
Optimal Coding Theorems in Time-Bounded
Kolmogorov Complexity
Zhenjian Lu #

University of Warwick, Coventry, UK

Igor C. Oliveira #

University of Warwick, Coventry, UK

Marius Zimand #

Towson University, MD, USA

Abstract
The classical coding theorem in Kolmogorov complexity states that if an n-bit string x is sampled
with probability δ by an algorithm with prefix-free domain then K(x) ≤ log(1/δ) + O(1). In a recent
work, Lu and Oliveira [31] established an unconditional time-bounded version of this result, by
showing that if x can be efficiently sampled with probability δ then rKt(x) = O(log(1/δ)) + O(log n),
where rKt denotes the randomized analogue of Levin’s Kt complexity. Unfortunately, this result is
often insufficient when transferring applications of the classical coding theorem to the time-bounded
setting, as it achieves a O(log(1/δ)) bound instead of the information-theoretic optimal log(1/δ).

Motivated by this discrepancy, we investigate optimal coding theorems in the time-bounded
setting. Our main contributions can be summarised as follows.

• Efficient coding theorem for rKt with a factor of 2. Addressing a question from [31],
we show that if x can be efficiently sampled with probability at least δ then rKt(x) ≤ (2 + o(1)) ·
log(1/δ) + O(log n). As in previous work, our coding theorem is efficient in the sense that it provides
a polynomial-time probabilistic algorithm that, when given x, the code of the sampler, and δ, it
outputs, with probability ≥ 0.99, a probabilistic representation of x that certifies this rKt complexity
bound.

• Optimality under a cryptographic assumption. Under a hypothesis about the security of
cryptographic pseudorandom generators, we show that no efficient coding theorem can achieve a
bound of the form rKt(x) ≤ (2 − o(1)) · log(1/δ) + poly(log n). Under a weaker assumption, we
exhibit a gap between efficient coding theorems and existential coding theorems with near-optimal
parameters.

• Optimal coding theorem for pKt and unconditional Antunes-Fortnow. We consider pKt

complexity [17], a variant of rKt where the randomness is public and the time bound is fixed. We
observe the existence of an optimal coding theorem for pKt, and employ this result to establish an
unconditional version of a theorem of Antunes and Fortnow [5] which characterizes the worst-case
running times of languages that are in average polynomial-time over all P-samplable distributions.

2012 ACM Subject Classification Theory of computation

Keywords and phrases computational complexity, randomized algorithms, Kolmogorov complexity

Digital Object Identifier 10.4230/LIPIcs.ICALP.2022.92

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2204.08312 [33]

Funding M. Zimand was supported in part by the National Science Foundation through grant
CCF 1811729. Z. Lu and I.C. Oliveira received support from the Royal Society University Research
Fellowship URF\R1\191059 and from the EPSRC New Horizons Grant EP/V048201/1.

Acknowledgements We thank Bruno Bauwens for discussions and useful insights.

EA
T
C
S

© Zhenjian Lu, Igor C. Oliveira, and Marius Zimand;
licensed under Creative Commons License CC-BY 4.0

49th International Colloquium on Automata, Languages, and Programming (ICALP 2022).
Editors: Mikołaj Bojańczyk, Emanuela Merelli, and David P. Woodruff;
Article No. 92; pp. 92:1–92:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:zhen.j.lu@warwick.ac.uk
mailto:igor.oliveira@warwick.ac.uk
mailto:mzimand@towson.edu
https://doi.org/10.4230/LIPIcs.ICALP.2022.92
https://arxiv.org/abs/2204.08312
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

92:2 Optimal Coding Theorems in Time-Bounded Kolmogorov Complexity

1 Context and Background

A sampler is a probabilistic function that outputs Boolean strings. For any string x ∈ {0, 1}∗

in its range, let µ(x) denote the probability with which x is generated. The Coding Theorem
in Kolmogorov complexity states that if the sampler is computable and its domain is a
prefix-free set, then for every x in its range

K(x) ≤ log(1/µ(x)) + O(1),

where K(·) is the prefix-free Kolmogorov complexity. In other words, strings that are sampled
with non-trivial probability have short representations. Note that the coding theorem achieves
optimal expected length, since no uniquely decodable code can have expected length smaller
than

∑
µ(x) log2(1/µ(x)), the entropy of the sampler (the sum is over all x in the range of

the sampler, assumed here to be finite).
The coding theorem is a central result in Kolmogorov complexity.1 While it has found a

number of applications in theoretical computer science (see, e.g., [28, 25, 1]), it comes with an
important caveat: many aspects of the theory of Kolmogorov complexity are non-constructive.
For instance, there is provably no algorithm that estimates K(x). Similarly, for arbitrary
samplers, there is no effective compressor achieving the short representation provided by the
coding theorem2 and also no upper bound on the running time required to decompress x

from it.
In order to translate results and techniques from Kolmogorov complexity to the setting

of efficient algorithms and computations, several time-bounded variants of Kolmogorov
complexity have been proposed. We refer to the book [29], thesis [25], and surveys [2, 3, 16, 4]
for a comprehensive treatment of this area and its numerous applications to algorithms,
complexity, cryptography, learning, and pseudorandomness, among other fields. We highlight
that many exciting new results, which include worst-case to average-case reductions for NP
problems [20, 21] and complexity-theoretic characterizations of one-way functions [30, 36], rely
in a crucial way on time-bounded Kolmogorov complexity. These recent developments further
motivate the investigation of key results from Kolmogorov complexity in the time-bounded
setting.

In time-bounded Kolmogorov complexity we consider the minimum description length
of a string x with respect to machines that operate under a time constraint. We informally
review next two central notions in this area (see Section A for precise definitions). For a
Turing machine M, we let |M| denote its description length according to a fixed universal
machine U . M(ε) denotes the computation of M over the empty string.

Kt Complexity. [26] This notion simultaneously considers description length and running
time when measuring the complexity of a string x.

Kt(x) = min
TM M, t≥1

{|M| + log t | M(ε) outputs x in t steps} .

Kt Complexity. [37] In contrast with Kt, here we fix the time bound t : N → N, and consider
the minimum description with respect to machines that run in time at most t(|x|).

Kt(x) = min
TM M

{|M| | M(ε) outputs x in t(|x|) steps} .

1 For instance, [25] describes it as one of the four pillars of Kolmogorov complexity.
2 However, there exists a probabilistic polynomial-time compressor that given x and an integer m ≥

log(1/µ(x)) outputs a description of x of length m + small polylogarithmic overhead [6].

Z. Lu, I. C. Oliveira, and M. Zimand 92:3

While Kt complexity is tightly related to optimal search algorithms (see [24] for a recent
application), Kt is particularly useful in settings where maintaining a polynomial bound on
the running time t is desired (see, e.g., [20]).

Antunes and Fortnow [5] introduced techniques that can be used to establish (conditional)
coding theorems for Kt and Kt. In particular, if a sampler runs in polynomial time and
outputs a string x with probability at least δ, then Kt(x) ≤ log(1/δ) + O(log n). Note that
this coding theorem also achieves an optimal dependence on the probability parameter δ.
However, the results of [5] rely on a strong derandomization assumption. For this reason,
their application often lead to conditional results.

More recently, [31] established an unconditional coding theorem for a randomized analogue
of Kt complexity. Before explaining their result, we review the definitions of rKt and rKt.3

rKt Complexity. [35] In this definition, we consider randomized machines that output x

with high probability.

rKt(x) = min
RTM M, t≥1

{|M| + log t | M(ε) outputs x in t steps with probability ≥ 2/3} .

rKt Complexity. [10, 32]4 This is the randomized analogue of Kt, where the time bound t

is fixed in advance.

rKt(x) = min
RTM M

{|M| | M(ε) outputs x in t(|x|) steps with probability ≥ 2/3} .

In both cases, we can think of the randomized Turing machine M as a probabilistic
representation of the input string x, in the sense that x can be recovered with high probability
from its description. These measures allow us to employ methods from time-bounded
Kolmogorov complexity in the setting of randomized computation, which is ubiquitous in
modern computer science. For instance, [35, 32] employed rKt and rKt to obtain bounds on
the compressibility of prime numbers and other objects and to show that certain problems
about time-bounded Kolmogorov complexity can be intractable. We note that, under
derandomization assumptions (see [35]), for every string x, rKt(x) = Θ(Kt(x)). Similarly,
one can conditionally show that Kt(x) is essentially rKt(x), up to a O(log |x|) additive
term (see [17]). Consequently, insights obtained in the context of probabilistic notions of
Kolmogorov complexity can often inform the study of more classical notions such as Kt
and Kt.

Among other results, [31] established the following unconditional coding theorem in
time-bounded Kolmogorov complexity: if a sampler runs in polynomial time and outputs a
string x with probability at least δ, then rKt(x) = O(log(1/δ) + O(log n). While this result
can be used to port some applications of the coding theorem from Kolmogorov complexity to
the time-bounded setting, in many cases it is still insufficient. This is because its dependence
on the probability parameter δ is not optimal, which is often crucial in applications (see,
e.g., [5, 1]).

2 Results

In this work, we investigate optimal coding theorems in time-bounded Kolmogorov complexity.
We describe our results next.

3 See Appendix A for a formal treatment.
4 [10] refers to this notion as CBPt complexity.

ICALP 2022

92:4 Optimal Coding Theorems in Time-Bounded Kolmogorov Complexity

2.1 A Tighter Efficient Coding Theorem

Our first result addresses the question posed in [31, Problem 37].

▶ Theorem 1. Suppose there is an efficient algorithm A for sampling strings such that A(1n)
outputs a string x ∈ {0, 1}n with probability at least δ. Then

rKt(x) ≤ 2 log(1/δ) + O
(
log n + log2 log(1/δ)

)
,

where the constant behind the O(·) depends on A and is independent of the remaining
parameters. Moreover, given x, the code of A, and δ, it is possible to compute in time
poly(n, |A|), with probability ≥ 0.99, a probabilistic representation of x certifying this rKt-
complexity bound.

In [9, Lemma 4], it was observed that by hashing modulo prime numbers one can obtain
short descriptions of strings. As discussed in [31, Section A.2.1], for each efficient sampling
algorithm, this technique implies that if some string x is produced with probability ≥ δ,
then rKt(x) ≤ 3 log(1/δ) + O(log n).5 In contrast, Theorem 1 achieves a bound of the form
(2 + o(1)) · log(1/δ) + O(log n).

Theorem 1 readily improves some parameters in the applications of the coding theorem
for rKt discussed in [31], such as the efficient instance-based search-to-decision reduction for
rKt. We omit the details.

In [33, Section 3.1], we discuss extensions of this result. In particular, we describe precise
bounds on the running time used in producing the corresponding probabilistic representation,
and discuss computational aspects of the compression and decompression of x in detail. In
[33, Appendix A], we discuss the computation of a probabilistic representation of the string
x when one does not know a probability bound δ.

2.2 Matching Lower Bound Under a Cryptographic Assumption

It is possible to extend techniques from [5] to show the following conditional result (see [33,
Section 3.2]).

▶ Proposition 2. Assume there is a language L ∈ BPTIME
[
2O(n)] that requires nondetermin-

istic circuits of size 2Ω(n) for all but finitely many n. Suppose there is an efficient algorithm
A for sampling strings such that A(1n) outputs a string x ∈ {0, 1}n with probability at least
δ > 0. Then

rKt(x) ≤ log(1/δ) + O(log n).

While Proposition 2 provides a better bound than Theorem 1, the result is only existential,
i.e., it does not provide an efficient algorithm that produces a probabilistic representation of
x. In other words, Proposition 2 does not establish an efficient coding theorem. Our next
result shows that the bound achieved by Theorem 1 is optimal for efficient coding theorems,
under a cryptographic assumption.

5 The bound from [31, Section A.2.1] is different because it does not take into account the running time,
which incurs an additional overhead of log(1/δ).

Z. Lu, I. C. Oliveira, and M. Zimand 92:5

The Cryptographic Assumption. For a constant γ ∈ (0, 1), we introduce the γ-Crypto-
ETH assumption, which can be seen as a cryptographic analogue of the well-known exponential
time hypothesis about the complexity of k-CNF SAT [23]. Informally, we say that γ-
Crypto-ETH holds if there is a pseudorandom generator G : {0, 1}ℓ(n) → {0, 1}n computable
in time poly(n) that fools uniform algorithms running in time 2γ·ℓ(n). Any seed length
(log n)ω(1) ≤ ℓ(n) ≤ n/2 is sufficient in our negative results.

In analogy with the well-known ETH and SETH hypotheses about the complexity of
k-CNF SAT, we say that Crypto-ETH holds if γ-Crypto-ETH is true for some γ > 0, and
that Crypto-SETH holds if γ-Crypto-ETH is true for every γ ∈ (0, 1). Since a candidate PRG
of seed length ℓ(n) can be broken in time 2ℓ(n)poly(n) by trying all possible seeds, these
hypotheses postulate that for some PRGs one cannot have an attack that does sufficiently
better than this naive brute-force approach.

We stress that these assumptions refer to uniform algorithms. In the case of non-uniform
distinguishers, it is known that Crypto-SETH does not hold (see [15, 14, 13] and references
therein). We provide a formal treatment of the cryptographic assumption in [33, Section 4].

▶ Theorem 3 (Informal). Let γ ∈ (0, 1) be any constant. If γ-Crypto-ETH holds, there is no
efficient coding theorem for rKt that achieves bounds of the form (1 + γ − o(1)) · log(1/δ) +
poly(log n).

Theorem 3 shows that if Crypto-ETH holds then the best parameter achieved by an
efficient coding theorem for rKt is (1+Ω(1)) · log(1/δ)+poly(log n). This exhibits an inherent
gap in parameters between the efficient coding theorem (Theorem 1) and its existential
analogue (Proposition 2). On the other hand, if the stronger Crypto-SETH hypothesis holds,
then no efficient coding theorem for rKt achieves parameter (2 − o(1)) · log(1/δ) + poly(log n).
In this case, Theorem 1 is essentially optimal with respect to its dependence on δ.

Fine-grained complexity of coding algorithms for polynomial-time samplers. An rKt bound
refers to the time necessary to decompress a string x from its probabilistic representation.
On the other hand, an efficient coding theorem provides a routine that can compress x in
polynomial time. More generally, a coding procedure for a sampler A consists of a pair of
probabilistic algorithms (Compress, Decompress) that aim to produce a “good” codeword p

for every string y sampled by A. The quality of p depends on three values: the length of p,
the number of steps tC used to produce p from y (the compression time), and the number of
steps tD used to produce y from p (the decompression time). It is interesting to understand
the trade-off between these three values. Toward this goal, we aggregate them in a manner
similar to rKt, by defining the 2-sided-rKt complexity of y to be, roughly, |p| + log(tC + tD)
(the formal definition, see [33, Definition 25]), is more complicated because it takes into
account that Compress and Decompress are probabilistic). Thus according to 2-sided-rKt,
each bit gained by a shorter codeword is worth doubling the compression/decompression time.
For instance, for simple samplers (say, having a finite range, or generating strings with the
uniform distribution), there exist trivial polynomial time Compress and Decompress, which
in case y is sampled with probability at least δ, produce a codeword p with |p| = log(1/δ)
(provided Compress and Decompress know δ). Such a coding procedure certifies for each
sampled string a 2-sided-rKt complexity of log(1/δ) + O(log n). We say that the sampler
admits coding with 2-sided-rKt complexity bounded by log(1/δ) + O(log n). In general, we
have to include also the error probability of Compress and Decompress, which we omit in this
informal discussion.

Similarly to Theorem 1 and Theorem 3 (and also with similar proofs), we establish the
following theorem.

ICALP 2022

92:6 Optimal Coding Theorems in Time-Bounded Kolmogorov Complexity

▶ Theorem 4 (Informal). The following results hold.
(a) (Upper Bound) Every polynomial-time sampler admits coding with 2-sided-rKt complexity

2 log(1/δ) + O(log2 log(1/δ)) + O(log n).
(b) (Conditional Lower Bound) Let γ ∈ (0, 1) be any constant. If γ-Crypto-ETH holds, there

exists a polynomial-time sampler that does not admit coding with 2-sided-rKt complexity
bounded by (1 + γ − o(1)) · log(1/δ) + poly(log n), unless the error probability is greater
than 1/7.

2.3 An Optimal Coding Theorem and Unconditional Antunes-Fortnow
While Theorem 1 improves the result from [31] to achieve a bound that is tight up to a factor
of 2 and that is possibly optimal among efficient coding theorems, it is still insufficient in
many applications. We consider next a variant of rKt that allows us to establish an optimal
and unconditional coding theorem in time-bounded Kolmogorov complexity.

Fix a function t : N → N. For a string x ∈ {0, 1}∗, the probabilistic t-bounded Kolmogorov
complexity of x (see [17]) is defined as

pKt(x) = min
{

k

∣∣∣∣ Pr
w∼{0,1}t(|x|)

[
∃ M ∈ {0, 1}k, M(w) outputs x within t(|x|) steps

]
≥ 2

3

}
.

In other words, if k = pKt(x), then with probability at least 2/3 over the choice of the
random string w, x admits a time-bounded encoding of length k. In particular, if two parties
share a typical random string w, then x can be transmitted with k bits and decompressed in
time t = t(|x|). (Recall that here the time bound t is fixed, as opposed to rKt, where a log t

term is added to the description length.)
It is possible to show that Kt(x), rKt(x), and pKt(x) correspond essentially to the same

time-bounded measure, under standard derandomization assumptions [17].6 One of the
main benefits of pKt is that it allows us to establish unconditional results that are currently
unknown in the case of the other measures.7

▶ Theorem 5. Suppose there is a randomized algorithm A for sampling strings such that
A(1n) runs in time T (n) ≥ n and outputs a string x ∈ {0, 1}n with probability at least δ > 0.
Then

pKt(x) = log(1/δ) + O(log T (n)) ,

where t(n) = poly(T (n)) and the constant behind the O(·) depends on |A| and is independent
of the remaining parameters.

Theorem 5 provides a time-bounded coding theorem that can be used in settings where
the optimal dependence on δ is crucial. As an immediate application, it is possible to show an
equivalence between efficiently sampling a fixed sequence wn ∈ {0, 1}n of objects (e.g., n-bit
prime numbers) with probability at least δn/poly(n) and the existence of bounds for the

6 More precisely, under standard derandomization assumptions, pKt(x) and rKt′
(x) coincide up to an

additive term of O(log |x|), provided that t′ = poly(t). A similar relation holds between Kt and rKt.
7 While in this work we focus on coding theorems, we stress that pKt is a key notion introduced in [17]

that enables the investigation of meta-complexity in the setting of probabilistic computations. It has
applications in worst-case to average-case reductions and in learning theory.

Z. Lu, I. C. Oliveira, and M. Zimand 92:7

corresponding objects of the form pKpoly(wn) = log(1/δn) + O(log n).8 This is the first tight
equivalence of this form in time-bounded Kolmogorov complexity that does not rely on an
unproven assumption.

As a more sophisticated application of Theorem 5, we establish an unconditional form
of the main theorem from Antunes and Fortnow [5], which provides a characterization of
the worst-case running times of languages that are in average polynomial-time over all
P-samplable distributions.

We recall the following standard notion from average-case complexity (see, e.g., [8]). For
an algorithm A that runs in time TA : {0, 1}∗ → N and for a distribution D supported over
{0, 1}∗, we say that A runs in polynomial-time on average with respect to D if there is some
constant ε > 0 such that

E
x∼D

[
TA(x)ε

|x|

]
< 1.

As usual, we say that a distribution D is P-samplable if it can be sampled in polynomial
time.

▶ Theorem 6. The following conditions are equivalent for any language L ⊆ {0, 1}∗.
(i) For every P-samplable distribution D, L can be solved in polynomial-time on average

with respect to D.
(ii) For every polynomial p, there exists a constant b > 0 such that the running time of some

algorithm that computes L is bounded by 2O(pKp(x)−K(x)+b log(|x|)) for every input x.

In contrast, [5] shows a conditional characterisation result that employs Kt complexity in
the expression that appears in Item (ii).

3 Techniques

In this section, we provide an informal overview of our proofs and techniques.

Efficient Coding Theorem for rKt (Theorem 1). Breaking down the result into its compon-
ents, Theorem 1 shows that for any polynomial-time sampler A, there exist a probabilistic
polynomial-time algorithm Compress and an algorithm Decompress with the following proper-
ties: Compress on input an n-bit string x and δ (which estimates from below the probability
with which A samples x), returns a codeword cx of length log(1/δ) + poly(log n) such that
Decompress with probability ≥ 0.99 reconstructs x in time 1/δ · exp(poly(log n)). Note that
the probabilistic representation of x certifying the rKt bound in Theorem 1 can be obtained
from the codeword cx and Decompress, and that obtaining a running time with a factor
of (1/δ)1+o(1) is crucial in order to get a final rKt bound of the form (2 + o(1)) · log(1/δ).
(Actually, Compress does not have to depend on A, the 0.99 can be 1 − ε for arbitrary
ε > 0, and the poly(log n) term is O(log n + log2 log(1/δ)), but we omit these details in our
discussion). We explain what are the challenges in obtaining Compress and Decompress and
how they are overcome. We remark that the construction is different from the approaches
described in [31].

8 An efficient sampler immediately implies the corresponding pKt bounds via Theorem 5. On the other
hand, objects of bounded pKt complexity can be sampled by considering a random sequence of bits
and a random program of appropriate length. We refer to [31, Theorem 6] for a weaker relation and its
proof. Since the argument is essentially the same, we omit the precise details.

ICALP 2022

92:8 Optimal Coding Theorems in Time-Bounded Kolmogorov Complexity

Decompress can run the sampler K := O(1/δ) times and obtain a list of elements S∗ (the
list of suspects) that with high probability contains x. Compress has to provide information
that allows Decompress to prune S∗ and find x. Since the algorithms do not share randomness,
Compress does not know S∗, and so compression has to work for any S ⊆ {0, 1}n of size K,
only assuming that x ∈ S. Compress can use a bipartite lossless expander graph G, which
is a graph with the property that any set S of left nodes with size |S| ≤ K has at least
(1 − ε)D|S| neighbors, where D is the left degree. Such graphs are called ((1 − ε)D, K)
lossless expanders and they have numerous applications (see e.g., [11, 22]). An extension
of Hall’s matching theorem shows that for any set S of K left nodes, there is a matching
that assigns to each x ∈ S, (1 − ε)D of its neighbors, so that no right node is assigned
twice (i.e., the matching defines a subgraph with no collisions). Compress can just pick the
codeword cx to be one random neighbor of x. Then, Decompress can do the pruning of S∗

as follows. Having S∗ and cx, it does the matching, and, since with probability 1 − ε, cx is
only assigned to x, Decompress can find x. There is one problem though. The algorithms
for maximum matching in general bipartite graphs do not run in linear time (see [12, 34],
and the references therein). Therefore, the decompression time would have a dependency
on δ too large for us. Fortunately, lossless expanders can be used to do “almost” matching
faster. [6] introduces invertible functions (see [33, Definition 12]) for the more demanding
task in which the elements of S appear one-by-one and the matching has to be done in the
online manner. We do not need online matching, but we take advantage of the construction
in [6] to obtain a fast matching algorithm. It follows from [6], that in a lossless expander it is
possible to do a greedy-type of “almost” matching, which means that every left node in S is
matched to (1 − ε)D of its neighbors (exactly what we need), but with poly(log n) collisions.
The collisions can be eliminated with some additional standard hashing (see the discussion
on [33, Page 14] for details). As we explain on [33, Page 14], this leads to decompression
time K · D · poly(n) and the length of the codeword cx is log |R| + |hash-code|, where R is
the right set of the lossless expander. To obtain our result, the degree D has to be 2poly(log n)

and |R| has to be K · 2poly(log n).
Building on results and techniques from [18], [6] constructs a ((1−ε)D, K) explicit lossless

expander with left side {0, 1}n, degree D = 2d for d = O(log(n/ε) · log k), and right side R,
with size verifying log |R| = k + log(n/ε) · log k (where k := log K). To obtain in Theorem 1
the dependency on n to be O(log n) (which is optimal up to the constant in O(·)), we show
the existence of a ((1 − ε)D, K) explicit expander with d = O(log n + log(k/ε) · log k) and
log |R| = k + O(log n + log(k/ε) · log k). This lossless expander is constructed by a simple
composition of the above lossless expander from [6] with a lossless expander from [18], with
an appropriate choice of parameters (see [33, Section 3.1.1]).

Conditional Lower Bound for Efficient Coding Theorems (Theorem 3). Our goal is to
show that there is no efficient coding theorem for rKt that achieves bounds of the form
(1 + γ − o(1)) · log(1/δ) + poly(log n), under the assumption that γ-Crypto-ETH holds for
γ ∈ (0, 1). We build on an idea attributed to L. Levin (see e.g. [25, Section 5.3]). To provide
an overview of the argument, let Gn : {0, 1}ℓ(n) → {0, 1}n be a cryptographic generator of
seed length ℓ(n) = n/2 witnessing that γ-Crypto-ETH holds. In other words, Gn has security
2γ·ℓ(n) against uniform adversaries. We define a sampler Sn as follows. On input x ∈ {0, 1}n,
which we interpret as a random string, it outputs Gn(x′), where x′ is the prefix of x of
length ℓ(n). We argue that if an efficient algorithm F is able to compress every string y in
the support of Dist(Sn), the distribution induced by the sampler Sn, to an rKt encoding of
complexity (1 + γ − ε) · log(1/δ′(y)) + C · (log n)C , where δ′(y) is a lower bound on δ(y) (the
probability of y under Dist(Sn)), we can use F to break Gn. (Note that F expects as input
n, y, δ′, and code(S).)

Z. Lu, I. C. Oliveira, and M. Zimand 92:9

The (uniform) distinguisher D computes roughly as follows. Given a string z ∈ {0, 1}n,
which might come from the uniform distribution Un or from Gn(Uℓ(n)) ≡ Dist(Sn), D

attempts to use F to compress z to a “succinct” representation, then checks if the computed
representation decompresses to the original string z. If this is the case, it outputs 1, otherwise
it outputs 0. (Note that we haven’t specified what “succinct” means, and it is also not
immediately clear how to run F , since it assumes knowledge of a probability bound δ′. For
simplicity of the exposition, we omit this point here.) We need to argue that a test of this
form can be implemented in time 2γ·ℓ(n), and that it distinguishes the output of G from a
random string.

To achieve these goals, first note that a typical random string cannot be compressed
to representations of length, say, n − poly(log n), even in the much stronger sense of (time-
unbounded) Kolmogorov complexity. Therefore, with some flexibility with respect to our
threshold for succinctness, the proposed distinguisher is likely to output 0 on a random string.
On the other hand, if F implements an efficient coding theorem that achieves rKt encodings
of complexity (1+γ −ε) · log(1/δ′(y))+poly(log n), the following must be true. Using that the
expected encoding length of any (prefix-free) encoding scheme is at least H(Dist(Sn)), where
Dist(Sn) is the distribution of strings sampled by Sn and H is the entropy function, we get (via
a slightly stronger version of this result) that a non-trivial measure of strings y in the support
of Dist(Sn) have rKt encoding length at least (1 − ε/4) · log(1/δ(y)). Consequently, for such
strings, an upper bound on rKt complexity of (1+γ −ε) · log(1/δ′(y))+poly(log n) when δ′(y)
is sufficiently close to δ(y) implies that the running time t of the underlying machine satisfies
log t ≤ (γ − ε/2) log(1/δ(y)) + poly(log n). Using that ℓ(n) = n/2 and δ(y) ≥ 2−ℓ(n) for any
string y in the support of Dist(Sn), it is easy to check that (asymptotically) t ≤ 2(γ−ε/4)·ℓ(n).
For this reason, we can implement a (slightly modified) distinguisher D in time less than
2γ·ℓ(n), by trying different approximations δ′(z) for an input string z and by running the
decompressor on the produced representation for at most t steps on each guess for δ(z). By
our previous discussion, a non-trivial measure of strings from Dist(Sn) will be accepted by D,
while only a negligible fraction of the set of all strings (corresponding to the random case)
will be accepted by D.

Implementing this strategy turns out to be more subtle than this. This happens because
F is a probabilistic algorithm which does not need to commit to a fixed succinct encoding.
We refer to the formal presentation in [33, Section 4] for details, where we also discuss the
bound on the seed length ℓ(n).

Coding Theorem for pKt (Theorem 5) and Unconditional [5] (Theorem 6). The proof
of our optimal coding theorem for pKt builds on that of the conditional coding theorem
for Kt from [5], which can be viewed as a two-step argument. Roughly speaking, the first
step is to show that if there is a polynomial-time sampler that outputs a string x ∈ {0, 1}n

with probability δ, then the polynomial-time-bounded Kolmogorov complexity of x is about
log(1/δ) + O(log n) if we are given a random string. After this, they “derandomize” the
use of random strings using a certain pseudorandom generator, which exists under a strong
derandomization assumption. Our key observation is that the use of random strings arises
naturally in probabilistic Kolmogorov complexity, and particularly in this case the random
strings can be “embedded” into the definition of pKt. As a result, we don’t need to perform the
afterward derandomization as in original proof of [5], and hence get rid of the derandomization
assumption.

Next, we describe how to use Theorem 5, together with other useful properties of pKt,
to obtain an unconditional version of Antunes and Fortnow’s main result. Let µ be a
Kolmogorov complexity measure, such as Kpoly, rKpoly or pKpoly. The key notion in the proof

ICALP 2022

92:10 Optimal Coding Theorems in Time-Bounded Kolmogorov Complexity

is the distribution (in fact, a class of semi-distributions) called mµ, which is defined as
mµ(x) := 1/2µ(x). More specifically, following [5], it is not hard to show that, for every
language L, L can be decided in polynomial-time on average with respect to mµ if and
only if its worst-case running time is 2O(µ(x)−K(x)) on input x (see [33, Lemma 25]). Then,
essentially, to show our result we argue that L can be decided in polynomial time on average
with respect to mµ if and only if the same holds with respect to all P-samplable distributions.

Recall that if a distribution D dominates another distribution D′ (i.e., D(x) ≳ D′(x)
for all x) and L is polynomial-time on average with respect to D, then the same holds
with respect to D′ (see Definition 9 and Fact 10). Therefore, to replace mµ above with
P-samplable distributions, it suffices to show that mµ is “universal” with respect to the class
of P-samplable distributions, in the following sense.
1. mµ dominates every P-samplable distribution. (This is essentially an optimal source

coding theorem for the Kolmogorov measure µ.)
2. mµ is dominated by some P-samplable distribution.
The above two conditions require two properties of the Kolmogorov measure µ that are
somewhat conflicting: the first condition requires the notion of µ to be general enough so
that mµ can “simulate” every P-samplable distribution, while the second condition needs µ

to be restricted enough so that mµ can be “simulated” by some P-samplable (i.e., simple)
distribution. For example, if µ is simply the time-unbounded Kolmogorov complexity K (or
even the polynomial-space-bounded variant), then it is easy to establish an optimal source
coding theorem for such a general Kolmogorov measure; however it is unclear how to sample
in polynomial-time a string x with probability about 1/2K(x), so in this case µ does not satisfy
the second condition. On the other hand, if µ is some restricted notion of time-bounded
Kolmogrov complexity measure such as Kpoly or rKpoly, then one can obtain polynomial-time
samplers that sample x with probability about 1/2Kpoly(x) or 1/2Kpoly(x) (up to a polynomial
factor); however, as in [5], we only know how to show an optimal source coding theorem
for Kpoly (or rKpoly) under a derandomization assumption. Therefore, in this case µ does
not satisfies the first condition. Our key observation is that the notion pKpoly, which sits in
between K and Kpoly (or rKpoly),9 satisfies both conditions described above (see [33, Lemmas
36 and 37]).

4 Concluding Remarks and Open Problems

Our results indicate that Theorem 1 might be optimal among efficient coding theorems
for rKt, i.e., those that efficiently produce representations matching the existential bounds.
In the case of pKt, the corresponding coding theorem (Theorem 5) is optimal. We have
described a concrete application of Theorem 5 (Theorem 6). A second application appears
in [17]. In both cases, achieving an optimal dependence on the probability parameter δ is
critical, and for this reason, the result from [31] is not sufficient.

Naturally, we would like to understand the possibility of establishing an unconditional
coding theorem for rKt with an optimal dependence on the probability parameter δ. While
the validity of Crypto-ETH implies that no efficient coding theorem with this property exist,
we have an existential coding theorem of this form under a derandomization assumption
(Proposition 2). In the case of Kt complexity, it is known that an unconditional coding
theorem with optimal dependence on δ implies that EXP ̸= BPP (see [25, Theorem 5.3.4]).

9 We can show that for every x ∈ {0, 1}∗ and every computable time bound t : N → N, K(x) ≲ pKt(x) ≤
rKt(x) ≤ Kt(x).

Z. Lu, I. C. Oliveira, and M. Zimand 92:11

However, the techniques behind this connection do not seem to lead to an interesting
consequence in the case of rKt and rKt. Consequently, an optimal coding theorem for rKt
might be within the reach of existing techniques.

It would also be interesting to establish Theorem 3 under a weaker assumption, or to refute
Crypto-SETH. A related question is the possibility of basing Crypto-ETH on the existence of
one-way functions of exponential hardness. Existing reductions are not strong enough to
provide an equivalence between one-way functions and cryptographic pseudorandomness in
the exponential regime (see [38, 19]).

Finally, are there more applications of pKt complexity and of Theorem 5? Since this
coding theorem is both optimal and unconditional, we expect more applications to follow.

References
1 Scott Aaronson. The equivalence of sampling and searching. Theory Comput. Syst., 55(2):281–

298, 2014.
2 Eric Allender. Applications of time-bounded Kolmogorov complexity in complexity theory. In

Kolmogorov complexity and computational complexity, pages 4–22. Springer, 1992.
3 Eric Allender. When worlds collide: Derandomization, lower bounds, and Kolmogorov

complexity. In International Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS), pages 1–15. Springer, 2001.

4 Eric Allender. The complexity of complexity. In Computability and Complexity, pages 79–94.
Springer, 2017.

5 Luis Filipe Coelho Antunes and Lance Fortnow. Worst-case running times for average-case
algorithms. In Conference on Computational Complexity (CCC), pages 298–303, 2009.

6 Bruno Bauwens and Marius Zimand. Universal almost optimal compression and Slepian-Wolf
coding in probabilistic polynomial time. CoRR, abs/1911.04268, 2019. arXiv:1911.04268.

7 Shai Ben-David, Benny Chor, Oded Goldreich, and Michael Luby. On the theory of average case
complexity. J. Comput. Syst. Sci., 44(2):193–219, 1992. doi:10.1016/0022-0000(92)90019-F.

8 Andrej Bogdanov and Luca Trevisan. Average-case complexity. Found. Trends Theor. Comput.
Sci., 2(1), 2006.

9 Harry Buhrman, Lance Fortnow, and Sophie Laplante. Resource-bounded Kolmogorov
complexity revisited. SIAM J. Comput., 31(3):887–905, 2001.

10 Harry Buhrman, Troy Lee, and Dieter van Melkebeek. Language compression and pseudoran-
dom generators. Comput. Complex., 14(3):228–255, 2005.

11 M. R. Capalbo, O. Reingold, S. P. Vadhan, and A. Wigderson. Randomness conductors and
constant-degree lossless expanders. In STOC, pages 659–668, 2002. doi:10.1145/509907.
510003.

12 Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Gutenberg, and
Sushant Sachdeva. Maximum flow and minimum-cost flow in almost-linear time. CoRR,
abs/2203.00671, 2022. doi:10.48550/arXiv.2203.00671.

13 Kai-Min Chung, Siyao Guo, Qipeng Liu, and Luowen Qian. Tight quantum time-space
tradeoffs for function inversion. In Symposium on Foundations of Computer Science (FOCS),
pages 673–684, 2020.

14 Anindya De, Luca Trevisan, and Madhur Tulsiani. Time space tradeoffs for attacks against
one-way functions and PRGs. In Annual International Cryptology Conference (CRYPTO),
pages 649–665, 2010.

15 Amos Fiat and Moni Naor. Rigorous time/space trade-offs for inverting functions. SIAM J.
Comput., 29(3):790–803, 1999. doi:10.1137/S0097539795280512.

16 Lance Fortnow. Kolmogorov complexity and computational complexity. Complexity of
Computations and Proofs. Quaderni di Matematica, 13, 2004.

17 Halley Goldberg, Valentine Kabanets, Zhenjian Lu, and Igor C. Oliveira. Probabilistic
Kolmogorov complexity with applications to average-case complexity. Preprint, 2022.

ICALP 2022

http://arxiv.org/abs/1911.04268
https://doi.org/10.1016/0022-0000(92)90019-F
https://doi.org/10.1145/509907.510003
https://doi.org/10.1145/509907.510003
https://doi.org/10.48550/arXiv.2203.00671
https://doi.org/10.1137/S0097539795280512

92:12 Optimal Coding Theorems in Time-Bounded Kolmogorov Complexity

18 Venkatesan Guruswami, Christopher Umans, and Salil P. Vadhan. Unbalanced expanders and
randomness extractors from Parvaresh-Vardy codes. J. ACM, 56(4):20:1–20:34, 2009.

19 Iftach Haitner, Omer Reingold, and Salil P. Vadhan. Efficiency improvements in constructing
pseudorandom generators from one-way functions. SIAM J. Comput., 42(3):1405–1430, 2013.

20 Shuichi Hirahara. Non-black-box worst-case to average-case reductions within NP. In Sym-
posium on Foundations of Computer Science (FOCS), pages 247–258, 2018.

21 Shuichi Hirahara. Average-case hardness of NP from exponential worst-case hardness assump-
tions. In Symposium on Theory of Computing (STOC), pages 292–302, 2021.

22 S. Hoory, N. Linial, and A. Wigderson. Expander graphs and their applications. Bull. Amer.
Math. Soc., 43:439–561, 2006.

23 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. J. Comput. Syst.
Sci., 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

24 Jan Krajíček. Information in propositional proofs and algorithmic proof search. The Journal
of Symbolic Logic, pages 1–22, 2021.

25 Troy Lee. Kolmogorov complexity and formula lower bounds. PhD thesis, University of
Amsterdam, 2006.

26 Leonid A. Levin. Randomness conservation inequalities; information and independence in
mathematical theories. Information and Control, 61(1):15–37, 1984.

27 Leonid A. Levin. Average case complete problems. SIAM J. Comput., 15(1):285–286, 1986.
doi:10.1137/0215020.

28 Ming Li and Paul M. B. Vitányi. Average case complexity under the universal distribution
equals worst-case complexity. Inf. Process. Lett., 42(3):145–149, 1992.

29 Ming Li and Paul M. B. Vitányi. An introduction to Kolmogorov complexity and its applications.
Springer-Verlag, 2019. 4th edition (1st edition in 1993).

30 Yanyi Liu and Rafael Pass. On one-way functions and Kolmogorov complexity. In Symposium
on Foundations of Computer Science (FOCS), pages 1243–1254, 2020.

31 Zhenjian Lu and Igor C. Oliveira. An efficient coding theorem via probabilistic representations
and its applications. In International Colloquium on Automata, Languages, and Programming
(ICALP), pages 94:1–94:20, 2021.

32 Zhenjian Lu, Igor C. Oliveira, and Rahul Santhanam. Pseudodeterministic algorithms and
the structure of probabilistic time. In Symposium on Theory of Computing (STOC), pages
303–316, 2021.

33 Zhenjian Lu, Igor C. Oliveira, and Marius Zimand. Optimal coding theorems in time-bounded
Kolmogorov complexity, 2022. doi:10.48550/ARXIV.2204.08312.

34 Aleksander Madry. Navigating central path with electrical flows: From flows to matchings,
and back. In Symposium on Foundations of Computer Science (FOCS), pages 253–262, 2013.
doi:10.1109/FOCS.2013.35.

35 Igor C. Oliveira. Randomness and intractability in Kolmogorov complexity. In International
Colloquium on Automata, Languages, and Programming (ICALP), pages 32:1–32:14, 2019.

36 Hanlin Ren and Rahul Santhanam. Hardness of KT characterizes parallel cryptography. In
Computational Complexity Conference (CCC), pages 35:1–35:58, 2021.

37 Michael Sipser. A complexity theoretic approach to randomness. In Symposium on Theory of
Computing (STOC), pages 330–335, 1983.

38 Salil P. Vadhan and Colin Jia Zheng. A uniform min-max theorem with applications in
cryptography. In Annual Cryptology Conference (CRYPTO), pages 93–110, 2013.

A Definitions and Basic Results

Time-bounded Kolmogorov complexity. For a function t : N → N, a string x, and a
universal Turing machine U , let the time-bounded Kolmogorov complexity be defined as

Kt
U (x) = min

p∈{0,1}∗
{|p| | U(p) outputs x in at most t(|x|) steps} .

https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1137/0215020
https://doi.org/10.48550/ARXIV.2204.08312
https://doi.org/10.1109/FOCS.2013.35

Z. Lu, I. C. Oliveira, and M. Zimand 92:13

A machine U is said to be time-optimal if for every machine M there exists a constant c such
that for all x ∈ {0, 1}n and t : N → N satisfying t(n) ≥ n,

Kct log t
U (x) ≤ Kt

M (x) + c,

where for simplicity we write t = t(n). It is well known that there exist time-optimal
machines [29, Th. 7.1.1]. In this paper, we fix such a machine U , and drop the index U

when referring to time-bounded Kolmogorov complexity measures. It is also possible to
consider prefix-free notions of Kolmogorov complexity. However, since all our results hold up
to additive O(log |x|) terms, we will not make an explicit distinction.

Henceforth we will not distinguish between a Turing machine M and its encoding p

according to U . If p is a probabilistic Turing machine, we define tp ∈ N ∪ {∞} to be the
maximum number steps it takes p to halt on input λ (the empty string), where the maximum
is over all branches of the probabilistic computation.

rKt complexity and probabilistic representations. A probabilistic representation of a string
x is a probabilistic Turing machine p that on input λ halts with x on the output tape
with probability at least 2/3. The rKt-complexity of a string x is the minimum, over all
probabilistic representations p of x, of p + log tp. A probabilistic representation p of x certifies
rKt-complexity bounded by Γ if |p| + log tp ≤ Γ.

Distributions and semi-distributions. We consider distributions over the set {0, 1}∗. We
will identify a distribution with its underlying probability density function of the form
D : {0, 1}∗ → [0, 1]. A distribution D is a semi-distribution if

∑
x∈{0,1}∗ D(x) ≤ 1, and is

simply called a distribution if the sum is exactly 1. In this subsection, we will use the word
“distribution” to refer to both distribution and semi-distribution.

Samplers. A sampler is a probabilistic algorithm A with inputs in {1}n such that A(1n)
outputs a string x ∈ {0, 1}n.10 It defines a family of distributions {µA,n}n∈N, where µA,n is
the distribution on {0, 1}n defined by µA,n(x) = PrA[A(1n) = x].

Average-case complexity. We now review some standard definitions and facts from average-
case complexity. We refer to the survey [8] for more details.

▶ Definition 7 (Polynomial-time Samplable [7]). A distribution D is called P-samplable if
there exists a polynomial p and a probabilistic algorithm M such that for every x ∈ {0, 1}∗,
M outputs x with probability D(x) within p(|x|) steps.

▶ Definition 8 (Polynomial Time on Average [27]). Let A be an algorithm and D be a
distribution. We say that A runs in polynomial-time on average with respect to D if there
exist constants ε and c such that,∑

x∈{0,1}∗

tA(x)ε

|x|
D(x) ≤ c,

10 For simplicity, we assume that A(1n) samples a string of length n. Our coding theorems also hold for
algorithms used to define P-samplable distributions, see Definition 7, with obvious changes in the proofs.
Also, as in [31], our results can be easily generalised to samplers that on 1n output strings of arbitrary
length. In this case, while the length of x might be significantly smaller than n, an additive overhead of
log n + O(1) is necessary in our coding theorems, as we need to encode 1n.

ICALP 2022

92:14 Optimal Coding Theorems in Time-Bounded Kolmogorov Complexity

where tA(x) denotes the running time of A on input x. For a language L we say that L

can be solved in polynomial time on average with respect to D if there is an algorithm that
computes L and runs in polynomial-time on average with respect to D.

▶ Definition 9 (Domination). Let D and D′ be two distributions. We say that D dominates
D′ if there is a constant c > 0 such that for every x ∈ {0, 1}∗,

D(x) ≥ D′(x)
|x|c

.

▶ Fact 10 (See e.g., [5, Lemma 3.3]). Let D, D′ be two distributions, and let A be an algorithm.
If

A runs in polynomial time on average with respect to D, and
D dominates D′

Then A also runs in polynomial time on average with respect to D′.

	1 Context and Background
	2 Results
	2.1 A Tighter Efficient Coding Theorem
	2.2 Matching Lower Bound Under a Cryptographic Assumption
	2.3 An Optimal Coding Theorem and Unconditional Antunes-Fortnow

	3 Techniques
	4 Concluding Remarks and Open Problems
	A Definitions and Basic Results

