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Evaluating the Emergent Controls of Stream Water Quality
with Similitude and Dimensionless Numbers

Omar |. Abdul-Aziz, Ph.D., AM.ASCE"; and Shakil Ahmed, Ph.D., S.M.ASCE?

Abstract: The emergent hydrologic and land-use controls of coastal-urban stream water quality were evaluated by using similitude and
dimensional analysis, considering southeast Florida a prototype of growing coastal-urban environments. The goal was to test a fundamental
hypothesis that the coastal-urban stream water quality processes represent emergent ecohydrological-biogeochemical similitudes (parametric
reductions). The in-stream total nitrogen (TN), total phosphorus (TP), and biomass (Chl a) were normalized by their immediate upstream
reach concentrations to formulate the dimensionless numbers of TN/TN,, TP/ TP, and Chl a/Chl . Stream dissolved oxygen (DO) was
normalized by its saturated concentration (DO, to obtain the dimensionless DO/DO,, number—avoiding a misleading scaling by upstream
concentrations in the presence of a DO sag phenomenon. The emergent controls of stream water quality were represented by a small set of
dominant driver dimensionless numbers. For each water quality indicator, nine original variables (including predictors and response) were
reduced to three to four important and mechanistically meaningful dimensionless numbers. The hydrologic control number (role of watershed
hydrology versus the external Everglades) and salinity number (ratio of downstream to upstream salinity) exhibited the key controls on stream
TN/TN,, across the wet and dry seasons. In contrast, the land-use number (ratio of agricultural plus vegetated lands to built lands), hydrologic
control number, and salinity number dominated TP/TP, and Chla/Chl a, incorporating the two seasons. However, DO/DOy, was con-
trolled by the hyporheic exchange number (role of watershed groundwater versus surface hydrology) and land-use number in the wet and dry
seasons, respectively. The formulated similitude and dimensionless numbers provided important insights and understanding that may help
achieve healthy coastal-urban streams. DOI: 10.1061/(ASCE)HE.1943-5584.0001769. © 2019 American Society of Civil Engineers.
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Introduction

Stream water quality and ecosystem health can be shaped by vari-
ous hydrologic, land-use, biogeochemical, and ecological proc-
esses (Caccia and Boyer 2005; Tran et al. 2010; Badruzzaman et al.
2012). The multitude of pollutant sources, drivers, and their inter-
plays pose a major challenge to identify the dominant controls of
stream water quality, and understand their contrasting roles as well
as collective emergent patterns. The challenge becomes formidable
in rapidly expanding coastal-urban environments such as southeast
Florida, which represents a low surface elevation, high ground-
water table, relatively flat topography, and a complex drainage net-
work. It remains unclear whether the many process drivers of
coastal-urban stream water quality can be reduced into a smaller
set of composites but simple and interpretable entities. What are
the contrasting roles of draining watershed hydrology versus exter-
nal drivers (from upstream inland and/or downstream coast), water-
shed surface versus groundwater hydrology, and built-up versus
unbuilt (e.g., agriculture, vegetation) land uses in driving stream
water quality? What exclusive roles does salinity play in shaping
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the key indicators of coastal-urban stream water quality? Similitude
and dimensional analysis can help answer these questions by incor-
porating the important physical, chemical, biological, and ecologi-
cal processes into a small set of dimensionless entities or numbers
(Warnaars et al. 2007). Mechanistically meaningful dimensionless
numbers can indicate the emerging patterns and provide a general-
izable understanding into the dynamics and controls of stream
water quality and ecosystem health.

Much research has reported various land uses (urban and non-
urban) as the major sources and/or drivers of in-stream nutrients
(e.g., nitrogen, phosphorus) and dissolved oxygen in coastal
streams (e.g., Tufford et al. 2003; Carey et al. 2011a, b; Wan et al.
2014a, b; Xiao et al. 2016). Among the recent studies, Carey et al.
(2011a, b) found watershed agricultural and urban lands contribut-
ing large nutrient loads into the inland canals of Biscayne Bay
Watershed, Florida. Wan et al. (2014b) reported a strong associa-
tion of stream water quality with agricultural lands and upstream
water management in the Indian River Lagoon Watershed, Florida.
Xiao et al. (2016) identified farmland and built-up land as the
sources of oxygen demanding materials into the coastal streams
of Huzhou City, China. They further reported seasonally varying
relationships between the stream water quality and land uses of
the draining watersheds. For example, the in-stream chemical oxy-
gen demand and petroleum concentrations were higher during the
wet period, whereas the in-stream dissolved total phosphorus and
total nitrogen were higher during the dry period.

Alongside land uses, watershed surface hydrologic processes
and drivers can influence water quality in coastal as well as non-
coastal streams. Kang et al. (2010) found common surface hydro-
logic features (e.g., size, slope) affecting the land-use contributions
to in-stream water quality in Yeongsan Watershed, Korea. Wan
et al. (2014a) reported a strong influence of watershed size and
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permeability on the concentration of nutrients in the Xitiaoxi River,
China. Tran et al. (2010) found a substantial control of the draining
watershed size on the land-use contributions of pollutants into
the streams of eastern New York State (upper and lower Hudson
Valley, Champlain Valley). Further, Woodcock et al. (2006) re-
ported notable linkages between the distribution of stream biotic
communities (e.g., macroinvertebrate taxa) and watershed hydro-
logic drivers (e.g., water quantity, drainage patterns) in Adirondack
Park, New York.

Groundwater has also been found as an important driver of
stream water quality. For example, Menci6é and Mas-Pla (2008) re-
ported that water quality in urbanized Mediterranean streams had
been directly linked to the groundwater influxes. Sprague (2005)
found groundwater controls on the concentration of dissolved
nutrients and calcium bicarbonate in the streams of South Platte
River Basin, Colorado. Furthermore, saltwater intrusion is known
to impact water quality mainly in coastal streams (Liu et al. 2010).
Saltwater intrusion changes the characteristics and composition of
aquatic communities (e.g., ammonia-oxidizing bacteria and phyto-
plankton) and the overall ecosystem (see references in Xie et al.
2017). Magalhdes et al. (2005) found a strong, linear decrease of
nitrate (NO3) concentrations with increasing salinity in sediments
and rocky biofilms of the Douro River estuary, Portugal. Hart et al.
(1991) reported adverse effects of high salinity on aquatic plants
and invertebrates in the streams, rivers, and wetlands of Australia.

Although the existing literature provides a large body of knowl-
edge and actionable information, there is still a lack of under-
standing into the contrasting as well as the collective controls of
watershed land use, hydrologic, in-stream, and external drivers on
stream water quality. In a recent study, Abdul-Aziz and Ahmed
(2017) estimated the relative linkages of stream water quality with
11 hydrologic and land-use variables in the coastal-urban water-
sheds of southeast Florida by using a systematic data analytics
framework. However, it is yet to be investigated whether the myriad
stream water quality processes and drivers can be combined into a
smaller set of emergent and interpretable entities to achieve mecha-
nistically meaningful similitude and useful information. In the field
of classical fluid mechanics and hydraulic engineering, similitude
is defined as the parametric reduction of physical problems by de-
veloping dimensionless numbers and a dimensionless formulation
of the physical system (Finnemore and Franzini 2002; Kundu and
Cohen 2004). Similitude can be obtained through dimensional
analysis (e.g., using Buckingham pi theorem) or through normal-
izing (i.e., scaling) the underlying governing equations by appro-
priate characteristic parameters (Kundu and Cohen 2004).

Similitude and dimensional analysis have been used in various
science and engineering disciplines to gain insights into the dom-
inant process controls, discover emerging patterns, and formulate
parametric reductions (Warnaars et al. 2007; Miragliotta 2011). A
classic example of similitude in hydraulic engineering can be the
Moody diagram for pipe flow design (Finnemore and Franzini
2002). Dimensional analysis reduced seven original parameters for
pipe flow (flow velocity, pressure, viscosity, density, pipe diameter,
length, and roughness) to three mechanistically meaningful dimen-
sionless numbers (pipe friction factor, Reynolds number, and rel-
ative roughness). Warnaars et al. (2007) applied similitude and
dimensional analysis in stream biogeochemistry and ecology, and
estimated scaling relationships of biotic variable (e.g., biomass)
with abiotic (e.g., climatic, hydrologic, and geomorphic) vari-
ables in different streams across North America. Other recent stud-
ies (e.g., Morris and Hondzo 2013; Zelendkova et al. 2013;
Guentzel et al. 2014) used similitude and dimensional analysis
to investigate and predict the dynamics of stream water quality
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indicators (e.g., nitrogen, phosphorus, and dissolved oxygen) in
various hydraulic, hydrologic, and ecological conditions.

The goal of this study is to test a fundamental hypothesis that the
coastal-urban stream water quality processes represent emergent
ecohydrological-biogeochemical similitudes (parametric reduc-
tions). In this pursuit, southeast Florida was considered as a proto-
type of growing coastal-urban environments to achieve two specific
research objectives. First, similitude and dimensional analysis are
used to formulate mechanistically meaningful dimensionless num-
bers, and the dominant dimensionless numbers are identified by
using a systematic data analytics methodology. Second, the emer-
gent (contrasting as well as collective) controls of water quality in
the coastal-urban streams are evaluated by interpreting the dimen-
sionless numbers. The research findings are expected to guide
water resources management to achieve and/or maintain healthy
stream ecosystems in complex coastal-urban environments.

Materials and Methods

Study Area

The study area is located between the Biscayne Bay and the Indian
River Lagoon Watersheds of southeast Florida, representing Brow-
ard County and a part of Palm Beach County (Fig. 1). The region is
primarily drained by a large network of natural and dredged canals
(Broward County 2016), including five major canal basins as
follows: Hillsboro Canal, C-14 Canal (Cypress Creek, Pompano
Canal), C-13 Canal, North New River (NNR) Canal, and C-11
Canal. The canals are connected to the Florida Everglades water
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Fig. 1. Locations of water quality monitoring stations in major canals
and corresponding watershed boundaries. Inset shows state of Florida.
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Table 1. Summary of the stream water quality indicators and their drivers during 2009-2013

Variables Mean Standard deviation Minimum 25th percentile 50th percentile 75th percentile Maximum
L. (km) 12.26 4.20 6.71 9.17 12.10 15.04 21.31
D, (km) 9.86 5.57 1.40 5.27 10.28 13.77 21.01
Aagr (km?) 5.61 9.42 0.06 0.31 1.37 7.07 29.37
Agyr (km?) 36.32 23.31 4.88 19.84 29.98 54.97 79.77
Wet season (June—October)
TN (mg/L) 1.33 0.28 0.75 1.25 1.41 1.48 1.77
TP (mg/L) 0.04 0.03 0.02 0.02 0.03 0.05 0.11
Chla (ug/L) 7.03 2.93 3.39 5.12 6.46 8.61 15.94
DO (mg/L) 4.02 0.96 1.61 3.24 4.50 4.77 5.21
DOy, (mg/L) 7.51 0.31 7.02 7.16 7.63 7.73 7.92
Sal (ppt) 3.07 5.93 0.13 0.18 0.28 1.58 19.40
GWD (1073 km) 1.96 0.74 0.79 1.38 1.84 2.63 3.11
Dry season (November—May)
TN (mg/L) 1.23 0.34 0.57 0.95 1.29 1.49 1.63
TP (mg/L) 0.04 0.02 0.02 0.02 0.03 0.05 0.09
Chla (ug/L) 4.76 2.26 2.13 2.73 4.19 6.18 10.37
DO (mg/L) 5.81 0.99 3.34 5.72 6.13 6.28 7.10
DOy, (mg/L) 8.13 0.54 7.34 7.51 8.47 8.56 8.72
Sal (ppt) 5.64 9.14 0.03 0.04 0.08 14.98 24.13
GWD (107% km) 2.11 0.78 0.77 1.53 1.99 2.86 3.42

Note: L, D., GWD, A gr, and Ay, respectively, refer to subbasin characteristic length, distance of subbasin outlet from the coastline, groundwater depth
from land surface, agricultural plus vegetated land area, and built-up land area.

conservation areas (WCAs) at the west (upstream) and to the
Atlantic Ocean at the east (downstream) (Fig. 1). The in-stream
biogeochemistry and water quality are influenced by the WCAs
and coastal hydrology (BCEPD 2007). Together, the canals re-
present a considerable physical, biogeochemical, and ecological
range of coastal-urban watersheds (Table 1), draining approxi-
mately 865 km? of highly urban areas to the Atlantic Ocean. More
details on the canals can be found in Cooper and Lane (1987) and
BCEPD (2007).

Data Sets

The water quality data set represented quarterly time-series data of
commonly-used indicators such as total nitrogen (TN), total phos-
phorus (TP), chlorophyll a (Chla), dissolved oxygen (DO), and
salinity (Sal) during 2009-2013 for 19 monitoring stations across
the study area (Fig. 1). The data were collected and made available
to the public by Broward County Environmental Planning and
Community Resilience Division (BCEPCRD 2015). The four water
quality indicators can provide information on the general health of
a stream ecosystem (Chang 2008; Daniel et al. 2010; Wan et al.
2014a). TN represented an aggregation of total Kjeldahl nitrogen
(TKN), nitrate-nitrogen (NO3-N), and nitrite-nitrogen (NO,-N). TP
included orthophosphates (reactive phosphates), condensed phos-
phates (pyro, meta, and polyphosphates), and organic phosphates.
Chla indicated oxygenic photosynthesis by the stream flora
(mainly phytoplankton). DO represented a more holistic indicator
of stream water quality and ecosystem health. Details into the water
quality data collection methods, protocols, and QA/QC can be
found in BCEPD (2007) and FDEP (2016).

We delineated drainage areas (subbasins) for the 14 downstream
monitoring stations (i.e., 19 minus the five most upstream stations)
from 10-m DEM (USGS 2015a) by using ESRI ArcGIS version
10.2. The derived subbasin areas were verified and corrected
(if needed) by comparing with the well-established waterbody
identification numbers (FDEP 2016) and a contribution area map
provided by Broward County (Robert Bernhard, personal commu-
nications, 2012). Subbasin characteristic length (L.; defined as the
longest flow path to the subbasin outlet) was computed to represent
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the watershed surface hydrologic controls on the in-stream water
quality. The groundwater hydrologic control was represented by
the groundwater depth (GWD) from the land surface, which de-
creases as the water table moves upward. Groundwater level data
from 29 monitoring stations of (USGS 2015b) were used with krig-
ing interpolations (Goovaerts 1997; Childs 2004; Costelloe et al.
2015) to determine the ambient GWD for each in-stream water
quality station.

The canal centerline distance of each subbasin outlet (water qual-
ity station) from the coastline (D.)—which decreases toward the
coast and increases toward the Everglades—was computed to re-
present the effects of both tidal and Everglades hydrology on stream
water quality. The coastal control on the in-stream water quality was
further represented by the concentration of salinity at the inlet and
outlet (Saly and Sal, respectively; 0 indicates the immediate upstream
station) of each stream reach. Abdul-Aziz and Ahmed (2017), in a
separate study, reported built-up, agricultural, and vegetated areas as
the most dominant land uses impacting the urban stream water qual-
ity in southeast Florida. The controls of land uses were therefore
represented by the built (Agyr) and nonurban (i.e., unbuilt) areas
(Axgr = agriculture + vegetation). Land-use information was col-
lected from the land use and land cover (LULC) database of the
SFWMD (2015a), and processed in ESRI ArcGIS version 10.2.

Acknowledging the seasonal variation of climate and hydrology,
we performed separate, comparative analyses for the wet (June—
October) and dry (November—May) seasons (SFWMD 2015b).
For each season, the spatial data set was obtained by averaging ob-
servations of the respective water quality and groundwater data
over the five-year period (2009-2013). The saturated concentra-
tions of DO (DOy,) at each water quality station were estimated
as a nonlinear function of water temperature, salinity, and atmos-
pheric pressure (Chapra 2008). Water temperature data for the sta-
tions were collected from the National Water Quality Monitoring
Council (NWQMC) database (NWQMC 2017). However, three
water quality stations did not have water temperature data, which
were estimated from air temperature through a linear regression be-
tween air and water temperatures for the nearest water quality sta-
tion that had observed data for both temperatures (1> = 0.78-0.89,
p-value < 0.05). The air temperature data were obtained from the
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NSRDB (2017). Atmospheric pressure data were collected from
the DBHYDRO database of the South Florida Water Management
District (SFWMD 2016).

The final data set incorporated concentrations of water quality
variables (TN, TP, Chla, DO, DO, and Sal) at the inlets and
outlets of 14 reaches, as well as areas of important land uses
(Aagr and Agyp) and hydrologic features (L., D., and GWD) for
the corresponding subbasins. Sample size of the temporally aver-
aged spatial data set for each water quality variable was 14. TN,
TP, Chla, and DO were considered the response water quality
indicators, whereas Sal was treated as an oceanic biogeochemical
driver of the response variables. The water quality variables, as
well as their hydrologic and land-use drivers had considerable
variation and ranges across the entire study area (Table 1) and
within each of the five major canal basins (Table S1 in Supple-
mental Data).

Dimensional Analysis, Similitude, and Formulation of
Dimensionless Numbers

We used dimensional analysis to achieve similitude and derive
dimensionless numbers by using the Buckingham pi theorem
(Finnemore and Franzini 2002; Kundu and Cohen 2002). The pi
theorem states that n dimensional variables can be combined to
form (n-r) dimensionless II numbers, in which r is the number
of involved fundamental dimensions. The method is based on
the principle of dimensional homogeneity, requiring the incorpora-
tion of mechanistically relevant variables. The important process
variables for the four water quality indicators (TN, TP, Chl a, DO)
were identified based on existing knowledge (e.g., Abdul-Aziz and
Ahmed 2017) and a preliminary analysis of data sets (e.g., scatter
plot of a possible driver versus response). For example, TN at a
monitoring site is considered to be a response function of concen-
trations at the immediate upstream station (TNj)), at-site and imme-
diate upstream salinity (Sal and Saly), external influence from the
bay and/or the Everglades (D,), and draining subbasin’s hydrologic
and land-use features (L., GWD, A,ggr, and Agyy)- A first expres-
sion of the functional form can be stated as follows:

f(TN, TN(), Sal, Salo, LC7 D(,‘? GWD’AAGR’ABUL) =0 (])

The total number of variables, n = 9; number of relevant fun-
damental dimensions, r = 2 (mass: M; length: L) (see Table 2 for
dimensions of all variables); and the total possible dimensionless
(IT) numbers = n —r = 7. Thus, Eq. (1) can be rewritten in terms
of pi numbers as follows:

¢(H17H27H37H47H57H67H7) =0 (2)

The pi theorem led to the selection of two (r = 2) repeating
variables, which must contain all the involved fundamental dimen-
sions (M and L for this study) and must not form a dimensionless
number by themselves. Each pi number was formulated by com-
bining two repeating variables with one of the remaining variables.

Equating the exponents on both sides, we found the following:
a=0, b =—1; therefore

D.

i = (13 (L0~ (00 = (7¢) 5)

Similarly, the other pi numbers (I, to II;) were formulated as
follows:

GWD TN A
I, = g I = 4= A({R )
L, TN, Ly
H5 = L2 ; 6 = T; 7 = —
b al Saly

Based on the pi theorem, the functional relationship between the
response (TN/TN;) and predictor pi numbers can be expressed as
follows:

TN _ [(D.\ (GWD\ (Aacr)\ (Asur) (TNo\ (TNo
=l () (520) (o) () () (st

(6)

The pi theorem allows combining relevant pi numbers to derive
a new pi number (e.g., Axgr/LZ and Agy /L2 to Asgr/AguL:
TNy /Sal and TN, /Sal, to Sal/Saly). It also allows inversing any
pi number based on convenience for interpretations (e.g., D./L,
to L./D,). Various sets of pi numbers were derived by changing
the repeating variables for TN, TP, Chl a, and DO (see Appendix
S1); only the mechanistically meaningful sets of pi numbers were
retained for further analysis. Following numerous diligent itera-
tions, we obtained meaningful sets of five pi numbers for each
water quality indicator. The analysis therefore led to a meaningful
set of four response and four predictor pi numbers, which can be
expressed in functional forms as follows:

o) C20) ) Gl
m o GGG o
ain, | ) () )R] o
o, L) (o) ) )] o
at c ¢ BUL 0

Table 2. List of the variables used in similitude analyses and their
dimensions

For example, considering TN, and L, as the repeating variables, the Variables Dimensions
first pi number was formulated with the exponents of a and b as Concentration of water quality indicators and M/L?)
follows: salinity at watershed outlet (TN, TP, Chla, DO, Sal)
Concentration of water quality indicators and (M/L?)
II, = TNy“LtD, (3) salinity at watershed inlet (TN,, TP, Chlay, Saly)
Saturated concentration of dissolved oxygen (DOg,) (M/L%)
For II; to be dimensionless, the following equation was Characteristic length of subbasin (L) (L)
obtained using the principle of dimensional homogeneity: Distance from the coastline (D,) @L)
Groundwater depth from land surface (GWD) (L)
M @ Agricultural and vegetated land (Axgr) (L?)
M°LY = (F) (L)P(L) = MeL73thH! (4) Built-up land (Agyy) 2
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Response pi numbers such as the total nitrogen number
(TN/TNy), total phosphorus number (TP/TPy), and biomass num-
ber (Chl a/Chl ay) represented, respectively, the outlet concentra-
tions of TN, TP, and Chl a for each subbasin, as normalized by their
inlet concentrations (TN, TPy, and Chl a,). However, the stream
dissolved oxygen number (DO/DOy,) represented the outlet con-
centrations of DO normalized by the corresponding oxygen disso-
lution capacity of stream water (i.e., DO at saturation, DO, ). This
normalization helped avoid a misleading scaling of DO by the cor-
responding upstream reach concentration (i.e., DOy), which may be
impacted by the well-known DO sag phenomenon in streams
(Chapra 2008). The four predictor pi numbers represented the pair-
wise collective controls of various environmental drivers on the ur-
ban stream water quality processes. L./D, represented the control
of watershed hydrology on stream water quality relative to the ex-
ternal Everglades (upstream) and/or ocean (downstream), and was
termed the hydrologic control number. GWD/L, represented the
control of groundwater hydrology relative to the watershed surface
hydrology, and was termed the hyporheic exchange number. The
land-use number (A gr/Agyr ) represented the control of nonurban
(agriculture and vegetation) land relative to the built-up land. The
salinity number (Sal/Sal,) represented the control of at-site salinity
(normalized by salinity at the immediate upstream reach) on the
water quality. Data summary of the response and predictor pi num-
bers indicated a considerable range among the 14 stream reaches
(Table 3) and across the five canal basins (see Table S2 in Supple-
mental Data). Although all pi numbers varied between the wet and
dry seasons, Sal/Sal, was strikingly higher (10 times in both mean
and standard deviation) in the dry season (Table 3)—indicating
high salt water intrusion in the downstream stations during low
freshwater flows in the canals.

Overall for each of the water quality response variables (TN,
TP, Chl a, DO), dimensional analysis reduced nine original varia-
bles to a set of five meaningful pi numbers. Recalling the definition
of similitude from fluid mechanics and hydraulic engineering
(Finnemore and Franzini 2002; Kundu and Cohen 2002), such a
parametric reduction of stream water quality processes was termed
stream ecohydrological-biogeochemical similitude in this research.
The parametric reduction is particularly useful for small data
sets, which is often the case for stream water quality and ecosystem
health problems. For example, the sample size for each water
quality indicator here was 14, which provided ample degrees of

freedom to estimate a water quality number as a function of four
predictor pi numbers (a total of five dimensionless numbers). The
relationships between the response (II;) and predictor pi (II,-115)
numbers [Eqgs. (7)—(10)] can be represented as a general power-law
model as follows:

I, = ATISTI4TISNT (11)

where the coefficient (k) and exponents (c, d, e, g) have to be esti-
mated by fitting with observational data for the involved pi num-
bers. However, upon data standardization and resolution of any
multicollinearity among the pi numbers (see the following section
for details), the model estimation process would indicate the rela-
tive contribution of each predictor pi number to the explanation of
variance in a response pi number. This could identify a smaller set
of effective and dominant predictor pi numbers for each water qual-
ity response pi number—contributing further into the parametric
reductions and stream ecohydrological-biogeochemical similitude.

Identification of the Dominant Dimensionless Numbers

We used a systematic data analytics methodology (Abdul-Aziz
and Ahmed 2017) to identify the dominant, mechanistically mean-
ingful predictor pi numbers for each water quality response pi num-
ber. The data analytics involved a sequential application of four
complementary data-mining tools: Pearson correlation matrix, prin-
cipal component analysis (PCA), factor analysis (FA), and partial
least squares regression (PLSR). Convergent information from
different tools was synthesized to arrive at the overall outcomes.
The data analytics were performed with logarithmically trans-
formed and standardized (Z-score) data of each pi number as fol-
lows: Z = (X — X)/sy, where X = log,o-transformed data of a pi
number, X = mean of X, and sy = standard deviation of X. The log-
transformation accounted for any nonlinear interactions in the data
system, whereas the Z-scores brought different pi numbers to a
comparable reference scale. The entire analyses and modeling were
performed by using MATLAB version R2016a.

Pearson correlation matrix with Z-scores of log-transformed
pi numbers provided first-order information on the nonlinear cor-
respondences between predictor versus response pi numbers, and
among the predictor pi numbers (i.e., multicollinearity on the log;,
space). PCA (Jolliffe 2002) resolved multicollinearity by deriving
eight orthogonal entities called principal components (PCs); each

Table 3. Overall summary of the dimensionless numbers across all sites during 2009-2013

Dimensionless numbers Mean Standard deviation Minimum 25th percentile 50th percentile 75th percentile Maximum
L./D, 2.08 2.03 0.56 0.79 1.15 2.90 6.91
Apr/AuL 0.12 0.16 0.002 0.02 0.05 0.12 0.50
Wet season (June—October)
TN/TN, 0.88 0.15 0.63 0.82 0.91 0.96 1.24
TP/TP, 1.52 0.83 0.94 0.98 1.36 1.59 4.23
Chla/Chla, 1.05 0.47 0.56 0.64 0.89 1.51 1.85
DO/DOy, 0.58 0.11 0.35 0.49 0.61 0.63 0.74
Sal/Sal, 13.20 26.24 0.53 0.91 2.09 9.84 89.60
GWD/L, (10™%) 1.81 0.95 0.37 1.22 1.42 2.50 3.81
Dry season (November—May)
TN/TN, 0.82 0.17 0.49 0.68 0.88 0.93 1.09
TP/TP, 1.50 0.61 0.93 1.06 1.27 1.85 3.09
Chla/Chla, 1.28 0.76 0.34 0.83 1.01 1.46 2.83
DO/DOy, 0.75 0.10 0.53 0.68 0.79 0.83 0.84
Sal/Sal, 121.11 245.15 0.47 0.78 1.36 111.01 739.46
GWD/L, (107 1.96 1.04 0.36 1.32 1.60 2.67 4.19

Note: TN/TN,, TP/TP,, Chla/Chla,, and Sal/Sal, respectively, are the normalized concentrations of TN, TP, Chla, and Sal by their respective inlet
concentrations. DO/DOy, is the normalized concentration of DO by its saturation concentration.
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PC was as a linear combination of all eight (four response and
four predictor) pi numbers. However, FA (Jolliffe 2002) resolved
multicollinearity by decomposing all pi numbers into a smaller set
of orthogonal, latent entities called factors. Loadings of pi numbers
on each factor were optimized by performing a varimax rotation.
The eigenvalue > 1 criterion was used to extract an optimal number
of factors that described the most data-system variance. Given
the reverse but complementary methodologies, PCA and FA were
used in concert to achieve an unbiased and confirmatory represen-
tation of interrelations among the predictor as well as response pi
numbers.

Finally, PLSR modeling (Wold et al. 2001) was used to directly
estimate the relative linkages between each response and the four
predictor pi numbers through a simultaneous decomposition of
the targeted response and all predictors (Schumann et al. 2013).
Each response pi number was fitted separately on the transformed
orthogonal domain with a minimum number of independent partial
least squares (PLS) components, which were linear combinations
of only the predictor pi numbers. The PLSR models were optimized
using a synthesis of the minimum Akaike information criteria
(AIC) (Akaike 1974) and the maximum Nash-Sutcliffe efficiency
(NSE) criteria (Nash and Sutcliffe 1970) to resolve any bias and
instability caused by multicollinearity among the predictor pi num-
bers. The optimal PLSR models were estimated by using SIMPLS
algorithm (de Jong 1993; Hubert and Branden 2003) and a 10-fold
cross validation method (Kuhn and Johnson 2013). The estimated
model coefficients associated with the optimal PLS components
were then transformed back from the orthogonal domain to the
Z-score domain of log;y-transformed pi numbers. The transformed
PLSR model coefficients represented the estimated relative link-
ages () of a response pi number with the predictor numbers.
The efficiency and accuracy of the final PLSR models of Z-scores
were, respectively, measured by NSE and the ratio of root-mean-
square error to the standard deviation of the observations (RSR).

Results

Mutual Correspondences of the Dimensionless
Numbers

The nonlinear correspondences between the response and predictor
pi numbers (log,y-transformed and standardized) were first exam-
ined by computing correlation coefficients (r) for wet and dry sea-
sons separately (Table 4). Across the two seasons, the in-stream
total nitrogen number (TN/TN,) had strong correlations with
the hydrologic control number (L./D.; r = —0.62 to —0.75) and
with the salinity number (Sal/Saly; r = —0.78 to —0.87). However,
the rotal phosphorus number (TP/TP;) had moderate to strong
correlations with only the land-use number (Apgr/Apur; I' =
0.49 to 0.62) in the two seasons. The stream biomass number
(Chla/Chl ag) also showed a moderate to strong correlation with
Aagr/Agur (r = 0.57) in the wet season; however, Chl a/Chl a,
was relatively strongly correlated with L./D, in both seasons
(r=—-0.60 to —0.66). The stream dissolved oxygen number
(DO/DO0Oy,) had strong correlations with the hyporheic exchange
number (GWD/L,; r = 0.70) and Apgr/Agur (t = —0.74) in the
wet and dry seasons, respectively. Further, moderate correlations
of DO/DOy, were found with L./D. (r = 0.48) and Sal/Sal,
(r = 0.55) in the wet season, and with GWD/L, (r = 0.57) in the
dry season.

The correlation matrices (Tables S3 and S4 in Supplemental
Data) further represented the mutual correspondences among all
pi numbers, suggesting a considerable multicollinearity in the data
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Table 4. Pearson correlation coefficients (r) between the response and
predictor pi numbers

Predictor pi numbers

Response

pi numbers Season L./D. GWD/L., Ajgr/Agur Sal/Saly

TN/TN, Wet  —0.75 —0.11 0.16 —0.78
Dry  —0.62 —0.34 0.16 —0.87

TP/TP, Wet  —0.18 —0.03 0.62 —0.10
Dry —0.23 0.00 0.49 0.28

Chla/Chl a, Wet  —0.66 —0.06 0.57 —0.37
Dry —0.60 0.01 0.29 0.22

DO/DOyg, Wet 0.48 0.70 —0.40 0.55
Dry 0.11 0.57 —0.74 0.40

Note: Data for all pi numbers were log,, transformed to incorporate any
nonlinear correspondences. Correlations in bold are significant at the
95% level of confidence from a two-tailed test.

matrices and meriting orthogonal analysis such as PCA, FA,
and PLSR. For example, a strong correlation (r = 0.74) was found
between Sal/Sal, and L. /D, in the wet season—indicating the in-
creasing salinity (i.e., increasing Sal/Salj) with the decreasing D,
(increasing L./D,) toward the coast (verified by scatter-plots).
However, Sal/Sal, had a much-reduced correlation with L./D,
in the dry season (r = 0.47), indicating the effectiveness and fre-
quent operation of salinity control structures to reduce saltwater
intrusion during low freshwater flows in the canals (Xie et al.
2017). Further, a moderate correlation (r = —0.55 to —0.57) was
found between A sgr/AgyL and GWD/L, across the two seasons.
Given GWD increases downward, the negative correlations indi-
cated the beneficial effects of agricultural/vegetated land and
adverse impacts of built land on the groundwater-surface water in-
teractions by, respectively, elevating and lowering the water table
through basin infiltration and aquifer recharge processes. Among
the water quality indicator numbers, Chl a/Chl a, had a strong cor-
relation with TP/TP, across the wet and dry seasons (r = 0.61 to
0.68), indicating TP as the limiting nutrient. Further, the moderate/
strong correlations of TN/TN, with Chla/Chla, (r = 0.60) and
with DO/DOy, (r = —0.56) in the wet season indicated the role
of TN to drive a potential eutrophication in the canals.

Relative Orientations and Groupings of the
Dimensionless Numbers

Among the eight PCs for eight pi numbers representing all involved
water quality response and predictor variables, the first two PCs
explained approximately 65%-71% of the total data variance
across the two seasons (see Table S5 in Supplemental Data).
The nonlinear loadings of the pi numbers on the first two PCs were
therefore represented through biplots [Figs. 2(a and b)].

Three groups were apparent on the PCA biplots for both wet
and dry seasons: (1) Aagr/Agur, TP/TPy, and Chla/Chlay;
(2) L./D, and Sal/Saly; and (3) GWD/L. and DO/DO,,. Based
on the relative orientations and length of vectors, Group 1 variables
appeared to be strongly linked with each other—reemphasizing the
dominant role of the subbasin’s unbuilt (e.g., agriculture and
vegetation) versus built land to drive stream TP (limiting nutrient)
and biomass in the corresponding stream reach. The positive link-
ages of Group 2 variables, as well as their strong negative linkages
with TN/TN,, indicated the detrimental impacts of increasing
Sal/Salj, (increasing salinity) on stream nitrogen with an increasing
L./D, (decreasing D.) toward the coast. The nearly orthogonal
orientation of TN/TN, with Asgr/Agur, suggested that subbasin
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Fig. 2. Biplots from principal component analysis showing interrelation patterns of predictor pi numbers and response pi numbers in (a) wet season
(June—October); and (b) dry season (November—May). Percent variance explained by each PC is shown in parenthesis.

land uses had not been any major sources of TN in these urban
streams. Instead, increasing TN/TN, with the decreasing L./D,
(increasing D.) toward the upstream watersheds indicated the
Everglades as the primary source of in-stream nitrogen. Further,
the orientation of TN/TN, and Chla/Chla, vectors suggested
their strong positive linkage in the wet season and weak linkage
(nearly orthogonal) in the dry season. Group 3 represented a strong
positive linkage between GWD/L. and DO/DO,,, indicating
the dominant effect of groundwater inputs over the surface flow
length and pollutant runoff on stream DO across both seasons.
Relative orientations and opposite directions of vectors also indi-
cated the negative impacts of higher A gr/Agur, TP/TPy,
Chl a/Chl ay, and TN/TN, on DO/DOy,, as well as that of in-
creasing Apgr/Agur on GWD/L.. Further, the orientations of
Group 2 variables with DO/DOy, suggested its notable positive
linkages with L./D, and Sal/Sal,.

Based on the closeness to the tip of the corresponding vectors,
the PC scores on the biplots demonstrated a good distribution
of the response and predictor pi numbers with relatively low to
high values among the five canals. For example, the sites of
C-11 canal had relatively high Asgr/ApuL, TP/TP,, TN/TN,
and Chla/Chla,, while demonstrating low L./D., Sal/Sal,
GWD/L,, and DO/DOy, across the wet and dry seasons (corrobo-
rated by Table S2). In contrast, most sites of C-13 canal appeared

Table 5. Major latent factors with the optimized loadings of the pi numbers

to have higher (than other sites) GWD/L,. and DO/DQy,, as well
as lower Aagr/Agur, TP/TPy, and Chla/Chla,. However, the
Hillsboro canal sites together represented low to high values of dif-
ferent response and predictor pi numbers across the two seasons.

Dominant Dimensionless Numbers and Linkages
Based on Optimal Latent Factors

The eigenvalue > 1 criterion led to three independent, latent factors
that optimally explained the variance of the data matrices for eight
pi numbers for the wet and dry seasons separately (Table 5).
Variances explained by the first three factors ranged, respectively,
from approximately 38% to 47%, 24% to 27%, and 18% to 22%
between the two seasons. Higher loadings of dimensionless
numbers on the same factors indicated their stronger linkages. Fac-
tor 1 had strong loadings of TN/TN, (—0.74 to —0.91), L./D,
(0.63 to 0.99), and Sal/Sal, (0.76 to 0.97) in both seasons, as well
as moderate loadings of Chla/Chla, (—0.56) and DO/DO,
(0.51) in only the wet season. Factor 2 had notable and strong load-
ings of Apgr/AguL, TP/TPy, and Chl a/Chl g in the wet season
(0.77-0.83). However, the TP number loaded moderately on
factor 2 (0.57) in the dry season, alongside the moderate loadings
of GWD/L, (—0.56) and the strong loadings of Axgr/AguL
(0.77) and DO/DOy, (—0.95). Factor 3 had high loadings of

Season Factor TN/TN, TP/ TP, Chla/Chl a, DO/DOy, L./D. GWD/L, Ancr/ApuL Sal/Sal,
Wet 1 —0.74 —0.08 —0.56 0.51 0.99 —0.08 0.17 0.76

2 0.23 0.77 0.83 —0.14 —0.13 —0.11 0.79 0.07

3 —0.19 0.00 —0.01 0.78 —0.05 0.92 ~0.50 0.23
Dry 1 —0.91 0.26 0.04 0.30 0.63 0.12 0.01 0.97

2 0.18 0.57 0.13 —0.95 0.12 —0.56 0.77 —0.12

3 0.17 0.53 0.99 —0.05 —0.64 0.09 0.18 0.20

Note: Bold values indicate variables having moderate to high loadings on each factor. Factors 1 and 3, respectively, explained the most and least variance in the

overall data matrix for each season.
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Table 6. PLSR model coefficients (3) of the standardized pi numbers

Predictor pi numbers

Response PLS

pi numbers Season L./D, GWD/L. AaGr/ABuL Sal/Sal, component NSE RSR

TN/TN, Wet —0.43 —0.06 0.16 —0.46 2 0.71 0.52
Dry —0.38 —0.20 0.03 —0.64 2 0.86 0.36

TP/TP, Wet —0.24 0.41 0.87 0.05 2 0.57 0.64
Dry —0.51 0.22 0.68 0.53 2 0.60 0.61

Chla/Chlag Wet —0.69 0.28 0.88 0.11 2 0.90 0.31
Dry —-0.93 0.09 0.46 0.65 2 0.83 0.40

DO/DO, Wet 0.30 0.66 —0.14 0.26 2 0.80 0.43
Dry 0.07 0.14 —0.63 0.32 2 0.68 0.54

Note: NSE = Nash-Sutcliffe efficiency; RSR = ratio of root-mean-square error to the standard deviations of observations. NSE and RSR indicate the goodness-

of-fit and accuracy of the model, respectively.

GWD/L, (0.92) and DO/DOy, (0.78), while a moderate loading of
Aagr/Agur (—0.50) in the wet season. In contrast, the dry season
had notable loadings on factor 3 for only TP/TP, (0.53), L./D,
(—0.64), and Chla/Chla, (0.99).

Estimated Relative Linkages between the Response
and Predictor pi Numbers

A synthesis of the minimum AIC and maximum NSE led to the
inclusion of two PLS components for achieving the power-law
based optimum PLSR models of the water quality response pi num-
bers (Fig. S1 in Supplemental Data). Model fitting efficiency
(NSE = 0.57-0.90) and accuracy (RSR = 0.31-0.64), as well as
the observed versus predicted plots (Fig. S2 in Supplemental
Data) indicated an acceptable performance of the optimal models.
Since the PLSR models were estimated on the orthogonal domain
with a minimum number of independent PLS components, multi-
collinearity among the predictor dimensionless numbers were op-
timally resolved. The model coefficients (Table 6), therefore,
provided relatively unbiased (compared to the correlation coeffi-
cients) and direct estimations (compared to the PCA and FA results)
of the individual contributions of different predictor pi numbers to
the variance of a response pi number.

TN/TN, had notably stronger linkages with L./D. and
Sal/Sal, than that with GWD/L,. and Apgr/Apur across the
wet and dry seasons (Table 6). The linkages of TN/TN, and
L./D, were similar (3 = —0.38 to —0.43) between the two sea-
sons. However, the linkage between TN/TN, and Sal/Sal, was
substantially higher in the dry season (3 = —0.64) than that of
the wet season (3 = —0.46). In contrast, TP/TP,, in the wet season
had a dictating linkage with the land-use number (Axgr/AguL;
[ = 0.87), compared to that of L./D., GWD/L., and Sal/Sal,.
Although the strongest control of TP/TP,, in the dry season was
also represented by Axgr/ApuL (6 = 0.68), additional notable
controls were demonstrated by L./D, (6 = —0.51) and Sal/Sal,
(6 =0.53). Similar to TP/TP,, Chla/Chla, was most strongly
linked with Apgr/Agyr, in the wet season. However, unlike
TP/TP, and alike TN/TN,, the wet season Chla/Chla, also
had a relatively strong linkage with L./D. (6 = —0.69). In con-
trast, Chl a/Chl g in the dry season had the highest linkage with
L./D, (6= -0.93), followed by Sal/Sal, (6= 0.65) and
Aagr/Agur (B = 0.46). Remarkably, the wet season DO/DO,
had a dictating linkage with GWD/L. (8 = 0.66), emphasizing
the predominant role of hyporheic (groundwater-surface water) ex-
changes. However, the land-use number had a dictating control on
DO/DOg, (8 = —0.63) in the dry season, compared to the other
three predictor pi numbers.
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Discussion

The research leverages the knowledge on major land-use and
hydrologic drivers of coastal-urban stream water quality from
Abdul-Aziz and Ahmed (2017) to formulate mechanistically mean-
ingful and important dimensionless numbers. Unlike the environ-
mental controls of individual drivers presented in Abdul-Aziz and
Ahmed (2017), the formulated dimensionless numbers in the
current study indicated the emergent (collective as well as contrast-
ing) controls of stream water quality in coastal-urban streams.
Convergence of results from the four layers of data analytics
unequivocally suggested hydrologic control number (L./D.) and
salinity number (Sal/Salj) as the most important driver numbers
for stream TN/TN, across the wet and dry seasons. In contrast,
based on a synthesis incorporating the two seasons, the land-use
number (Aagr/Agur)s Le/De, and Sal/Sal, represented the most
notable and meaningful mechanistic controls on both TP/TP, and
Chla/Chla,. However, stream DO/DOg, was predominantly
driven by the hyporheic exchange number (GWD/L,) in the wet
season and by Agr/Agyr in the dry season. Overall, dimensional
analysis and data analytics reduced nine original variables to a set
of three to four important and mechanistically meaningful dimen-
sionless numbers (including both predictor and response numbers)
for each water quality indicator. This is a remarkable example of
ecohydrological-biogeochemical similitudes (parametric reduc-
tions) and a new contribution to the watershed-scale study of
coastal-urban stream water quality processes. This is particularly
useful for small data sets, which are often encountered in stream
water quality and ecosystem health problems. The meaningful
set of dominant dimensionless numbers can provide important in-
sights and valuable understanding into the underlying controls and
dynamics of coastal-urban stream water quality.

The strong negative linkage of TN/TN, with L./D. indicated
the dominant control of external drivers (influxes from the Ever-
glades; represented by D.) on in-stream nitrogen, compared to
the surface runoff of the draining watersheds (represented by L,).
The external control was corroborated by the weak positive linkage
of TN/TN, with Aygr/ApuL, suggesting that the draining water-
shed land uses (AGR = agriculture + vegetation) had not been any
major sources of TN in these urban streams. Instead, longer L,
(larger watersheds and increasing L./D.) generated higher runoff
from the predominantly built lands (64.5%), leading to dilution of
in-stream TN. In contrast, increasing TN/TN, with increasing D,
(decreasing L./D,) toward the upstream watersheds suggested the
Everglades as the primary source of stream nitrogen (Abdul-Aziz
and Ahmed 2017).
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Given the resolution of multicollinearity among the predictor
numbers (e.g., L./D, versus Sal/Saly) with PLSR (Table 6), the
strong negative linkage between TN/TN, and Sal/Sal, empha-
sized the detrimental impacts of increasing salinity on stream nitro-
gen near the coast. Salinity adversely affects the metabolism of a
microbial community (Jackson and Vallaire 2009)—reducing min-
eralization of insoluble organic nitrogen settled at the stream-bed
and hindering their influx from the benthic zone to the water col-
umn (Rietz and Haynes 2003; Jackson and Vallaire 2009). Further,
fixation of atmospheric nitrogen and its transfer into surface water
(Brock 2001; Gardner et al. 2006) can be negatively impacted with
increased salinity (Herbst 1998; Palma et al. 2013) toward the
coast.

The strong positive linkage of TP/TP, with Apgr/Agur. indi-
cated the predominant control of agricultural and vegetated lands of
the draining watersheds on in-stream phosphorus, compared to that
of the built lands. The agricultural and vegetated lands, despite
being a small fraction (~10%) of the watersheds, were the primary
sources of stream TP across the wet and dry seasons due to wash-
off of fertilizers and dead organic matters by rainfall runoff (Li et al.
2009; Bu et al. 2014; Wan et al. 2014a, b). In contrast, the highly
built land uses (~64.5%) of the watersheds contributed to the
dilution of in-stream TP by generating a higher surface runoff.
Termination of direct sewage discharge into the canals from the
regional wastewater treatment plants since 1989 (BCDPEP 2001)
also supported dilution, rather than contribution, of in-stream TP by
the draining urban watersheds. The internal watershed control on
stream phosphorus was further corroborated by the weaker negative
linkages of TP/TP, and L../D, (than that of Asgr/Agyr)—under-
lining that the Everglades (indicated by a higher D.) had been a
minor source of phosphorus for the urban streams in southeast
Florida (Rudnick et al. 1999; Abdul-Aziz and Ahmed 2017).
Instead, higher L./D, represented a longer flow path (L,), leading
to a higher loss of phosphorus (e.g., through deposition, sorption,
infiltration, and uptake by biotic community; see McDowell et al.
2004) during the watershed transport before reaching the stream,
notably in the dry season (Table 6). This is consistent with Gburek
et al. (2000) that reported a 50% decrease in phosphorus concen-
tration from headwater to the watershed outlet in the Susquehanna
River Basin, in the eastern part of the United States.

The notable positive linkage of TP/TP, with Sal/Sal, in only
the dry season may be attributed to the substantially higher salinity
number in the dry season (average Sal/Sal, = 121) than that
of the wet season (average Sal/Sal, = 13) (Table 3). Salinity
decreases the sorption capacity of sediments that binds phosphorus
(Fox et al. 1986; Sundareshwar and Morris 1999; Jordan et al.
2008). Therefore, phosphorus is released in the water column
through desorption from sediments in highly saline water. Zhang
and Huang (2011) previously reported a substantial release of sedi-
ment phosphorus in the highly saline water of Florida Bay. Our
study suggests that the sediment release of phosphorus is also
prevalent in the urban streams of southeast Florida when the in-
stream salinity increases substantially in the dry season (Table 1),
with the exception of C-11, which had a very low salinity across the
two seasons (Table S1).

The similar linkages of Chl a/Chla, and TP/ TP, with the pre-
dictor dimensionless numbers reiterated TP as the limiting nutrient
in the managed urban canals of southeast Florida. This is consistent
with the previous studies that reported phosphorus limitation in
south Florida’s bays and estuaries (e.g., Bricefo et al. 2013), Ever-
glades (Noe et al. 2001; Childers et al. 2006), and coral reefs off the
coast (Lapointe and Bedford 2010). The moderate to strong pos-
itive linkages of Chla/Chla, with Aygr/Apgur, can be attributed
to the dominant effects of fertilizers (TP) and dead organic matters
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inputs to the streams from the agricultural and vegetated lands over
the dilution effects of built lands by rainfall runoff (Corkum 1996;
Li et al. 2009; Bu et al. 2014; Wan et al. 2014a, b). The strong
negative linkages of Chla/Chla, with L./D, can be attributed to
the increased phytoplankton biomass with higher concentrations of
stream TN toward the upstream (increasing D, decreasing L./D,.),
contributed by runoff from the Everglades (Brand 2002; NRC
2002). Conversely, higher dilution of stream nitrogen and/or loss
of phosphorus during watershed transport by, respectively, higher
runoff and/or longer flow path for larger watersheds (higher L.,
increasing L./D,) might have contributed to a decrease in stream
biomass. However, the stronger negative linkage of Chla/Chla,
and L./D, in the dry season (than in the wet season) emphasized
the impact of basin deposition, adsorption, and infiltration
(than dilution) of the limiting nutrient (TP) on stream biomass
during transport through a longer flow path. Further, the strong
positive linkage of Chla/Chla, with Sal/Sal, in only the dry
season can be attributed to the sediment release of dissolved inor-
ganic phosphorus due to the higher salinity (Sundareshwar and
Morris 1999; Jordan et al. 2008) during low freshwater flow in
the canals.

The dictating linkage of DO/DO,, with GWD/L, in the
wet season (Table 6) suggested the predominant control of
groundwater-surface water interaction on stream DO due to a
higher aquifer recharge and an elevated groundwater table in the
study region (Lietz 1999). The strong positive linkage—i.e., higher
DO/DOg, with higher GWD/L, due to a higher groundwater
depth from the land surface and a lower hyporheic exchange;
and vice versa—may be attributed to the low DO of the underlying,
highly transmissive Biscayne aquifer (median = 0.15 mg/L)
(Bradner et al. 2005). However, the linkage of DO/DOg, with
GWD/L,. was weak in the dry season due to a higher GWD
(Tables 1 and S1) and lower hyporheic exchange than that of the
wet season. Instead, the dominant and strong negative linkage
of DO/DOy, with Apgr/Agur in the dry season indicated the
deteriorating effects of incoming watershed nutrients (specifically,
TP) and organic matters (e.g., litters) from the agricultural and
vegetated lands during low flow in the canals. The negative linkage
further indicated a secondary role of dilution (and/or loss during
watershed transport) of nutrients to increase stream DO by higher
runoff generation from the predominantly built lands, compared to
the adverse impacts of the agricultural and vegetated lands.

Conclusions

The emergent (contrasting as well as collective) controls of
coastal-urban stream water quality were evaluated by using simili-
tude and dimensional analysis, considering southeast Florida a
prototype of growing coastal-urban environments. Numerous sets
of dimensionless pi numbers were derived by changing the repeat-
ing variables for four water quality indicators (TN, TP, Chl a, and
DO); however, only the mechanistically meaningful sets were
chosen for interpretations. The response dimensionless numbers
of TN/TN,, TP/TP,, and Chl a/Chl a, represented, respectively,
the concentrations of in-stream TN, TP, and Chla normalized by
their immediate upstream reach concentrations. The dimensionless
DO/DOg, number was obtained by normalizing the in-stream
DO with its saturated concentration (DO, ) to avoid a misleading
scaling by the upstream reach concentration in the presence of a
DO sag phenomenon. The meaningful predictor numbers included
the hydrologic control number (ratio of watershed characteristic
length to the distance from coast or proximity to the Everglades),
hyporheic exchange number (ratio of groundwater depth from
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land surface to watershed characteristic length), land-use number
(ratio of agricultural plus vegetated lands to built-up lands),
and salinity number (ratio of downstream to upstream salinity).
The four predictor numbers represented the collective as well
as contrasting controls of land use, hydrologic, and external
(e.g., Everglades) drivers on coastal-urban stream water quality
in southeast Florida with an acceptable model fitting efficiency
and accuracy (NSE = 0.57-0.90; RSR = 0.31-0.64).

The research evaluated the hypothesis that coastal-urban
stream water quality processes represent emergent ecohydrological-
biogeochemical similitude (parametric reductions). For each of
the four water quality indicators, similitude and dimensional analy-
sis reduced nine original variables (including predictors and
response) into five mechanistically meaningful dimensionless num-
bers, which were further reduced to three to four important dimen-
sionless numbers through data analytics. The hydrologic control
number and salinity number represented the key controls on stream
TN/TNj, across the wet and dry seasons. The Everglades appeared
as the dominant (external) source of in-stream nitrogen, which was
diluted by surface runoff from the predominantly built lands
(64.5%) of the draining watersheds and was reduced by increasing
salinity toward the coast. In contrast, the land-use number, hydro-
logic control number, and salinity number dominated both TP/TP,
and Chla/Chla, incorporating the two seasons—reiterating the
limiting nutrient in the urban canals of southeast Florida. The agri-
cultural and vegetated lands, despite being a small fraction (~10%)
of the draining watersheds, were the main sources of stream
phosphorus across the two seasons. Further, the sediment release
of dissolved inorganic phosphorus appeared to have augmented
stream TP in the dry season due to a higher salinity during the low
freshwater flows. However, DO/DOy, was dominated by the hy-
porheic exchange number in the wet season due to an elevated
groundwater table, and by the land-use number in the dry season
due to the incoming watershed nutrients (i.e., TP) and organic mat-
ters (e.g., litters) from the agricultural and vegetated lands.

The knowledge and insights from the water quality numbers
and their dominant predictor numbers are expected to guide water
resources management to achieve and/or maintain healthy coastal-
urban stream ecosystems, as mandated by the Clean Water Act
(FWPCA 2002). The dimensionless numbers can guide water
managers to identify streams that are more vulnerable to pollution
(than others), and set a priority in management. For example, based
on the hydrologic control number, if the stream locations of two
watersheds are a similar river-distance away from the Everglades,
then the smaller watershed’s outlet would have a higher in-stream
nitrogen due to less dilution by a lower rainfall runoff. In contrast,
the longer flow path of a larger watershed leads to a higher loss of
phosphorus during transport through runoff before reaching the
stream, notably in the dry season. Therefore, watershed outlets
(stream locations) with a lower hydrologic control number would
have the higher in-stream nutrients and risk for algal bloom
(e.g., Chla). However, given that nitrogen in the urban streams
is mainly contributed by the external Everglades, the nitrogen loads
should be mitigated in the water conservation areas of the Ever-
glades (Abdul-Aziz and Ahmed 2017). In contrast, the major re-
duction of stream TP and organic matters would have to be
achieved internally by treating runoff from agricultural and veg-
etated lands of the draining watersheds through detention ponds,
for example. Reduction of salinity with control structures during
low freshwater flows (especially in the dry season) may further
reduce the in-stream phosphorus. Availability of less nutrients is
expected to control algal biomass and organic matter, and enhance
DO in the streams of southeast Florida and other coastal-urban
environments.
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Notation

The following symbols are used in this paper:
Agr = area of agricultural land (km?);
Agyy = area of built-up land (km?);
a, b =exponents of the power-law Egs. (3) and (4);
Chla = chlorophyll a in the stream monitoring station at the
subbasin outlet (ug/L);
Chlay = chlorophyll @ in the stream monitoring station at the
subbasin inlet (ug/L);
¢, d, e, g=exponents of the power-law Eq. (11);
D, = stream centerline distance of a water quality
monitoring station from the coastline (km);
DO = dissolved oxygen in the stream monitoring station at
the subbasin outlet (mg/L);
DO, = dissolved oxygen in the stream monitoring station at
the subbasin inlet (mg/L);
DOy, = saturated concentration of dissolved oxygen in a
stream monitoring station (mg/L);
f = function;
GWD = groundwater depth from the land surface (km);
k = coefficient of a power-law equation;
L = dimension of length;
L. = subbasin characteristics length (km);
M = dimension of mass;
Sal = salinity in the stream monitoring station at the
subbasin outlet (mg/L);
Saly = salinity in the stream monitoring station at the
subbasin inlet (mg/L);
TN = total nitrogen in the stream monitoring station at the
subbasin outlet (mg/L);
TN, = total nitrogen in the stream monitoring station at the
subbasin inlet (mg/L);
TP = total phosphorus in the stream monitoring station at
the subbasin outlet (mg/L);
TP, = total phosphorus in the stream monitoring station at
the subbasin inlet (mg/L);
II; = dimensionless pi numbers (i = 1, 2, 3,4, 5, 6, and 7);
and
¢ = function.
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Tables S1-S5, Figs. S1 and S2, and Appendix S1 are available on-
line in the ASCE Library (www.ascelibrary.org).
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