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Abstract—Automated attack discovery techniques, such as
attacker synthesis or model-based fuzzing, provide powerful ways
to ensure network protocols operate correctly and securely. Such
techniques, in general, require a formal representation of the
protocol, often in the form of a finite state machine (FSM).
Unfortunately, many protocols are only described in English
prose, and implementing even a simple network protocol as
an FSM is time-consuming and prone to subtle logical errors.
Automatically extracting protocol FSMs from documentation can
significantly contribute to increased use of these techniques and
result in more robust and secure protocol implementations.

In this work we focus on attacker synthesis as a representative
technique for protocol security, and on RFCs as a representative
format for protocol prose description. Unlike other works that
rely on rule-based approaches or use off-the-shelf NLP tools
directly, we suggest a data-driven approach for extracting FSMs
from RFC documents. Specifically, we use a hybrid approach
consisting of three key steps: (1) large-scale word-representation
learning for technical language, (2) focused zero-shot learning
for mapping protocol text to a protocol-independent information
language, and (3) rule-based mapping from protocol-independent
information to a specific protocol FSM. We show the gener-
alizability of our FSM extraction by using the RFCs for six
different protocols: BGPv4, DCCP, LTP, PPTP, SCTP and TCP.
We demonstrate how automated extraction of an FSM from an
RFC can be applied to the synthesis of attacks, with TCP and
DCCP as case-studies. Our approach shows that it is possible
to automate attacker synthesis against protocols by using textual
specifications such as RFCs.

I. INTRODUCTION

Automated attack discovery techniques, such as attacker
synthesis or model-based fuzzing, provide powerful ways
to ensure network protocols operate correctly and securely.
Such techniques, in general, require a formal representation
of the protocol, often in the form of a finite state machine
(FSM). Unfortunately, many protocols are only described
in English prose, and implementing even a simple network
protocol as an FSM is time-consuming and prone to subtle
logical errors. Automated attack discovery techniques are
therefore infrequently employed in the real world because
of the significant effort required to implement a protocol FSM.
Automatically extracting protocol FSMs from documentation
can significantly contribute to increased use of these techniques
and result in more robust and secure protocol implementations.

We observe that for network protocols there is an untapped
resource of information available in the form of RFCs. With the
recent interest in using data to automatically solve problems in

several fields, we ask the question: “Can we leverage formal
prose descriptions of protocols to improve protocol security?”

Given the inherent ambiguity of natural language text,
extracting protocol information is not a straightforward task.
The writers of protocol specifications often rely on human
readers’ understanding of context and intent, making it difficult
to specify a set of rules to extract information. This is by
no means unique to the computer networks domain, and as a
result, the natural language community shifted its focus over
the last decade to statistical methods that can help deal with
such ambiguity. At the same time, one can not just apply
“off-the-shelf”” implementations of NLP tools combined in an
ad-hoc way, as training such tools on poorly selected datasets
will result in reduced performance and cause the resulting
applications to be brittle.

Unlike other software, network protocols follow a specific
pattern: they are described by messages and FSMs, they must
meet temporal safety and liveness properties, and they follow a
structured language. Thus, NLP tools trained on such aspects of
a protocol are likely to generalize on protocols with a similar
structure. Unlike other NLP tasks where high precision is
needed, protocol validation is more robust to noisy NLP results
because the ultimate result comes from protocol execution.

NLP techniques have been applied selectively in related prob-
lems. WHYPER [1] and DASE [2] apply NLP techniques to
identify sentences that describe the need for a given permission
in a mobile application description and extract command-line
input constraints from manual pages, respectively. The work
in [3] used documentation and source code to create an ontology
allowing the cross-linking of software artifacts represented in
code and natural language on a semantic level.

Several other works looked at inferring protocol specification
— based on network traces [4], [5], [6], [7], [8], using program
analysis [9], [10], [11], [12], or through model checking [13],
[14]. Comparetti et al. [4] infer protocol state machines from
observed network traces by clustering messages based on
the similarity of message contents and their reaction to the
execution. Caballero et al. [6] extracts the protocol message
format, given a trace of protocol messages. Cho et al. [7]
extracts the protocol state machines from network traces with
the help of a set of end-user provided abstraction functions
to generate an abstract alphabet out of trace messages. The
approach relies intensively on human expert input.



Our contribution. In this work we focus on attacker
synthesis as a representative technique for protocol security, and
on RFCs as a representative format for protocol description. Our
goal is to close the automation gap between automated protocol
specification and security validation by extracting protocol
FSMs from the corresponding RFCs. Unlike other works that
rely on rule-based approaches or use off-the-shelf NLP tools
directly, we suggest a data-driven approach for extracting
information from RFC documents. Off-the-shelf NLP tools are
typically trained over news documents, and when applied to
technical documents that include many out-of-vocabulary words
(i.e. technical terms), their performance degrades substantially.
Rule-based systems, on the other hand, are developed to support
information extraction based on the specific format of the
textual input. Unfortunately, different RFC documents define
variables, constraints, and temporal behaviors totally differently.
Moreover, RFCs follow no common document structure.
Machine-learning systems can deal with these challenges,
however training such systems from scratch requires significant
human effort annotating data with the relevant labels, which
could be different for different protocols. We confront these
challenges with a hybrid approach consisting of three key
steps: (1) large-scale word-representation learning for technical
language, (2) focused zero-shot learning for mapping protocol
text to a protocol-independent information language, and (3)
rule-based mapping from protocol-independent information to
a specific protocol FSM.

While RFCs are the main form for textual specification
for protocols, they do not necessarily contain the complete
specification, referred to as canonical FSM. There does not exist
a one-to-one mapping between the textual specification and a
canonical formal specification of the state machine, as canonical
FSMs are created based not only on information contained in
RFCs, but on input from experts with domain knowledge. This
is a limitation for any statistical NLP approach. In this paper,
we propose an alternative intermediary representation (i.e. a
grammar) that can be used to recover partial state machines.

Our approach exploits the large number of technical doc-
uments found in online technical forums to train a deep
learning model, capturing the properties of and interactions
between technical terms. This process does not require direct
annotation, and does not add to the human effort involved
in building the model. Our zero-shot information extraction
approach builds on that representation. Since each protocol
consists of its own set of predicates and variables, we suggest
a zero-shot approach in which we separate between protocols
observed during training and testing. The model learns to
identify and connect concepts relevant for the training protocols
and at test time it is evaluated on extracting a set of symbols
which were not observed at training. The output of that step
creates an intermediate representation of conditions, operations
and transitions, extracted from protocol text. The final step
transpiles the intermediate representation into an FSM written
in PROMELA code [15]. We make the following contributions:

« We propose an embedding that allows us to learn network

technical terms without the need to annotate data. To learn

this embedding, we collected a set of 8,858 unlabeled
RFCs from ietf.org and rfc-editor.org cover-
ing aspects of computer networking, including protocols,
procedures, programs, concepts, meeting notes and opin-
ions. These documents contain a total of 475M words.

o« We suggest and evaluate an NLP framework for the
task of recovering FSMs from the RFCs, designed to
adapt to previously unobserved protocols. We show the
generalizability of our FSM extraction by using the RFCs
for six different protocols: BGPv4, DCCP, LTP, PPTP,
SCTP, and TCP. As part of the NLP framework we propose
a general-purpose abstraction for annotating the segments
of text in RFC specification documents that describe the
FSM for each of six network protocols. For example, of
the 20 transitions in the TCP FSM, our NLP pipeline can
extract 17, either correctly or partially so.

o We demonstrate how automated extraction of an FSM from
an RFC can be applied to the synthesis of attacks, with
TCP and DCCP as case-studies. We find that even when
the extracted FSM has errors, we can generate attacks
that are confirmed on a canonical hand-written model of
the same protocol. However, the quality of the extracted
FSM impacts the accuracy of the attack synthesis. For
example, in the case of TCP, we can find attacks against
only one property using our NLP pipeline, as opposed to
against all four when using the canonical FSM.

The code is available at https://github.com/RFCNLP.

The rest of the paper is organized as follows. We discuss
attack synthesis and NLP techniques in Section II. Our
grammar is described in Section III, technical language
embedding in Section IV, parsing in Section V, and FSM
extraction in Section VI. We present the TCP and DCCP
attack synthesis case studies in Section VII. We evaluate NLP
components, FSM extraction, and automated attack synthesis
in Section VIII. We present related work in Section IX. We
discuss limitations and improvements in Section X.

II. MOTIVATION AND OUR APPROACH

In this section, we summarize the motivation of our work,
the main challenges related to the extraction of FSMs from
specification documents, and the way our approach is designed
to circumvent these challenges.

A. Need for Automated FSM Extraction

Automated attack discovery methods typically model the
system under attack abstractly — either implicitly, e.g. with a
statistical representation, or explicitly, e.g. with a finite state
machine [16], [17], [18]. An FSM represents a program as a
graph, where the nodes are program states and the edges are
transitions (i.e. changes in state). Recent work in the theory
of security use FSMs to define what it means to attack [19],
[18]. Conversely, various attack discovery methods leverage
FSMs to compute attacks [16], [20], [21], [22], [18].

Current attack finding [16], [20], [22] and attack synthesis
techniques [18] rely on a manually defined FSM specified by
an expert. Anecdotally, there are reports where such FSMs



were derived from code directly because specifications lacked
such a description [22].

B. Challenges in FSM Extraction from RFCs

One common way of specifying protocols is with RFCs.
While RFCs provide some structure that can be exploited for
automated information extraction, it is not a straightforward
task. An RFC describes in natural language, which is inherently
ambiguous, the protocol’s variables, states, and conditions for
state transitions. Even for humans, creating a formal model
from the text requires considerable domain expertise. From an
NLP perspective, this is a specialized information extraction
task, called semantic parsing [23], mapping the protocol text
into structured information: the FSM. The mapping consists of
multiple inter-dependent predictions, each extracting individual
elements from the document, which together should capture
the conditions and transitions of the FSM. Unlike traditional
semantic parsing domains that operate over short texts, such
as mapping a request in natural language to a command for a
personal assistant (e.g., “set timer to 30 minutes”), extracting
an FSM requires processing multiple interconnected sentences
to capture the transitions from just a single state.

Recently, very promising results were obtained by NLP
researchers using deep learning methods for information
extraction and semantic parsing tasks [24], [25], [26], [27].
However, most of the recent successes in these areas depend on
large amounts of annotated data. When dealing with technical
domains, high-quality annotated resources are scarce, and the
fact that a deep understanding of the protocols is needed to
annotate these documents makes generating enough data to
support machine learning systems a costly and difficult process.

Furthermore, dealing with specialized domains also reduces
the amount of non-labeled data which can potentially be used.
Unlike traditional NLP domains, such as newswire text, in
which a vast amount of data is available for training NLP
models, when learning to extract FSMs from network protocol
RFCs, we are limited by the number of existing protocols.
Given the data scarcity problem, it is difficult to build an NLP
model that will reliably generalize to new protocols that were
not observed during the training phase, as there is no common
document structure to RFCs and the different functionality
described by the protocols results in a different set of symbols
and behaviors used by each protocol. In the next section we
describe our approach for dealing with these challenges.
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Fig. 1: Overview of our approach.

C. Our Approach

As we discussed in the previous section, the lack of training
resources prevents us from taking an end-to-end learning
approach, in which a complex neural model is trained to predict
the complete FSM directly from the text. Instead, we break
the process into several parts, allowing us to exploit several
different forms of supervision and human expertise. Figure 1
describes our approach consisting of the following steps:

Technical Language Embedding. While there are only a few
protocol RFCs, there are large amounts of technical documents
discussing them and other related networking concepts that
provide the background for understanding the RFC. These
documents include technical forums, blogs, research papers, and
specification documents. We exploit these documents to learn
a distributed word representation, also known as an embedding
model, for technical language. The main advantage of this step
is that it is an unsupervised process, and we do not require
any annotations. Learning these representations will allow us
to carry over information from the networking domain to our
next step. Section IV describes this step in detail.

Zero-Shot Protocol Extraction. Once we have this represen-
tation, we turn our attention to learning a model to extract
information regarding the FSM from the RFCs. To do this, we
define a grammar that describes a higher-level abstraction of
the structure of a general FSM for network protocols. While
general, this abstraction will allow us to leverage different
protocols to learn to extract this information, even when the
underlying structure of their documents, the way the FSM is
described and the specific names of variables, events and states
vary between protocols. We explain this grammar in Section III.
We annotate a set of six protocols, and use a zero-shot learning
approach, in which the document for the predicted protocol
is completely unobserved during training. The output of this
step is a generic representation referred to as the intermediate
representation. Section V describes this step in detail.

Protocol State Machine Extraction. The extracted informa-
tion structured according to our general protocol grammar must
be converted into an actual FSM implementing the described
protocol. We use a set of heuristics to extract an FSM from
the intermediate representation, as detailed in Section VI.

III. FINITE STATE MACHINE GRAMMAR

We define a general grammar to represent the state machine
for the pertinent network protocols in their corresponding RFC
specification documents. We use this grammar to annotate the
segment of texts that describe the states, variables, and events
that are relevant to the state machine, as well as the actions
and the logical flow describing their behavior. Annotations are
done using XML. We consider four types of annotation tags:
definition tags, reference tags, state machine tags, and control
flow tags, which are formalized below. Finally, we formulate
the grammar in Backus-Naur Form in Figure 2.

A. Definition Tags

Definition tags are used to annotate the names of states,
events, and variables that are relevant to each protocol. These



are text segments that are referenced throughout the document,
and stake a role in defining the state machine. For example, a
message may be tagged as an event if the receipt of such a
message leads to a state transition.

State definition. When the name of a state is introduced in
the text, it is annotated as such. Specifically, the <def_state>
surrounds the first usage of the state name that is part of
some discernible pattern. Often this pattern is in the form of
a newline-delimited list or bullet points, but can also appear
as a comma-delimited list. The tag also includes an identifier
that is unique among the states. For example <def_state
id="##">IDLE</def_state>, Where ## is replaced by the
identifier. We assign state identifiers (SID) as monotonically
increasing integers in order of first appearance. Punctuation
trailing the state name is not included in the tag. These tags
and SIDs will be referenced by reference tags.

Event definition. Events are also annotated to be referenced
throughout the text. Events follow the same annotation con-
ventions as states and use the annotation form: <def_event
id="##">. We will refer to unique event identifiers as EIDs.

Variable definition. Variables are defined in a similar way
to events and states, however they do not include an analog to
SIDs or EIDs, because they are not explicitly referenced by
annotation in the rest of the text.

B. Reference Tags

When an event or state occurs in the text, it must be linked to
an event or state which was tagged. They need to be explicitly
defined because sometimes the proper name of a state or event
will not be used. For example, an RFC may formally refer to
one event as “ACK”, but throughout the text these ACKs may
also be referred to as “acknowledgments”. These are really the
same event, and the reference tags are used to clarify that.

State reference. States are referenced by surrounding the
state’s name throughout the text with the <ref_state id="##">
tag, where ## corresponds to the appropriate SID that
was included with the state’s <def_state> tag. Punctuation
trailing the state name is not included in the tag. An ex-
ample might look like the following: enter <ref_state
1id="2">SYN-SENT</ref_state> state.

Event reference. Events follow the same convention as state
references. The event reference must also include the rype
of event, where the three possible types are: send, receive,
and compute. Type tags are included as XML attributes,
and will appear as in the following example: a <ref_event
type="send" i1id="10">SYN</ref_event> segment.

C. State Machine Tags

We define a set of five tags to represent the state machine
logic. These are the crux of the annotation.
Transition. Denotes a state change that happens in the

given context. We use argument tags <arg_source>,

<arg_target> and <arg_intermediate> to specify
the segment in the text playing that role. For
example, <transition>The server moves from the

<arg_source>OPEN state</arg_source>, possibly

through the <arg_inter>CLOSEREQ state</arg_inter>,
to <arg_target>CLOSED</arg_target></transition>. Note
that in this case, the mentions to “OPEN”, “CLOSEREQ” and
“CLOSED” would also be enclosed in a <ref_state> tag. In
cases where the text is not explicitly annotated with argument
tags, the states mentioned are assumed to be the ending states
of the transition.

Variable. Certain variables may be tracked as part of the
state machine. This tag should be used to surround any
logic that indicates that any of these variables are altered
or set to a new value. For example, <variable>SND.UP <-
SND.NXT-1</variable>

Timer. This tag is used if a timer value is changed or set.
For example, <timer>start the time-wait timer</timer>.

Error. If a context results in an error or warning being
thrown, the error message is then surrounded by this tag.
For example, <error>signal the user error: connection
aborted due to user timeout</error>.

Action. If a given context demands that some action be
taken, we use this tag. We specifically mark three types
of actions: send, receive and issue. Type tags are included
as XML attributes. We use an argument tag <arg> to
specify the argument in the text being sent, received or
computed. For example: <action type="send">Send <arg>a
SYN segment</arg></action>. Note that in this case, the men-
tion to “SYN” would also be enclosed in a <ref_event> tag:
<ref_event id="10">SYN</ref_event>. Additionally, there
are certain events that are ambiguous in terms of how they
relate to the state machine, in those cases, this tag can be used
without further specifications.

D. Flow Control Tags

A <control> tag is introduced to indicate that some flow
control or conditional logic is about to follow. The flow control
logic should contain a <trigger> tag, which captures the event
that triggers some action in the state machine, followed by
one or more of the state machine tags. A single block of
control tags may contain multiple state machine tags. These
state machine tags should be in the form of a list. In this case,
the implication is that the state machine tags should all be
executed if the initial trigger condition is true. Figure 7 in
Appendix A shows an example of a list of events within one
control block from the TCP RFC (a.k.a. RFC 793) [28].

E. Grammar

Let engl denote any valid string in the English language.
Then, the grammar for the state machine annotation can be
described in Backus-Naur Form as observed in Figure 2. Here,
relevant=true indicates that the corresponding annotation
is relevant to the protocol state-machine.

IV. TECHNICAL LANGUAGE EMBEDDING

In this section we describe our approach to learn distributed
word representations for technical language. We start by
providing some background about the techniques used to learn
these representations, then we describe our embedding in detail.



bool ::= true | false
type ::= send | receive | issue
def-tag ::= def_state | def_var | def_event

ref_state id="##"
ref_event id="##" type="type"

ref-state ::=
ref-event ::=

ref-tag ::= ref-event | ref-state

def-atom ::= <def-tag>engl</def-tag>

sm—-atom ::= <ref-tag>engl</ref-tag> | engl
sm-tag ::= trigger | variable | error | timer
act-atom ::= <arg>sm-atom</arg> | sm-atom
act-struct::= act-struct | act-struct act-atom
trn-arg ::= arg_source | arg_target | arg_inter

trn-atom ::= <trn-arg>sm-atom<trn-arg> |
trn-struct::= trn-struct | trn-struct trn-atom
ctl-atom ::= <sm-tag>sm-atom</sm-tag>

| <action type="type">act-struct</action>

| <transition>trn-struct</transition>

| sm—atom
ctl-struct::= ctl-atom |

sm—atom

ctl-struct ctl-atom

ctl-rel ::= relevant=bool
control ::= <control ctl-rel>ctl-struct</control>
e ::= control | ctl-atom | def-atom

| e_0 e_1

Fig. 2: BNF grammar for RFC annotation.

A. Background

Distributed representations of words aim to capture meaning
in a numerical vector. Unlike symbolic representations of
words, that use binary values to signal if the words are present
or not, word embeddings have the ability to generalize by
pushing semantically similar words closer to each other in
the embedding space. When using binary representations of
words, we can only consider features that we have seen during
training. Consider a scenario in which during training, we only
have access to DCCP. If we were to test our learned model
on TCP, we could not represent words that were not observed
during training.

Several models have been suggested to learn distributed word
representations. Some approaches rely on matrix factorization
of a general word co-occurrence matrix [29], while other
approaches use neural networks trained to predict the context
surrounding a word, and in the process, learn efficient word
embedding representations in their inner layers [30], [31]. In

this paper we focus on contextualized word representations.

Unlike static word representations that learn a single vector for
each word form, contextualized representations allow the same
word form to take different meanings in different contexts.
For example, in the sentence “The connection is in error and
should be reset with Reset Code 57, the word “reset” has two
different meanings. Contextualized representations compute
different vectors for each mention.

State-of-the-art pre-trained language models provide a way
to derive contextualized representations of text, while allowing
practitioners to fine-tune these representations for any given
classification task. One example of such models is BERT
(Bidirectional Encoder Representations from Transformers)
[32]. BERT is built using a Transformer, a neural architecture

that learns contextual relations between words in a word
sequence. A Transformer network includes two mechanisms,
an encoder that reads the input sequence, and a decoder that
predicts an output sequence. Unlike directional models that
read the input sequentially, Transformer encoders read the
whole sequence at once, and allow the representation of a
given word to be informed by all of its surroundings, left and
right. Details regarding the Transformer architecture can be
found in the original paper [33].

To learn representations, BERT uses two learning strategies,
masked language modeling and next sentence prediction. The
first strategy masks 15% of the words in each sentence, and
attempts to predict them. The second strategy uses pairs of
sentences as input, and learns to predict whether the second
sentence is the subsequent sentence in the original document.
Figure 3 illustrates this process. BERT models were pre-trained
on the BooksCorpus (800M words) and English Wikipedia
(2,500M words) and are publicly available'.
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Fig. 3: BERT pre-training.

B. Our Embedding

While we could use pre-trained language models directly
for predicting FSM tags, we note that these models were
trained on general document repositories. To obtain a model
that better represents the domain vocabulary, we further
pre-train BERT using the masked language model and the
next sentence prediction objective using networking data. We
collected the full set of RFC documents publicly available
in ietf.org and rfc-editor.orqg. These documents
cover different aspects of computer networking, including
protocols, procedures, programs, concepts, meeting notes and
opinions. The resulting dataset consists of 8,858 documents
and approximately 475M words. Note that we do not need any
supervision for this step.

Previous findings suggest that further pre-training large
language models on the domain of the target task consistently
improves performance [34]. Our experiments in Section VIII
support this hypothesis.

Thttps://github.com/google-research/bert



V. ZERO-SHOT PROTOCOL INFORMATION EXTRACTION

In this section we describe our design for a protocol
information extraction system. Our main goal is to have a
system that can adapt to new, unobserved protocols without
re-training the system. To support this, we build on the general
grammar introduced in Section III that focuses on concepts
relevant to a wider set of protocols and takes advantage of the
technical language embedding described in Section IV.

A. Sequence-to-Sequence Model

To parse specification documents, we designed a sequence-to-
sequence model that receives text blocks as input, and outputs
a sequence of tags corresponding to the grammar described in
Section III. To tag the text, we use BIO (Beginning, Inside,
Outside) tag labels. Text blocks correspond to paragraphs in the
RFC document. Initially, we segment paragraphs into smaller
units (e.g. individual words, chunks or phrases). Then, we map
each unit to a particular tag. To illustrate this process, consider
the parsed statement in Figure 4, mapping chunks to BIO-tags.
I-transition (o] B-action O

B-trigger I-trigger  B-transition

I [ ! [ l
|passive‘ ‘enter‘ ‘the LISTEN state‘ ‘ and | |return‘ i

Fig. 4: BIO example.

We consider two models to learn the sequence to sequence
mapping: a linear model we refer to as LINEARCREF, and a
neural model based on the BERT embedding, which we refer
to as NEURALCREF.

Linear-Chain Conditional Random Fields (LINEARCRF)
works on a set of extracted features over each chunk. Condi-
tional Random Fields model the prediction as a probabilistic
graphical model; Chain Conditional Random Fields specifically
consider sequential dependencies in the predictions [35].

Let y be a tag sequence and x an input sequence of textual
units. We want to maximize the conditional probability:

_ ply,x)
p(y‘il?) - Zy/ p(y/,:n)
T (D
p(a,y) = [ [ exp(f (v o1, 4:0))
t=1

Where f is a linear scoring function learned with parameter
vector 8 over a feature vector x;. To learn 6@, we minimize
the negative log-likelihood —log p(y, ). Learning is made
tractable by using the forward-backward algorithm to calculate
the partition function Z(z) = >, p(y’, ).

The second model considered is a BERT encoder enhanced
with a Bidirectional LSTM CRF layer (NEURALCRF). LSTMs
are recurrent neural networks, a class of neural network where
connections between nodes form a directed graph along a
sequence [36]. We outline this model in Figure 5. The BERT
encoder is used to create chunk-level representations from word
sequences. The resulting sequence of chunks is then processed
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Fig. 5: NEURALCRF.

using a BILSTM. A softmax activation is used to obtain scores
for the labels. Finally, we add a CRF layer on top. This way,
we are able to leverage the sequential dependencies both in
the representation and in the output space [37], [38]. Note that
BERT enforces a limit of 512 tokens per sequence, which is
not enough to represent some of our control sequences. For
this reason, we leverage a BiLSTM instead of using the CRF
layer directly over BERT.

To formalize the NEURALCRF model, we first consider a
textual unit containing n words (wg, W1y ..; Wy—1). A BERT
encoder is used to obtain a single representation w for the full
textual unit, resulting in a d-dimensional vector.

Then, a BILSTM computes a representation over the se-
quence of embedded te_>xtual units (wg, U1, ..., Uy,—1) to obtain
representations hy = [hy; h] for every textual unit ¢. Here, h;
represents the left context of the sequence, and h; represents
the right context, at every unit ¢.

Finally, we add a CRF layer over these representations by
replacing the function f in Eq. 1 with:

2

Where x; represents the input for that textual unit, hy is the
representation of the textual unit computed with our model and
P is a learned parameter matrix representing the transitions
between labels. Like in the linear CRF case, we minimize
the negative log likelihood, — log p(y, ), to jointly learn the
parameters of the BERT encoder, the BiLSTM layer, and the
transition matrix P.

Predictions for both models are done using the Viterbi
algorithm. Viterbi is a dynamic programming algorithm for
finding the most likely sequence of states. Viterbi takes into
account both emission (h?), and transition (P,, ,, ,) scores
at each unit ¢ in the sequence.

f(yta Yt—1, wt) = ht + Pytﬁ‘/tfl

B. Features

For each textual unit in the input, we extract a set of features
to capture properties about the input and help us make a correct



classification.

Vocabulary. We extract bag-of-word features for all stemmed
forms of the words in the training data. Stemming is the process
of producing morphological variants of a root word. This way
we can reduce redundancy, as word stems and their inflected
or derived words usually have the same meaning.

Capitalization Patterns. We use features to indicate the
different capitalization patterns of the original words (before
stemming). We consider a feature for each of the following
patterns: all letters are in lower case, all letters are capitalized,
the first letter is capitalized, the word is in camel case, the
word has only symbols, the word has only numeric characters,
or the word has any other form of alpha-numeric capitalization.

Logical and Mathematical Expression Patterns. We identify
different patterns corresponding to logical and mathematical
expressions. These include assignments (x := a, X = < a,
x = a), comparisons (a < b, a >b,a <b,a>b, a==0),
and arithmetic and algebraic expressions.

Dictionary Features. We include indicator features for a
held-out dictionary of reserved state and variable names.

Part-of-Speech Tags. We include part-of-speech (POS) tags
for all observed words (e.g. noun, verb, adjective). For
extracting POS tags, we use an off-the-shelf tagger.

Position Features. We use position and relative position
indicators for each word in a chunk.

All of the features used are standard in general NLP pipelines.
For the LINEARCREF, this collection of features represents the
input x; for each textual unit ¢. For the NEURALCRF, we
concatenate the feature vector to the resulting vector u; from
the BERT encoder, before being inputted to the BiLSTM layer.

C. Post-Processing

We experiment with a set of rules to correct some easy cases
that the prediction models fail to identify. The rules are applied
on top of the classification output, by flipping labels in the
relevant cases. First, we look for textual units with mentions
to states. If the unit mentions a state, and there is a transition
verb (e.g. move, enter) or a directional preposition (e.g. to,
from), we label the unit as a transition span. Then, we look
for textual units with mentions to events. If the unit mentions
an event, and there is an action verb (e.g. send, receive), we
label the unit as an action span. Then, we label any remaining
unlabeled span with mentions to states or events as a trigger.
Finally, we label any remaining unlabeled spans with mentions
to variable names, “error” or “timer” as variable, error and
timer, respectively. We refer to the models that use these rules
as LINEARCRF+R and NEURALCRF+R.

Once the triggers, transitions, actions, variables, and errors
are identified, we use an off-the-shelf Semantic Role Labeler
(SRL) [39] to identify predicted actions as either send, receive,
or issue, depending on the verb used, as well as to identify
the segment in the text being sent, received, or issued. Seman-
tic Role Labeling consists of detecting semantic arguments
associated with the predicate or verb in a sentence, and their
classification into their specific roles. For example, given a
sentence like “Send a SYN segment”, an SRL model would
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identify the verb “to send” as the predicate, and “SYN segment
as the argument. Identified arguments are then tagged using
the <arg> tag introduced in Section III. We also use the SRL
output to identify transitions verbs such as enter and leave,
and identify the segment in the text being explicitly mentioned
as the source or target for this transition. For example, in
the sentence “client and server sockets enter this state from
PARTOPEN”, the SRL model identifies the verb “to enter” as
the predicate, the segment “this state” as the argument and
“from PARTOPEN” as the directional modifier. Arguments and
directional modifiers are then tagged as as <arg_source>,
<arg_target> or <arg_intermediate>, depending on
the prepositions used.

In addition, we use exact lexical matching to identify explicit
mentions to states and events in the predicted sequences. We
keep track of the indentation in the original documents to infer
the scope of <control> statements. The resulting tagged
text constitutes the intermediary representation that will be
used for extracting the FSM.

VI. FSM EXTRACTION

The intermediary representation obtained using our LIN-
EARCRF or NEURALCRF model is not an FSM, thus we
need a procedure to extract an FSM from the intermediary
representation. The FSM is expressed as P = (S,1,0, so,T)
with finite states S, finite inputs I, finite outputs O dis-
joint from I, initial state sy € S, and finite transitions
T C S x ({e, timeout} U (IUO)*) x S.

We extract the states .S by scanning the intermediary represen-
tation for def-states. If one of the def-states contains
“initial” or “begin” in its body, we set the corresponding state
as the initial state sy; otherwise we just choose whichever is
the first def-state in the document. We extract the inputs [
and outputs O by scanning for def-events where the type
is receive or send, respectively.

Although the intermediary representation contains
transition blocks, these blocks do not exactly contain
actual FSM transitions. Rather, they contain pointers for where
to look in the intermediary representation in order to guess the
source and target states, and labels, for the FSM transitions. A
transition block might describe no transitions at all, or
multiple transitions at once. It might describe only part of a
transition, for example the label and the target state, while the
rest is described somewhere else in its context. Such cases can
occur even with a perfect intermediary representation, because
of complex syntax and formatting used in the RFC text. To
obtain the transition set 7" we proceed in two steps: first we
extract potential transitions from the transition blocks;
then we heuristically prune transitions that look like noise.

Potential Transition Extraction. We define an initially empty
set of possible transitions Tp,s. For each transition block T
in the intermediary representation Xml, we compute potential
transitions described in T using the Algorithm EXTRACTTRAN.
Briefly, EXTRACTTRAN searches lower in the intermediary
representation to find target states, and higher to find source
states. It handles sentences like “starting at any state other



than CLOSED” using the set complement. It also handles
explicitly labeled intermediate states, so that sentences like “the
machine goes to CLOSED, then REQUEST, then PARTOPEN”
are interpreted as CLOSED — REQUEST — PARTOPEN rather
than CLOSED — PARTOPEN, REQUEST — PARTOPEN. It
uses the helper function EXTRACTTRANLBL to guess the
transition label ¢, recursing upward in the ancestry of T at
most six times until the result is well-formed. Pseudocode for
EXTRACTTRAN is given in the Appendix.

Heuristic Transition Pruning. After adding the potential
transitions extracted from each transition block T to a set
Tpos, we filter Tp,s using three heuristics. First, we remove any
possible transition ¢ € T, that does not type-check, that is, for
which ¢t ¢ S x ({€, timeout} U(IUO)*) x S. Second, we apply
a “call and response” heuristic, where if 7T},,; contains some

.. z?y! ’ z? ’ y! ,

transitions s — s’, s — s/, and s — s’, then the latter
two are discarded because they are likely noise generated by
the first one. Third, we apply a “redundant epsilons” heuristic,
where if T, contains some transitions s S s and s 5 o ,
where ¢ # ¢, then the e-transition is discarded because it is
likely noise generated by the ¢-transition. The transitions 7 is
the remaining filtered set 7.

VII. TASK: ATTACKER SYNTHESIS

In this section we use attacker synthesis as an exemplifying
application for FSM extraction.

A. Attacker Synthesis

LTL program synthesis, also known as the LTL imple-
mentability problem, is to deduce for an LTL property ¢ if
there exists some program P that makes ¢ true. For example, ¢
could be the homework assignment to implement multi-PAXOS,
and the program synthesis problem would be to automatically
compute a satisfying code submission. The problem is known
to be doubly exponential in the size of the property [40].

LTL attacker synthesis is slightly different. In this work we
consider a centralized attacker synthesis problem for protocols,
where the attacker has just one component. Other variations
on the problem are formulated in [18]. Suppose P || Q is a
system consisting of some programs P and @, and ¢ is an
LTL correctness property which is made true by the system;
that is P || @ | ¢. Consider the threat model where @
is the vulnerable part of the system. The attacker synthesis
problem is to replace @ with some new attacker A having
the same inputs and outputs as (), such that the augmented
system behaves incorrectly, that is, P || A violates ¢. We only
consider attackers which succeed under the assumption that
(a) the attack eventually terminates, and (b) when the attack
terminates, the vulnerable program @ is run. The program
synthesizer must compute a program that satisfies ¢ in all of its
(non-empty set of) executions, but the attacker synthesizer only
needs to compute a program that violates ¢ in one execution.

B. Attacker Synthesis with KORG

KORG is an open-source attacker synthesis tool for protocols.
It requires three inputs: (1) a PROMELA program P representing

the invulnerable part of the system; (2) a PROMELA program
@ representing the vulnerable part of the system, as well as
its interface (inputs and outputs) in YAML format; and (3) a
PROMELA LTL property ¢ representing what it means for the
system to behave correctly. KORG computes 3-attackers (at-
tackers for which there exists a winning execution) by reducing
the attacker synthesis problem to a model-checking problem
over the system P || DAISY(Q), where the vulnerable program
@ is replaced with a nondeterministic search automaton (called
a Daisy Gadget) having the same interface as (). The model-
checker then computes an execution that violates the correctness
property, and KORG projects the component of the execution
representing the gadget’s actions into a new PROMELA program,
which is the synthesized attacker [18].

“P || DAISY(Q) = 7"

PROMELA vulnerable
program @

PROMELA LTL
correctness property ¢

Counterexamples
Synthesized Attackers

Fig. 6: KORG work-flow. With our NLP pipeline, the user
need only supply the orange inputs and the system RFC. The
property % is automatically computed from ¢ to ensure the
attacker eventually terminates, at which point the original code
@ is run. The DAISY gadget is defined in [18].

C. TCP and DCCP Attacker Synthesis with KORG

We focus on the TCP and DCCP connection establishment
and tear-down routines as representative protocols for attacker
synthesis. The TCP connection routine was previously studied
using the attacker synthesis tool KORG (Fig. 6); now we
conduct a similar analysis for both TCP and DCCP using
the same tool, but we automatically extract FSMs using NLP.
We want to show that the FSMs extracted from our NLP
pipeline can be used directly for attacker synthesis, alleviating
the considerable engineering effort required to hand-model the
system under attack. We show the effectiveness of the FSM
extraction on this task in Section VIII-B.

Our NLP pipeline and FSM extraction produce an FSM.
In order to use the extracted FSM for attacker synthesis, we
transpile it to PROMELA. For example, if we begin with the TCP
RFC, then the result will be a PROMELA program describing
the TCP connection routine.

For each of TCP and DCCP, we hand-write four LTL proper-
ties in PROMELA based on a close reading of the corresponding
RFC. Our TCP properties are given in Equation 3, and our
DCCP properties are given in Equation 4. We define the
vulnerable PROMELA program () to be a generic message
channel between peers. For each of the four ¢;, we feed the
inputs P, @, and ¢; to KORG and generate attackers. But how
do we know if these attackers are legitimate, since they were
generated with a potentially incorrect program P? We solve
this by testing the attackers against a Canonical PROMELA



program. For TCP we adapt the Canonical program from [18].
For DCCP, no such program was available and we created our
own hand-written Canonical PROMELA program.

¢1 ="“No half-open connections.”
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¢ ="“Passive/active establishment eventually succeeds.

¢3 =“Peers don’t get stuck.” 3)

¢4 =“SYN_RECEIVED is eventually followed by
ESTABLISHED, FIN_WAIT_1, or CLOSED.”

0, =“The peers don’t both loop into being stuck or
infinitely looping.”

0, =“The peers are never both in TIME_WAIT.” @

03 =“The first peer doesn’t loop into being stuck or
infinitely looping.”
0, =“The peers are never both in CLOSE_REQ.”

Note that KORG expects that all its inputs (P, (), and ¢) are
correct. However, since we test on an automatically extracted
PROMELA program P, which may have some incorrect
transitions when compared to the corresponding Canonical
program, this assumption is broken. We therefore adapted
KORG to work on incomplete or imperfect programs, while
preserving the formal guarantees from the original paper (except
for soundness, which depends on how different the extracted
program is from the Canonical one).

VIII. EVALUATION

In this section we present an evaluation of both NLP tasks
and attacker synthesis.

We use “Gold intermediary representation” to refer to the
manual text annotations obtained using our protocol grammar
presented in Section III. We use “Canonical FSM” to refer to
the FSM which was derived from expert domain knowledge, the
protocol RFC, and FSM diagrams in textbooks and literature.

A. Information Extraction Evaluation

We evaluate how much of the intermediary representation
specified in Section III we can recover.

1) Methodology: We evaluate the output of the specification
document parser in six different protocols: BGPv4, DCCP,
LTP, PPTP, SCTP and TCP. We use a leave-one-out setup, by
training on five protocols and testing on the remaining one. This
means that no portions of a test protocol are observed during
training. To artificially introduce more training sequences, we
split recursive control statements into multiple statements at
training time. At test time, we evaluate on each example once.

We evaluate predictions at the token-level and at the span-
level. For tokens, we have 19 labels: beginning and inside
tags for trigger, action, error, timer, transition and variable,
as well as the outside label. We use standard classification
metrics to measure the token-level prediction performance. We
infer the control spans based on the indentation in the original
documents. For identifying event and state references, we do
direct lexical matching using a dictionary built on the definition
tags described in Section III-A.

TABLE I: Average Results for Different Models

Model Token-level Span-level
Acc Weighted F1 | Macro F1 | Strict | Exact
Rule-based 31.08 25.94 29.37 41.58 | 41.78
BERT-base 58.93 56.72 51.33 60.77 | 84.18
BERT-technical 62.38 60.31 52.50 62.84 | 83.81
LINEARCRF 58.95 56.61 49.58 63.98 | 85.65
LINEARCRF+R 58.60 56.79 50.62 63.52 | 85.18
NEURALCRF 64.42 64.18 54.95 68.81 | 86.83
NEURALCRF+R | 62.79 62.50 53.64 66.22 | 86.10

To evaluate spans, we use the metrics introduced for the
International Workshop on Semantic Evaluation (SemEval)
2013 task on named entity extraction [41]. We use the SemEval
evaluation script on our data. In this case, we have six span
types, plus the outside tag. The metrics are outlined below.

1) Strict matching, with exact boundary and type.

2) Exact boundary matching, regardless of the type.

3) Partial boundary matching, regardless of the type.

4) Type overlap between the tagged span and the Gold span.

We use the LINEARCREF provided by the pystruct library
[42], which uses a structured SVM solver using Block-
coordinate Frank-Wolfe [43], and use the default parameters
during training. We implemented the NEURALCRF model
using the transformers library [44] and PyTorch [45], and
learn the model using the adaptive gradient algorithm Adam,
with decoupled weight decay [46]. We initialize the BERT
encoder with the parameters resulting from our pre-training
stage described in Section IV, which further pre-trains BERT
on technical documents. We use a learning rate of 2e-5 and
50 hidden units for the BiLSTM layer. For BERT, we use the
standard parameter settings, and a maximum sequence length
of 512. We randomly sample 10 percent of the training data to
set aside as a development set, which we use to perform early
stopping during training, using a patience of 5 epochs.

2) Segmentation strategies: We evaluate different segmenta-
tion strategies to create the base textual unit in our sequence-to-
sequence models: segmenting by token, chunk, and phrase. For
segmenting chunks, we use an off-the-shelf chunker [47]. For
segmenting phrases, we split the text on periods, colons, semi-
colons and newline markers, as well as on a set of reserved
words corresponding to conditional statements (e.g. if, then,
when, while). We find that segmenting by chunks yields the
best token-level results (Weighted F1 of 61.25), but segmenting
by phrases gives us better span-level results (Strict matching of
63.98, and Exact boundary matching of 85.56). Detailed results
for these models are in the Appendix, in Table VI. Moving on,
all evaluations are done using the phrase segmentation strategy.

3) Extraction models: We evaluate the two models proposed
in Section V, and obtain a significant improvement with respect
to a rule-based baseline that applies the rules outlined in
Section V-C directly, without any learning. In addition, we
test a BERT model by removing the BiLSTM CRF Layer,
both with and without the pre-training strategy introduced in
Section IV. Average results can be observed in Table I. When
pre-training on technical documentation is not done, we use the
BERT model trained on BookCorpus and Wikipedia. Here, we



can appreciate both the advantage of the technical embeddings,
as well as the advantage of the BILSTM CRF layer. We find
that leveraging expressive neural representations for sequence-
to-sequence models is advantageous for this task. Note that
both the NEURALCRF and the LINEARCRF models make use
of the full set of features introduced in Section V-B. Finally,
we find that applying rules on top of our models to correct
predictions does not improve their general performance.

In Table II, we show the individual performance for the six
protocols and show that we obtain better performance using
the NEURALCRF model for all protocols.

TABLE II: Results by Protocol for our Best Models

Protocol LI.NEARCRF NE.URALCRF # Control
Strict  Exact | Strict Exact | Statements

BGPv4 5299 8256 | 57.34 86.86 6

DCCP 69.74 9273 | 75.60 93.25 150

LTP 67.25 9444 | 7422 94.41 65

PPTP 8421 96.05 | 87.34 98.73 25

SCTP 5221 6549 | 58.54 65.85 19

TCP 57.46  82.64 | 59.82 81.90 31

4) FSM extraction: We compare both the NLP and the Gold
extracted FSMs with the Canonical FSM in Table III, based
on how many states and transitions are successfully extracted.
Both the NLP and the Gold FSMs are extracted from the
predicted/annotated intermediary representation introduced in
Section III, by using the procedure outlined in Section VI.
The results presented in Tables I and II correspond to how
accurately we can recover this intermediary representation from
the text, before we attempt to construct the FSM.

Note that even with Gold annotations, we are not able
to extract all expected transitions because in some cases,
the transitions are not explicit in the text or in other cases,
our general grammar and extraction procedure are not able
to capture the intended behavior. In all cases, we are able
to recover all relevant states. Graphic visualizations for all
resulting state machines can be found in the Appendix.

We manually analyzed all the partially correct, incorrect
and missed transitions in Table III and found that, for the
Gold FSM, they are caused by ambiguities in the RFC, or the
information about some transition missing completely (67%
for TCP and 96% for DCCP). The remaining errors are due to
difficulties capturing complex logical flows using our method.
The difference between the Gold FSMs and the predicted FSMs
can always be attributed to errors in the text predictions.

For example, we notice that one incorrect behavior in
the TCP Gold FSM is caused by ambiguity in the TCP
RFC text. The only outgoing communication transition in
the TCP Gold FSM from SYN_SENT sends ACK and goes to
SYN_RECEIVED. The correct logic is to receive SYN first,
before sending the ACK and transitioning. The TCP RFC does
not textually mention the expected SYN. We only know to
expect it because it is illustrated in Figure 6 of the RFC. We

show more examples of FSM extraction errors in the Appendix.

5) Summary: In Tables I and II we evaluated how much of
our intermediary representation we could extract from natural
language, while in Table III we evaluated how much of the
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TABLE III: Transitions Extracted (Partially Correct means
source and target state are correct, and at least one of the
events on the edge is also correct).

Partially
Correct
8
3
10
3
10
Partially
Correct
1

TCP FSM

Gold
LINEARCRF
LINEARCRF+R
NEURALCRF
NEURALCRF+R

DCCP FSM

Gold
LINEARCRF
LINEARCRF+R
NEURALCRF
NEURALCRF+R

Not Found

Py
15
3
15
3

Not Found

18
28
25
24
23

Incorrect

2
23
13

6
13

Extracted | Correct

18
28
30
11
30

Canonical

2
5
2
7

20

Incorrect

8
2
8
10
8

Correct

15

Extracted

24
8
17
20
19

Canonical

34

W= W w

1
6
9
8

canonical FSM we recovered after running the extraction
procedure in Section VI. There is not a one-to-one mapping
between the intermediary representation extracted from the
text and the resulting state machines for four reasons: 1) Not
all Canonical FSM behaviors are clearly and unambiguously
described in the text. 2) Some behaviors are mentioned more
than once, giving us several opportunities to extract an expected
transition. 3) We have annotated for a larger set of behaviors
than needed to extract the communication transitions, we do
this to be able to capture the language used to express FSM
behaviors. 4) The metrics shown in Tables I and II are based
on text span matching, however, we do not need to have a strict
match in a text segment to successfully recover a behavior.

Our results show that learning technical word representations
is useful for the task of extracting FSM information from
protocol specifications. We demonstrate that we can recover
a significant portion of the intermediary representation for
the six evaluated protocols. Moreover, we show that we
can recover partially correct FSMs by using the procedure
outlined in Section VI. This analysis indicates that the grammar
proposed in Section III can capture enough information to
reconstruct a significant portion of the FSM, while being
general enough to be applied to various protocols. Ambiguity
and missed information in the RFCs result in transitions being
partially/incorrectly recovered or missed. We show examples
in the Appendix and discuss limitations in Section X.

B. Attacker Synthesis Evaluation

In this section we use KORG [18] to automatically synthesize
attackers against the TCP and DCCP connection establishment
and tear-down routines. Note we cannot extract Canonical
FSMs like the ones manually derived and used by [18]. Our
FSMs are partial, and we had to modify KORG to make it work
with partial FSMs. We also had to modify KORG to support
DCCP. We use our modified-KORG on all the models including
the Canonical FSM and report these results below.

1) Methodology: We apply the same methodology to TCP
and DCCP. We use the intermediary representations obtained
with the models with best results for transition extraction
(LINEARCRF+R and NEURALCRF+R), and Gold. We then
extract FSMs and transpile them to PROMELA programs. All
FSMs are presented in Appendix D.



We synthesize attackers that invalidate the properties from
Eqgn. 3 for TCP and Eqn. 4 for DCCP. Given a property and
a PROMELA program, we can only use KORG if the program
supports the property. We check what properties are supported
by each program and present the results in Table IV.

We ask KORG to synthesize at most 100 attackers which we
refer to as candidate attackers because they might not work
against the protocol’s Canonical PROMELA program. We check
the candidate attackers against the corresponding Canonical
PROMELA program; those that succeed are confirmed attackers.
Unconfirmed attackers can be thought of as false positives.

TABLE IV: Properties Supported by Each PROMELA Program
(checkmark/x-mark means property is supported/not supported).

FEé1 Fdéd2 Eodz FEda
v v v v

TCP PROMELA program
Canonical

Gold

LINEARCRF+R
NEURALCRF+R

DCCP PROMELA program
Canonical

Gold

LINEARCRF+R
NEURALCRF+R
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2) Supported Properties: Why do noisier models for TCP
support a property the Gold model does not support? As shown
in Table IV, the TCP Gold PROMELA program does not support
property ¢4, while the TCP LINEARCRF+R and NEURAL-
CRF+R PROMELA programs do. This might seem counterintu-
itive, as the Gold PROMELA program is derived from the Gold
intermediary representation, which is theoretically less noisy
than the LINEARCRF+R and NEURALCRF+R intermediary
representations. Recall that ¢4 relates to connection tear-down
from the TCP state SYN_RECEIVED. Upon investigation, we
found that the TCP Gold PROMELA program violates ¢4
because of a single erroneous transition from SYN_RECEIVED
to CLOSE_WAIT, and a missing SYN? event in the transi-
tion from SYN_SENT to SYN_RECEIVED. While the TCP
LINEARCRF+R and NEURALCRF+R PROMELA programs
contain similar erroneous transitions from SYN_RECEIVED,
they nonetheless satisfy ¢4 because their erroneous transitions
are never enabled. Basically, the same erroneous transition
manifests in all three TCP PROMELA programs, but in the
TCP Gold PROMELA program the code is reachable, while
in the TCP LINEARCRF+R and NEURALCRF+R PROMELA
programs it is unreachable.

Why do TCP and DCCP have such different support
for properties intended to capture comparable behavior? In
Table 1V, we notice that the TCP Gold, LINEARCRF+R, and
NEURALCRF+R PROMELA programs all violate ¢3, meaning
they all have stuck states. For DCCP, all PROMELA programs
support 61 and 03, meaning they never self-loop into a stuck
state, or self-loop forever. Notably, either case would constitute
a stuck state. It seems strange that the TCP PROMELA programs
would be so susceptible to stuck states, while the DCCP
PROMELA programs are apparently invulnerable to a closely
related problem. Further investigation revealed that in contrast
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to TCP, DCCP does not support active/active establishment.
Hence in order for a DCCP PROMELA program to support
connection establishment, it requires both an active and a
(matching) passive establishment routine. The DCCP Gold,
LINEARCRF+R, and NEURALCRF+R PROMELA programs
all capture the active establishment routine but not the passive
one. Therefore, in all three PROMELA programs, none of the
states containing self-loops are reachable, and so 6; and 05
are vacuously supported.

3) Examples of Attacks: Table V presents the candidate
attackers generated for all programs and properties and false
positives. We present some examples of confirmed attack-
ers. Bach example A is named following the convention
protocol. M.a.. N, where protocol is TCP or DCCP, and A
was the N PROMELA program output by KORG when given
the protocol PROMELA program M and property o.

o TCPNEURALCRF+R.¢1.32 injects a single ACK to Peer
2, causing a desynchronization between the peers which
can eventually cause a half-open connection, violating ¢1.

e DCCPLINEARCRF+R.04.32 injects and drops messages
to and from each peer to first (unnecessarily) start and
abort numerous connection routines, then guide both peers
at once into CLOSE_REQ, violating 6.

e DCCPNEURALCRF+R.05.96 is programmatically differ-
ent from DCCP.LINEARCRF+R.04.32, but violates 64
using basically the same approach.

TABLE V: Candidate and Unconfirmed Attacks Synthesized
using each PROMELA Program P and Correctness Property (.
If P does not support ¢, KORG cannot generate any attackers.

Candidates Unconfirmed
Guided by . Candidates
Guided by ¢.

TCP PROMELA program | ¢1 ¢2 ¢3 ¢a| d1 P2 ¢3 ¢a
Canonical 1 9 3 17/0 0 0 O
Gold 2 0 0 00 O 0 O
LINEARCRF+R 1 0 0 0|0 O O O
NEURALCRF+R 1 0 0 0|0 O O O
DCCP PROMELA program 61 03 603 641607 02 03 6,4
Canonical 0O 120 10 0 0 O
Gold o 1 0 10 O O O
LINEARCRF+R 8§ 2 131 |12 0 130
NEURALCRF+R 5 2 112 0 9 0

4) Candidate Attackers: Why does property ¢o not yield
candidate attackers with TCP? In detail, ¢ says: “if the two
peers infinitely often revisit the configuration where the first is
in LISTEN while the second is in SYN_SENT, then eventually
the first peer will reach ESTABLISHED”. In the TCP Gold,
LINEARCRF+R, and NEURALCRF+R PROMELA programs,
the tear-down routine is incomplete, so a connection cannot be
fully closed. Moreover, the timeout transitions needed to abort a
connection establishment are missing. Hence these PROMELA
programs cannot capture the antecedent of ¢5, where two
peers “infinitely often revisit the configuration where the first
is in LISTEN while the second is in SYN_SENT”. Since the
PROMELA programs satisfy ¢o only vacuously, they cannot be
used by KORG to generate candidate attackers with ¢s.



Why does property ¢4 not yield candidate attackers with
the TCP LINEARCRF+R or NEURALCRF+R PROMELA
programs? In the TCP LINEARCRF+R and NEURAL-
CRF+R PROMELA programs, SYN_RECEIVED is unreach-
able because of two missing transitions. Therefore, the TCP
LINEARCRF+R and NEURALCRF+R PROMELA programs
support ¢4 only vacuously and thus cannot be used with KORG
to generate any candidate attackers using ¢4. Either of the
missing transitions would fix the problem (the TCP Gold
PROMELA program has one).

Why does property 63 not yield confirmed attackers with
DCCP? As shown in Table V none of the candidate DCCP
attackers generated using property 63 are confirmed. We
investigated and found that for the canonical model the attacker
can not violate 63, unless it is allowed to loop forever, i.e. the
attack is continuous, a different (and less realistic) attacker
model than the one we consider.

5) Comparison to Canonical Attacker Synthesis: For each
attack synthesized using the TCP Gold, LINEARCRF+R, or
NEURALCRF+R FSM, a similar attack was also synthesized
using the TCP Canonical FSM. However, attacks found using
TCP Canonical FSM exhibited five overarching strategies, of
which attacks found using TCP Gold, LINEARCRF+R, or
NEURALCRF+R FSM, exhibited only one.

Using the DCCP Gold, LINEARCRF+R, or NEURAL-
CRF+R FSM, we find numerous attacks all of which pas-
sively spoof both peers in order to guide the peers into
CLOSE_REQXCLOSE_REQ. We cannot find active-spoofing
attacks using the DCCP Gold, LINEARCRF+R, or NEURAL-
CRF+R FSM, because these FSMs lack a functional passive
establishment routine for active-spoofing to interact with. In
contrast, all of the DCCP Canonical attacks use active spoofing.
DCCP Canonical has both active and passive establishment,
but in this case the SPIN model-checker finds counter-examples
where the peers do passive establishment first.

We show examples of attacks synthesized with the canonical
FSM, but not with the NLP generated FSMs in the Appendix.

6) Summary: Our NLP pipeline and attacker synthesis task
successfully generated several confirmed attackers against two
representative protocols: TCP and DCCP. However, our method
depends on the accuracy of the NLP extraction task, the
correctness of the extracted FSM, the quality of the selected
properties, and the power of the attack synthesis tool. We
discuss limitations and improvement directions in Section X.

IX. RELATED WORK

Below we present related works across three categories.

Logical Information Extraction. Rule-based systems like
WHYPER [1] and DASE [2] identify sentences describing
mobile application permissions and extract command-line input
constraints from manual pages, respectively. Witte et al. [3]
use rules over documentation and source code to create an
ontology allowing the cross-linking of software artifacts.

Other works combine NLP with techniques from traditional
software engineering and security. Lin et al. [11] infer protocol
formats by combining NLP with program analysis. NLP has
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also been used to gather threat intelligence by interacting with
botnets [48], logically contrasting CVEs [49], or analyzing bug
reports in the context of data collected with a honeypot [50].

Ding and Hu [51] used pre-trained word embeddings to
identify physical channels in IoT from application descriptions.
Tian et al. [52] used pre-trained word vectors and other standard
NLP features to compare security policy descriptions written in
text in the context of IoT application authorization. Both works
relied on off-the-shelf NLP tools, and worked over keywords
in isolation, or over short and simple sentences.

Recently, Jero et al. [53] proposed a system to extract
protocol rules from textual specifications for grammar-based
fuzzing. They also took a zero-shot learning approach to adapt
to protocols that are unseen at training time. However, they
focused on a limited set of properties, and did not explicitly
model the behavior of the protocol. More closely related to our
work, Chen et al. [21] explored the use of NLP to discover
logical vulnerabilities in payment services. They extended the
FSMs for evaluated payment services by using the dependency
parse tree of sentences in a developer guide to extract the parties
involved in the process, as well as the content transmitted
between them. To identify relevant sentences, they used word
embeddings trained on relevant documentation. In our work,
we also leverage word representations trained on in-domain
data. However, we aim to reconstruct the full FSM from the
text, while they relied on a manually implemented FSM. While
their language analysis was done at the sentence-level, we
predict logical flow structures that span multiple sentences.

Full Correctness Specification. Zhai et al. [54] automatically
extract formal software specifications from comments in the
implementation code. Zhang et al. [55] use NLP to extract LTL
correctness specifications from prose policies for IoT apps. In
contrast to our work, they assume that the actual software code
is known ahead of time. Other related works infer abstract
protocol implementations using network traces [4], [5], [7],
program analysis [10], or model checking [13], [14]. These
approaches rely extensively on input from human experts and
do not easily generalize to new software or protocols.

Implementation Extraction. Yen et al. [56] explored the use
of NLP techniques to map RFCs to protocol implementations.
To do this, they manually engineer an existing semantic
parser to handle networking-specific vocabulary, and translate
individual sentences to logical forms that can then be mapped
to executable functions. They include the spec author in the
loop to disambiguate cases where the functionality is under-
specified. They do not perform any task-specific learning, and
they work at the sentence-level.

X. LIMITATIONS

In this section we discuss some of the limitations of our
approach and directions for improvement.

Why our NLP models could not extract Canonical FSMs
from RFCs. Canonical FSMs are created based not only
on RFCs but also on input from experts with exposure to
protocol implementations, and often also rely on analyzing the
code [22], [57], [58]. RFCs contain ambiguities, unspecified



behaviors that human experts solve in creating the Canonical
FSM [16], [56], or simply missing information. Thus, unlike
traditional NLP semantic parsing problems [59], [60], [24],
which study methods for translating natural language into a
complete formal representation, in our setting there is not
a complete one-to-one translation between the text and the
FSM. We address this challenge by defining an intermediary
semantic representation that can be extracted unambiguously
from the text, and then use this intermediary representation
as the basis for the FSM extraction. The ground truth for
these intermediary representations is what we refer to as Gold
intermediary representations.

One avenue to extract better FSMs, possibly canonical ones,
is to solve ambiguities existing in the text by leveraging
human expertise. This can be done by using NLP methods
that exploit unlabeled data and human knowledge. A potential
direction for improvement is to design learning objectives that,
in addition to exploiting domain-specific corpora, can augment
the intermediary representations and constraint the predictions
using structured domain knowledge.

Limitations of attacker synthesis with partial FSMs. The
partial FSMs produced by the NLP pipeline combined with
the FSM extraction algorithm exhibit numerous errors, which
impacted our ability to use these FSMs for attacker synthesis.
Some attacks which could be found using the Canonical FSMs
were not found using the partial FSMs, and, some of the
attacks found using the partial FSMs were not confirmed on
the Canonical FSMs. There are two causes for these mistakes:
missed transitions and incorrect transitions.

One direction to address these limitations is by leveraging
protocol completion [61], where given an incomplete protocol
FSM and some properties, the goal is to strategically add
transitions so that the completed FSM supports all the proper-
ties. Their solution relied on counterexample-guided inductive
synthesis (CEGIS) [62]. Our problem is a little more difficult,
because in addition to missing transitions, we also need to
worry about incorrect transitions, so the approach used in [61]
would need to be modified such that the solver is also allowed
to delete or edit transitions. Another approach would be to
leverage prior work in automatic program repair [63].

Selecting properties. The attackers we find are driven by the
selection of properties that the Canonical and extracted FSMs
support. For attacker synthesis, the most useful properties
describe critical functionality of a protocol, for example,
that it must reliably open and close connections, or that it
must not deadlock. We also prefer properties that are not
too implementation-specific, because there are multiple ways
to implement a protocol while still achieving the intended
functionality, as illustrated for Alternating Bit Protocol in [61].

Protocol correctness properties should be provided by proto-
col designers. Unfortunately, protocols are often implemented
and deployed before textual specifications are published.
This is the case with QUIC, which was deployed without
detailed public specification or analysis. The authors of a 2015
QUIC security analysis [57] mention that they relied on code
and discussion with protocol developers to derive a protocol
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description as the available documentation was insufficient.

Extracting properties. While several NLP works looked
at converting natural language statements into properties
expressed in temporal logic, RFCs do not have a dedicated
section detailing protocol correctness properties in an explicit
and succinct way. Instead, humans identify these properties by
observing the behaviors emerging from the specification and
inferring the intent behind them, or by reading prose descrip-
tions of the developer’s intention. One promising approach is
to study these inference processes and formulate them as NLP
problems that take into account the functionality described by
the protocol as part of the input. Rather than converting the
explicit textual statement into properties, one can define an
abductive process that infers relevant desired properties of the
extracted model and rely on textual description of protocol
tests for specifications that offer similar functionality.

Limitations of KORG. KORG was not designed for broken
or partial FSMs (expressed as PROMELA programs), that might
violate or vacuously satisfy the provided properties. In these
cases it might generate no candidates whatsoever, or some
candidates, none of which are confirmed. Also, KORG outputs
many identical or similar candidates, but we would prefer
a diversity of candidate attackers so that if some are not
confirmed, perhaps others will be. The problem of determining
when two candidate attackers are similar reduces to defining
an equivalence relation on counterexamples, as studied in [64].
Perhaps such work could be leveraged to quotient KORG’s
search-space by the equivalence class of the candidates it
already found, resulting in a diversity of attackers.

Generalizability to other RFCs. While we consider a set
of 6 different protocols, including TCP (one of the most well-
known and used protocols), there are further aspects we did
not consider in this work. One such aspect is considering
changes in RFCs. We believe that one promising direction
for investigating changes in RFCs and impact on FSMs is
investigating congestion control protocols that share a common
approach in detecting congestion, where newer refinements
were proposed enhancing the original protocol. We expect that
while we can use the same technical domain knowledge we
might need to update our grammar to handle changes.

We did not consider secure protocols in this work. Note
that QUIC was just recently standardized in May 2021, as
RFC 9000 [65]. Here we can focus on RFC drafts changes
for QUIC and TLS 1.3, particularly the key exchange aspects.
Secure protocols will most likely require us to refine both the
grammar and the domain knowledge we built for this work.
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APPENDIX
Alg. EXTRACTTRAN(XmI, T)

Inputs:

o xml intermediary representation
e transition block T, contained with xml.

Outputs:

.. . .. ¢
e A set Tt containing potential transitions s — s’
described in and around the block T.

1. from := EXTRACTSOURCESTATE(T, xml)

2. to := EXTRACTTARGETSTATE(T, xml)
3. int := EXTRACTINTERMEDIARY STATES(T, xml)
4. C := CLOSESTCONTROLCONTAINING(T, xml)
5. outer := []
6. If (to = null and from = null):
1. to := SCANCHILDRENFORTARGETSTATE(T)
7. If (to = null or from = null):
1. outer := SCANCONTEXTFORSTATES(C, T)
8. l:=¢
9.1:=1
10. While (not SEARCHEDENOUGH (¢, outer, i, or, C)):
1. If{=e

/= £ is the transition label, brk indicates if the
source states are given outside C, and or indicates
if £ is of the form “ly or £1 or ... or ", x/

1. (¢,brk,or) := EXTRACTTRANLBL(T, C).
If outer =[] and (from = null or to = null):
1. outer := SCANCONTEXTFORSTATES(C, T)

3. C := CLOSESTCONTROLCONTAINING(C, xml)
4. i+ +

11. (fromS, to) := FIXFROMTOSTATES (from, to, outer)
12. If int # []:

1. (4, ...,{;) := PARTITIONLABELACROSS (¥, int)
2. Let Sp := {50 Lo, s1 | so € fromS}
3. Let S1:={s1 2N 82, ..y 8 Z—j> to}
4. Return Sp U Sy
13. If brk = true:

a) C := CLOSESTCONTROLCONTAINING(T, xml)
b) C' := cLOSESTCONTROLCONTAINING(C, xml)
¢) fromS := SCANCONTEXTFORSTATES(C', C)

14. Return {sg L 10 | so € fromS}.

A. Grammar Examples

Figure 7 shows an example of an annotated block from the
TCP RFC. Here, we can observe a list of events within one
control statement

B. Segmentation Results

In Table VI, we show the detailed performance of different
segmentation strategies to create the base textual unit in our

<control>
<trigger>
if active and the foreign socket is
specified,
</trigger>
<action type="issue">
issue <arg>a <ref_event 1d="10">SYN</ref_event>
segment</arg>.
</action>
<variable>
An initial send sequence number
selected.
</variable>
<action type="send">
A <arg><ref_event id="10">SYN</ref_event>
segment of the form
<SEQ=ISS><CTL=SYN></arg> 1is sent.
</action>
<variable>
Set SND.UNA to ISS,
</variable>
<transition>
enter the <arg_target><ref_state
1id="2">SYN-SENT</ref_state>
state<arg_target>
</transition>
</control>

(ISS) is

SND.NXT to ISS+1,

14

Fig. 7: Example of flow control annotations for TCP.

sequence-to-sequence models.

C. FSM Extraction Errors Examples

In Table VII, we show examples of FSM extraction errors.

D. Finite State Machine Figures

We present FSMs for TCP and DCCP in Figures 8,9 and
10. Note that in the DCCP diagrams we omit the states
CHANGING, STABLE, and UNSTABLE, which are described
in the RFC but are (a) unreachable dead code in all the extracted
FSMs and (b) unrelated to the connection routine. We use * as
a wild-card, ! to mean send, ? to mean receive, == to denote
variable-reading, and := to denote variable-writing.

E. Attack Synthesis Errors Examples

Below we show examples of attacks that are synthesized
with the canonical FSM, but not found with the NLP models.

TCP.Canonical.3.9 spoofs both peers passively. When tested
against ¢3, the attack causes the peers to end up in a deadlock
in SYN_RECEIVEDXSYN_RECEIVED. None of the TCP
Gold, LINEARCRF+R, or NEURALCRF+R attacks do passive
spoofing; nor do any of them cause the peers to deadlock in
SYN_RECEIVEDXSYN_RECEIVED

DCCP.Canonical.2.18 spoofs both peers actively. When
tested against 6,, the attack causes the peers to nav-
igate to RESPONDXRESPOND. On the way, they enter
TIME_WAITXTIME_WAIT, violating 6. None of the DCCP
Gold, LINEARCRF+R, or NEURALCRF+R attacks do ac-
tive spoofing; nor do any of them conclude in the state
RESPONDXRESPOND.




TABLE VI: Average Results for Different Segmentation Strategies (LINEARCRF)

Segmentation Token—level . Span-level .

Acc Weighted F1 | Macro F1 | Strict | Exact | Partial | Type
Token 60.37 59.58 44.76 31.36 | 36.14 | 59.78 | 58.81
Chunk 62.02 61.25 46.36 3348 | 39.11 62.19 | 62.14
Phrase 58.95 56.61 49.58 63.98 | 85.65 | 85.65 | 63.98

TABLE VII: Examples

of FSM Extraction Errors

FSM Transition Error Type Reason Text Excerpt
Gold TCP FIN_WAIT_ 1 ﬂ LAST_ACK Not Found Target state not | CLOSE-WAIT STATE: Since the
explicit remote side has already sent FIN,
RECEIVEs must be satisfied by
text already on hand, but not yet
delivered to the user.
Gold DCCP PARTOPEN ———t9%F%, oppN Incorrect Text is ambigu- | The client leaves the PARTOPEN
ous state for OPEN when it receives
a valid packet other than DCCP-
Response, DCCP-Reset, or DCCP-
Sync from the server.
LINEARCRF+R and SYN_SENT M SYN_RECEIVED Partially Recov- | Receive action | If the state is SYN-SENT then
NEURALCRF+R ered (expected | is not explicit enter SYN-RECEIVED, form a
SYN?ACK!) SYN,ACK segment and send it.
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