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Abstract—This paper gives a simple method to construct
generator matrices with polynomial entries (and hence offers
an alternative encoding method to the one commonly used) for
all quasi-cyclic low-density parity-check (QC-LDPC) codes, even
for those that are rank deficient. The approach is based on
constructing a set of codewords with the desired total rank
by using minors of the parity-check matrix. We exemplify the
method on several well-known and standard codes. Moreover,
we explore the connections between the minors of the parity-
check matrix and the known upper bound on minimum distance
and provide a method to compute the rank of any parity-check
matrix representing a QC-LDPC code, and hence the dimension
of the code, by using the minors of the corresponding polynomial
parity-check matrix.

I. INTRODUCTION

Quasi-cyclic LDPC (QC-LDPC) codes, are attractive for
implementation purposes since they can be encoded with low
complexity using simple feedback shift-registers [1] and their
structure leads to efficiencies in decoder design [2]. Moreover,
QC-LDPC codes can be shown to perform well compared
to random LDPC codes for moderate block lengths [3], [4].
However, unlike typical members of an asymptotically good
protograph-based LDPC code ensemble, the QC sub-ensemble
does not have linear distance growth. Indeed, if the protograph
base matrix consists of only ones and zeros, then the minimum
Hamming distance is bounded above by (nc + 1)!, where nc
is the number of check nodes in the protograph, regardless
of the lifting factor N [5]. This result was extended to multi-
edge protographs in [6]. Significant effort has been made in the
coding theory community to design QC-LDPC code matrices
with minimum distance and girth approaching these bounds,
see [3], [4], [7]–[10] and references therein.

As a result of the rich structure of QC-LDPC codes, their
matrix representations have been studied in a number of works.
These include methods to construct a generator in standard
form (e.g., [1]), which allows high throughput systematic
encoding but the resulting generator matrix is typically dense.
The sparse parity-check matrix is often represented as an array
of circulant permutations, which facilitate efficient implemen-
tation, and will typically have a number of linearly dependent
rows. Although Gaussian elimination can be employed to
compute the rank with a complexity of O(n3), it is desirable
to have an analytic way to compute the rank, particularly
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for classes of algebraic QC-LDPC codes. Methods to com-
pute the rank of QC-LDPC codes have been investigated,
including approaches involving Fourier transforms [11], [12]
and the matrix polynomial representation [13]. However, these
approaches are limited to certain code parameters.

In this paper, we will use some previous results by Smaran-
dache and Vontobel [6] to show how to construct polynomial
generator matrices in various forms, including in standard
form. The matrices are interesting from both the perspective of
allowing for an encoding alternative to the methods in [1] as
well as from the resulting codewords that are constructed from
the method. In particular, the rows of the generator matrices
we construct are codewords with relatively small weight, in
some cases, equal to the minimum distance of the code. We
exemplify these methods on some known codes. Our approach
employs the minors of the polynomial matrix which also allow
for a most general formula to compute the rank of any parity-
check matrix representing a QC-LDPC code, and hence, the
dimension of any QC-LDPC code.

II. DEFINITIONS, NOTATIONS AND BACKGROUND

We use the following notation. For any positive integer L,
[L] denotes the set {1, 2, . . . , L}. For any matrix M , we let
MI,J be the sub-matrix of M that contains only the rows of
M whose index appears in the set I and only the columns of
M whose index appears in the set J ; if I equals the set of all
row indices of M , we will simply write MJ . We use the short-
hand MJ\i for MJ\{i}. If I and J have the same cardinality,
we use ∆I,J = det(HI,J ), and ∆J = det(H[nc],J ).

As usual, an LDPC code C is described as the null space
of a parity-check matrix H to which we associate a Tanner
graph [14] in the usual way. The girth of the Tanner graph,
denoted by girth(H), is the length of its shortest cycle.

A protograph [15], [16] is a small bipartite graph rep-
resented by an nc × nv parity-check or base biadjacency
matrix B with non-negative integer entries bij . The parity-
check matrix H of a protograph-based LDPC block code can
be created by replacing each non-zero entry bij by a sum of bij
non-overlapping N×N permutation matrices and a zero entry
by the N × N all-zero matrix. Graphically, this operation is
equivalent to taking an N -fold graph cover, or “lifting”, of the
protograph. We denote the N×N circulant permutation matrix
where the entries of the N×N identity matrix I are shifted to
the left by r positions modulo N as Ir. A quasi-cyclic (QC)
LDPC code of length n = nvN is a protograph-based LDPC
code, for which the N × N lifting permutation matrices are
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all circulant matrices Ir. Thus a QC code has an ncN × nvN
parity-check matrix H of the form

H =

H1,1 H1,2 · · · H1,nv

...
...

. . .
...

Hnc,1 Hnc,2 · · · Hnc,nv

 ,
where the N ×N sub-matrices Hi,j are circulant; applying
equal circular shifts to each length-N sub-blocks of a code-
word results in a codeword.

With the help of the well-known isomorphism between the
ring of circulant matrices over the binary field F2 and the
ring F2[x]/(xN − 1) of F2-polynomials modulo xN − 1 (see,
e.g., [17]), a QC LDPC code can also be described by an
nc × nv polynomial parity-check matrix over F2[x]/(xN −
1). In particular, with the ncN × nvN parity-check matrix
H described above we associate the polynomial parity-check
matrix

H(x) =

 h1,1(x) h1,2(x) · · · h1,nv (x)
...

...
. . .

...
hnc,1(x) hnc,2(x) · · · hnc,nv

(x)

 ,
where hi,j(x) ∈ F2[x]/(xN − 1). Moreover, with any vector
c = (c1,0, . . . , c1,N−1, . . . , cnv,0, . . . , cnv,N−1) in FnvN

2 , we
associate the polynomial vector c(x) =

(
c1(x), . . . , cnv

(x)
)

where ci(x) ,
N−1∑
s=0

ci,sx
s. Then, the condition H · cT = 0T

(in F2) is equivalent to H(x) ·c(x)T = 0T in F2[x]/(xN −1).
We note the simple technique described in [6] to construct

codewords of codes described by polynomial parity-check
matrices, which extends a codeword construction technique
by MacKay and Davey [5, Theorem 2].

Lemma 1. Let C be the QC code defined by the nc × nv
polynomial parity-check matrix H(x) over F2[x]/(xN−1). Let
S be an arbitrary size-(nc+1) subset of [nv] and let c(x) =(
c1(x), c2(x), . . . , cnv

(x)
)

be a length-nv vector defined by

ci(x) ,

{
detT

(
HS\i(x)

)
= ∆S\i if i ∈ S

0 otherwise
.

Then c(x) is a codeword in C.1

We also note the following bound from [6] based on the
codewords created with Lemma 1:

dmin(C) ≤ min∗
S⊆[nv ]
|S|=nc+1

∑
i∈S

wt ∆S\i (1)

where min∗ takes the minimum positive value of a set.

III. A GENERATOR MATRIX FOR A QC CODE GIVEN BY H

This section, and the two theorems within, give an alterna-
tive approach to the method in [13] to compute the rank of
H by computing full minors of the polynomial matrix H(x).
Moreover, it provides both a sparse generator matrix and a

1The determinant of an m ×m-polynomial matrix B = [bj,i(x)]j,i over
F2[x] is det(B) =

∑
σ

∏
j∈[m] bj,σ(j)(x), where the summation is over

all m! permutations of the set [m]. Then detT transposes the polynomials,
i.e., the exponents are taken with the negative sign modulo N .

systematic generator matrix for the associated code C. This
method also yields the known upper bounds on the minimum
distance of the code C, see [6].

A. Case of ncN × nvN matrices H of full rank ncN
Theorem 2. Let H be the ncN ×nvN parity-check matrix of
a QC code C and let H(x) be its corresponding polynomial
parity-check matrix over F2[x]/(xN − 1).

If there exists a subset S of size nc of [nv], and for
simplicity and w.l.o.g. we assume that S = [nc], such that
∆S = det

(
HS(x)

)
is invertible in F2[x]/(xN − 1), then

1) rank(H) = ncN , i.e., H has full rank.
2) H(x) is equivalent2 to the nc × nv matrix diagnc

(∆S)

∆S1\1 · · · ∆Sm\1
...

...
∆S1\nc

· · · ∆Sm\nc

 ∼
 Inc×nc

∆S1\1∆−1
S · · · ∆Sm\1∆−1

S
...

...
∆S1\nc

∆−1
S · · · ∆Sm\nc

∆−1
S

 ,
where Si = S ∪ {nc + i}, for all 1 ≤ i ≤ m, m ,
nv − nc, ∆Si\j , det

(
HSi\j(x)

)
, for all 1 ≤ j ≤ nc,

the matrix Inc×nc
is the identity matrix of size nc×nc,

and diagnc
(∆S) is a diagonal nc×nc matrix with each

diagonal entry equal to ∆S .
3) The (nv − nc) × nv matrices G(x) below are two

equivalent generator polynomial matrices for C: (∆S1\1)T · · · (∆S1\nc
)T

...
...

(∆Sm\1)T · · · (∆Sm\nc
)T

diagm(∆S)

 ∼
 (∆S1\1∆−1

S )T · · · (∆S1\nc
∆−1
S )T

...
...

(∆Sm\1∆−1
S )T · · · (∆Sm\nc

∆−1
S )T

Im×m

 ,
with notation as above, and where the matrix Im×m is
the identity matrix of size (nv − nc) × (nv − nc), and
diagm(∆S) is a diagonal (nv −nc)× (nv −nc) matrix
with each diagonal entry equal to ∆S .

Proof: The proof is a relatively straightforward conse-
quence of Lemma 1 and is omitted for space constraints.

Remark 3. In Theorem 2, we give two (new) equivalent repre-
sentations for both H(x) and G(x), the first one both matrices
are sparse, while the second, is a systematic representation,
both of which could be of interest to design efficient encoding
and decoding algorithms. Note that the first representation of
G(x) contains the codewords from which the upper bound (1)
can be deduced, see also [6], and hence provides a sparse
representation that would be amenable to high throughput

2By equivalent, we mean that a matrix can be obtained from an equivalent
matrix by applying elementary row operations (we call them row equivalent),
which would not change its row space nor its null space, and column per-
mutations, which might change these both, leaving invariant all the important
parameters of the corresponding code and its Tanner graph.
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encoding following approaches such as [1]. The systematic
version, as is typical, is not as sparse and, in most cases,
the row codewords have weight larger than this upper bound.
However, the systematic form may also be of interest, e.g., to
avoid the need for encoder inverse operations. �

In the following we give two examples and show how this
method of creating sets of codewords based on the full size
minors of a nc× (nc+ 1) submatrix of H(x) can also display
codewords of the weight equal to the minimum distance.
The upper bound (1) on the minimum distance given by
the minimum of the weights of these codewords is relevant
because it is shown to be tight.
Example 4. (AR4JA codes) Let H(x) be the polynomial
parity-check matrix given by

H(x) =

0 0 1 0 1 + x
1 1 0 1 x+ x2 + x3

1 x+ x2 0 1 + x3 1


with N = 4. The rows of the matrix G(x) below are linearly
independent codewords for the code C given by H , and
since ∆123 = det(H123) = x2 + x + 1 is irreducible in
F2[x]/(x4 + 1), the matrix G(x) has rank 2N = 8 and thus,
forms a generator matrix for the code C:

G(x) =

[
∆T

234 ∆T
134 ∆T

124 ∆T
123 0

∆T
235 ∆T

135 ∆T
125 0 ∆T

123

]
=[

(x+ 1)3 x 0 x3 + x2 + 1 0
x3 + x2 + 1 (x+ 1)3 x+ 1 0 x3 + x2 + 1

]
.

Note that the vectors (∆T
245,∆

T
145, 0,∆

T
125,∆

T
124),

(∆T
345, 0,∆

T
145,∆

T
135,∆

T
134), (0,∆T

345,∆
T
245,∆

T
235,∆

T
234), are

also codewords, where ∆145 = det(H145) = x + 1, ∆245 =
det(H245) = 0, and ∆345 = det(H345) = x, but they are
linear combinations of the ones displayed in the matrix G(x),
so they are not needed for the generator matrix. Displaying
them is useful, however, since the nonzero minimum of the
weights of the five codewords gives an upper bound on the
minimum distance of the code (see (1)), in this case, the
codeword (∆T

245,∆
T
145, 0,∆

T
125,∆

T
124) = (0, x+1, 0, x+1, 0)

has weight 4, which is in fact the minimum distance of the
code; this code has parameters [20, 8, 4].

Multiplying the two rows of G by (x3 +x2 + 1)−1 = x2 +
x+ 1 gives a generator matrix in standard form,

G(x) =

[
x3 + x2 + x+ 1 x3 + x2 + x 0 1 0

1 x3 + x2 + x+ 1 x3 + 1 0 1

]
,

while

H(x) =

1 0 0 x3 + x2 + x+ 1 1
0 1 0 x+ x2 + x3 x3 + x2 + x+ 1
0 0 1 0 x+ 1


is a polynomial parity-check matrix in systematic form. �

We exemplify the method also on a 4N × 8N , N = 16,
irregular matrix.

Example 5. Let H(128,64), shown below, be the 4N × 8N ,
N = 16, protograph-based matrix of the [128, 64, 14] irregular,
multi-edge protograph specified by the NASA Consultative
Committee for Space Data Systems (CCSDS) [16], [18]:

 1 + x7 x2 x14 x6

x6 1 + x15 1 x
x4 x 1 + x15 x14

1 x x9 1 + x13

0 1 x13 1
1 0 1 x7

x11 1 0 x3

x14 x 1 0

,
Let S = {5, 6, 7, 8}. We use the notation ∆abcd =
det(H{a,b,c,d}) and compute ∆5678 = x14+x12+x3, which is
invertible in F2[x]/(x16+1), since x16+1 = (x+1)16 has only
(x + 1) as irreducible factor in F2[x]. We compute ∆−1

5678 =
(x14+x12+x3)−1 = x13+x12+x11+x10+x9+x8+x7+x+1,
so that we can compute the values δabcd , ∆abcd(∆S)−1 that
appear in the the systematic parity-check matrix H ′(x) and
the systematic generator matrix G(x) given as

H ′(x) ,

 δ1678 δ2678 δ3678 δ4678

δ1578 δ2578 δ3578 δ4578

δ1568 δ2568 δ3568 δ4568

δ1567 δ2567 δ3567 δ4567

I4×4

 ,

G(x) ,

 I4×4

δT1678 δT1578 δT1568 δT1567

δT2678 δT2578 δT2568 δT2567

δT3678 δT3578 δT3568 δT3567

δT4678 δT4578 δT4568 δT4567

 ,
δ1678 =x12 + x11 + x10 + x7 + x6 + x4 + x,

δ1578 =x13 + x11 + x10 + x7 + x6 + x4 + x2 + x,

δ1568 =(x+ 1)(x14 + x11 + x9) + (x4 + 1)(x3 + 1),

δ1567 =x12 + x10 + x9 + x8 + x7 + x2,

δ2678 =(x+ 1)(x14 + x12 + x11 + x9 + x6 + x2),

δ2578 =x13 + x10 + x9 + x7 + x6 + x5 + x4 + x3 + x2,

δ2568 =x14 + x13 + x12 + x10 + x9 + x6 + x3 + 1,

δ2567 =x11 + x5 + x4 + 1, δ3678 = x15 + x11 + x8 + 1,

δ3578 =(x+ 1)(x14 + x12 + x10 + x7 + x6 + x4 + 1),

δ3568 =x15 + x12 + x11 + x9 + x7 + x5 + x2 + x+ 1,

δ3567 =x14 + x11 + x10 + x9 + x5 + x2 + x+ 1,

δ4678 =x15 + x12 + x11 + x10 + x8 + x6 + x4 + x2,

δ4578 =x14 + x10 + x8 + x7 + x6 + x5 + x4 + x2,

δ4568 =x15 + x11 + x10 + x7 + x5 + x4 + x3 + x2,

δ4567 =x15 + x14 + x12 + x10 + x5 + x+ 1,

where δTabcd is the transpose of δabcd, which changes the
exponents to their negatives modulo N .

A sparser but “systematic-like" generator matrix is, how-
ever, the following,

G′ ,

 diag4(∆T
5678)

∆T
1678 ∆T

1578 ∆T
1568 ∆T

1567

∆T
2678 ∆T

2578 ∆T
2568 ∆T

2567

∆T
3678 ∆T

3578 ∆T
3568 ∆T

3567

∆T
4678 ∆T

4578 ∆T
4568 ∆T

4567

 ,
with a corresponding “systematic-like" parity-check matrix

H ′′ ,

 ∆1678 ∆2678 ∆3678 ∆4678

∆1578 ∆2578 ∆3578 ∆4578

∆1568 ∆2568 ∆3568 ∆4568

∆1567 ∆2567 ∆3567 ∆4567

diag4(∆5678)

 ,
∆5678 = x14 + x12 + x3, ∆1678 = x14 + x6 + x5 + x3 + 1,

∆1578 = x15 + x11 + x10 + x9 + x8 + x6 + x3 + 1,

∆1568 = x12 + x11 + x10 + x9 + x7 + 1,

∆1567 = (x+ 1)(x14 + x12 + x4) + x11 + x7 + x3 + 1,

∆2678 = x15 + x9 + x8 + x5 + x4 + x3,
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∆2578 = (x+ 1)(x14 + x12 + x10 + x4) + 1,

∆2568 = (x2 + 1)(x12 + x11 + x5 + x2 + x) + x+ 1,

∆2567 = x12 + x9 + x8 + x2 + x+ 1,

∆3678 = x13 + x12 + x9 + x7 + x6 + x4 + x3 + x2,

∆3578 = x13 + x11 + x9 + x8 + x4 + x2,

∆3568 = x14 + x11 + x9 + (x+ 1)(x4 + x2 + 1),

∆3567 = x15 + x14 + x12 + x10 + x9 + x6 + x4 + 1,

∆4678 = x15 + x10 + x5 + x2,∆4568 = x15 + x11 + x10 + x9,

∆4578 = x14 + x13 + x12 + x11 + x9 + x7,

∆4567 = x14 + x13 + x11 + x8 + x6 + x4 + x2.

The rows of the matrix G′(x) represent codewords of weight
that equal the upper bound on the minimum distance from (1).
The last row, for example, gives dmin(C) ≤ 24.

If instead we take S = {1, 5, 6, 8}, the polynomial ∆1578 =
x15 + x11 + x10 + x9 + x8 + x6 + x3 + 1 is not invertible in
F2[x]/(x16 + 1), so we cannot obtain the identity matrix. �

B. Case of ncN × nvN rank deficient matrices H
This section considers the case in which, for any subset S

of size nc of [nv], ∆S , det
(
HS(x)

)
is not invertible. Let S

be a subset of size nc of [nv] such that gcd
(
∆S , x

N + 1
)

=
d(x) 6= 1 in F2[x] and supposed that d(x) divides ∆T for all
subsets T of size nc of [nv]. For simplicity and w.l.o.g., we
assume that S = [nc].

In this case, we can still construct the matrix G1 of
codewords similar to the one formed in Section III-A:

G1 ,

 ∆T
S1\1 ∆T

S1\2 · · · ∆T
S1\nc

...
...

...
∆T
Sm\1 ∆T

Sm\2 · · · ∆T
Sm\nc

diag(∆T
S)

 .
However, unlike the case in which ∆S is invertible, this matrix
does not generate the entire code C, but only a subcode of C
because its rank is lower that the dimension of the code. In
this case, we will need to add to this matrix a few rows of
“obvious" codewords to increase the rank. We exemplify this
on the famous [155, 64, 20] Tanner code below.

Example 6. ([155, 64, 20] Tanner code) Let

H =

 x x2 x4 x8 x16

x5 x10 x20 x9 x18

x25 x19 x7 x14 x28

 .
All 3 × 3 minors and X31 + 1 have common factor (x + 1),
so H(x) does not have any irreducible 3× 3 submatrix HS .

Let S = {1, 2, 3}, and ∆123 , det(H123) = x28 + x18 +
x16 + x14 + x9 + x8. The matrix[

∆234 ∆134 ∆124 ∆123 0
∆235 ∆135 ∆125 0 ∆123

]
,

∆234 = det(S234) = x28 + x25 + x18 + x16 + x5 + x,

∆134 = det(S134) = x23 + x22 + x20 + x17 + x7 + x4,

∆124 = det(S124) = x29 + x25 + x21 + x12 + x5 + x,

∆123 = det(S123) = x28 + x18 + x16 + x14 + x9 + x8,

∆235 = det(S235) = x27 + x24 + x19 + x11 + x10 + x2,

∆135 = det(S135) = x30 + x28 + x26 + x18 + x16 + x6,

∆125 = det(S125) = x20 + x14 + x9 + x8 + x7 + x4,

is a matrix of two codewords. It has rank 60, so it only
generates a subcode of C (of the same minimum distance 20).
To increase its rank and, thus, obtain a full generator matrix,
we need to add some linearly independent codewords to this
matrix. One would hope that the entire matrix of codewords

∆234 ∆134 ∆124 ∆123 0
∆235 ∆135 ∆125 0 ∆123

∆245 ∆145 0 ∆125 ∆124

∆345 0 ∆145 ∆135 ∆134

0 ∆345 ∆245 ∆235 ∆234

 ,
∆245 = det(S245) = x15 + x14 + x13 + x9 + x8 + x3,

∆145 = det(S145) = x20 + x19 + x10 + x7 + x4 + x2,

∆345 = det(S345) = x25 + x19 + x10 + x5 + x2 + x,

has the correct rank, but this is not the case since three of the
5 codewords above are linear combinations of the remaining
two, and the rank of the matrix above is still 60 over F2.
Although these 3 codewords are not necessary to construct a
generator matrix, displaying them is useful, nonetheless, since
they give the known upper bound on the minimum distance (1),
dmin(C) ≤ 4 · 6 = 24, see [6].

However, the matrix

G =


∆234 ∆134 ∆124 ∆123 0
∆235 ∆135 ∆125 0 ∆123

f f 0 0 0
f 0 f 0 0
f 0 0 f 0
f 0 0 0 f

,
where f = 1+x+x2 + · · ·+x30, has the correct rank 64, and
its rows are codewords for the code given by H . Therefore, it
is a generator matrix for the [155, 64, 20] Tanner code.

This generator matrix is sparse and in “systematic-like"
form. We can make it more systematic in the following way.
Since gcd(∆123, f) = 1, over the polynomial ring F2[x], there
exist A(x), B(x) ∈ F2[x],

A = (x3 + 1)(x25 + x5) + (x+ 1)(x18 + x15 + x14 + x9 + x)

B = (x+ 1)(x25 + x22 + x16 + x12 + x10 + 1) + x9,

such that A(x) ·∆123 +B(x) · f = gcd(∆123, f) = 1.
Adding the first row of G multiplied by A with the fifth

row of G, and adding the second row of G multiplied by A
with the sixth row of G, we obtain

G1 ,

A11 A12 A13 1 0
A21 A22 A23 0 1
f f 0 0 0
f 0 f 0 0

 , where

A11 =x28 + x18 + x16 + x14 + x9 + x8,

A12 =(x+ 1)(x22 + x16 + x15 + x13 + x8 + x2 + x+ 1),

A13 =x29 + x25 + x21 + x20 + x12 + x7 + x5 + x4 + x,

A21 =x30 + x13 + x10 + (x+ 1)[(x6 + 1)(x19 + x16 + 1) + x15],

A22 =x29 + x27 + x25 + x24 + x21 + x20 + x19 + x12 + x11+

x10 + x7 + x5 + x4 + x2 + x+ 1,

A23 =(x3 + 1)(x25 + x5 + x) + (x2 + 1)(x18 + x14 + x7).

�
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The following theorem gives the formula for the rank over
F2 of a scalar matrix using the computation of the degree of
the minors of the corresponding polynomial matrix.
Theorem 7. Let H be a ncN × nvN matrix over F2 and
H(x) be the corresponding nc × nv polynomial matrix. For
all i ∈ [nc], we define the following in F2[x]:

γi(x) , gcd{∆I,J (H(x) | |I| = |J | = i}, γ0 , 1,

di(x) , gcd(γi/γi−1, x
N + 1), where

gcd(0/0, xN + 1) , gcd(0, xN + 1) = xN + 1. Then,

rankF2(H) = nc ·N −
nc∑
i=1

deg di(x)⇒

dim(C) = (nv − nc) ·N +

nc∑
i=1

deg di(x).

Proof: In F2[x], H(x) is equivalent (after elementary row
and column operations that leave its rank invariant) to its Smith
normal form[

diag(γ1γ0 (x), γ2γ1 (x), . . . ,
γnc

γnc−1
(x)) 0nc×(nv−nc)

]
.

Taking the gcd of the entries with (xN+1), we obtain a matrix
equivalent to H(x) in F2[x]/(xN +1), therefore, the rank over
F2 of the ncN × nvN matrix H is equal to the sum of the
ranks of the circulant matrices associated to di(x).

Example 8. Let H(x) , 1 + x2 1 + x4 1 + x6 1 + x8 1 + x16

x4 + x12 x20 + x22 x30 + x42 x40 + x14 1 + x50

1 + x4 x30 + x24 x12 + x14 x3 + x13 x+ x9


be a 3 × 5 polynomial matrix in F2[x]. Depending on N , its
Tanner graph can have girth 6. We will keep N variable, and
compute the rank of the 3N × 5N matrix H obtained from
H(x) in the ring F2[x]/(xN + 1). We obtain (the following
include relevant Magma commands):

γi , GCD(Minors(H, i)), in F2[x],

γ0 , 1, γ1 = (x+ 1)2, γ2 = (x+ 1)4, γ3 = (x+ 1)6,
γ1

γ0
=
γ2

γ1
=
γ3

γ2
= x2 + 1, so, for all 1 ≤ i ≤ 3,

di = gcd(x2 + 1, xN + 1) =

{
x2 + 1 if N even
x+ 1 if N odd =⇒

rank(H) = 3(N − deg(di)) =

{
3N − 6 if N even
3N − 3 if N odd .

Therefore, the same matrix gives a code of larger dimension
if N is even. For example, N = 44, gives H of rank 128,
and the code of dimension 92, while N = 45 gives a slightly
longer code that has the same dimension 92. �

We end with a theorem that shows how to obtain an
equivalent upper triangular form for H(x) and thus, to provide
an alternative proof to Theorem 7.3 The proof is based on
simple computations of determinants.

Theorem 9. Let H(x) = (hij)i,j by an nc × nv polynomial
matrix. We assume, w.l.o.g, that gcd(

∆[i],[i]

γi
, xN + 1) = 1, for

all i ∈ [nc].
4 Then, H(x) is equivalent to the upper triangular

3Note that [13] only addresses the nc = 3 case.
4We perform elementary row and column permutations to obtain this form.

matrix

h11 h12 · · · h1nc
· · · h1nv

0
∆[2],[2]

γ1
· · · ∆[2],1nc

γ1
· · · ∆[2],1nv

γ1

0 0 · · · ∆[3],12nc

γ2
· · · ∆[3],12nv

γ2
...

...
...

...
0 0 · · · ∆[nc],[nc]

γnc−1
· · · ∆[nc],[nc−1]∪nv

γnc−1

 ,
where the determinants and the divisions are performed in
F2[x] first, followed by the modular operation mod (xN+1).

Example 10. Let H(x) be the polynomial parity-check matrix
of Example 6. We compute γ1 = 1, d1 = 1, and d2 = d3 =
x + 1, so the rank over F2 of H is 91. The matrix H1(x)
below gives the same [155, 64, 20] code as H(x):5

H1(x) ,

x x2 x4 x8 x16

0 x10 + x6 x20 + x8 x12 + x9 x20 + x18

0 0
∆[3],123

x+1

∆[3],124

x+1

∆[3],125

x+1

 ,
∆[3],123 = x47 + x40 + x39 + x28 + x18 + x14,

∆[3],124 = x43 + x36 + x32 + x29 + x25 + x21,

∆[3],125 = x51 + x45 + x40 + x39 + x38 + x35,

∆[3],123

x+ 1
mod x31 + 1 = x30 + x29 + x28 + x17 + x16 + x13+

x12 + x11 + x10 + x9 + x7 + x6 + x5 + x4 + x3 + x2 + x+ 1,

∆[3],124

x+ 1
mod x31 + 1 = x30 + x29 + x24 + x23 + x22 + x21+

x11 + x10 + x9 + x8 + x7 + x6 + x5 + 1,

∆[3],125

x+ 1
mod x31 + 1 = x19 + x18 + x17 + x16 + x15 + x14+

x8 + x6 + x5 + x4.

Note that there could be N for which simpler equivalent
triangular forms can be obtained. For values N for which

gcd

(
∆[i],[i]

γi−1
, xN + 1

)
= gcd

(
δ[i],[i], x

N + 1
)
,

where δI,J , ∆I,J mod xN+1, the denominator γi−1 can be
dropped in Theorem 9. For example, the matrix H2(x) below
gives also the same [155, 64, 20] code as H(x), for N = 31:

H2(x) ,

x x2 x4 x8 x16

0 x10 + x6 x20 + x8 x12 + x9 x20 + x18

0 0 δ[3],123 δ[3],124 δ[3],125

 ,
where δ[3],12i , ∆[3],12i mod x31 + 1 for all i ∈ {3, 4, 5}.

�

IV. CONCLUDING REMARKS

This paper shows how to obtain a generator matrix for
an LDPC code using minors of the polynomial parity-check
matrix. The resulting matrices can be presented in several
forms that may facilitate efficient encoder implementation as
well as minimum distance analysis. Moreover, the approach
was shown to provide a formula for the dimension of any
QC-LDPC code based on the minors of its polynomial parity-
check matrix.

5Note that we can also compute the rank over F2 of H from the equivalent
form H1.
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