environments

Article

Understanding the Accuracy Limitations of Quantifying
Methane Emissions Using Other Test Method 33A

Robert Heltzel 1, Derek Johnson *(, Mohammed Zaki 2, Aron Gebreslase 2

check for
updates

Citation: Heltzel, R.; Johnson, D.;
Zaki, M.; Gebreslase, A.; Abdul-Aziz,
O.I. Understanding the Accuracy
Limitations of Quantifying Methane
Emissions Using Other Test Method
33A. Environments 2022, 9,47.
https://doi.org/10.3390/

environments9040047

Academic Editor: Fontina

Petrakopoulou

Received: 3 March 2022
Accepted: 31 March 2022
Published: 6 April 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
40/).

and Omar I. Abdul-Aziz 2

Department of Mechanical and Aerospace Engineering, Statler College of Engineering, West Virginia University,
Morgantown, WV 26505, USA; rheltzel@mix.wvu.edu

Wadsworth Department of Civil and Environmental Engineering, Statler College of Engineering,

West Virginia University, Morgantown, WV 26505, USA; mz0014@mix.wvu.edu (M.Z.);
akg0013@mix.wvu.edu (A.G.); oiabdulaziz@mail. wvu.edu (O.L A.-A.)

*  Correspondence: derek johnson@mail.wvu.edu; Tel.: +1-304-293-5725

Abstract: Researchers have utilized Other Test Method (OTM) 33A to quantify methane emissions
from natural gas infrastructure. Historically, errors have been reported based on a population of
measurements compared to known controlled releases of methane. These errors have been reported
as 20 errors of +70%. However, little research has been performed on the minimum attainable
uncertainty of any one measurement. We present two methods of uncertainty estimation. The
first was the measurement uncertainty of the state-of-the-art equipment, which was determined
to be +3.8% of the estimate. This was determined from bootstrapped measurements compared to
controlled releases. The second approach of uncertainty estimation was a modified Hollinger and
Richardson (H&R) method which was developed for quantifying the uncertainty of eddy covariance
measurements. Using a modified version of this method applied to OTM 33A measurements, it
was determined that uncertainty of any given measurement was +17%. Combining measurement
uncertainty with that of stochasticity produced a total minimum uncertainty of 17.4%. Due to the
current nature of stationary single-sensor measurements and the stochasticity of atmospheric data,
such uncertainties will always be present. This is critical in understanding the transport of methane
emissions and indirect measurements obtained from the natural gas industry.

Keywords: OTM 33A; measurement error; methane emissions; controlled releases

1. Introduction

An improved understanding of anthropogenic methane emissions from natural gas
infrastructure is important as recent studies continue to show that current inventories
underestimate methane emissions [1,2]. Uncertainty has been a major concern with respect
to the indirect quantification of methane emissions. Top-down and bottom-up studies
have historically resulted in large differences due to uncertainties associated with the
propagation of estimates and measurement techniques, and research continues to focus on
reconciling these divergent estimates [3]. Many new technologies have been developed
to identify elevated methane emissions and many are focused on indirect quantification
or single sensor point measurements [4]. Some indirect quantification methods focused
on gas dispersion and downwind measurements from sites, but still require site access for
the release of tracer gases [5-7]. In this work, we utilized different methods to determine
the minimum uncertainty associated with a single-sensor indirect methane quantification
method that does not require direct site access, can be completed at the fence line or beyond,
and does not require the use of tracer releases. The method evaluated, which has been
widely used by researchers and agencies to quantify methane emissions indirectly, was
Other Test Method (OTM) 33A [8-13]. The Environmental Protection Agency (EPA) began
development of the OTM 33 series in 2006 to focus on three primary areas: concentration
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mapping, source characterization, and emissions quantification. Here, we focus on the emis-
sions quantification portion of OTM 33A, which will subsequently be referred to as OTM.
The method was designed to target methane emissions from the natural gas infrastruc-
ture from sources that were near ground level, relatively small in source area, and within
150 m (m) of the measurement location [8]. The method produces a mass emission rate by
utilizing a point source Gaussian methodology to measure a horizontal flux. OTM was
recently compared with tracer methods and direct quantification techniques and tended
to underpredict emissions, but it was noted to be a quick and non-invasive method to
estimate emissions [7]. An additional benefit of the OTM approach is that its equipment can
also be vehicle mounted to enable a slightly different method for mobile sensing [14-16].
Details on the OTM method have been extensively explained elsewhere [9-13]. To reduce
the uncertainty of the method, a series of Data Quality Indicators (DQI) were developed.
Multiple studies have been conducted on the accuracy of OTM with controlled release
experiments. The initial releases, performed by the EPA, took place alongside the de-
velopment of the method, and were used in development of the DQIs and detailed in
Brantley et al. [9]. These tests consisted of 107 observations each spanning approximately
15-20 min. The method produced an initial accuracy which ranged from —84% to 184%.
After eliminating periods of data that did not meet the primary DQIs, 74% remained. The
errors of these measurements ranged from —60% to 52%; however, 71% of measurements
were within +30% of the actual release rate [13].

Robertson et al. performed a second series of controlled release experiments at
Christman Airfield (CAF) in Fort Collins, CO for comparison with those performed by
Brantley et al. [9,12]. This series of experiments consisted of 23 tests. Four of the measure-
ments were eliminated from analysis because they did not pass one of the three primary
DQIs. Robertson et al. combined these results with those from Brantley et al., which
resulted in a dataset of 119 tests. These data had a 2¢ error of +56% and a 1¢ error of £28%.
Robertson et al. reported a 10% low bias but noted that the Brantley et al. data did not
share this bias [12].

A recent study by Edie et al. further investigated the controlled release experiments of
Robertson et al. and performed a third set of controlled releases at the Methane Emissions
Technology Evaluation Center (METEC), also in Fort Collins [12]. The study observed
that across each test set the wind speed, number of sources, and leak height had no major
impact on estimate accuracy. This research analyzed 34 total tests, 24 of which passed the
DQI threshold. The total error range was —60% to +170% with a 68th percentile of error
at £38%. An ordinary least squares regression analysis confirmed the 10% low bias seen by
Robertson et al. and a propensity to overestimate smaller releases. The study concluded
that OTM measurements could generally expect a 20 error of £70% with a slight negative
bias. A summary of the previously performed controlled release experiments and their
resultant uncertainties is presented in the Materials and Methods section.

As presented, the uncertainty associated with the method can be large for a population
of measurements. This means that the uncertainty of any individual measurement may
be even more significant. Currently, the use of DQIs as a quality assurance is the most
effective way to ensure an accurate measurement is performed. This method by no means
guarantees any level of accuracy. Repeat measurements can increase the confidence of
measurements. However, the stochastic nature of micrometeorological conditions makes
such measurements difficult to obtain. Methods need to be explored to determine the
minimum uncertainty of a given measurement based on the measurement principle itself.

We investigated the minimum obtainable uncertainty associated with the use of the
OTM method. State-of-the-art equipment was utilized in a configuration commonly used
for a method known as Eddy Covariance (EC). The EC method is generally used to measure
vertical fluxes from homogenous emission sources; however, it relies on much of the same
instrumentation as OTM. Methods were used in tandem during this research effort. The
results from the combination of methods are presented in a concurrent publication [17].
Here, we focus on the uncertainty associated with the OTM method from the perspective
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of both minimum measurement error due to equipment specifications and the variability in
measurements by utilizing an uncertainty technique common to the EC research community.
This methodology, developed by Hollinger and Richardson (H&R) [18], was modified to
quantify the measurement-to-measurement variability of the OTM method.

2. Materials and Methods

The primary method of data acquisition (DAQ) was an in-house developed Mobile
Eddy Covariance Tower (MECT). The design of this DAQ system was specific to this
research, as it was intended to be semi-mobile for easy movement and deployment. The
tower was mounted on a towable trailer so that it could easily be moved within and among
natural gas production sites. The MECT was designed for operation without an external
power source. The DAQ equipment mounted on the tower was powered by a rechargeable
battery bank which was maintained by two solar panels, also mounted on the trailer. This
system could be transported and deployed at different sites as a single system with relative
ease compared to conventional EC stationary systems. The DAQ system included a LICOR
LI-7700 CHy4 analyzer, LI-7500DS CO, /H;0 analyzer, LI-200R pyranometer (Lincoln, NE,
USA), a Gill®WindMaster 3-axis sonic anemometer (Lymington, UK), and an Omega iBTHx
barometric pressure, temperature, and humidity sensor (Norwalk, CT, USA) [19-23]. Data
from the system were recorded at a rate of 10 Hz. The LI-7700, LI-7500, and WindMaster
were mounted vertically, 4 m from the base of the trailer. The trailer base was about 0.5 m
above the ground; therefore, the sensor height was considered 4.5 m for data processing.
Details of the DAQ system can be found in [11,24]. More details on the DAQ equipment
specifications are presented in the Appendix A, Table A1l. The DAQ setup is presented in
Figure Al.

The initial deployment of the MECT for controlled release experiments occurred at
the WVU JW Ruby Research Farm located in Reedsville, WV [25]. This site was used in
this research due to its open fields which contained no high canopy vegetation or building
interference, similar to conditions at well sites. Two open fields served as locations for
experiments involving controlled releases of methane. These fields were normally used
for cattle grazing; however, no cattle were present in the fields while they were used for
experiments. It should be noted that at times the cattle were in adjacent fields and could
have contributed to elevated background methane concentrations in the area. The MECT
was deployed and collected data continuously during the controlled releases performed at
the farm.

The controlled release experiments were designed based on previous OTM studies
and directly quantified emissions from a local production site [26-28]. The designed
release/distance matrix consisted of nine different release rate/distance (RRD) scenarios.
Methane release rates ranged from 0.04 to 0.24 grams per second (g/s). Distances ranged
from 40 to 120 m. The distances were approximated with a range finder and later calculated
based on the GPS coordinates of the release point and the data collection point (the MECT
location). The final controlled release matrix is presented in Table A2.

The controlled releases were produced from a three-bottle, pressure-controlled man-
ifold of technical to high purity methane (98-99% composition by volume) connected in
parallel to a mass flow controller. The release point was attached to the roof of the trailer at
a height of approximately 2.3 m. The methane was released from this point at atmospheric
pressure, simulating a release from an onsite blunt body, such as a tank. The release setup
is presented in Figure A2.

Data collection occurred between 21 May and 11 September 2019. Information on
initial data elimination can be found in [11]. The data used for this research were based on
those averaging periods that produced valid results from both OTM and EC calculations.
Averaging periods were 15 min in length to allow for the alignment of EC and OTM data
and only those periods with an average prevailing wind direction within £45° of the source
to sensor (StS) direction were utilized.
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During the entire farm deployment there were a possible 10,878 15 min periods. Of
those, 7283 (67%) resulted in valid OTM and EC calculations. Of those 7283 valid OTM
estimations, 4599 (63%) were from periods without a release present and 2684 (37%) were
from periods with a release. Of the 2684 valid periods during controlled release periods,
804 (30%) were within £45° of the StS direction. Of the 4459 valid background periods,
3124 (68%) occurred after the first controlled release was initiated. Of these 3124 periods,
1208 (39%) of them were within +45° of the StS direction. These were considered the
final background periods and were used for further analysis. The final available dataset
consisted of 15 min periods recorded after the first release was initiated, with valid OTM
and EC estimates and had an average wind direction within £45° of the StS direction. The
final number of background periods with these properties was 1208 and the final number
of controlled release periods with these properties was 804. The valid periods broken down
by distance and release rate are presented in Table 1.

Table 1. Number of valid controlled release and background period for various release rates
and distances.

Release Rate (g/s)

Distance (m)

None 0.036 0.119 0.239 Total
42 577 234 110 38 382
57 224 - 47 34 81
72 289 63 100 - 163
119 118 98 68 12 178
Total 1208 395 325 84 804

Wind speed was considered one of the most critical variables for the success of var-
ious indirect quantification techniques. The average 15 min period mean wind speed
was 1.6 m/s and the maximum was 5.3 m/s. This aligns with the recommendation of
Robertson et al. that OTM measurements were most effective with average wind speeds of
1 to 10 m/s. The controlled releases of Robertson et al. experienced atmospheric stability
indicator (ASI) values between 2—6 [12]. The ASI is a measure of atmospheric stability and
aligns closely with the widely used Pasquill stability classes [9]. Edie et al. performed
controlled release experiments with wind speeds between 2-8 m/s and ASI values between
3-6 [10]. The ASI values of this work varied between 2-7 but tended to be higher with a
mean value of 5, which suggested that conditions tended to be more stable.

For comparison with the results of other research, the periods in this dataset with a low
DQI were examined as a population. There were 181 averaging periods with a DQI below
10 based the criteria defined by Edie et al. [10]. The 1o error of these periods was £61%, which
was closer to the 20 errors reported by previous studies. One of the reasons was likely the
larger number of sample periods which allowed for more potential that there would be a large
outlier in the set. Another cause may have been that previous research tended to be performed
in more favorable conditions for OTM. A complete comparison of the population of errors for
those tests with a DQI less than ten is presented in Table 2. Data for the 181 averaging periods
with a DQI less than ten are provided as Supplementary Materials.

These uncertainties are only for populations of data. The goal of this work was to
determine the minimum achievable uncertainty of such methods. Currently, significant
efforts are being made to reduce the uncertainty of indirect measurements in the field of
methane quantification. However, instrumentation and stochasticity are likely to limit the
potential improvements that can be made by more advanced methods. Understanding the
limitations on uncertainty could enable better assessment of future modifications made to
indirect techniques similar to OTM 33A.
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Table 2. Comparison of results to previous studies with controlled releases (DQI < 10).

Robertson et al. Edie et al. Brantley et al. This Work
Count (#) 19 24 107 181
Release Rates (g/s) 0.03-0.56 0.04-0.6 0.19-1.2 0.04-0.24
Full Range of % Error —75% to 60% —60% to 175% —60% to 52% —95% to 1070%
Tests within +30% Error - - 71% 30%
Tests within +-50% Error 85% - 56%
68th Percentile Error +28% +38% - +64%

3. Results and Discussion
3.1. Instrument Uncertainty
The key variables used for OTM calculations were 3-D wind speeds, methane concen-

tration, temperature, and pressure. The instruments used to measure these variables and
their respective uncertainties are presented in Table 3.

Table 3. Relevant OTM instrumentation information.

Device Relevant Variable Acronym Resolution Accuracy
X wind speed u
Wingl\i/lllaster Y wind speed v +£0.01m/s <1.5% RMS
Z wind speed w
LI-7700 Methane Concentration ch4 +0.005 ppm <1%
Temperature t +0.003 K +03K
L7500 Pressure 4 +0.06 mbar +4 mbar

The uncertainty of each instrument measurements was determined by combining the
uncertainties associated with resolution and accuracy. The uncertainty of each individual
data point collected at 10 Hz were determined for each of the respective instruments. The
accuracy uncertainty was determined based on the interval within which the true value
was known. If the accuracy of a device was presented as a percentage of the measurement,
the actual value was assumed to fall within the range of the [measured value +/— the
reported accuracy (%) multiplied by the measured value]. If the accuracy was presented as
an engineering unit, the actual value was assumed to fall within the range of the [measured
value +/ — the unit value].

Regardless of how the accuracy was reported by the device manufacturer, the standard
uncertainty due to accuracy was calculated as the half interval divided by the square root
of three. This calculation was derived from the assumption that the accuracy of the device
acts as a rectangular distribution. In other words, all possible values within the accuracy
range are equally likely for each measurement point [29]. Examples of the individual
measurement uncertainties due to accuracy are presented in Calculation A1l for methane
(as a percentage) and temperature (as a unit value).

The instruments used for measurement also had uncertainties associated with their
resolution. Since any digital instrument has a discrete value due to rounding, the true value
could lie within £0.5 multiples of the displayed value. To determine the standard resolution
uncertainty of the device, the reported resolution was divided by the square root of three
(again assuming that each possible value in the half interval were equally likely to occur) [30].
As an example, the resolution of the WindMaster is presented in Calculation A2.

The total standard uncertainty of each individual measurement could be calculated
by combining the uncertainties due to resolution and accuracy [31]. The total standard
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uncertainty of each individual measurement point was calculated using Equation (1) for
each variable.

_ 2 2
€ total = \/eresolution + €accuracy @)

A complete example of the total standard uncertainty in a measured methane concen-
tration is presented in Calculation A3.

To determine the standard measurement uncertainty of an OTM averaging period,
the total standard uncertainty of each measurement from each device was calculated. So,
for each individual point (10 Hz data) the uncertainty of that measurement point was
quantified. This resulted in an “upper”, “lower”, and “measured” value for each variable
and each data point. There were six 10 Hz variables used in the OTM calculation (ch4, u, v,
w, t, p). The three potential values of each variable are described below:

1. measured value = the value reported and recorded form the instrument
2. upper value = measured value + standard uncertainty of measured value
3. lower value = measured value — standard uncertainty of measured value

To analyze the uncertainty of an OTM averaging period estimate, a complete analysis
of all the combinations of maximum measurement uncertainty were applied to each point in
that period. Within a given 15 min period there were 9000 data points which could exhibit
the full spectrum of measurement uncertainty. For simplicity it was assumed that the true
value of every point of a given variable was either the “upper”, “lower”, or “measured”
value. Applying this simplifying assumption to all six variables gave a total of 729 potential
OTM estimates for each period based on the number of variables (i = 6) and number of
potential values (1 = 3), such that: n = 3% = 729.

For example, one of the estimates was calculated using the “upper” value for all ch4, u,
and w measurements, the “lower” value for all v and t measurements, and the “measured”
value for all p measurements. So, for each period 729 estimates were calculated using the
OTM method and the different possible values of each variable. This produced an average
and standard deviation of estimates for each period as a percentage of the actual estimate.
The actual estimate was that which utilized the measured value for each of the variables.

From the 804 valid release periods, 100 random samples were selected. All 729 combi-
nations were used to estimate mass emissions rates from these 100 periods. Measurement
uncertainty as a percentage of the actual estimate was inferred from these 100 periods. The
result from each combination of variables was quantified as a percentage of the measured
estimate. The measurement uncertainty as percentage of the estimate was determined
using the following methodology:

1. The percentage of the measured estimate was calculated for each of the 729 results for
each period.

2. From these 729 results, a single estimate was randomly selected 100 times to represent
the given period.

3. The mean, standard deviation (¢), and standard error (SE) of these periods were
calculated. The SE was calculated using Equation (2), where 1 represents the number
of samples (100).

4. The measurement uncertainty of the 100 samples was calculated as [£1.96 * SE]
representing the 95% confidence interval (CI) of the standard normal distribution.

5. This process was repeated for 1000 iterations and the average measurement uncer-
tainty was determined to be the measurement uncertainty for all estimates.

(%
SE = NG @)

3.2. Method Uncertainty

As stated, this project also focused on combining EC with OTM. Therefore, the data
analyzed here were those averaging periods capable of producing both valid EC and
OTM results. EC uncertainty methods were applied to these averaging periods. A widely
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used method of uncertainty estimation for EC fluxes is that of Hollinger and Richardson
(H&R) [18]. The method allowed two options for quantifying flux uncertainty by quanti-
fying the differences in measurements from periods that should produce similar results
based on atmospheric drivers. One option was to utilize multiple towers to measure the
same area and the other was to use a single tower measuring the same area at different
times with similar conditions. The option involving only one tower utilized pairs of data
measured exactly 24 h apart to reduce diurnal variability. To ensure that the periods of
comparison were sufficiently similar, several qualifiers were utilized to govern accepted
pairs. The original research was focused on differences in heat, water vapor, and CO,
fluxes. The qualifiers for acceptable periods were based on the drivers of these types of
fluxes. The qualifiers for similar periods were defined as follows:

- Photosynthetic Photon Flux Density (PPFD) difference less than 75 umol/m?s
- Air Temperature Difference less than 3 °C

- Vapor Pressure Deficit Difference less than 200 Pa (0.2 kPa)

- Wind Speed Difference less than 1 m/s

When two periods separated by 24 h met all defined criteria they were accepted for use
in the calculation to determine the standard deviation of the measurement error [¢(dg)] as
defined by H&R. The standard deviation of the measurement uncertainty can be calculated
from the accepted 24 h periods with Equation (3).

o(x1, — x2,1)

o(6q) = — 5 3)

where 0 (dq) is the standard deviation of the measurement uncertainty, x;; and x,; are
flux measurements taken 24 h apart which meet the defined criteria and o (x;; — xp) is
the standard deviation of the differences of those respective pairs. The derivation of o'(dq)
follows the logic that two periods with measured fluxes of x; and x, have measurement
uncertainties associated with them of ég; and dg,. Because the expected difference between
x1 and x; of sufficiently similar periods would be zero, it follows that the variance of
(6q1 — 6g2) would be equivalent to the variance of (x; — x,). Hence, the standard deviation
of the uncertainty was inferred from the standard deviation of the measurements whose ex-
pected values are equivalent [18]. We applied the same logic to OTM estimates. Sufficiently
similar periods of measurement should yield similar results.

To quantify the uncertainty of measurements from the MECT at the farm, background
(no release present) periods were used because it was expected that they would have the
same value 24 h apart. Periods with controlled releases of the same rate and distance spaced
24 h apart were rare and variations in wind direction would greatly impact the estimations
of these periods. The primary driver of the OTM background estimations was the natural
methane flux from the soil. Yamulki et al., determined that the primary drivers of methane
flux from soils in which grazing animals were sometimes active were ambient temperature
and rainfall [32]. To determine the natural difference in methane flux, the qualifiers for
acceptable periods were defined as follows:

- No precipitation between periods
- Air Temperature difference less than 3 °C

OTM relies on stability class assumptions and the estimates obtained from it are a
direct product of the wind speed. Many methods of estimating stability class utilize solar
loading or cloud cover in their classification [33,34]. Here, PPFD was utilized instead of
solar loading or cloud cover since it provides the same information and H&R defined
criteria for sufficiently similar periods. Therefore, in addition to the natural methane flux
drivers, for OTM periods to be accepted they were required to meet the following additional
criteria which were also defined by H&R:

- PPFD difference less than 75 pmol/m?s
- Wind speed difference less than 1 m/s
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PPFD [umol/m?s] is a measure of light intensity approximately equal to 4.6 W/m? [23].
In this research the variable of solar loading in W/m? was recorded by a pyranometer and
converted to PPFD. From the background periods collected in between controlled releases
there were 1208 periods that contained both valid OTM and EC estimates. From these
1208 periods there were 65 pairs of periods that met the criteria for OTM.

The goal was to determine the uncertainty from this method as a percentage of
the OTM estimate, so that it could be compared with the measurement uncertainty. To
determine the uncertainty as a percentage of the estimate a bootstrap of 1000 iterations on
the 65 pairs was performed. For each of the iterations a sample size of 65 pairs was selected
with replacement. The absolute mean of the estimates, the mean difference of the pairs, the
standard deviation of measurement uncertainty, and the SE of the measurement uncertainty
were calculated for each iteration. The SE was calculated as presented in Equation (2). We
again used the assumption that [£1.96 * SE] was the 95% CI of the uncertainty, as was
performed for the measurement uncertainty.

3.3. Instrument Uncertainy Results

The OTM measurement uncertainty due to instrument error was determined from a
bootstrapped sample of 100 random periods during controlled releases. The 1000 iterations
of measurement uncertainty as a percentage of the estimate are presented in Figure 1.
The final measurement uncertainty of OTM estimates due to instrumentation alone was
determined to be £3.8% of the “measured” value. We see that this is similar to direct
quantification measurement uncertainties for state-of-the-art systems [24-27]. Some re-
cent research has examined low-cost sensors that could be deployed at sites to conduct
measurements similar to ours. While reducing costs is important to ensure widespread im-
plementation, our results suggest that current state-of-the-art sensors are accurate enough
given the range of emissions typical at well sites. The predominant limiting factor in the
method uncertainty is discussed below.

Bin Population (%)

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

1.0 2.0 3.0 4.0 5.0

—— Mean
=== Distribution

Distribution of Measurement Error (%)

Figure 1. Histogram of measurement uncertainty as a percentage of the OTM estimate. (100 random
periods, bootstrapped 1000 times).
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3.4. Method Uncertainy Results

In addition to the measurement uncertainty due to devices, the uncertainty due to the
variability of estimates during similar micrometeorological conditions was quantified via a
modified version of the H&R method traditionally used for EC uncertainty [18]. The H&R
method had not previously been used for OTM estimation. OTM was designed around a
Gaussian dispersion methodology which aimed to measure a horizontal flux from a target
source. The same comparative logic was applied in that periods with similar methane
emissions and similar atmospheric conditions should produce similar results. The modified
H&R method was then used to determine the uncertainty in OTM measurements since
the differences between periods with no emissions also had an expected difference of zero.
To account for the distance variable in the OTM calculations, the OTM estimates for each
pair of periods were calculated using each of the controlled release distances. This resulted
in an increase in the magnitude of the estimate and an increase in the uncertainty with
distance. The uncertainty as a percentage of the estimate, however, was linear with the
increase in distance. This was because the OTM estimates were a near linear function with
respect to StS distance. During the background periods, no controlled release was present.
The resultant uncertainty therefore was the uncertainty in the measurement method to
do lack of repeatability, rather than difference in wind direction, controlled release rate,
or atmospheric stability. The mean results of the 1000 iterations are presented in Table 4.
We see that the method uncertainty from the modified H&R method is £17% compared
to only £3.8% for the measurement uncertainty. Thus, application of OTM 33A is more
so limited by the stochastic micrometeorological conditions rather than limitations from
measurement equipment.

Table 4. Results of H&R method applied to OTM measurements.

M Esti % CI/M
Distance (m) o (g — 1) o (59) 95% CI ean Estimate 95% CI/Mean

X of Periods Estimate
for Calculation
[g/s] [g/s] [£g/s] [g/s] [%]
42 0.007 0.005 0.001 0.007 17%
57 0.012 0.008 0.002 0.012 17%
72 0.018 0.012 0.003 0.018 17%
119 0.045 0.032 0.008 0.045 17%

The uncertainty methods and results are summarized in Table 5. For a final uncertainty
estimation of OTM measurements the combined uncertainties of the instrument error and
measurement variance of the modified H&R were combined using the sum of squares. The
instrument error had a minimal effect on the estimated measurement uncertainty and the
combined uncertainty was £17%.

Table 5. Summary of uncertainty quantification methods.

Quantification Method Uncertainty Method How It Is Presented Result
The range of uncertainty as a percentage of the
OT™ Instruriljenlgelzfaeianstu rement OTM estimate for any period based on the +3.8%
Y uncertainty of the instruments used to record data.
OTM Modified H&R 24 h The range of measurement uncertainty of the 1179,
Difference Method method due to randomness in the measurement. ’
The minimal possible uncertainty from the OTM
OTM Combined Uncertainty method, calculated as the combined uncertainty of +17.4%

the other two methods.
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This uncertainty estimate was smaller than previously reported 1¢ errors of £28%
and £38%. The uncertainty presented here is the uncertainty associated with the measure-
ment itself (i.e., the estimated value should be considered to have error bars of +17.4%).
This likely represents the absolute minimum uncertainty attainable and would never truly
be achieved but may serve as a lower bound to target for any future modifications of
OTM 33A. This minimal uncertainty definition helps to guide users of the current method
and future methods. This value serves as a corollary to the use of the 1st and 2nd Law
efficiencies in thermodynamics, where it makes little since to compare the 1st Law efficiency
to 100% since it cannot be achieved, whereas comparing it to the best case of the 2nd Law
efficiency helps realistically understand how well current systems perform. It makes little
sense to compare indirect OTM 33A uncertainties to 0% or even just the measurement
uncertainty of £3.8% since the methods uncertainty is dominated by stochastic variances.
In the case of Robertson et al., their 10 error was likely approaching the minimum un-
certainty attainable with OTM 33A, though a similar measurement uncertainty analysis
should be considered.

4. Conclusions

Most of the research on the uncertainty and error of OTM 33A has focused on the error
distribution of a population of measurements. This error can be large for a population of
measurements, and our data show that uncertainty of any individual measurement may be
even more significant. There is limited published research on the repeatability of the method
or the baseline measurement error. Here, we have presented a methodology to estimate the
baseline measurement error due to instrumentation and atmospheric stochasticity. These
methods were used to determine the minimal attainable uncertainty under near perfectly
repeatable conditions using state-of-the-art measurements. With state-of-the-art DAQ
instrumentation, the average uncertainty due to measurement limitations was determined
to be :3.8% of the reported measurement. This value was obtained using a non-parametric
bootstrap of randomly selected averaging periods collected during controlled release
experiments. Only further improvement in instrument technology could further reduce
already relatively low measurement errors.

A second measure of uncertainty was associated with stochastic measurements. A
method developed by H&R for estimating EC uncertainty was modified for use with
OTM 33A averaging periods. The method attempted to quantify the randomness of mea-
surements by comparing averaging periods with similar environmental drivers. It would
be expected that such periods would produce similar estimates. This method was utilized
to estimate the OTM uncertainty due to the randomness of micrometeorological variables
even when critical drivers were similar (precipitation between periods, air temperature,
wind speed, solar loading, and therefore ASI). Such uncertainty will always be present in
real-world measurements and represent a lack of repeatability. The uncertainty from this
method was +17% of the reported measurement, on average, across all measured distances.
The combination of these two uncertainties resulted in a minimum obtainable uncertainty
of +17.4% for an individual measurement.

While some uncertainty, such as the measurement uncertainty due to the instrument
limitations, will never be overcome, other forms of uncertainty could be reduced with
different methods. The modified H&R uncertainty was based on the difference in mea-
surements which should be similar. Similar modifications to the method as those applied
here could benefit both EC and other indirect quantification methods given more long-term
data were available to verify results. Such efforts could make it possible to better quantify
differences in real-time to reduce errors. Novel machine learning methodologies could help
to identify trends in averaging periods or even individual data points that are sufficiently
similar, leading to an increase in the confidence of measurements. The stochastic nature of
such measurements will never allow for ideal repeatability, but new methods could bring
current uncertainties closer to the minimal attainable level.
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Appendix A

Table Al. Summary of major MECT equipment and their specifications.

Resolution

Device Detection Max Rate/ Parameters Range (res)/Accurac Operating
Method Used Rate Measured 8 (aco) y Limits
Gill Gill Instruments Ltd. ) 20 Hz/ 3-D Wind Speed g . T: —40-70°C
WindMaster (Hampshire, UK) Ultrasonic Pulse 10 Hz ind Spee 0-50 m/s <1.5% RMS —RH: 00
Wavel h CH T: —25-50 °C
LI-COR Biosciences avelengt 20 Hz/ 4 conc. CHy: 0-40 ppm 5 ppb res.<1% -
LI-7700 (Lincoln, NE, USA) Modulation 10 Hz Temperature at 25 °C linearity P: 50-110 kPa
Spectroscopy Pressure RH: 0-100%
CO,: 0-3000 CO;,: <1% of
pumol/mol reading
CO; conc. i e RH: 0-95%
LI-7500 LI-COR Biosciences Non-dispersive 20 Hz/ H,O conc. HZOi;)—601 H,0: ;.1 Vo of
(Lincoln, NE, USA) spectroscopy 10 Hz Temperature HmOl/mo reading
Pressure T: —20-70 °C T: 40.3°C T: —25-50 °C
P:50-110 kPa P: 0.4 kPa P:50-110 kPa
LI-COR Biosciences . 1 x 10° Hz/ . N +3% over T: —40-65°C
LI-200R . c o T R
00 (Lincoln, NE, USA) Photovoltaic 10 Hz Solar Loading 0-3000 W/m reading RH: 0-100%
. o T: +2°Cacc. . o
T: 0-70 °C 0.01 °C res. T: 0-70 °C
025 Hz/ Temperature T02KP
Omega iBTHx Various N Pressure e P: +0. a .
(Norwalk, CT, USA) 0.25Hz Relative P: 0-110kPa acc.0.01 kPa res. P: 0-110 kPa
Humidity o
RH: 0-100% RH: 2% for 10-90 RH: 0-100%
acc. 0.03% res.
Table A2. Controlled release experiment test matrix.
Release Rates (g/s) Distances (m)
0.036 42 72 119
0.119 57 72 119

0.239 42 72 119
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Figure A2. Controlled release trailer at the Reedsville farm.

Calculation Al. Accuracy Uncertainty Example

The LI-7700 has a methane concentration accuracy of £1% of reading. For example, if
the reading was 2.0945 ppm. The standard uncertainty due to accuracy would be:

2.0945 ppm) * 0.01
CH4accurucyuncermmty = ( PP ) = £0.00605 ppm

2V/3
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The accuracy of the temperature measurement of the LI-7500 is +0.3 °C. The standard
uncertainty of any temperature measurement would be:

+0.3 o
Tuccumcyumwmimy = —— = £0.0866 °C

2V/3

Calculation A2. Resolution Uncertainty Example

The resolution of the WindMaster is 0.01 m/s for each of the coordinate directions of
wind speed, so the standard uncertainty due to the resolution is calculated as follows:

_ +0.01m/s

Wsresolution,mce,m,my = \ﬁ = 40.00577 m/s

Calculation A3. Total Standard Uncertainty
1. The resolution of the LI-7700 is 5 parts per billion (ppb). The half interval in ppm is
then 0.005.

+0.005
V3
2. The accuracy of the analyzer is 1% of the reading across the full calibration range. So,
if the concentration is 2.0945 ppm.

resolutionypcertainty = = £0.0029 ppm

2.0945 x 0.01
ACCUTACY yncertainty = T = +0.0061 ppm

3. The total uncertainty is the sum of the squares of the resolution and accuracy uncertainty.

totalyncertainty = v/ £0.00292 + £0.00612 = £0.0068 ppm

CHj = 2.0945 + 0.0068 ppm
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