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Abstract—In this paper, we examine variable node (VN) doping
to mitigate the error propagation problem in sliding window
decoding (SWD) of spatially coupled LDPC (SC-LDPC) codes
from the point of view of the encoding process. More specifically,
in order to simplify the process of generating an encoded
sequence with some number of doped code bits, we propose to
employ systematic encoding and to limit doping to systematic
bits only. Numerical results show that doping of systematic bits
only achieves comparable performance to employing general
(nonsystematic) encoding and full doping of all the code bits
at each doping position, while benefiting from a much simpler
encoding process. We then show that the inherent rate loss due to
doping can be reduced by doping only a fraction of the variable
nodes at each doping position with only a minor impact on
performance.

Index Terms—sliding window decoding, decoder error prop-
agation, variable node doping, fractional doping, systematic
doping

I. INTRODUCTION

Capacity approaching spatially coupled low-density parity-
check (SC-LDPC) codes, also known as LDPC convolutional
codes [1], combine the best features of both regular and
irregular LDPC block codes (LDPC-BCs) [2], [3]. The ex-
cellent performance of SC-LDPC codes relies mainly on two
important features. One is the fact that they exhibit threshold
saturation, i.e., the suboptimal belief propagation (BP) iter-
ative decoding threshold of SC-LDPC code ensembles over
memoryless binary-input symmetric-output channels coincides
with the maximum a posteriori probability (MAP) threshold
of their underlying LDPC-BC ensembles, thereby allowing an
SC-LDPC code to achieve the optimum performance of its
underlying LDPC-BC with suboptimal decoding complexity.
The other is that sliding window decoding (SWD) can be
employed to reduce decoding latency, memory, and complexity
[4]. In order to achieve the best possible performance over
a range of signal-to-noise ratios (SNRs), Huang et al. have
shown empirically in [5] that the decoder window size W
should be at least six times the decoding constraint length.
However, in practice, lower latency operation is often desir-
able, thereby necessitating a smaller window size. In this case,
infrequent but severe decoder error propagation can sometimes
occur when using SWD. More specifically, during the sliding
window decoding process, when a decoding error occurs, the
decoding of subsequent symbols can also be affected, and a
continuous string of decoding errors can result. This decoder
error propagation phenomenon can result in unacceptable
performance loss, particularly for a continuous (streaming)
transmission scenario or a large frame length.

The effect of error propagation on SWD of SC-LDPC codes
was first mentioned in [6], whereas the first detailed study of
error propagation in SWD was done for the related class of
braided convolutional codes in [7], [8]. In this work, three
effective approaches (window extension, resynchronization,
and retransmission) were proposed to prevent the decoder from
experiencing error propagation. For SWD of SC-LDPC codes,
Klaiber et al. [9] proposed adapting the number of decoder
iterations and/or shifting the window position in order to limit
the effects of error propagation, both of which involve alter-
ing the decoding procedure. Using a different approach that
involves altering the encoding procedure, Zhu et al. proposed
check node (CN) doped SC-LDPC codes in [10], which employ
reduced-degree CNs spaced throughout the coupling chain to
help the decoder recover from error propagation. Similar to
[9], however, this also requires altering the decoding procedure
whenever a doping position is reached. More recently, Zhu
et al. proposed variable node (VN) doped SC-LDPC codes
by fixing the code bits corresponding to certain VNs spaced
throughout the coupling chain to a predetermined value [11].
Sololovskii et al. subsequently studied the finite length scaling
behavior of VN doped SC-LDPC codes on the binary erasure
channel (BEC) in [12] and showed that doping effectively
works by initiating a decoding wave at a doping position
similar to what is observed at the beginning of an undoped
coupling chain. Unlike CN doping and the techniques of [9],
VN doping allows recovery from error propagation without
altering the decoding procedure, although fixing the value of
certain VNs presents encoding challenges. Also, the required
pre-determined distribution of doped positions in VN dop-
ing lacks flexibility and may not completely eliminate error
propagation. Hence an adaptive VN doping strategy for SC-
LDPC codes that relies on the availability of a noiseless binary
feedback channel was proposed in [13]. Finally, a general
model for computing the error rate of SWD of SC-LDPC codes
and predicting the performance improvement achievable with
doping was recently presented in [14].

In this paper, we build on our previous work on VN doping
by introducing systematic doping to simplify the process of
encoding as well as the procedure for recovering the decoded
information sequence. Systematic doping employs systematic
encoding and only dopes a fraction of the VNs, ie., the
systematic bits at each doping position. This allows the doping
to be done prior to encoding, thus simplifying the encoding
process, and also results in a straightforward procedure for
recovering the decoded information sequence. This is particu-
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larly advantageous in the case of adaptive doping, where these
operations must be performed “on the fly”.

In Section II, we briefly review the error propagation
problem and VN doping of SC-LDPC codes. Then, motivated
by a desire to reduce the rate loss due to doping, fractional VN
doping' is examined in Section IIL. In Section IV, the system-
atic VN doping strategy, which makes use of fractional doping,
is presented as a means of simplifying the encoding process
and the procedure for recovering the decoded information
sequence. Numerical results for the binary-input additive white
Gaussian noise (AWGN) channel, showing that (i) systematic
encoding combined with fractional systematic doping can
perform as well as general (nonsystematic) encoding combined
with full doping of all the code bits at each doping position,
and (ii) fractional doping can reduce rate loss with only a
minor degradation in performance, are given in Section V.
Finally, some concluding remarks are presented in Section VL.

II. REVIEW OF VN DoOPED SC-LDPC CODES

In this paper, we consider SC-LDPC codes constructed by
coupling together a sequence of L disjoint (J, K)-regular
LDPC-BC protographs into a single coupled chain, where
infinite L results in an unterminated coupled chain and finite L
results in a terminated coupled chain. A graph lifting factor M
using randomly chosen permutation matrices is then applied
to the coupled chain to produce an ensemble of (J, K)-regular
SC-LDPC codes. Due to the fact that the structured irregularity
at the boundaries of a spatially coupled chain is responsible
for the threshold saturation effect and thus the capacity-
approaching performance of SC-LDPC codes, the VN doped
SC-LDPC codes proposed in [11] introduced occasional VNs
with fixed values in the coupled chain to emulate the structured
irregularity at the boundaries and thus to end any possible
error propagation without having to alter the decoding process.
Without loss of generality, we now use (3,6)-regular SC-LDPC
codes as an example to briefly review the construction of VN
doped SC-LDPC codes.

Based on the protograph representation shown in Fig. 1(a) of
a sequence of (3,6)-regular LDPC-BCs lifted from the simple
1 x 2 base matrix Bzg) = [3 3], a (3,6)-regular spatially
coupled chain with coupling memory m, = 2 is formed
by redirecting some of the edges connected to VNs in each
protograph to CNs in the m¢ = 2 neighboring protographs (see
[16] for detail) of this edge-spreading technique, an example of
which is shown in Fig. 1(b) . To introduce doping, the reduced
degrees are achieved by fixing (setting to 0) the values of
occasional VNs in the coupled chain (thereby causing a small
rate loss penalty) as shown Fig. 1(b), where each time unit
represents a block of 2M coded symbols and the decoding
constraint length is given by vs = 2M (ms + 1). The VNs
at time ¢ = 71 (the green empty circles) are doped by setting
the 20 coded bits corresponding to these VNs to be “0”.
As a result, the CNs at times ¢t = 7,71 + 1, and 71 + 2

"Doping only a fraction of the nodes at a given position was also employed
in [15] as a means of emulating termination in the decoding of tail-biting SC-
LDPC codes.

(colored red) act like degree 4, rather than degree 6, CNs, thus
emulating the structured irregularity at the boundaries without
actually altering the graph structure or the decoding process.
Similarly, if the VNs at times ¢ = 79 are doped, the CNs at
times 7o, T2+ 1, and 7942 (colored red) act like degree 4 CNis.
Finally, Fig. 1(c) illustrates this SWD decoding process, where
a window of size W time units slides from left to right, each
time stopping to decode the block of 2/ target symbols at the
left end of the window by performing iterative BP decoding
across the window. During the decoding process, the LLRs of
the doped bits are set to their maximum (known) values.

2M symbols

(a) a sequence of uncoupled (3,6)-regular LDPC-BC protographs (circles
represent VNs and squares represent CNs)

2M 7,
symbols

tme ——» 7,

(b) a coupled (3,6)-regular SC-LDPC chain  (m, =2)

Target () SWD of a coupled (3,6)-regular SC-LDPC code
block

Fig. 1. VN doping for a (3,6)-regular SC-LDPC code with occasional fixed
variable nodes spaced throughout the coupled chain.

In general, if n. and n, denote the total number of CNs
and the total number of unknown VNs, respectively, the design
rate of VN doped SC-LDPC codes with frame length L and
d doped VNs is given by

ne L+ mg
Rdoped—l_niv—1 (Ld/2M> (1 R), (1)

where R = 1 — J/K is the design rate of the uncoupled
LDPC-BC protograph [16]. Compared to the design rate Ry, =
1—(££™) (1 — R) of undoped SC-LDPC codes [16], we see
from (1) that the design rate of VN doped SC-LDPC codes is
smaller, i.e., VN doping results in some rate loss. In order to
reduce the amount of rate loss, in the next section we examine
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fractional doping, in which, instead of doping all 20/ bits at
a doping position, only a fraction of the bits are doped.

III. FRACTIONAL DOPING

The fractional doping process is illustrated in Fig. 2, where
the slashed circles represent the fractionally doped nodes and
the solid circles represent undoped nodes. At each time unit,
the two protograph nodes represent a total of 20 bits. Let
0 <0 <1 represent the fraction of doped bits at each doping
position. Then, at each doping position, for example, at time
71, 20 M bits will be doped, as shown in Fig. 2, where we note
that § = 0 corresponds to no doping and 6 = 1 corresponds
to full doping. We classify the 20/ bits at each time unit into
two sets: a doped set D and an undoped set D.

Now consider SWD of SC-LDPC codes (see [16] for detail-
s). In the case of fractional doping, let Lf 1 << 2M, denote
the channel log-likelihood ratio (LLR) used for decoding of
the ith bit at time unit ¢. Then we have

. r, 1e€D
Li= { Ly, ieD’

7

@

where LE’Ch denotes the received channel LLR of the ¢th bit
at time unit ¢ and I' = 410 is chosen to denote the known
LLR value, corresponding to a doped symbol 0. Note that (2)
has the effect of assigning certainty to the doped bits during
the decoding process.

symbols

Fig. 2. Fractional VN doping for a (3,6)-regular SC-LDPC code with
occasional fixed variable nodes spaced throughout the coupled chain.

In the case of fractional doping, we can choose which bits at
a protograph node to dope and which to leave undoped. In this
paper, we employed two fractional doping patterns: adjacent
doping and periodic doping. These two options are illustrated
in Fig. 3 for doping fraction § = 0.5, where the white circles
represent doped bits and the black circles represent undoped
bits. As we can see from Fig. 3, in adjacent doping 25 M
consecutive bits are doped, whereas in periodic doping, the
20 M doped bits are spaced uniformly across the 2M bits at a
time unit. At a doping position, in the case of § = 0.5, we see
that adjacent doping is equivalent to doping all the VNs at one
protograph node and no VNs at the others, whereas periodic
doping spreads the doped VNs evenly over both protograph
nodes.

IV. SYSTEMATIC DOPING

As noted above, VN doping involves fixing certain bits in
the encoded sequence to have known values. This implies that
an encoder for VN doped SC-LDPC codes must be designed to

0000000000 00

(a) adjacent doping

0000000000 00

(b) periodic doping
O : doped bit . : undoped bit

Fig. 3. Doping patterns for fractional doping with § = 0.5.

ensure that the value of the encoded bits in the doped positions
remains constant for all possible information sequences. This
requirement has the effect that certain information sequences
are invalid inputs to the encoder, thus resulting in rate loss.

In order to see this, consider an example of a general
(nonsystematic) encoder in which the length K information
sequence u = (ug,u1,...,ux—1) produces the length N
encoded sequence v = (vg,v1,...,un_1) and a particular
encoded bit, say v;, must be a “0”. Since every encoded
bit is the sum of some subset of information bits, v; can
be expressed as v; = 0 = wjy + ujo + -+ + wj,, where
the indices j1,7j2,...,7k € {0,1,..., K — 1} represent the
subset of information bits that contributes to v;. It follows
that changing the value of any one of the bits in this subset,
while leaving the others unchanged will change the value
of v; from “0” to “1”, which implies that all information
sequences that contain this particular subset of information bits
are invalid. Moreover, all information sequences containing
any combination of these bits that gives odd parity are also
invalid. As a consequence, we see that, in general, not all oK
possible information sequences are valid when code doping is
used, which leads to rate loss.

Based on the above discussion, we observe that designing a
non-systematic encoder with doped code bits (or a systematic
encoder with doped parity bits) in general leads to a highly
complex encoding process. Moreover, in the decoding of
LDPC codes, the decoding process results in an estimated
code sequence, which must then be inverted according to the
same highly complex encoding rule in order to recover the
estimated information sequence. Furthermore, in the case of
adaptive VN doping [13], these complex encoding and encoder
inverse operations must be done “on the fly”, whenever the
feedback channel requests the insertion of doped bits into the
encoded sequence. This difficulty motivates us to restrict our
attention to systematic encoding rules and to limit doping
to systematic bits only, which we refer to as systematic
doping. This follows from the fact that doping can now be
done directly on the information sequence, prior to encoding,
thus greatly simplifying the encoding process, and that the
encoder inverse operation is trivial in this case, since all the
information bits appear unchanged as code bits in the encoded
sequence, and thus the estimated information sequence can

be determined directly from the estimated code sequence?.

2We note that such a strategy can be implemented with only minor
modifications to the usual process by occasionally fixing input symbols to
a standard systematic encoder and removing those symbols after recovering
the decoded information sequence
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Since only a fraction of the bits (depending on the design
rate R) at each position are systematic, a systematic doping
strategy necessitates spreading fractional doping over a span
of several positions in order to dope the same number of bits
as full doping of all the protograph nodes at any one position.
However, as we will see in Sec. V, this can be achieved
with essentially no loss in performance, and even fractional
systematic doping at one position can sometimes performs as
well as full doping.

Again using (3,6)-regular SC-LDPC codes as an example,
for which the design rate R = 1/2, systematic doping
requires spreading a “doping position” over a doping span
of s > 1/R =2 positions, where only systematic VNs are
doped at each position. This is illustrated in Fig. 4, where
s = 2 and the white circles represent the doped systematic
protograph nodes.? At each doping position, say ¢ = 7, where
both protograph nodes are shown as fractionally doped in the
general (nonsystematic) doping scheme of Fig. 2, in systematic
doping only a fraction 6 = R = 0.5 of the protograph nodes
are doped and a second systematic protograph node is doped
at the next position ¢ = 7 + 1, making fractional (§ = 0.5)
systematic doping over a span of s = 2 positions equivalent to
full doping at one position (see Fig. 1(b)), which necessarily
entails the doping of parity bits. Similarly, at time unit ¢ = 7o,
systematic doping covers a span of s = 2 positions.

symbols

Fig. 4. Systematic VN doping with 6 = R = 0.5.

We can apply systematic doping in the same manner to
general (J, K)-regular SC-LDPC codes of design rate R =
(K —J)/K. Here, we consider (3,9)-regular SC-LDPC codes
with rate R = 2/3 and (4,6)-regular SC-LDPC codes with
R =1/3 as examples. In the R = 2/3 (3,9)-regular case with
coupling memory ms; = 2, formed from the 1 x 3 LDPC-
BC base matrix B3y = [3 3 3|, the coupled chain formed
by applying the edge-spreading technique to the uncoupled
protograph (see [16] for details) is shown in Fig. 5, where we
see that there are three protograph nodes at each time unit.
Therefore, in order to implement systematic doping, we can
consider two options:

e doping span s = 2. In this case, systematic doping
operates over s = 2 time units, as shown in Fig. 6(a),
where two systematic protograph nodes are doped at time
71 and one systematic protograph node is doped at time
1 + 1.

3In Fig. 4, we assume that the upper protograph node at each position
contains systematic bits only, while the lower protograph node contains parity
bits only, which corresponds to the adjacent doping of Fig. 3(a).

000000000

Fig. 5. Coupled chain for (3,9)-regular SC-LDPC codes.

e doping span s = 3. In this case, systematic doping
operates over s = 3 time units, as shown in Fig. 6(b),
where one systematic protograph node is doped at times
To,To 4+ 1, and 79 + 2.

GIO) RO X

Time unit 7, Time unit 7, +1
(a) doping span s = 2 for (3,9)-regular SC-LDPC codes

00000 00

Time unit 7, Time unit 7, +1 Time unit 7, +2

(b) doping span s = 3 for (3,9)-regular SC-LDPC codes
Fig. 6. Systematic doping options for (3,9)-regular SC-LDPC codes.

In the R = 1/3 (4,6)-regular case with coupling memory
mg = 1, formed from the 2 x 3 LDPC-BC base matrix

2 2 2
B(4,6):|: :|a

2 2 2
applying edge spreading (see [16]) results in the coupled chain
shown in Fig. 7. Since there are three protograph nodes at

3)

Fig. 7. Coupled chain for (4,6)-regular SC-LDPC codes.

each time unit, one protograph node can be considered as
the systematic node and the other two protograph nodes as
the parity check nodes. Thus, for systematic doping, only one
protograph node can be doped at each position, which results
in the doping pattern shown in Fig. 6(b).

V. NUMERICAL RESULTS

In order to verify the effectiveness of systematic VN doping,
we first consider a (3,9)-regular SC-LDPC code with rate R =
2/3 and coupling memory m, = 2 lifted from the coupled
chain shown in Fig. 5, where we use the systematic doping
pattern of Fig. 6(b). The simulation results are presented in
Fig. 8, where we see that this systematic doping pattern, which
covers three protograph nodes, achieves essentially the same
bit-error-rate (BER) and block error rate (BLER) performance
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as full doping of a single position, which involves a much more
complex encoding process, and we note that the total number
of doped VNs d = 3dsM = 3M, both for systematic doping
(0 =1/3,s =3) and full doping (6 = 1,s = 1).

_1 T T T T
10 Tea —o— Systematic Doping BER
S~o - - © -Systematic Doping BLER
2l ®~ . |—+—Full Doping BER
10 - # —Full Doping BLER
ot
m -3
5 10
m
~
e
A 10
10°
1 0—6 I |
-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02
E,/Ny (dB)

Fig. 8. Performance comparison between full doping and systematic doping
for a (3,9)-regular SC-LDPC code with M = 1000, L = 500, W = 12, and
Rgoped = 0.665 on a binary-input AWGN channel with BPSK signaling.

We then consider a (4,6)-regular SC-LDPC code with rate
R = 1/3 and coupling memory my = 1 lifted from the
coupled chain shown in Fig. 7, where again we use the
systematic doping pattern of Fig. 6(b). The simulation results
are shown in Fig. 9, where we see only very slight (< 0.025
dB) performance loss for systematic doping at BERs/BLERSs
> 1075/10~* compared to the much more complex full
doping, and we again note that d = 3M in both cases.

1072 \ ; :
& N —o— Systematic Doping BER
R - © -Systematic Doping BLER
NI —o—Full Doping BER
10738 S - ¢ -Full Doping BLER .

BER/BLER
S
E N

100}
107 : : : : :
43 425 42 415 41 405 -4

Fig. 9. Performance comparison between full doping and systematic doping
for a (4,6)-regular SC-LDPC code with M = 1000, L = 500, W = 12, and
Rgopea = 0.331 on a binary-input AWGN channel with BPSK signaling.

Finally, in order to test the effectiveness of general (system-
atic or nonsystematic) fractional VN doping at reducing rate
loss, we simulated the (3,6)-regular SC-LDPC code of Fig.
1(b) with M = 2000, L = 500, and W = 18 for a binary-
input AWGN channel with BPSK signaling at a signal-to-noise

ratio (SNR) of E,/Ny = 0.9 dB. A single (s = 1) doping
position was placed in the middle of the coupled chain and
the doping fraction ¢ was varied between 0 (no doping) and 1
(full doping). From Fig. 10, we see that even a small amount of
fractional doping yields significant performance improvement,
with § = 0.2 (20% doping, Raoped = 0.499) giving essentially
the same result as 6 = 1.0 (full doping, Ryopea = 0.497).
This is consistent with the analytical results of [12], where the
authors show that a doping point operates like a switch, where
a decoding wave is either initiated or it is not, and suggests
that the systematic doping results presented above can also be
achieved by doping only a single position, thus reducing the
rate loss due to doping, as long as R exceeds some critical
doping fraction.

1073 ‘
—a—BER
& — = -BLER
40N
10 o
& \
— q \\
2 105} \
% -a--8--p-0--8--3--0--4
m
107
107

0 0.2 0.4 0.6 0.8 1
Doping fraction ¢

Fig. 10. Performance of a fractionally doped (3,6)-regular SC-LDPC code
with M = 2000, L = 500, W = 18 at E,/Ng = 0.9 dB .

VI. CONCLUSION

In this paper, we proposed a systematic VN doping strategy
which employs systematic encoding and fractional doping of
systematic bits only as a way to mitigate the error propagation
problem of SWD of SC-LDPC codes while greatly simplifying
the complexity of the encoding process (and the corresponding
encoder inverse operation required to recover the estimated
information sequence). Numerical simulation results show that
(i) systematic encoding combined with fractional systematic
doping performs essentially as well as general (nonsystematic)
encoding combined with full doping of all the code bits at
each doping position, while greatly simplifying the encoding
process and the procedure for recovering the decoded infor-
mation sequence, and (ii) fractional doping can be used to
reduce the rate loss due to doping with only a minor impact
on performance.
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