaptation. It is also of interest that SVs generally captured 558 

patterns of population structure in this species (Jackson et al. 2018), which has been noted in 559 

other species as well, even outperforming SNP based markers (Dorant et al. 2020, Cayuela et al. 560 

2021). Our data supports this prior work as it suggests SVs may be utilized as useful genetic 561 

markers generally for population genomic studies. 562 

 563 

Do outlier environmentally associated regions indicate selection? 564 

The cross-validated outlier regions detected in this study are clearly unusually divergent 565 

across the B. vancouverensis range compared to most of the genome; however, assigning 566 

adaptive function to these candidate loci will require additional research. Environmental 567 

variation is commonly spatially autocorrelated so it is important to consider demographic effects 568 

that may produce allele frequency differences among populations (Hoban et al. 2016). EAA 569 

models that explicitly incorporate population structure, like LFMM2, have a reduced false 570 

discovery rate compared to models that are unable to account for population structure or even 571 
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earlier versions of the same methods (Luo et al. 2021). The models employed in our research to 572 

detect outliers and environmental associations are both relatively robust to population structure, 573 

with LFMM2 incorporating the number of population clusters (k) to account for the underlying 574 

genetic differentiation that could arise from population structure or isolation by distance and 575 

OutFLANK also having low false positive rates under a range of demographic models (Whitlock 576 

and Lotterhos 2015, Luo et al. 2021). Since the two methods have different statistical 577 

assumptions, in combination, they add support for many of the detected outliers being true 578 

positives. The low diversity and elevated FST in the cross-validated outlier regions are also 579 

consistent with selective sweeps, but it is important to consider that outlier “islands of 580 

divergence” can arise due to neutral processes (Quilodrán et al. 2020), especially in regions of 581 

low recombination (Booker et al. 2020). Using the genome data alone it is difficult to determine 582 

whether any of the outlier regions in high linkage regions harbor loci under selection, and 583 

certainly the large number of linked outlier SNPs or SVs within certain genes (e.g. 584 

LOC11515769, LOC117157568) are not all adaptive. Most SNPs in outlier regions were 585 

noncoding and the co-localization with structural variants could indicate these are “structural 586 

islands” that result from neutral processes and do not necessarily have adaptive value (Ravinet et 587 

al. 2017), but could also be subject to hitchiking from a recent selective sweep in the region 588 

(Kim & Nielsen 2004). Further, the non-coding SNPs may fall in regulatory regions and have 589 

regulatory implications (Wittkopp and Kalay 2012) so this does not necessarily preclude a role 590 

for selection. That said, some outlier regions (e.g., the elevation-associated multidrug resistance 591 

protein 4) include non-synonymous changes, a unique association with an environmental 592 

variable, and little evidence for strong linkage or elevated repeat structure. We thus find it likely 593 

that outliers regions detected in our study do harbor loci that may be contributing to local 594 
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adaptation, but also may contain loci that are being shaped by other processes (e.g. barriers to 595 

gene flow) (Ravinet et al. 2017).  596 

 A similar issue that results from autocorrelation of environmental variables is that 597 

bioclimatic variables included in analyses may not be the direct selective pressure influencing 598 

outlier SNP frequencies (Ahrens et al. 2018, Jackson et al. 2020). Using abiotic variable 599 

reduction helps with correlations for modeling but assigning adaptive significance in the face of 600 

such correlations remains a general challenge. The variables used in the models can provide 601 

important insight into the factors shaping the biology of B. vancouverensis even if the direct 602 

causal variable is not included. Isothermality, which had the largest number of outlier loci, 603 

represents the size of the average daily temperature range relative to the annual temperature 604 

range (O’Donnell and Ignizio 2012) and thus could capture the biological phenomena relating to 605 

season length, day length, or elevation, in addition to effects on thermal tolerance (CTMIN)(Wang 606 

and Dillon 2014, Diamond and Chick 2018, Jackson et al. 2020). Given the seeming importance 607 

of CTMIN variation across Bombus species ranges (Pimsler et al. 2020, Martinet et al. 2021), it is 608 

possible that bumble bees in thermally variable environments that experience a wider array of 609 

temperature fluctuations may require genetic changes relating to thermoregulation (Heinrich 610 

2004). However, pinpointing the specific abiotic factor driving potentially adaptive shifts in 611 

allele frequency at outlier loci with respect to any predictor variable will require physiology 612 

experiments on populations from throughout the B. vancouverensis range.  613 

In conclusion, we detected several regions within the genome with outlier variants that 614 

have associations with environmental variables of interest in B. vancouverensis. Our results 615 

provide detailed data on the factors shaping within species genetic diversity within this bumble 616 

bee across its range and provide a useful starting point for rigorous field and lab-based 617 
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experiments to assess if these candidate genes play a role in adaptation and how they might alter 618 

fitness for niche-specific adaptation. Although lab rearing of wild bumble bees is particularly 619 

challenging, improving techniques to maintain laboratory colonies of montane species have 620 

increased the feasibility of geographically comprehensive common garden experiments (e.g., 621 

Pimsler et al. 2020) and developmental studies (Tian et al. 2019, Rahman et al. 2021b). For 622 

instance, given our detection of outlier SNPs relating to neuromuscular function, cuticle 623 

composition, and hypoxia resistance, further studies could be designed to evaluate differences in 624 

physiology between individuals from different regions of the range examining the various 625 

properties of muscle function or exoskeleton composition. Our results also provide novel insights 626 

into population divergence across complex landscapes, which could play an important role in 627 

addressing evolutionary questions and might be especially helpful to contend with more practical 628 

conservation related issues such as understanding how current and future environmental changes 629 

from the global warming and climate change may shape the future distributions of species and 630 

their underlying adaptive genetic variation.  631 

 632 

Acknowledgements 633 

We thank the University of Alabama College of Arts and Sciences and the National 634 

Science Foundation (DEB-1457645 and URoL 1921585 to J.D.L.) for support relating to this 635 

project.  636 

 637 

Data Availability 638 

Raw sequencing data is available on NCBI SRA (Bioproject PRJNA858769; accession 639 

numbers SAMN29751459 - SAMN29751581). Variant data for SNPs and SVs and scripts used 640 



 29 

in data filtering and analysis are available on FigShare 641 

(https://doi.org/10.6084/m9.figshare.20310522). Remaining tissues from representative samples 642 

will be accessioned with the Alabama Museum of Natural History Entomology Collection. 643 

 644 

References: 645 

Ahrens, C. W., P. D. Rymer, A. Stow, J. Bragg, S. Dillon, K. D. L. Umbers, and R. Y. 646 

Dudaniec. 2018. The search for loci under selection: trends, biases and progress. Mol. Ecol. 647 

27: 1342–1356. 648 

Andrews, S. 2010. FastQC:  A quality control tool for high throughput sequence data 649 

 http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ 650 

Booker, T. R., S. Yeaman, and M. C. Whitlock. 2020. Variation in recombination rate affects 651 

detection of outliers in genome scans under neutrality. Mol. Ecol. 29: 4274–4279. 652 

Broad Institute. 2019. http://broadinstitute.github.io/picard/ 653 

Browning, B. L., Y. Zhou, and S. R. Browning. 2018. A one-penny imputed genome from 654 

next-generation reference panels. Am. J. Hum. Genet. 103: 338–348. 655 

Bushnell, B. 2020, BBMap. http://sourceforge.net/ projects/bbmap/. 656 

Cameron, S. A., H. M. Hines, and P. H. Williams. 2007. A comprehensive phylogeny of the 657 

bumble bees (Bombus). Biol. J. Linn. Soc. 91: 161–188. 658 

Cameron, S. A., and B. M. Sadd. 2020. Global trends in bumble bee health. Annu. Rev. 659 

Entomol. 65: 209–232. 660 

Capblancq, T., and B. R. Forester. 2021. Redundancy analysis: a swiss army knife for 661 

landscape genomics. Methods Ecol. Evol. 2021: 1–12. 662 

Caye, K., B. Jumentier, J. Lepeule, and O. François. 2019. LFMM 2: fast and accurate 663 



 30 

inference of gene-environment associations in genome-wide studies. Mol. Biol. Evol. 36: 664 

852–860. 665 

Cayuela, H., Y. Dorant, C. Mérot, M. Laporte, E. Normandeau, S. Gagnon‐Harvey, M. 666 

Clément, P. Sirois, and L. Bernatchez. 2021. Thermal adaptation rather than demographic 667 

history drives genetic structure inferred by copy number variants in a marine fish. Mol. 668 

Ecol. 1–18. 669 

Cheng, S., Y. Park, J. D. Kurleto, M. Jeon, K. Zinn, J. W. Thornton, and E. Özkan. 2019. 670 

Family of neural wiring receptors in bilaterians defined by phylogenetic, biochemical, and 671 

structural evidence. Proc. Natl. Acad. Sci.116: 9837–9842. 672 

Cheviron, Z. A., and R. T. Brumfield. 2012. Genomic insights into adaptation to high-altitude 673 

environments. Heredity. 108: 354–361. 674 

Christmas, M. J., J. C. Jones, A. Olsson, O. Wallerman, I. Bunikis, M. Kierczak, V. Peona, 675 

K. M. Whitley, T. Larva, A. Suh, N. E. Miller-Struttmann, J. C. Geib, and M. T. 676 

Webster. 2021. Genetic barriers to historical gene flow between cryptic species of alpine 677 

bumblebees revealed by comparative population genomics. Mol. Biol. Evol. 38: 3126-3143 678 

Cingolani, P., A. Platts, L. L. Wang, M. Coon, T. Nguyen, L. Wang, S. J. Land, X. Lu, and 679 

D. M. Ruden. 2012. A program for annotating and predicting the effects of single 680 

nucleotide polymorphisms, SnpEff. Fly (Austin). 6: 80–92. 681 

Danecek, P., A. Auton, G. Abecasis, C. A. Albers, E. Banks, M. A. DePristo, R. E. 682 

Handsaker, G. Lunter, G. T. Marth, S. T. Sherry, G. McVean, and R. Durbin. 2011. 683 

The variant call format and VCFtools. Bioinformatics. 27: 2156–2158. 684 

Diamond, S. E., and L. D. Chick. 2018. The Janus of macrophysiology: Stronger effects of 685 

evolutionary history, but weaker effects of climate on upper thermal limits are reversed for 686 



 31 

lower thermal limits in ants. Curr. Zool. 64: 223–230. 687 

Dillon, M. E. 2006. Into thin air: physiology and evolution of alpine insects. Integr. Comp. Biol. 688 

46: 49–61. 689 

Dillon, M. E., and R. Dudley. 2014. Surpassing Mt Everest - extreme flight performance of 690 

alpine bumblebees. Biol. Lett. 10. 691 

Dillon, M. E., and J. D. Lozier. 2019. Adaptation to the abiotic environment in insects: the 692 

influence of variability on ecophysiology and evolutionary genomics. Curr. Opin. Insect 693 

Sci. 36: 131–139. 694 

Dorant, Y., H. Cayuela, K. Wellband, M. Laporte, Q. Rougemont, C. Mérot, E. 695 

Normandeau, R. Rochette, and L. Bernatchez. 2020. Copy number variants outperform 696 

SNPs to reveal genotype–temperature association in a marine species. Mol. Ecol. 1–18. 697 

Eckert, A. J., J. Van Heerwaarden, J. L. Wegrzyn, C. D. Nelson, J. Ross-Ibarra, S. C. 698 

González-Martínez, and D. B. Neale. 2010. Patterns of population structure and 699 

environmental associations to aridity across the range of loblolly pine (Pinus taeda L., 700 

Pinaceae). Genetics. 185: 969–982. 701 

Ellegren, H. 2014. Genome sequencing and population genomics in non-model organisms. 702 

Trends Ecol. Evol. 29: 51–63. 703 

Ellegren, H., L. Smeds, R. Burri, P. I. Olason, N. Backström, T. Kawakami, A. Künstner, 704 

H. Mäkinen, K. Nadachowska-Brzyska, A. Qvarnström, S. Uebbing, and J. B. W. 705 

Wolf. 2012. The genomic landscape of species divergence in Ficedula flycatchers. Nature. 706 

491: 756–760. 707 

Ferveur, J. F., J. Cortot, K. Rihani, M. Cobb, and C. Everaerts. 2018. Desiccation 708 

resistance: effect of cuticular hydrocarbons and water content in Drosophila melanogaster 709 



 32 

adults. PeerJ. 2018: 1–23. 710 

Fick, S. E., and R. J. Hijmans. 2017. WorldClim 2: new 1-km spatial resolution climate 711 

surfaces for global land areas. Int. J. Climatol. 37: 4302–4315. 712 

Forester, B. R., J. R. Lasky, H. H. Wagner, and D. L. Urban. 2018. Comparing methods for 713 

detecting multilocus adaptation with multivariate genotype–environment associations. Mol. 714 

Ecol. 27: 2215–2233. 715 

Frichot, E., and O. François. 2015. LEA: an R package for landscape and ecological 716 

association studies. Methods Ecol. Evol. 6: 925–929. 717 

Fuentes-Pardo, A. P., and D. E. Ruzzante. 2017. Whole-genome sequencing approaches for 718 

conservation biology: advantages, limitations and practical recommendations. Mol. Ecol. 719 

26: 5369–5406. 720 

Gain, C., and O. François. 2021. LEA 3: factor models in population genetics and ecological 721 

genomics with R. Mol. Ecol. Resour. 1–37. 722 

Garrison, E., and G. Marth. 2012. Haplotype-based variant detection from short-read 723 

sequencing. arXiv. 1–9. 724 

Ghisbain, G., J. D. Lozier, S. R. Rahman, B. D. Ezray, L. Tian, J. M. Ulmer, S. D. 725 

Heraghty, J. P. Strange, P. Rasmont, and H. M. Hines. 2020. Substantial genetic 726 

divergence and lack of recent gene flow support cryptic speciation in a colour polymorphic 727 

bumble bee (Bombus bifarius) species complex. Syst. Entomol. 45: 635–652. 728 

Grote, S. 2020. GOfuncR: Gene ontology enrichment using FUNC. R package version 1.8.0. 729 

https://git.bioconductor.org/packages/GOfuncR  730 

Hahne, F., R. Ivanek. 2016. Visualizing genomic data using gviz and bioconductor. Methods 731 

Mol Biol. 1418:335-51. 732 



 33 

Harrison, J. F., K. J. Greenlee, and W. C. E. P. Verberk. 2018. Functional hypoxia in insects: 733 

definition, assessment, and consequences for physiology, ecology, and evolution. Annu. 734 

Rev. Entomol. 63: 303–325. 735 

Hartke, J., A. Waldvogel, P. P. Sprenger, T. Schmitt, F. Menzel, M. Pfenninger, and B. 736 

Feldmeyer. 2020. Little parallelism in genomic signatures of local adaptation in two 737 

sympatric, cryptic sister species. J. Evol. Biol. 1–16. 738 

Heinrich, B. 1976. Heat exchange in relation to blood flow between thorax and abdomen in 739 

bumblebees. J. Exp. Biol. 64: 561–585. 740 

Heinrich, B. 2004. Bumblebee Economics. Harvard University Press, Cambridge, MA  741 

Heinrich, B., and A. E. Kammer. 1973. Activation of the fibrillar muscles in the bumblebee 742 

during warm up, stabilization of thoracic temperature and flight. J. Exp. Biol. 58: 677–688. 743 

Heraghty, S. D., J. M. Sutton, M. L. Pimsler, J. L. Fierst, J. P. Strange, and J. D. Lozier. 744 

2020. De novo genome assemblies for three north american bumble bee species: Bombus 745 

bifarius, Bombus vancouverensis, and Bombus vosnesenskii. Genes|Genomes|Genetics. 10: 746 

2585–2592. 747 

Hijmans, R. J. 2021. Raster: geographic data analysis and modeling. R package version 3.4-13. 748 

https://CRAN.R-project.org/package=raster 749 

Hines, H. M. 2008. Historical biogeography, divergence times, and diversification patterns of 750 

bumble bees (Hymenoptera: Apidae: Bombus). Syst. Biol. 57: 58–75. 751 

Hoban, S., J. L. Kelley, K. E. Lotterhos, M. F. Antolin, G. Bradburd, D. B. Lowry, M. L. 752 

Poss, L. K. Reed, A. Storfer, and M. C. Whitlock. 2016. Finding the genomic basis of 753 

local adaptation: pitfalls, practical solutions, and future directions. Am. Nat. 188: 379–397. 754 

Huang, H., and G. G. Haddad. 2007. Drosophila dMRP4 regulates responsiveness to O2 755 



 34 

deprivation and development under hypoxia. Physiol. Genomics. 29: 260–266. 756 

Igsf, D., C. Surface, K. P. Menon, H. J. Bellen, K. C. Garcia, K. Zinn, K. P. Menon, S. 757 

Nagarkar-jaiswal, P. Lee, and M. Jeon. 2015. Control of synaptic connectivity by a 758 

network of article control of synaptic connectivity by a network of Drosophila IgSF cell 759 

surface proteins. 1770–1782. 760 

Iwamoto, H. 2009. Evidence for unique structural change of thin filaments upon calcium 761 

activation of insect flight muscle. J. Mol. Biol. 390: 99–111. 762 

Jackson, J. M., M. L. Pimsler, K. J. Oyen, J. B. Koch-Uhuad, J. D. Herndon, J. P. Strange, 763 

M. E. Dillon, and J. D. Lozier. 2018. Distance, elevation and environment as drivers of 764 

diversity and divergence in bumble bees across latitude and altitude. Mol. Ecol. 27: 2926–765 

2942. 766 

Jackson, J. M., M. L. Pimsler, K. J. Oyen, J. P. Strange, M. E. Dillon, and J. D. Lozier. 767 

2020. Local adaptation across a complex bioclimatic landscape in two montane bumble bee 768 

species. Mol. Ecol. 29: 920– 939. 769 

de Jong, M. J., J. F. de Jong, A. R. Hoelzel, and A. Janke. 2021. SambaR: an R package for 770 

fast, easy and reproducible population-genetic analyses of biallelic SNP data sets. Mol. 771 

Ecol. Resour. 21: 1369–1379. 772 

Joost, S., A. Bonin, M. W. Bruford, L. Després, C. Conord, G. Erhardt, and P. Taberlet. 773 

2007. A spatial analysis method (SAM) to detect candidate loci for selection: towards a 774 

landscape genomics approach to adaptation. Mol. Ecol. 16: 3955–3969. 775 

Joron, M., L. Frezal, R. T. Jones, N. L. Chamberlain, S. F. Lee, C. R. Haag, A. Whibley, M. 776 

Becuwe, S. W. Baxter, L. Ferguson, P. A. Wilkinson, C. Salazar, C. Davidson, R. 777 

Clark, M. A. Quail, H. Beasley, R. Glithero, C. Lloyd, S. Sims, M. C. Jones, J. Rogers, 778 



 35 

C. D. Jiggins, and R. H. Ffrench-Constant. 2011. Chromosomal rearrangements maintain 779 

a polymorphic supergene controlling butterfly mimicry. Nature. 477: 203–206. 780 

Keller, I., J. M. Alexander, R. Holderegger, and P. J. Edwards. 2013. Widespread 781 

phenotypic and genetic divergence along altitudinal gradients in animals. J. Evol. Biol. 26: 782 

2527–2543. 783 

Kim, Y., R. Nielson. 2004. Linkage disequilibrium as a signature of selective sweeps. Genetics 784 

167: 1513-1524 785 

Kraut, R., K. Menon, and K. Zinn. 2001. A gain-of-function screen for genes controlling 786 

motor axon guidance and synaptogenesis in Drosophila. Curr. Biol. 11: 417–430. 787 

Krupp, J. J., K. Nayal, A. Wong, J. G. Millar, and J. D. Levine. 2020. Desiccation resistance 788 

is an adaptive life-history trait dependent upon cuticular hydrocarbons, and influenced by 789 

mating status and temperature in D. melanogaster. J. Insect Physiol. 121: 103990. 790 

De la Torre, A. R., B. Wilhite, D. B. Neale, and T. Slotte. 2019. Environmental genome-wide 791 

association reveals climate adaptation is shaped by subtle to moderate allele frequency 792 

shifts in loblolly pine. Genome Biol. Evol. 11: 2976–2989. 793 

Lawrence, M., W. Huber, H. Pagès, P. Aboyoun, M. Carlson, R. Gentleman, M. T. Morgan, 794 

and V. J. Carey. 2013. Software for computing and annotating genomic ranges. PLoS 795 

Comput. Biol. 9: 1–10. 796 

Lee, C. K. F., P. H. Williams, and R. G. Pearson. 2019. Climate change vulnerability higher in 797 

arctic than alpine bumblebees. Front. Biogeogr. 11: 0–9. 798 

Legendre, P., J. Oksanen, and C. J. F. ter Braak. 2011. Testing the significance of canonical 799 

axes in redundancy analysis. Methods Ecol. Evol. 2: 269–277. 800 

Li, H., and R. Durbin. 2009. Fast and accurate short read alignment with Burrows-Wheeler 801 



 36 

transform. Bioinformatics. 25: 1754–1760. 802 

Li, H., B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis, 803 

and R. Durbin. 2009. The sequence alignment/map format and SAMtools. Bioinformatics. 804 

25: 2078–2079. 805 

Li, H., A. Watson, A. Olechwier, M. Anaya, S. K. Sorooshyari, D. P. Harnett, H. K. (Peter) 806 

Lee, J. Vielmetter, M. A. Fares, K. C. Garcia, E. Özkan, J. P. Labrador, and K. Zinn. 807 

2017. Deconstruction of the beaten path-sidestep interaction network provides insights into 808 

neuromuscular system development. Elife. 6: 1–24. 809 

Lim, M. C. W., K. Bi, C. C. Witt, C. H. Graham, and L. M. Dávalos. 2021. Pervasive 810 

genomic signatures of local adaptation to altitude across highland specialist andean 811 

hummingbird Populations. J. Hered. 112: 229–240. 812 

Liu, Y., H. Zhao, Q. Luo, Y. Yang, G. Zhang, Z. Zhou, M. Naeem, and J. An. 2020. De novo 813 

transcriptomic and metabolomic analyses reveal the ecological adaptation of high-altitude 814 

Bombus pyrosoma. Insects. 11: 1–14. 815 

Lowry, D. B., S. Hoban, J. L. Kelley, K. E. Lotterhos, L. K. Reed, M. F. Antolin, and A. 816 

Storfer. 2017. Breaking RAD: an evaluation of the utility of restriction site-associated 817 

DNA sequencing for genome scans of adaptation. Mol. Ecol. Resour. 17: 142–152. 818 

Lozier, J. D., Z. M. Parsons, L. Rachoki, J. M. Jackson, M. L. Pimsler, K. J. Oyen, J. 819 

Strange, and M. E. Dillon. 2021. Divergence in body mass, wing loading, and population 820 

structure reveals species-specific and potentially adaptive trait variation across elevations in 821 

montane bumble bees. Insect Syst. Divers. 5: 1-15 822 

Lozier, J. D., J. P. Strange, and J. B. Koch. 2013. Landscape heterogeneity predicts gene flow 823 

in a widespread polymorphic bumble bee, Bombus bifarius (Hymenoptera: Apidae). 824 



 37 

Conserv. Genet. 14: 1099–1110. 825 

Luo, L., Z. zheng Tang, S. D. Schoville, and J. Zhu. 2021. A comprehensive analysis 826 

comparing linear and generalized linear models in detecting adaptive SNPs. Mol. Ecol. 827 

Resour. 21: 733–744. 828 

Mahmoud, M., N. Gobet, D. I. Cruz-Dávalos, N. Mounier, C. Dessimoz, and F. J. 829 

Sedlazeck. 2019. Structural variant calling: the long and the short of it. Genome Biol. 20: 830 

1–14. 831 

Manel, S., S. Joost, B. K. Epperson, R. Holderegger, A. Storfer, M. S. Rosenberg, K. T. 832 

Scribner, A. Bonin, and M. J. Fortin. 2010. Perspectives on the use of landscape genetics 833 

to detect genetic adaptive variation in the field. Mol. Ecol. 19: 3760–3772. 834 

Manenti, T., T. R. Cunha, J. G. Sørensen, and V. Loeschcke. 2018. How much starvation, 835 

desiccation and oxygen depletion can Drosophila melanogaster tolerate before its upper 836 

thermal limits are affected? J. Insect Physiol. 111: 1–7. 837 

Martinet, B., S. Dellicour, G. Ghisbain, K. Przybyla, E. Zambra, T. Lecocq, M. Boustani, 838 

R. Baghirov, D. Michez, and P. Rasmont. 2021. Global effects of extreme temperatures 839 

on wild bumblebees. Conserv. Biol. 35: 1507–1518. 840 

McCulloch, G. A., J. Guhlin, L. Dutoit, T. W. R. Harrop, P. K. Dearden, and J. M. Waters. 841 

2021. Genomic signatures of parallel alpine adaptation in recently evolved flightless insects. 842 

Mol. Ecol. 6677–6686. 843 

Montejo-Kovacevich, G., J. E. Smith, J. I. Meier, C. N. Bacquet, E. Whiltshire-Romero, N. 844 

J. Nadeau, and C. D. Jiggins. 2019. Altitude and life-history shape the evolution of 845 

Heliconius wings. Evolution (N.Y). 1–15. 846 



 38 

Nguyen, A. D., K. DeNovellis, S. Resendez, J. D. Pustilnik, N. J. Gotelli, J. D. Parker, and S. 847 

H. Cahan. 2017. Effects of desiccation and starvation on thermal tolerance and the heat-848 

shock response in forest ants. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 187: 849 

1107–1116. 850 

O’Donnell, M.S., and D. A. Ignizio, D.A., 2012. Bioclimatic predictors for supporting 851 

ecological applications in the conterminous United States: U.S. Geological Survey Data 852 

Series 691 853 

Orr, H. A. 2005. The genetic theory of adaptation: A brief history. Nat. Rev. Genet. 6: 119–127. 854 

Orr, M. C., A. C. Hughes, D. Chesters, J. Pickering, C. D. Zhu, and J. S. Ascher. 2020. 855 

Global Patterns and Drivers of Bee Distribution. Curr. Biol. 31: 451-458.e4. 856 

Overgaard, J., and H. A. MacMillan. 2017. The Integrative Physiology of Insect Chill 857 

Tolerance. Annu. Rev. Physiol. 79: 187–208. 858 

Oyen, K. J., S. Giri, and M. E. Dillon. 2016. Altitudinal variation in bumble bee (Bombus) 859 

critical thermal limits. J. Therm. Biol. 59: 52–57. 860 

Papadopulos, A. S. T., J. Igea, L. T. Dunning, O. G. Osborne, X. Quan, J. Pellicer, C. 861 

Turnbull, I. Hutton, W. J. Baker, R. K. Butlin, and V. Savolainen. 2019. Ecological 862 

speciation in sympatric palms: 3. Genetic map reveals genomic islands underlying species 863 

divergence in Howea. Evolution. 73: 1986–1995. 864 

Pimsler, M. L., K. J. Oyen, J. D. Herndon, J. M. Jackson, J. P. Strange, M. E. Dillon, and J. 865 

D. Lozier. 2020. Biogeographic parallels in thermal tolerance and gene expression variation 866 

under temperature stress in a widespread bumble bee. Sci. Rep. 10: 1–11. 867 

Quilodrán, C. S., K. Ruegg, A. T. Sendell-Price, E. C. Anderson, T. Coulson, and S. M. 868 



 39 

Clegg. 2020. The multiple population genetic and demographic routes to islands of genomic 869 

divergence. Methods Ecol. Evol. 11: 6–21. 870 

Rahbek, C., M. K. Borregaard, R. K. Colwell, B. Dalsgaard, B. G. Holt, N. Morueta-Holme, 871 

D. Nogues-Bravo, R. J. Whittaker, and J. Fjeldså. 2019. Humboldt’s enigma: What 872 

causes global patterns of mountain biodiversity? Science. 365: 1108–1113. 873 

Rausch, T., T. Zichner, A. Schlattl, A. M. Stütz, V. Benes, and J. O. Korbel. 2012. DELLY: 874 

Structural variant discovery by integrated paired-end and split-read analysis. 875 

Bioinformatics. 28: 333–339. 876 

Ravinet, M., R. Faria, R. K. Butlin, J. Galindo, N. Bierne, M. Rafajlović, M. A. F. Noor, B. 877 

Mehlig, and A. M. Westram. 2017. Interpreting the genomic landscape of speciation: a 878 

road map for finding barriers to gene flow. J. Evol. Biol. 30: 1450–1477. 879 

Revelle, W. 2020. Psych: procedures for personality and psychological research. https://cran.r-880 

project.org/web/packages/psych/index.html 881 

Sadd, B. M., S. M. Barribeau, G. Bloch, D. C. de Graaf, P. Dearden, C. G. Elsik, J. Gadau, 882 

C. J. P. Grimmelikhuijzen, M. Hasselmann, J. D. Lozier, H. M. Robertson, G. 883 

Smagghe, E. Stolle, M. Van Vaerenbergh, R. M. Waterhouse, E. Bornberg-Bauer, S. 884 

Klasberg, A. K. Bennett, F. Câmara, R. Guigó, K. Hoff, M. Mariotti, M. Munoz-885 

Torres, T. Murphy, D. Santesmasses, G. V. Amdam, M. Beckers, M. Beye, M. Biewer, 886 

M. M. G. Bitondi, M. L. Blaxter, A. F. G. Bourke, M. J. F. Brown, S. D. Buechel, R. 887 

Cameron, K. Cappelle, J. C. Carolan, O. Christiaens, K. L. Ciborowski, D. F. Clarke, 888 

T. J. Colgan, D. H. Collins, A. G. Cridge, T. Dalmay, S. Dreier, L. du Plessis, E. 889 

Duncan, S. Erler, J. Evans, T. Falcon, K. Flores, F. C. P. Freitas, T. Fuchikawa, T. 890 

Gempe, K. Hartfelder, F. Hauser, S. Helbing, F. C. Humann, F. Irvine, L. S. Jermiin, 891 



 40 

C. E. Johnson, R. M. Johnson, A. K. Jones, T. Kadowaki, J. H. Kidner, V. Koch, A. 892 

Köhler, F. B. Kraus, H. M. G. Lattorff, M. Leask, G. A. Lockett, E. B. Mallon, D. S. 893 

M. Antonio, M. Marxer, I. Meeus, R. F. A. Moritz, A. Nair, K. Näpflin, I. Nissen, J. 894 

Niu, F. M. F. Nunes, J. G. Oakeshott, A. Osborne, M. Otte, D. G. Pinheiro, N. Rossié, 895 

O. Rueppell, C. G. Santos, R. Schmid-Hempel, B. D. Schmitt, C. Schulte, Z. L. P. 896 

Simões, M. P. M. Soares, L. Swevers, E. C. Winnebeck, F. Wolschin, N. Yu, E. M. 897 

Zdobnov, P. K. Aqrawi, K. P. Blankenburg, M. Coyle, L. Francisco, A. G. Hernandez, 898 

M. Holder, M. E. Hudson, L. R. Jackson, J. Jayaseelan, V. Joshi, C. Kovar, S. L. Lee, 899 

R. Mata, T. Mathew, I. F. Newsham, R. Ngo, G. Okwuonu, C. Pham, L. L. Pu, N. 900 

Saada, J. Santibanez, D. N. Simmons, R. Thornton, A. Venkat, K. K. O. Walden, Y. Q. 901 

Wu, G. Debyser, B. Devreese, C. Asher, J. Blommaert, A. D. Chipman, L. Chittka, B. 902 

Fouks, J. Liu, M. P. O’Neill, S. Sumner, D. Puiu, J. Qu, S. L. Salzberg, S. E. Scherer, 903 

D. M. Muzny, S. Richards, G. E. Robinson, R. A. Gibbs, P. Schmid-Hempel, and K. C. 904 

Worley. 2015. The genomes of two key bumblebee species with primitive eusocial 905 

organization. Genome Biol. 16: 1–31. 906 

Savolainen, O., M. Lascoux, and J. Merilä. 2013. Ecological genomics of local adaptation. 907 

Nat. Rev. Genet. 14: 807–820. 908 

Schnorrer, F., C. Schönbauer, C. C. H. Langer, G. Dietzl, M. Novatchkova, K. 909 

Schernhuber, M. Fellner, A. Azaryan, M. Radolf, A. Stark, K. Keleman, and B. J. 910 

Dickson. 2010. Systematic genetic analysis of muscle morphogenesis and function in 911 

Drosophila. Nature. 464: 287–291. 912 

Seamus, J., C. Bak, M. Kuhlmann, and C. Grønkjær. 2018. Cold exposure causes cell death 913 

by depolarization- mediated Ca 2 + overload in a chill-susceptible insect. 115: 9737–9744. 914 



 41 

Sinclair, B. J., L. V. Ferguson, G. Salehipour-Shirazi, and H. A. Macmillan. 2013. Cross-915 

tolerance and cross-talk in the cold: relating low temperatures to desiccation and immune 916 

stress in insects. Integr. Comp. Biol. 53: 545–556. 917 

Stolle, E., L. Wilfert, R. Schmid-Hempel, P. Schmid-Hempel, M. Kube, R. Reinhardt, and 918 

R. F. A. Moritz. 2011. A second generation genetic map of the bumblebee Bombus 919 

terrestris (Linnaeus, 1758) reveals slow genome and chromosome evolution in the Apidae. 920 

BMC Genomics. 12. 921 

Storey, J. D., A. J. Bass, A. Dabney and D. Robinson. 2020. qvalue: q-value estimation for 922 

false discovery rate control. R package version 2.20.0. http://github.com/jdstorey/qvalue 923 

Storfer, A., A. Patton, and A. K. Fraik. 2018. Navigating the interface between landscape 924 

genetics and landscape genomics. Front. Genet. 9: 1–14. 925 

Sun, C., J. Huang, Y. Wang, X. Zhao, L. Su, G. W. C. Thomas, M. Zhao, X. Zhang, I. 926 

Jungreis, M. Kellis, S. Vicario, I. V Sharakhov, S. M. Bondarenko, M. Hasselmann, C. 927 

N. Kim, B. Paten, L. Penso-Dolfin, L. Wang, Y. Chang, Q. Gao, L. Ma, L. Ma, Z. 928 

Zhang, H. Zhang, H. Zhang, L. Ruzzante, H. M. Robertson, Y. Zhu, Y. Liu, H. Yang, 929 

L. Ding, Q. Wang, D. Ma, W. Xu, C. Liang, M. W. Itgen, L. Mee, G. Cao, Z. Zhang, B. 930 

M. Sadd, M. Hahn, S. Schaack, S. M. Barribeau, P. H. Williams, R. M. Waterhouse, 931 

and R. L. Mueller. 2020. Genus-wide characterization of bumblebee genomes provides 932 

insights into their evolution and variation in ecological and behavioral traits. Mol. Biol. 933 

Evol. 38: 486–501. 934 

Supek, F., M. Bošnjak, N. Škunca, and T. Šmuc. 2011. Revigo summarizes and visualizes 935 

long lists of gene ontology terms. PLoS One. 6. 936 

Taylor, R. S., E. L. Jensen, D. W. Coltman, A. D. Foote, and S. Lamichhaney. 2021. Seeing 937 



 42 

the whole picture: What molecular ecology is gaining from whole genomes. Mol. Ecol. 30: 938 

5917–5922. 939 

Wallberg, A., M. T. Webster, M. Hasselmann, A. Wallberg, and C. Scho. 2017. Two 940 

extended haplotype blocks are associated with adaptation to high altitude habitats in East 941 

African honey bees. PLoS Genet. 1–30. 942 

Walsh, A. T., D. A. Triant, J. J. Le Tourneau, and C. G. Elsik. 2021. Hymenoptera genome 943 

database : new genomes and annotation datasets for improved go enrichment and orthologue 944 

analyses. Nucleic Acid Res. 50: D1032-D1039 945 

Wang, G., and M. E. Dillon. 2014. Recent geographic convergence in diurnal and annual 946 

temperature cycling flattens global thermal profiles. Nat. Clim. Chang. 4: 988–992. 947 

Wellenreuther, M., C. Mérot, E. Berdan, and L. Bernatchez. 2019. Going beyond SNPs: the 948 

role of structural genomic variants in adaptive evolution and species diversification. Mol. 949 

Ecol. 28: 1203–1209. 950 

Whitlock, M. C., and K. E. Lotterhos. 2015. Reliable detection of loci responsible for local 951 

adaptation: inference of a null model through trimming the distribution of FST. Am. Nat. 952 

186: S24–S36. 953 

Williams, P. H., J. M. Lobo, and A. S. Meseguer. 2018. Bumblebees take the high road: 954 

climatically integrative biogeography shows that escape from Tibet, not Tibetan uplift, is 955 

associated with divergences of present-day Mendacibombus. Ecography (Cop.). 41: 461–956 

477. 957 

Wittkopp, P. J., and G. Kalay. 2012. Cis-regulatory elements: molecular mechanisms and 958 

evolutionary processes underlying divergence. Nat. Rev. Genet. 13: 59–69. 959 

Woodard, S. H. 2017. Bumble bee ecophysiology: integrating the changing environment and the 960 



 43 

organism. Curr. Opin. Insect Sci. 22: 101–108. 961 

Yadav, S., A. Stow, and R. Y. Dudaniec. 2020. Microgeographic adaptation corresponds with 962 

elevational distributions of congeneric montane grasshoppers. Mol. Ecol. 481–498. 963 

Zhang, C., S. S. Dong, J. Y. Xu, W. M. He, and T. L. Yang. 2019. PopLDdecay: a fast and 964 

effective tool for linkage disequilibrium decay analysis based on variant call format files. 965 

Bioinformatics. 35: 1786–1788. 966 

Zheng, X., D. Levine, J. Shen, S. M. Gogarten, C. Laurie, and B. S. Weir. 2012. A high-967 

performance computing toolset for relatedness and principal component analysis of SNP 968 

data. Bioinformatics. 28: 3326–3328. 969 

Zhong, Y., A. Shtineman-Kotler, L. Nguyen, K. G. Iliadi, G. L. Boulianne, and D. Rotin. 970 

2011. A splice isoform of DNedd4, DNedd4-Long, negatively regulates neuromuscular 971 

synaptogenesis and viability in Drosophila. PLoS One. 6. 972 

 973 

Figure Captions 974 

 975 

Figure 1: Map of sampling locations (white circles) superimposed on a Maxent species 976 

distribution model of the Bombus vancouverensis range generated following Cameron et al. 977 

(2011). Areas of high suitability (darker colors) indicate the area inhabited by Bombus 978 

vancouverensis. Inset image shows a picture of Bombus vancouverensis  979 

 980 

Figure 2: Plot of -log(q-values) from OutFLANK across all scaffolds 100kb or lager (scaffolds 981 

are of different sizes but x-axes are scaled here for graphical purposes, see Table 2 to find precise 982 

SNP locations). The solid black line in each scaffold represents the q-value threshold of 0.01. 983 
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Point coded as “BOTH” are significant in both model outputs (LFMM2 and OutFLANK). Points 984 

coded as “LFMM” were significant in the LFMM2 model only, otherwise points above the black 985 

line were found to be significant only in OutFLANK. 986 

 987 

Figure 3: Ordination plots of significant models (p < 0.05) from Redundancy analysis (RDA) 988 

showing the population structure of samples based on the different SV types; Deletions, 989 

Duplications, and Inversions. Large colored points show sample state of origin and small grey 990 

points show individual SVs.   991 

 992 

Figure 4: Global FST and average within-population nucleotide diversity (p) averaged over 5 kb 993 

windows for outlier-dense focal scaffolds NW_02881786.1, NW_02881829.1, and 994 

NW_02881902.1 with outlier regions in the highlighted boxes  995 

 996 

Figure 5: A) Smoothed average linkage across two largest outlier scaffolds (NW_02881829.1 997 

and NW_02881902.1) (dark colored line) versus genome wide linkage (light colored line). B) 998 

Same as (A), but showing the average linkage per base-pair across largest outlier scaffolds (top) 999 

versus genome wide linkage (bottom). C) Smoothed average of outlier scaffolds 1000 

(NW_02881829.1 and NW_02881902.1 in dark color) versus collection of 10 randomly 1001 

scaffolds (Supp. Table S2) that did not contain outliers (light color). D) Diagram of positioning 1002 

of B. vancouverensis scaffolds with outlier regions against LG11 of Bombus terrestris. Scaffold 1003 

NW_022881902.1 was unplaced in the B. terrestris genome and is not shown. E) Relationship 1004 

between FST and repeat content across the genome as well as across select scaffolds with high 1005 

outlier density (NW_022881786.1, NW_022881829.1, and NW_022881902.1). All plots include 1006 
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linear regression models with p-values and R2 values listed.  1007 

 1008 
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Table 1: All cross validated SNPs from the output of LFMM2 and OutFLANK. Table shows: the NCBI Gene ID number and name for 

each gene (or the genes on either side of an intergenic region), the homologous gene in D. melanogaster, the number of cross 

validated SNPs found in each gene or intergenic region, the environmental variable associated with the SNP based on LFMM2, and 

the scaffold the SNP falls on. 

 

Gene ID Gene Name Fly Homolog No. SNPS 
Environmental 
Variable(s) Scaffold 

LOC117153469 E3 ubiquitin-protein ligase Nedd-4 Nedd4 1 BIO3 NW_022881760.1 

LOC117153944-
LOC117155827 

zinc finger protein 100-like - uncharacterized  #N/A - #N/A 1 BIO3 NW_022881760.1 

LOC117158937 heterogeneous nuclear ribonucleoprotein A3 
homolog 2-like 

#N/A 1 BIO3 NW_022881761.1 

LOC117166763 calcium/calmodulin-dependent 3',5'-cyclic 
nucleotide phosphodiesterase 1-like 

Pde1c 1 BIO3 NW_022881765.1 

 
LOC117154601 

UTP--glucose-1-phosphate uridylyltransferase UGP 2 BIO3 NW_022881773.1 

LOC117154414 NADPH--cytochrome P450 reductase Cpr 1 BIO3 NW_022881773.1 

LOC117154436 uncharacterized #N/A 2 BIO3, Elev NW_022881773.1 

LOC117154435 cilia- and flagella-associated protein 47-like #N/A 2 BIO3, Elev NW_022881773.1 
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Gene ID Gene Name Fly Homolog No. SNPS 
Environmental 
Variable(s) Scaffold 

LOC117154605-
LOC117154606 

m7Gpppx diphosphatase - uncharacterized  CG2091 - #N/A 1 BIO3 NW_022881773.1 

LOC117154606-
LOC117154599 

uncharacterized - macoilin #N/A - CG30389 1 BIO3 NW_022881773.1 

LOC117154426-
LOC117154433 

protein TAPT1 homolog - elongation of very long 
chain fatty acid protein 6-like 

CG7218 - #N/A 1 BIO3 NW_022881773.1 

LOC117154433-
LOC117154432 

elongation of very long chain fatty acid protein 6-
like - elongation of very long chain fatty acid 
protein 6-like 

#N/A - #N/A 2 BIO3 NW_022881773.1 

LOC117155271 E3 ubiquitin-protein ligase Rnf220-like CG4813 1 BIO3 NW_022881777.1 

LOC117155885 mitochondrial sodium/calcium exchanger protein-
like 

CG14744 1 BIO3, BIO12 NW_022881780.1 

LOC117155870-
CHR_END 

uncharacterized - chr end 2mit - #N/A 2 BIO3 NW_022881780.1 

LOC117156425 GTPase-activating protein RasGAP1 1 BIO3, Elev NW_022881785.1 

LOC117156434 glutamic acid-rich protein-like Asph 2 BIO3,Elev NW_022881785.1 

LOC117156445 uncharacterized #N/A 1 Elev NW_022881785.1 

LOC117156425-
LOC117156434 

GTPase-activating protein - glutamic acid-rich 
protein-like 

RasGAP1 - Asph 1 BIO3,elev NW_022881785.1 

LOC117156686 DENN domain-containing protein 1A CG18659 1 Elev NW_022881786.1 
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Gene ID Gene Name Fly Homolog No. SNPS 
Environmental 
Variable(s) Scaffold 

LOC117156494 nuclear pore complex protein Nup133 Nup133 1 Elev NW_022881786.1 

LOC117156535 multidrug resistance-associated protein 4-like CG5789 6 Elev NW_022881786.1 

LOC117156538-
LOC117156535 

uncharacterized - multidrug resistance-associated 
protein 4-like  

CG32206 - #N/A 1 elev NW_022881786.1 

LOC117157367 uncharacterized #N/A 1 BIO3 NW_022881796.1 

LOC117157569 protein sax-3-like dpr20 36 BIO3,Elev NW_022881829.1 

LOC117157568 synaptogenesis protein syg-2-like side-VI 66 BIO3,Elev NW_022881829.1 

LOC117157569-
LOC117157568 

protein sax-3-like - synaptogenesis protein syg-2-
like  

dpr20 - side-VI 263 BIO3,elev NW_022881829.1 

LOC117157921 UDP-glucuronosyltransferase 2B17-like Ugt35C1 1 BIO3 NW_022881833.1 

LOC117158648 tyrosine-protein kinase Drl Drl-2 3 BIO3 NW_022881846.1 

LOC117158660 protein sister of odd and bowel-like CG4374 1 BIO3 NW_022881846.1 

LOC117158593 cilia- and flagella-associated protein 20-like Bug22 1 BIO3,Elev NW_022881846.1 

LOC117158711 UPF0489 protein C5orf22 homolog MESR6 3 BIO3 NW_022881847.1 
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Gene ID Gene Name Fly Homolog No. SNPS 
Environmental 
Variable(s) Scaffold 

LOC117158916 uncharacterized #N/A 2 BIO3 NW_022881848.1 

LOC117159416-
LOC117159440 

leucine-rich repeat-containing protein 24-like - 
uncharacterized  

kek2 - #N/A 5 BIO3,elev NW_022881861.1 

LOC117160564 5-hydroxytryptamine receptor-like RYa-R 1 BIO3 NW_022881886.1 

LOC117160713 chaoptin-like CG42346 1 BIO3 NW_022881888.1 

LOC117160671 ATP-binding cassette sub-family G member 1 CG5853 1 BIO3 NW_022881888.1 

LOC117160670-
LOC117160662 

ATP-binding cassette sub-family G member 1-like - 
lysine-specific demethylase 4c-like 

CG9663 - kdm4b 2 BIO3 NW_022881888.1 

LOC117160794 fatty acyl-CoA reductase 1-like CG5065 1 BIO3 NW_022881895.1 

LOC117160785-
LOC117160792 

uncharacterized - zinc finger protein 184-like  #N/A - #N/A 1 BIO3 NW_022881895.1 

LOC117160792-
LOC117160793 

zinc finger protein 184-like - vicilin-like seed 
storage protein At2g18540 

 #N/A - #N/A 1 BIO3 NW_022881895.1 

LOC117160794-
LOC117160795 

fatty acyl-CoA reductase 1-like - fatty acyl-CoA 
reductase 1-like 

 #N/A - #N/A 1 BIO3 NW_022881895.1 

LOC117160795-
CHR_END 

fatty acyl-CoA reductase 1-like - chr end  #N/A - #N/A 2 BIO3 NW_022881895.1 

LOC117161190 pro-resilin-like Cpr50Cb 2 BIO3 NW_022881902.1 
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Gene ID Gene Name Fly Homolog No. SNPS 
Environmental 
Variable(s) Scaffold 

LOC117161192 N66 matrix protein-like Cpr50Cb 2 BIO3 NW_022881902.1 

LOC117161197 uncharacterized #N/A 3 BIO3 NW_022881902.1 

LOC117161196 60S ribosomal protein L35 RpL35 1 BIO3 NW_022881902.1 

LOC117161193 L-selectin CG6055 1 BIO3 NW_022881902.1 

LOC117161103 adenomatous polyposis coli protein-like Apc 1 BIO3 NW_022881902.1 

LOC117161064 ras-related protein Rab-11A Rab11 1 BIO3 NW_022881902.1 

LOC117161116 uncharacterized CG13138 15 BIO3 NW_022881902.1 

LOC117161115 low-density lipoprotein receptor-related protein 2 mgl 2 BIO3 NW_022881902.1 

LOC117161235 transmembrane emp24 domain-containing protein 
bai 

bai 1 BIO3 NW_022881902.1 

LOC117161224 protein cordon-bleu-like CG2841 1 BIO3 NW_022881902.1 

LOC117161157 uncharacterized beat-IIIc 5 BIO3,BIO12 NW_022881902.1 

LOC117161181 phosphatidylinositol-binding clathrin assembly 
protein LAP 

lap 2 BIO3 NW_022881902.1 



 51 

Gene ID Gene Name Fly Homolog No. SNPS 
Environmental 
Variable(s) Scaffold 

LOC117161180 xanthine dehydrogenase/oxidase-like AOX3 36 BIO3 NW_022881902.1 

LOC117161100 plasma membrane calcium-transporting ATPase 3 PMCA 36 BIO3,Elev NW_022881902.1 

LOC117161197-
LOC117161189 

uncharacterized - unconventional refolding RPB5 
interaction-like protein  

#N/A - uri 1 BIO3 NW_022881902.1 

LOC117161194-
LOC117161188 

MIIP18 family protein galla-1 - alanine 
aminotransferase 1 

galla-1 - CG1640 2 BIO3 NW_022881902.1 

LOC117161103-
LOC117161251 

adenomatous polyposis colii protein-like - small 
nuclear ribonucleoprotein Sm D3 

#N/A - SmD3 1 BIO3 NW_022881902.1 

LOC117161081-
LOC117161088 

protein tramtrack, beta isoform-like - 
uncharacterized  

rib - #N/A 3 BIO3 NW_022881902.1 

LOC117161080-
LOC117161076 

synembryn-A - brain tumor protein-like rica8a - mei-P26 2 BIO3 NW_022881902.1 

LOC117162971-
LOC117162978 

probable serine/threonine-protein kinase MARK-A 
- uncharacterized  

 #N/A - #N/A 1 elev NW_022882360.1 

LOC117164862 mannosyl-oligosaccharide 1,2-alpha-mannosidase 
IA 

alpha-Man-Ia 1 BIO3 NW_022882548.1 

CHR_START-
LOC117165093 

chr start - uncharacterized   #N/A - #N/A 1 BIO3 NW_022882562.1 

LOC117165093-
LOC117165099 

uncharacterized - uncharacterized   #N/A - #N/A 1 BIO3 NW_022882562.1 

LOC117165099-
LOC117165101 

uncharacterized - uncharacterized   #N/A - #N/A 2 BIO3 NW_022882562.1 
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Table 2: All outlier SVs identified from the Redundancy analysis (RDA). The table notes: the type of SV as either a deletion (Del) or 

inversion. (Inv), the scaffold the SV is located on, the start position of the SV, the NCBI gene ID and name of gene(s) spanned by the 

SV, and the total length of the SV in bp. 
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Footnote: * May represent an artefact in the reference genome or an issue with alignment due to large size of SV. 

SV 
Type Scaffold Start Location Length 
Del NW_022881761.1 4656001 LOC117164506 (peptide-N(4)-(N-acetyl-beta-glucosaminyl) asparagine 

amidase) 
65 

Del NW_022881772.1 3192657 LOC117154137 (uncharacterized loci) 10126 
Del NW_022881829.1 507180 intergenic  137 
Del NW_022881829.1 518415 intergenic  158 
Del NW_022881829.1 549109 intergenic  47 
Del NW_022881829.1 649945 LOC117157568 (synaptogenesis protein Syg-2-like) 65 
Del NW_022881829.1 661084 LOC117157568 (synaptogenesis protein Syg-2-like) 107 
Del NW_022881832.1 2130734 intergenic  249 
Del NW_022881861.1 2754083 intergenic  1462 
Del NW_022881862.1 2343632 LOC117159534 (innexin shaking-B) 112 
Del NW_022881865.1 581715 intergenic  52 
Del NW_022881877.1 854738 LOC117160152 (uncharacterized loci) 571 
Del NW_022881879.1 378524 LOC117160263 (RNA-binding protein Musashi homolog Rbp6) 94 
Del NW_022881881.1 715676 LOC117160393 (cadherin EGF LAG seven-pass G-type receptor 1-like)  69 
Del* NW_022881881.1 895567 multiple genes 385647 
Del NW_022881881.1 1165612 LOC117160315 (tyrosine-protein. Kinase Btk29A) 73 
Del NW_022881888.1 733080 LOC117160713 (calcium-binding mitochondrial carrier protein 

SCaMC-2) 
281 

Del NW_022881991.1 365611 LOC117162117 (uncharacterized) 1133 
Del NW_022882286.1 2868480 LOC117162727 (cadherin-23) 867 
Del NW_022882406.1 6267958 LOC117163555 (sex determination protein fruitless)/LOC117163556 

(uncharacterized)  
126 

Del NW_022882540.1 1089009 multiple genes 23855 
Del NW_022882918.1 4984008 LOC117165908 (syntaxin-binding protein 5) 864 
Inv NW_022881784.1 372519 LOC117156304 (hemicentin-1-like) 136 
Inv NW_022881881.1 1233941 LOC117160315 (tyrosine-protein kinase Btk29A) 47273 
Inv NW_022882023.1 165412 intergenic  662 
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