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Abstract—This paper gives a simple method to construct
generator matrices with polynomial entries (and hence offers
an alternative encoding method to the one commonly used) for
all quasi-cyclic low-density parity-check (QC-LDPC) codes, even
for those that are rank deficient. The approach is based on
constructing a set of codewords with the desired total rank
by using minors of the parity-check matrix. We exemplify the
method on several well-known and standard codes. Moreover,
we explore the connections between the minors of the parity-
check matrix and the known upper bound on minimum distance
and provide a method to compute the rank of any parity-check
matrix representing a QC-LDPC code, and hence the dimension
of the code, by using the minors of the corresponding polynomial
parity-check matrix.

I. INTRODUCTION

Quasi-cyclic LDPC (QC-LDPC) codes, are attractive for
implementation purposes since they can be encoded with low
complexity using simple feedback shift-registers [1] and their
structure leads to efficiencies in decoder design [2]. Moreover,
QC-LDPC codes can be shown to perform well compared
to random LDPC codes for moderate block lengths [3], [4].
However, unlike typical members of an asymptotically good
protograph-based LDPC code ensemble, the QC sub-ensemble
does not have linear distance growth. Indeed, if the protograph
base matrix consists of only ones and zeros, then the minimum
Hamming distance is bounded above by (n. + 1)!, where n.
is the number of check nodes in the protograph, regardless
of the lifting factor N [5]. This result was extended to multi-
edge protographs in [6]. Significant effort has been made in the
coding theory community to design QC-LDPC code matrices
with minimum distance and girth approaching these bounds,
see [3], [4], [7]-[10] and references therein.

As a result of the rich structure of QC-LDPC codes, their
matrix representations have been studied in a number of works.
These include methods to construct a generator in standard
form (e.g., [1]), which allows high throughput systematic
encoding but the resulting generator matrix is typically dense.
The sparse parity-check matrix is often represented as an array
of circulant permutations, which facilitate efficient implemen-
tation, and will typically have a number of linearly dependent
rows. Although Gaussian elimination can be employed to
compute the rank with a complexity of O(n?), it is desirable
to have an analytic way to compute the rank, particularly
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for classes of algebraic QC-LDPC codes. Methods to com-
pute the rank of QC-LDPC codes have been investigated,
including approaches involving Fourier transforms [11], [12]
and the matrix polynomial representation [13]. However, these
approaches are limited to certain code parameters.

In this paper, we will use some previous results by Smaran-
dache and Vontobel [6] to show how to construct polynomial
generator matrices in various forms, including in standard
form. The matrices are interesting from both the perspective of
allowing for an encoding alternative to the methods in [1] as
well as from the resulting codewords that are constructed from
the method. In particular, the rows of the generator matrices
we construct are codewords with relatively small weight, in
some cases, equal to the minimum distance of the code. We
exemplify these methods on some known codes. Our approach
employs the minors of the polynomial matrix which also allow
for a most general formula to compute the rank of any parity-
check matrix representing a QC-LDPC code, and hence, the
dimension of any QC-LDPC code.

II. DEFINITIONS, NOTATIONS AND BACKGROUND

We use the following notation. For any positive integer L,
[L] denotes the set {1,2,...,L}. For any matrix M, we let
Mz, 7 be the sub-matrix of M that contains only the rows of
M whose index appears in the set Z and only the columns of
M whose index appears in the set J; if Z equals the set of all
row indices of M, we will simply write M 7. We use the short-
hand M 7\; for M 7\ (33. If Z and J have the same cardinality,
we use Az 7 = det(Hz 7), and Ay = det(H,,),7)-

As usual, an LDPC code C is described as the null space
of a parity-check matrix H to which we associate a Tanner
graph [14] in the usual way. The girth of the Tanner graph,
denoted by girth(H), is the length of its shortest cycle.

A protograph [15], [16] is a small bipartite graph rep-
resented by an n. X n, parity-check or base biadjacency
matrix B with non-negative integer entries b;;. The parity-
check matrix H of a protograph-based LDPC block code can
be created by replacing each non-zero entry b;; by a sum of b;;
non-overlapping N x N permutation matrices and a zero entry
by the N x N all-zero matrix. Graphically, this operation is
equivalent to taking an N-fold graph cover, or “lifting”, of the
protograph. We denote the NV x N circulant permutation matrix
where the entries of the /N x N identity matrix [ are shifted to
the left by r positions modulo N as I,.. A quasi-cyclic (QC)
LDPC code of length n = n,, N is a protograph-based LDPC
code, for which the N x N lifting permutation matrices are
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all circulant matrices I,.. Thus a QC code has an n.N x n,N
parity-check matrix H of the form

Hi1 Hip Hin,

H= :
an»nv

where the N x N sub-matrices H; ; are circulant; applying
equal circular shifts to each length-N sub-blocks of a code-
word results in a codeword.

With the help of the well-known isomorphism between the
ring of circulant matrices over the binary field F, and the
ring Fo[z]/(zY — 1) of Fa-polynomials modulo 2V — 1 (see,

g, [17]), a QC LDPC code can also be described by an
ne X N, polynomial parity-check matrix over Fy[z]/(2? —
1). In particular, with the n.N x n,N parity-check matrix
H described above we associate the polynomial parity-check
matrix

an,l an,2

hi1(z)  hia(x) hin,(2)
H(@)=| A
P 1(®) B, 2(z) P n, ()

where h; j(z) € Fa[z]/(z™ — 1). Moreover, with any vector
Cc = (8170, ce 3 CILN—=1y-+-yCny 05+ C’nv,N—l) in FSUN, we
associate the polynomial vector ¢(z) = (c1(z),...,cn, (2))

Z ¢;.sx°. Then, the condition H - cT = 0T
-0

(in Fy) is equlvalent to H(z) -c(z)T =07 in Fy[z]/(2V —1).

We note the simple technique described in [6] to construct
codewords of codes described by polynomial parity-check
matrices, which extends a codeword construction technique
by MacKay and Davey [5, Theorem 2].

Lemma 1. Let C be the QC code defined by the n. x n,
polynomial parity-check matrix H(z) over Fo[z]/(zN —1). Let
S be an arbitrary size-(n.+1) subset of [n,] and let c(x) =
(c1(z),c2(x), ..., cn, (x)) be a length-n, vector defined by

ci(z) 2 {detT (Hs\i(2)) = As\; ifi€S

where c;(z) £

0 otherwise

Then c(x) is a codeword in C.!

We also note the following bound from [6] based on the
codewords created with Lemma 1:

duin(C) < min® = > wtAsy; (1)
|S|=nc+1 €S

where min™ takes the minimum positive value of a set.

III. A GENERATOR MATRIX FOR A QC CODE GIVEN BY H

This section, and the two theorems within, give an alterna-
tive approach to the method in [13] to compute the rank of
H by computing full minors of the polynomial matrix H(x).
Moreover, it provides both a sparse generator matrix and a

IThe determinant of an m x m-polynomial matrix B = [b; ;(
Fax] is det(B) =
all m! permutations of the set [m]. Then detT transposes the polynomials,
i.e., the exponents are taken with the negative sign modulo V.

x)];,; over
> Ije[m) bj,o(5) (%), where the summation is over

systematic generator matrix for the associated code C. This
method also yields the known upper bounds on the minimum
distance of the code C, see [6].

A. Case of nc.N x n,N matrices H of full rank n.N

Theorem 2. Let H be the n.N x n, N parity-check matrix of
a QC code C and let H(x) be its corresponding polynomial
parity-check matrix over Falx]/(zN — 1).

If there exists a subset S of size n. of [n,|, and for
simplicity and w.l.o.g. we assume that S = [n.|, such that

As = det (Hs(x)) is invertible in Fa[z]/(z™ — 1), then
1) rank(H) = n.N, i.e, H has full rank.
2) H(x)is equivalent® to the n. x n, matrix
Ag\1 Asm\1
diagnc (AS) . ~
Asl\nu AS"L\”L
Asl\lAgl ASm\lAg
Incxnc )
As\n A5 As,\n A5

A

where S; = SU{n.+ i}, forall1 <i < m, m =
Ny — N,y ASq‘,\j é dEt (H51\J(£C)), fOI" all ]. S] S Ne,
the matrix I, yxp, is the identity matrix of size n. X ne,
and diag,, (As) is a diagonal n. X n. matrix with each
diagonal entry equal to Ag.

3) The (ny, — n¢) X n, matrices G(x) below are two
equivalent generator polynomial matrices for C:

(ASI\I)T (Asl\nc)T

: : diag,,(As) | ~
(As,\1)T (As,\n )T
(As1AgH)T (Asl\ncAgl)T

Imxm )
(As, 18507 (Asm\ncAgl)T

with notation as above, and where the matrix I, ., is
the identity matrix of size (n, — n.) X (ny, — ne), and
diag,,(As) is a diagonal (n, —n.) X (n, —n.) matrix
with each diagonal entry equal to As.

Proof: The proof is a relatively straightforward conse-
quence of Lemma 1 and is omitted for space constraints. M

Remark 3. In Theorem 2, we give two (new) equivalent repre-
sentations for both H (x) and G(z), the first one both matrices
are sparse, while the second, is a systematic representation,
both of which could be of interest to design efficient encoding
and decoding algorithms. Note that the first representation of
G(z) contains the codewords from which the upper bound (1)
can be deduced, see also [6], and hence provides a sparse
representation that would be amenable to high throughput

2By equivalent, we mean that a matrix can be obtained from an equivalent
matrix by applying elementary row operations (we call them row equivalent),
which would not change its row space nor its null space, and column per-
mutations, which might change these both, leaving invariant all the important
parameters of the corresponding code and its Tanner graph.
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encoding following approaches such as [1]. The systematic
version, as is typical, is not as sparse and, in most cases,
the row codewords have weight larger than this upper bound.
However, the systematic form may also be of interest, e.g., to
avoid the need for encoder inverse operations. ]

In the following we give two examples and show how this
method of creating sets of codewords based on the full size
minors of a n. X (n.+ 1) submatrix of H(z) can also display
codewords of the weight equal to the minimum distance.
The upper bound (1) on the minimum distance given by
the minimum of the weights of these codewords is relevant
because it is shown to be tight.

Example 4. (AR4JA codes) Let H(x) be the polynomial
parity-check matrix given by

0 0 1 0 1+
H(z)= |1 1 0 1 T+ z? + 23
1 z+22 0 1423 1

with N = 4. The rows of the matrix G(x) below are linearly
independent codewords for the code C given by H, and
since Ajoz = det(Hyo3) = 2% + o + 1 is irreducible in
Fo[z]/(z* + 1), the matrix G(x) has rank 2N = 8 and thus,
forms a generator matrix for the code C:

G(z) = {A%&; A134 Alu Ay 2 ] -
A235 A135 A125 0 A123
(x+1)3 x 0 23+22+1 0
B4+ +1 (z+1)3 z+1 0 i+ 1|

Note that the vectors (AJ,-. AT,. 0, AT, AL,),
(Ads5: 0, Ay, Alss, Alsy), (0,A%5, Agys, Agzs, Agyy), are
also codewords, where A1y = det(Hyg5) = x + 1, Agys =
det(H245) = 0, and Aszys = det(H345) = x, but they are
linear combinations of the ones displayed in the matrix G(x),
so they are not needed for the generator matrix. Displaying
them is useful, however, since the nonzero minimum of the
weights of the five codewords gives an upper bound on the
minimum distance of the code (see (1)), in this case, the
codeword (Al AT,- 0,Al,., ALL,) = (0,2+1,0,2+1,0)
has weight 4, which is in fact the minimum distance of the
code; this code has parameters [20, 8, 4].

Multiplying the two rows of G by (2 + 22 +1)7! = 22 +
x + 1 gives a generator matrix in standard form,

Glo) = 42+l 2342242 0 10
1 B4+ rz+1 2341 0 1)
while
1 00 234+224+2+1 1
Hz)=10 1 0 =z+2°4+2® 2*+22+2+1
0 0 1 0 r+1

is a polynomial parity-check matrix in systematic form. [

We exemplify the method also on a 4N x 8N, N = 16,
irregular matrix.

Example 5. Let H(128764), shown below, be the 4N x 8N,
N = 16, protograph-based matrix of the [128, 64, 14] irregular,
multi-edge protograph specified by the NASA Consultative
Committee for Space Data Systems (CCSDS) [16], [18]:

1427 x2 't 28 0 1 23 1
26 142 1 T 1 0 1 27
xt x 1+ 2! 24 |21 0 22|
1 T x9 1428 |z 2 1 0

Let S = {5,6,7,8}. We use the notation A,pq
det(H{q p,c,q1) and compute Asgrs = !4 422 +23, which is
invertible in F3[x]/(216+41), since 2'¢+1 = (2+1)'° has only
(z 4 1) as irreducible factor in Fy[z]. We compute Az =
(24212 423) 1 = 213124 110109 108 0T a1,
so that we can compute the values Sapcq 2 Agpea(As) ™! that
appear in the the systematic parity-check matrix H'(z) and
the systematic generator matrix G(x) given as

[ d167s 2678 03678 04678 1
7 () & 01578 O2578 03578  Oas578 I
(1’) — 6 5 5 5 4x4 )
1568 02568 03568 04568
L di567 2567 03567 O4s67 i
r T T T T 7
01678 01578 01568 1567
o 5, oF or
G 2|1 2678 02578 02568 02567
- 4x4 5T 5T 5T 5T )
3678 03578 03568 93567
ST 5T, 5T, 5Tt
4678 04578 Oas68 04567 |

drors =z >+t + 20 + 2 4 2% + 2" 42,
01578 =z 4" 42" + z’ + z° + z* + x> + x,
S1s6s =(z + 1)(a"* + 2" +2%) + (2* + 1)(«® + 1),
Sise7 =z 2+ 20 +2° +2® + a7 + 2%
02678 =(z + 1)(91714 +z 42t 42 a2t + xz),
Sasrs =2 + 2" 4+ 2° + 27 +2° +2° + 2t 4 2 427,
oses =z + 2 2 + 2" 427 428 4 2% 4 1,
doser =z + 2”2t + 1, Jzers = + a2t 241,
d357s =(¢ + 1) (@™ + 2" + 2" + 27 + 2% + 2t + 1),
3508 =2'° + 2+t 42’ 2T a2t 2’ fa 41,
S3s67 =2 + 2t + 20+ 2% +2° + 2P+ + 1,
Sagrs =2 + 22 + 2™ + 20 + 2% + 2% + 2t + 27,
Sasrs =2 + 270 + 2% + 27 + 2% + 2 + 2t + 22,
bases =2'° + 2 + 2" 42" +2° + 2t + 27 + 2,
daser =2+t 42 42" +2® f 41,
where 4], , is the transpose of upeq, Which changes the
exponents to their negatives modulo V.

A sparser but “systematic-like" generator matrix is, how-
ever, the following,

A1678 AL’WS A1568 A1567
¢ 2| dingy (Al | St A Bl Mo |
3678 3578 3568 3567
L AIG'?S A15'78 A;[568 A1567
with a corresponding “systematic-like" parity-check matrix
[ Aiers  Aoers  Asers  Asers
H/I é A1578 A2578 A3578 A4578 dlag (A5678)
A1568 A2568 A3568 A4568 4 ’
| Aiser  Aaoser  Aszser  Auser

Asers =z + 2+ 2%, A =a" +2° +2° +2° + 1,
Arsrs =2 + 2"t 4+ 2" +2° + 2% + 2% +2° +1,

Ases =z 2 + 2" + 242" + 27 +1,

Aser = (z+ 1) (2" + 22 +2*) + 2™ + 27 +2° + 1,

15 9, .8 5 4, .3
Aggrs =2 +x +x +2° +x° +2°,
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Aogsrs = (z + ) (" + 22 + 2" +2*) 41,

A2568:(~T2+ )( 12+x“+a:5+a:2+a:)+x+1,
Asser = 2> +2” +x +2°4+z+1,

Asers =2 + ' +2° + 27 + 2% + 2" +2° + 27,
Assrs = &' + o' + 2% + 2% + 2 + 2,

Asses =z + 't + 27 + (2 + 1) (a* + 27 + 1),

Asser =2 + o + 22 + 20 + 2% + 2%+ 2* + 1,

Agors = 2" +2'% +2° + 2% Auses = 2'° + 2" + 2" + 2%,
Agsrs =z + 2 + 2% + 2" + 27 + 27,

Agsor = ' + 2" 2" + 2% + 2% 4 2t + 2%

The rows of the matrix G’(x) represent codewords of weight
that equal the upper bound on the minimum distance from (1).
The last row, for example, gives din(C) < 24.

If instead we take S = {1, 5, 6, 8}, the polynomial A;575 =
2+ 2 210 4 29 4 28 + 2% + 23 + 1 is not invertible in
Fa[z]/(2'¢ 4 1), so we cannot obtain the identity matrix. [J

B. Case of ncN x n, N rank deficient matrices H

This section considers the case in which, for any subset S
of size n. of [n,], As £ det (Hs(x)) is not invertible. Let S
be a subset of size n. of [n,] such that ged (Ag, 2™ +1) =
d(x) # 1 in Fo[z] and supposed that d(z) divides A+ for all
subsets T of size n. of [n,]. For simplicity and w.l.o.g., we
assume that S = [n].

In this case, we can still construct the matrix G of
codewords similar to the one formed in Section III-A:

Ag \1 Ag \2 Agl\nc
G = : : diag(Af)
A-Sljm\l Agm \2 Sm\nc

However, unlike the case in which Ag is invertible, this matrix
does not generate the entire code C, but only a subcode of C
because its rank is lower that the dimension of the code. In
this case, we will need to add to this matrix a few rows of
“obvious" codewords to increase the rank. We exemplify this
on the famous [155, 64, 20] Tanner code below.

Example 6. ([155, 64, 20] Tanner code) Let

R S L
H= |48 10 420 9 .18
225 19 7 14 28

All 3 x 3 minors and X3! + 1 have common factor (z + 1),
so H(z) does not have any irreducible 3 x 3 submatrix Hs.

Let S = {1 2 3} and Aoz = det(Higz) = 228 + 218 +
210 + 2! + 29 + 25, The matrix

Agzs A1zg Aoy Aras 0

Aszzs  Aizs Aizs 0 Aia|’
Agzy = det(Sazs) = 2®® + 2 + 2" + 2" +2° 4+ 2,
Aq3s = det(S134) = x23 + x22 +220 42V 4+ 2"+ 2%,
Ajog = det(S124) = 2°° + 2% + 2*' + 2" + 2% 4 2,

- 28 16 14 9 8

Arzz = det(S123) = 2 + 2" + 20 + 2™ + 27 + 25,
Aazs = det(Sazs) = 227 + 2 + 2 + o' + 220 4 22,
Aizs = det(Si35) = 2 + 2% + 2% + "% + 2% 4 25,
Aoz = det(S1o5) = ° + &' +2° + 2% + 27 + 2,

is a matrix of two codewords. It has rank 60, so it only
generates a subcode of C (of the same minimum distance 20).
To increase its rank and, thus, obtain a full generator matrix,
we need to add some linearly independent codewords to this
matrix. One would hope that the entire matrix of codewords

Agzs Ayzs Ajgg Az 0
Agzs Azs Aps 00 Agog
Aggs As 0 Agas Agogf,
Azgs 0 Ays Azs Agzy
0 Asss Aoss Asgs Aggy
Aogs = det(Sogs) = 215 + 2 + 213 4 29 4 28 4+ 23,

Aqys = det(Sys) = 22 + 21 + 210 4 27 + 2t 4 22,
Aszys = det(Ssy5) = 22° + ' + 210 4 2% + 22 + 2,

has the correct rank, but this is not the case since three of the
5 codewords above are linear combinations of the remaining
two, and the rank of the matrix above is still 60 over Fs.
Although these 3 codewords are not necessary to construct a
generator matrix, displaying them is useful, nonetheless, since
they give the known upper bound on the minimum distance (1),
dmin(C) < 4-6 = 24, see [6].
However, the matrix

Aozy Aqzs Ajag Agos 0
Agzs Agzs Aas 0 Aggg
a_|f F 0o 0o 0
=y o f o o
F0 0  f o0
f0 0o 0 f

where f = 14z +22+---+23°, has the correct rank 64, and
its rows are codewords for the code given by H. Therefore, it
is a generator matrix for the [155,64,20] Tanner code.

This generator matrix is sparse and in “systematic-like"
form. We can make it more systematic in the following way.
Since ged(Aqa3, f) = 1, over the polynomial ring Fy[z], there
exist A(z), B(z) € Fa[z],

A= (23 +1)(2® +2°) +
B=(z+1)@® + 22+ 2% + 22 4 20 1 1) + 27,

such that A(l‘) - Aqo3 + B(LE) - f= ng(Algg, f) =1.

Adding the first row of G multiplied by A with the fifth
row of G, and adding the second row of G multiplied by A
with the sixth row of GG, we obtain

(I+1)(IE18+I15+I14+I9+I)

A A Az 10
G & Afl AJ?Q A023 8 (1) , where
f 0 f 00
Ay =2 4 2% 4 210 421 420 4 a8
A =(z+ )@@ +2" + 2P + 2P + 28 + 22 2+ 1),
Ars =2 425 422 1220 122 42" 425 2t o,
Aot =% + 28 4 20 4 (2 4+ D[ + D(@' + 2 + 1) + 27,
Aoy =22 + 227 + 2% 4 22 42 4220 419 4 12y
x10+x7+x5+x4+x2+$+1,
Aoz =(2® + 1)(a® + 2° + z) + (® + 1) (@ + 2" + 7).
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The following theorem gives the formula for the rank over
[y of a scalar matrix using the computation of the degree of
the minors of the corresponding polynomial matrix.
Theorem 7. Let H be a n.N X n,N matrix over Fy and
H(zx) be the corresponding n. X n, polynomial matrix. For
all i € [n.], we define the following in Falx]:

vi(w) £ ged{Az. g (H(2) | |Z] = |T| = i}, 70 = 1,
di(z) 2 ged(yi/vio1, 2 + 1), where
ged(0/0,2™ +1) £ ged (0,2 F- 1) = 2™ + 1. Then,
rankp, (H) =n. - N — Z degd;(z) =
dim(C) = (n, —ne) - N'T Y degdy(a).
i=1
Proof: In Fy[x], H(x) is equivalent (after elementary row

and column operations that leave its rank invariant) to its Smith
normal form

| diag(Z (), Z (@), 525 (@) | Onextmy—ne) |-

Taking the ged of the entries with (zV +1), we obtain a matrix
equivalent to H (z) in Fo[z]/ (2 +1), therefore, the rank over
Fy of the n.N x n, N matrix H is equal to the sum of the

ranks of the circulant matrices associated to d;(x). ]
Example 8. Let H(z) £
1+ 22 1+2* 1+ 28 1+28% 14216
24 12 20 4 222 430 4 42 040 4 14 ] L 450
L+at 2304220 212421 234218 2420

be a 3 X 5 polynomial matrix in Fy[x]. Depending on N, its
Tanner graph can have girth 6. We will keep N variable, and
compute the rank of the 3N x 5N matrix H obtained from
H(z) in the ring Fo[z]/(z" + 1). We obtain (the following
include relevant Magma commands):

~; £ GCD(Minors(H,)), in Falz],
YNELn=@+1)% %= (+1)"ys=(z+1)°

EZB:E:ﬁ_FL so, for all 1 <17 < 3,

Yo st V2 )

o 9 N _ J=x4+1 if N even

di = ged(z” + 1,2 H){xﬂ if N odd
3N —6 if N even

rank(H) = 3(N — deg(d;)) = {3N—3 N odd -

Therefore, the same matrix gives a code of larger dimension
if N is even. For example, N = 44, gives H of rank 128,
and the code of dimension 92, while N = 45 gives a slightly
longer code that has the same dimension 92. (]

We end with a theorem that shows how to obtain an
equivalent upper triangular form for H(x) and thus, to provide
an alternative proof to Theorem 7.3 The proof is based on
simple computations of determinants.

Theorem 9. Let H(x) = (hsj):; by an n. x n, polynomial
matrix. We assume, w.lo.g, that gcd(%,x]v +1) =1, for
all i € [n.].* Then, H(x) is equivalent to the upper triangular

3Note that [13] only addresses the n. = 3 case.
4We perform elementary row and column permutations to obtain this form.

matrix
hir hio hin, hin,
0 2o Apling . Af2],1n,
Y1 Y1 Y1
0 0 Aplizne . A3],12n,
Y2 Y2 )
0 0 Alngl.[ne] Angl.[ne=1]un,
Tne—1 TYne—1

where the determinants and the divisions are performed in
Fy[z] first, followed by the modular operation mod (zN+41).

Example 10. Let H(z) be the polynomial parity-check matrix
of Example 6. We compute 73 = 1, dy = 1, and dy = d3 =
2 + 1, so the rank over Fo of H is 91. The matrix H;(x)
below gives the same [155, 64,20] code as H(z):>

T 1'2 x4 .'L'S 1,16
HI(J]) é O mlO +1,6 3720 +m8 x12 +x9 mQO +x18 ’
0 0 Aqz],123 Alz] 124 Aqz)125
x+1 x+1 z+1

47 40 39 28 18 14
Apjizs=2 +z +x° +z7 +x +2,

43 36 32 29 25 21
Apjliza =2 +x7 +27 +7 +27 427,

51 45 40 39 38 35
Apjis =2 +x +x +z +z7 +x,

A

[3J]r,1i3mod 1‘31—|—1=$30+$29+CE28+$17+$16+.T13+
T
x12+x11—l—:rlo—i—xg+x7+x6+x5+x4+x3+x2+x+1,
A

[3J]r,1i4mod :r31—|—1:a:30+a:29—|—:r24+x23+x22+m21+
T
xn+x10+x9+x8+x7+x6+x5+1,
Aqg),125

o mOd$31+1:.’L'19+ZE18+$17+1716+$15+.’L‘14+

a® 4+ a2® 4 2% 4+ 2%
Note that there could be N for which simpler equivalent
triangular forms can be obtained. For values N for which

A’i 7
ged (7[]’[], N+ 1) = ged ((5[1-]’[1-],.%’]\[ + 1) ,
1—1

where 67,7 = Az, 7 mod ™ +1, the denominator ;1 can be
dropped in Theorem 9. For example, the matrix Hy(z) below
gives also the same [155, 64,20] code as H(x), for N = 31:

" 22 LA 28 16
Ho(z) 2 [0 210425 22 448 212429 204 18
0 0 O3),123  O3),124 d3),125

where (5[3],121‘ = A[3],12i mod (E31 + 1 for all 7 € {3,4, 5}
]

IV. CONCLUDING REMARKS

This paper shows how to obtain a generator matrix for
an LDPC code using minors of the polynomial parity-check
matrix. The resulting matrices can be presented in several
forms that may facilitate efficient encoder implementation as
well as minimum distance analysis. Moreover, the approach
was shown to provide a formula for the dimension of any
QC-LDPC code based on the minors of its polynomial parity-
check matrix.

SNote that we can also compute the rank over Fo of H from the equivalent
form H;.
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