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Abstract—In this paper, we examine variable node (VN) doping
to mitigate the error propagation problem in sliding window
decoding (SWD) of spatially coupled LDPC (SC-LDPC) codes
from the point of view of the encoding process. More specifically,
in order to simplify the process of generating an encoded
sequence with some number of doped code bits, we propose to
employ systematic encoding and to limit doping to systematic
bits only. Numerical results show that doping of systematic bits
only achieves comparable performance to employing general
(nonsystematic) encoding and full doping of all the code bits
at each doping position, while benefiting from a much simpler
encoding process. We then show that the inherent rate loss due to
doping can be reduced by doping only a fraction of the variable
nodes at each doping position with only a minor impact on
performance.

Index Terms—sliding window decoding, decoder error prop-
agation, variable node doping, fractional doping, systematic
doping

I. INTRODUCTION

Capacity approaching spatially coupled low-density parity-

check (SC-LDPC) codes, also known as LDPC convolutional

codes [1], combine the best features of both regular and

irregular LDPC block codes (LDPC-BCs) [2], [3]. The ex-

cellent performance of SC-LDPC codes relies mainly on two

important features. One is the fact that they exhibit threshold
saturation, i.e., the suboptimal belief propagation (BP) iter-

ative decoding threshold of SC-LDPC code ensembles over

memoryless binary-input symmetric-output channels coincides

with the maximum a posteriori probability (MAP) threshold

of their underlying LDPC-BC ensembles, thereby allowing an

SC-LDPC code to achieve the optimum performance of its

underlying LDPC-BC with suboptimal decoding complexity.

The other is that sliding window decoding (SWD) can be

employed to reduce decoding latency, memory, and complexity

[4]. In order to achieve the best possible performance over

a range of signal-to-noise ratios (SNRs), Huang et al. have

shown empirically in [5] that the decoder window size W
should be at least six times the decoding constraint length.

However, in practice, lower latency operation is often desir-

able, thereby necessitating a smaller window size. In this case,

infrequent but severe decoder error propagation can sometimes

occur when using SWD. More specifically, during the sliding

window decoding process, when a decoding error occurs, the

decoding of subsequent symbols can also be affected, and a

continuous string of decoding errors can result. This decoder
error propagation phenomenon can result in unacceptable

performance loss, particularly for a continuous (streaming)

transmission scenario or a large frame length.

The effect of error propagation on SWD of SC-LDPC codes

was first mentioned in [6], whereas the first detailed study of

error propagation in SWD was done for the related class of

braided convolutional codes in [7], [8]. In this work, three

effective approaches (window extension, resynchronization,

and retransmission) were proposed to prevent the decoder from

experiencing error propagation. For SWD of SC-LDPC codes,

Klaiber et al. [9] proposed adapting the number of decoder

iterations and/or shifting the window position in order to limit

the effects of error propagation, both of which involve alter-

ing the decoding procedure. Using a different approach that

involves altering the encoding procedure, Zhu et al. proposed

check node (CN) doped SC-LDPC codes in [10], which employ

reduced-degree CNs spaced throughout the coupling chain to

help the decoder recover from error propagation. Similar to

[9], however, this also requires altering the decoding procedure

whenever a doping position is reached. More recently, Zhu

et al. proposed variable node (VN) doped SC-LDPC codes
by fixing the code bits corresponding to certain VNs spaced

throughout the coupling chain to a predetermined value [11].

Sololovskii et al. subsequently studied the finite length scaling

behavior of VN doped SC-LDPC codes on the binary erasure

channel (BEC) in [12] and showed that doping effectively

works by initiating a decoding wave at a doping position

similar to what is observed at the beginning of an undoped

coupling chain. Unlike CN doping and the techniques of [9],

VN doping allows recovery from error propagation without

altering the decoding procedure, although fixing the value of

certain VNs presents encoding challenges. Also, the required

pre-determined distribution of doped positions in VN dop-

ing lacks flexibility and may not completely eliminate error

propagation. Hence an adaptive VN doping strategy for SC-

LDPC codes that relies on the availability of a noiseless binary

feedback channel was proposed in [13]. Finally, a general

model for computing the error rate of SWD of SC-LDPC codes

and predicting the performance improvement achievable with

doping was recently presented in [14].

In this paper, we build on our previous work on VN doping

by introducing systematic doping to simplify the process of

encoding as well as the procedure for recovering the decoded

information sequence. Systematic doping employs systematic

encoding and only dopes a fraction of the VNs, i.e., the

systematic bits at each doping position. This allows the doping

to be done prior to encoding, thus simplifying the encoding

process, and also results in a straightforward procedure for

recovering the decoded information sequence. This is particu-

2022 IEEE International Symposium on Information Theory (ISIT)

978-1-6654-2159-1/22/$31.00 ©2022 IEEE 536

20
22

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
si

um
 o

n 
In

fo
rm

at
io

n 
Th

eo
ry

 (I
SI

T)
 | 

97
8-

1-
66

54
-2

15
9-

1/
22

/$
31

.0
0 

©
20

22
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
IS

IT
50

56
6.

20
22

.9
83

45
90

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on October 07,2022 at 21:51:14 UTC from IEEE Xplore.  Restrictions apply. 



larly advantageous in the case of adaptive doping, where these

operations must be performed “on the fly”.

In Section II, we briefly review the error propagation

problem and VN doping of SC-LDPC codes. Then, motivated

by a desire to reduce the rate loss due to doping, fractional VN
doping1 is examined in Section III. In Section IV, the system-

atic VN doping strategy, which makes use of fractional doping,

is presented as a means of simplifying the encoding process

and the procedure for recovering the decoded information

sequence. Numerical results for the binary-input additive white

Gaussian noise (AWGN) channel, showing that (i) systematic

encoding combined with fractional systematic doping can

perform as well as general (nonsystematic) encoding combined

with full doping of all the code bits at each doping position,

and (ii) fractional doping can reduce rate loss with only a

minor degradation in performance, are given in Section V.

Finally, some concluding remarks are presented in Section VI.

II. REVIEW OF VN DOPED SC-LDPC CODES

In this paper, we consider SC-LDPC codes constructed by

coupling together a sequence of L disjoint (J,K)-regular

LDPC-BC protographs into a single coupled chain, where

infinite L results in an unterminated coupled chain and finite L
results in a terminated coupled chain. A graph lifting factor M
using randomly chosen permutation matrices is then applied

to the coupled chain to produce an ensemble of (J,K)-regular

SC-LDPC codes. Due to the fact that the structured irregularity

at the boundaries of a spatially coupled chain is responsible

for the threshold saturation effect and thus the capacity-

approaching performance of SC-LDPC codes, the VN doped

SC-LDPC codes proposed in [11] introduced occasional VNs

with fixed values in the coupled chain to emulate the structured

irregularity at the boundaries and thus to end any possible

error propagation without having to alter the decoding process.

Without loss of generality, we now use (3,6)-regular SC-LDPC

codes as an example to briefly review the construction of VN

doped SC-LDPC codes.

Based on the protograph representation shown in Fig. 1(a) of

a sequence of (3,6)-regular LDPC-BCs lifted from the simple

1 × 2 base matrix B(3,6) = [3 3], a (3,6)-regular spatially

coupled chain with coupling memory ms = 2 is formed

by redirecting some of the edges connected to VNs in each

protograph to CNs in the ms = 2 neighboring protographs (see

[16] for detail) of this edge-spreading technique, an example of

which is shown in Fig. 1(b) . To introduce doping, the reduced

degrees are achieved by fixing (setting to 0) the values of

occasional VNs in the coupled chain (thereby causing a small

rate loss penalty) as shown Fig. 1(b), where each time unit

represents a block of 2M coded symbols and the decoding
constraint length is given by vs = 2M (ms + 1). The VNs

at time t = τ1 (the green empty circles) are doped by setting

the 2M coded bits corresponding to these VNs to be “0”.

As a result, the CNs at times t = τ1, τ1 + 1, and τ1 + 2

1Doping only a fraction of the nodes at a given position was also employed
in [15] as a means of emulating termination in the decoding of tail-biting SC-
LDPC codes.

(colored red) act like degree 4, rather than degree 6, CNs, thus

emulating the structured irregularity at the boundaries without

actually altering the graph structure or the decoding process.

Similarly, if the VNs at times t = τ2 are doped, the CNs at

times τ2, τ2+1, and τ2+2 (colored red) act like degree 4 CNs.

Finally, Fig. 1(c) illustrates this SWD decoding process, where

a window of size W time units slides from left to right, each

time stopping to decode the block of 2M target symbols at the

left end of the window by performing iterative BP decoding

across the window. During the decoding process, the LLRs of

the doped bits are set to their maximum (known) values.

Fig. 1. VN doping for a (3,6)-regular SC-LDPC code with occasional fixed
variable nodes spaced throughout the coupled chain.

In general, if nc and nv denote the total number of CNs

and the total number of unknown VNs, respectively, the design
rate of VN doped SC-LDPC codes with frame length L and

d doped VNs is given by

Rdoped = 1− nc

nv
= 1−

(
L+ms

L− d/2M

)
(1−R) , (1)

where R = 1 − J/K is the design rate of the uncoupled

LDPC-BC protograph [16]. Compared to the design rate RL =
1−(

L+ms

L

)
(1−R) of undoped SC-LDPC codes [16], we see

from (1) that the design rate of VN doped SC-LDPC codes is

smaller, i.e., VN doping results in some rate loss. In order to

reduce the amount of rate loss, in the next section we examine
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fractional doping, in which, instead of doping all 2M bits at

a doping position, only a fraction of the bits are doped.

III. FRACTIONAL DOPING

The fractional doping process is illustrated in Fig. 2, where

the slashed circles represent the fractionally doped nodes and

the solid circles represent undoped nodes. At each time unit,

the two protograph nodes represent a total of 2M bits. Let

0 ≤ δ ≤ 1 represent the fraction of doped bits at each doping

position. Then, at each doping position, for example, at time

τ1, 2δM bits will be doped, as shown in Fig. 2, where we note

that δ = 0 corresponds to no doping and δ = 1 corresponds

to full doping. We classify the 2M bits at each time unit into

two sets: a doped set D and an undoped set D̄.

Now consider SWD of SC-LDPC codes (see [16] for detail-

s). In the case of fractional doping, let Lt
i, 1 ≤ i ≤ 2M , denote

the channel log-likelihood ratio (LLR) used for decoding of

the ith bit at time unit t. Then we have

Lt
i =

{
Γ, i ∈ D
Lt,ch
i , i ∈ D̄ , (2)

where Lt,ch
i denotes the received channel LLR of the ith bit

at time unit t and Γ = +10 is chosen to denote the known

LLR value, corresponding to a doped symbol 0. Note that (2)

has the effect of assigning certainty to the doped bits during

the decoding process.

Fig. 2. Fractional VN doping for a (3,6)-regular SC-LDPC code with
occasional fixed variable nodes spaced throughout the coupled chain.

In the case of fractional doping, we can choose which bits at

a protograph node to dope and which to leave undoped. In this

paper, we employed two fractional doping patterns: adjacent
doping and periodic doping. These two options are illustrated

in Fig. 3 for doping fraction δ = 0.5, where the white circles

represent doped bits and the black circles represent undoped

bits. As we can see from Fig. 3, in adjacent doping 2δM
consecutive bits are doped, whereas in periodic doping, the

2δM doped bits are spaced uniformly across the 2M bits at a

time unit. At a doping position, in the case of δ = 0.5, we see

that adjacent doping is equivalent to doping all the VNs at one

protograph node and no VNs at the others, whereas periodic

doping spreads the doped VNs evenly over both protograph

nodes.

IV. SYSTEMATIC DOPING

As noted above, VN doping involves fixing certain bits in

the encoded sequence to have known values. This implies that

an encoder for VN doped SC-LDPC codes must be designed to

Fig. 3. Doping patterns for fractional doping with δ = 0.5.

ensure that the value of the encoded bits in the doped positions

remains constant for all possible information sequences. This

requirement has the effect that certain information sequences

are invalid inputs to the encoder, thus resulting in rate loss.

In order to see this, consider an example of a general

(nonsystematic) encoder in which the length K information

sequence u = (u0, u1, . . . , uK−1) produces the length N
encoded sequence v = (v0, v1, . . . , vN−1) and a particular

encoded bit, say vj , must be a “0”. Since every encoded

bit is the sum of some subset of information bits, vj can

be expressed as vj = 0 = uj1 + uj2 + · · · + ujk, where

the indices j1, j2, . . . , jk ∈ {0, 1, . . . ,K − 1} represent the

subset of information bits that contributes to vj . It follows

that changing the value of any one of the bits in this subset,

while leaving the others unchanged will change the value

of vj from “0” to “1”, which implies that all information

sequences that contain this particular subset of information bits

are invalid. Moreover, all information sequences containing

any combination of these bits that gives odd parity are also

invalid. As a consequence, we see that, in general, not all 2K

possible information sequences are valid when code doping is

used, which leads to rate loss.

Based on the above discussion, we observe that designing a

non-systematic encoder with doped code bits (or a systematic

encoder with doped parity bits) in general leads to a highly

complex encoding process. Moreover, in the decoding of

LDPC codes, the decoding process results in an estimated

code sequence, which must then be inverted according to the

same highly complex encoding rule in order to recover the

estimated information sequence. Furthermore, in the case of

adaptive VN doping [13], these complex encoding and encoder

inverse operations must be done “on the fly”, whenever the

feedback channel requests the insertion of doped bits into the

encoded sequence. This difficulty motivates us to restrict our

attention to systematic encoding rules and to limit doping

to systematic bits only, which we refer to as systematic
doping. This follows from the fact that doping can now be

done directly on the information sequence, prior to encoding,

thus greatly simplifying the encoding process, and that the

encoder inverse operation is trivial in this case, since all the

information bits appear unchanged as code bits in the encoded

sequence, and thus the estimated information sequence can

be determined directly from the estimated code sequence2.

2We note that such a strategy can be implemented with only minor
modifications to the usual process by occasionally fixing input symbols to
a standard systematic encoder and removing those symbols after recovering
the decoded information sequence
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Since only a fraction of the bits (depending on the design

rate R) at each position are systematic, a systematic doping

strategy necessitates spreading fractional doping over a span

of several positions in order to dope the same number of bits

as full doping of all the protograph nodes at any one position.

However, as we will see in Sec. V, this can be achieved

with essentially no loss in performance, and even fractional

systematic doping at one position can sometimes performs as

well as full doping.

Again using (3,6)-regular SC-LDPC codes as an example,

for which the design rate R = 1/2, systematic doping

requires spreading a “doping position” over a doping span
of s ≥ 1/R = 2 positions, where only systematic VNs are

doped at each position. This is illustrated in Fig. 4, where

s = 2 and the white circles represent the doped systematic

protograph nodes.3 At each doping position, say t = τ1, where

both protograph nodes are shown as fractionally doped in the

general (nonsystematic) doping scheme of Fig. 2, in systematic

doping only a fraction δ = R = 0.5 of the protograph nodes

are doped and a second systematic protograph node is doped

at the next position t = τ1 + 1, making fractional (δ = 0.5)

systematic doping over a span of s = 2 positions equivalent to

full doping at one position (see Fig. 1(b)), which necessarily

entails the doping of parity bits. Similarly, at time unit t = τ2,

systematic doping covers a span of s = 2 positions.

Fig. 4. Systematic VN doping with δ = R = 0.5.

We can apply systematic doping in the same manner to

general (J,K)-regular SC-LDPC codes of design rate R =
(K−J)/K. Here, we consider (3,9)-regular SC-LDPC codes

with rate R = 2/3 and (4,6)-regular SC-LDPC codes with

R = 1/3 as examples. In the R = 2/3 (3,9)-regular case with

coupling memory ms = 2, formed from the 1 × 3 LDPC-

BC base matrix B(3,9) = [3 3 3], the coupled chain formed

by applying the edge-spreading technique to the uncoupled

protograph (see [16] for details) is shown in Fig. 5, where we

see that there are three protograph nodes at each time unit.

Therefore, in order to implement systematic doping, we can

consider two options:

• doping span s = 2. In this case, systematic doping

operates over s = 2 time units, as shown in Fig. 6(a),

where two systematic protograph nodes are doped at time

τ1 and one systematic protograph node is doped at time

τ1 + 1.

3In Fig. 4, we assume that the upper protograph node at each position
contains systematic bits only, while the lower protograph node contains parity
bits only, which corresponds to the adjacent doping of Fig. 3(a).

Fig. 5. Coupled chain for (3,9)-regular SC-LDPC codes.

• doping span s = 3. In this case, systematic doping

operates over s = 3 time units, as shown in Fig. 6(b),

where one systematic protograph node is doped at times

τ2, τ2 + 1, and τ2 + 2.

Fig. 6. Systematic doping options for (3,9)-regular SC-LDPC codes.

In the R = 1/3 (4,6)-regular case with coupling memory

ms = 1, formed from the 2× 3 LDPC-BC base matrix

B(4,6) =

[
2 2 2
2 2 2

]
, (3)

applying edge spreading (see [16]) results in the coupled chain

shown in Fig. 7. Since there are three protograph nodes at

Fig. 7. Coupled chain for (4,6)-regular SC-LDPC codes.

each time unit, one protograph node can be considered as

the systematic node and the other two protograph nodes as

the parity check nodes. Thus, for systematic doping, only one

protograph node can be doped at each position, which results

in the doping pattern shown in Fig. 6(b).

V. NUMERICAL RESULTS

In order to verify the effectiveness of systematic VN doping,

we first consider a (3,9)-regular SC-LDPC code with rate R =
2/3 and coupling memory ms = 2 lifted from the coupled

chain shown in Fig. 5, where we use the systematic doping

pattern of Fig. 6(b). The simulation results are presented in

Fig. 8, where we see that this systematic doping pattern, which

covers three protograph nodes, achieves essentially the same

bit-error-rate (BER) and block error rate (BLER) performance

2022 IEEE International Symposium on Information Theory (ISIT)
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as full doping of a single position, which involves a much more

complex encoding process, and we note that the total number

of doped VNs d = 3δsM = 3M , both for systematic doping

(δ = 1/3, s = 3) and full doping (δ = 1, s = 1).

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02
10-6

10-5

10-4

10-3

10-2

10-1

Fig. 8. Performance comparison between full doping and systematic doping
for a (3,9)-regular SC-LDPC code with M = 1000, L = 500, W = 12, and
Rdoped = 0.665 on a binary-input AWGN channel with BPSK signaling.

We then consider a (4,6)-regular SC-LDPC code with rate

R = 1/3 and coupling memory ms = 1 lifted from the

coupled chain shown in Fig. 7, where again we use the

systematic doping pattern of Fig. 6(b). The simulation results

are shown in Fig. 9, where we see only very slight (< 0.025
dB) performance loss for systematic doping at BERs/BLERs

> 10−5/10−4 compared to the much more complex full

doping, and we again note that d = 3M in both cases.

-4.3 -4.25 -4.2 -4.15 -4.1 -4.05 -4
10-6

10-5

10-4

10-3

10-2

Fig. 9. Performance comparison between full doping and systematic doping
for a (4,6)-regular SC-LDPC code with M = 1000, L = 500, W = 12, and
Rdoped = 0.331 on a binary-input AWGN channel with BPSK signaling.

Finally, in order to test the effectiveness of general (system-

atic or nonsystematic) fractional VN doping at reducing rate

loss, we simulated the (3,6)-regular SC-LDPC code of Fig.

1(b) with M = 2000, L = 500, and W = 18 for a binary-

input AWGN channel with BPSK signaling at a signal-to-noise

ratio (SNR) of Eb/N0 = 0.9 dB. A single (s = 1) doping

position was placed in the middle of the coupled chain and

the doping fraction δ was varied between 0 (no doping) and 1

(full doping). From Fig. 10, we see that even a small amount of

fractional doping yields significant performance improvement,

with δ = 0.2 (20% doping, Rdoped = 0.499) giving essentially

the same result as δ = 1.0 (full doping, Rdoped = 0.497).

This is consistent with the analytical results of [12], where the

authors show that a doping point operates like a switch, where

a decoding wave is either initiated or it is not, and suggests

that the systematic doping results presented above can also be

achieved by doping only a single position, thus reducing the

rate loss due to doping, as long as R exceeds some critical

doping fraction.

0 0.2 0.4 0.6 0.8 1
10-7

10-6

10-5

10-4

10-3

Fig. 10. Performance of a fractionally doped (3,6)-regular SC-LDPC code
with M = 2000, L = 500, W = 18 at Eb/N0 = 0.9 dB .

VI. CONCLUSION

In this paper, we proposed a systematic VN doping strategy

which employs systematic encoding and fractional doping of

systematic bits only as a way to mitigate the error propagation

problem of SWD of SC-LDPC codes while greatly simplifying

the complexity of the encoding process (and the corresponding

encoder inverse operation required to recover the estimated

information sequence). Numerical simulation results show that

(i) systematic encoding combined with fractional systematic

doping performs essentially as well as general (nonsystematic)

encoding combined with full doping of all the code bits at

each doping position, while greatly simplifying the encoding

process and the procedure for recovering the decoded infor-

mation sequence, and (ii) fractional doping can be used to

reduce the rate loss due to doping with only a minor impact

on performance.
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