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Abstract We used a simple, systematic data-analytics

approach to determine the relative linkages of different

climate and environmental variables with the canopy-level,

half-hourly CO2 fluxes of US deciduous forests. Multi-

variate pattern recognition techniques of principal com-

ponent and factor analyses were utilized to classify and

group climatic, environmental, and ecological variables

based on their similarity as drivers, examining their inter-

relation patterns at different sites. Explanatory partial least

squares regression models were developed to estimate the

relative linkages of CO2 fluxes with the climatic and

environmental variables. Three biophysical process com-

ponents adequately described the system-data variances.

The ‘radiation-energy’ component had the strongest link-

age with CO2 fluxes, whereas the ‘aerodynamic’ and

‘temperature-hydrology’ components were low to moder-

ately linked with the carbon fluxes. On average, the

‘radiation-energy’ component showed 5 and 8 times

stronger carbon flux linkages than that of the ‘temperature-

hydrology’ and ‘aerodynamic’ components, respectively.

The similarity of observed patterns among different study

sites (representing gradients in climate, canopy heights and

soil-formations) indicates that the findings are potentially

transferable to other deciduous forests. The similarities also

highlight the scope of developing parsimonious data-driven

models to predict the potential sequestration of ecosystem

carbon under a changing climate and environment. The

presented data-analytics provides an objective, empirical

foundation to obtain crucial mechanistic insights; com-

plementing process-based model building with a warranted

complexity. Model efficiency and accuracy (R2 = 0.55–

0.81; ratio of root-mean-square error to the observed

standard deviations, RSR = 0.44–0.67) reiterate the use-

fulness of multivariate analytics models for gap-filling of

instantaneous flux data.

Keywords Relative linkages � CO2 fluxes �
Data-analytics � Pattern recognition � Empirical modeling �
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Introduction

Terrestrial ecosystems are the major components of earth’s

carbon cycle and traditionally regarded as the reservoirs of

green carbon. Turbulent land-atmospheric fluxes of vertical

CO2 contribute to ecosystem-scale carbon budget by bal-

ancing between the above-ground assimilatory processes

(photosynthesis) and both above-ground and below-ground

respiratory processes (Heimann and Reichstein 2008; Cao

and Woodward 1998; Schimel et al. 2001). The carbon flux-

climate feedback process is sensitive to various meteoro-

logical, hydrological, and ecological variables at different

spatiotemporal scales. Although much research has been

conducted to characterize the role of key environmental

stressors and climatic variability on land-atmospheric carbon

and heat fluxes (e.g., Schmidt et al. 2011), a robust under-

standing and prediction of turbulent carbon flux dynamics is
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yet to be achieved (Piao et al. 2013; Morales et al. 2005;

Geider et al. 2001). Investigation of the relative effects of

climatic and environmental variations on turbulent carbon

fluxes is, therefore, an area of active research. In particular,

quantification of the relative linkages of climatic and envi-

ronmental variables with the vertical CO2 fluxes is an

important step toward building relatively simple empirical to

complex mechanistic (i.e., process-based) models for robust

predictions and management of ecosystem carbon. For

example, altering land uses/cover can change surface albedo

(light reflectance), net radiation, temperature, soil moisture,

heat fluxes, canopy height, roughness height, and friction

velocity. Knowledge and insights on the relative carbon flux

linkages of climatic and environmental variables would,

therefore, help in developing land management strategies

and priorities for a maximum uptake (sequestration) and

minimum emission of ecosystem carbon.

Numerous process-oriented biosphere models are

available for simulation and prediction of carbon fluxes by

mechanistically capturing the necessary ecosystem con-

stituents such as plant photosynthesis, respiration, and soil

biogeochemical processes. Examples of mechanistic mod-

els include IFUSE (Desai 2010), Ecosystem Demography

(ED) (Moorcroft et al. 2001), BIOME-BGC (Running and

Coughlan 1988; Running and Gower 1991), Equilibrium

Boundary Layers (EBL) (Shir and Bornstein 1977), Carbon

Tracker (CT) (http://carbontracker.noaa.gov), HYBRID

(White et al. 1999), ECOSYS (Grant et al. 2012), CEN-

TURY (Glimanov et al. 1997), LINKAGE (Post and Pastor

1996), etc. Most models use photosynthetically active

radiation, vegetation index, atmospheric CO2 concentra-

tion, air and soil temperatures, vapor pressure deficit, and

soil moisture as inputs (Chen et al. 2011; Sims et al. 2008;

Schubert et al. 2012; Li et al. 2007; Turner et al. 2006).

These models attempt to predict sub-daily to seasonal and

inter-annual variability of carbon flux dynamics.

Process-based models are built on numerous scientific

hypotheses and their outcome inherently depends on the

embedded process formulations and parameterizations (Beer

et al. 2010; Keenan et al. 2012). Further, mechanistic mod-

eling generally involves a complex structure; requires data for

many input variables that are not always available, and

involves a large parameter set making the model predictions

quite uncertain. Application of the mechanistic models also

requires high computational resources, expert knowledge and

specialized skills, hindering their wide-spread applications as

tools for a sustainable management of ecosystem carbon

under a changing climate and environment.

Data-driven analytic approaches can lay out the foundation

for building an appropriate process-based model of warranted

complexity. Standard techniques (e.g., linear regressions,

nonlinear regressions using mainly Arrhenius and Michaelis–

Menten equations, artificial neural networks) have already

been successfully applied to fill gaps in measured data of

ecosystem fluxes and environmental variables (Falge et al.

2001; Carrara et al. 2003; Lloyd and Taylor 1994; Richardson

et al. 2006; Hollinger et al. 2004; Barr et al. 2004; Gove and

Hollinger 2006; Aubinet et al. 1999; Braswell et al. 2005; Hui

et al. 2004; Stauch and Jarvis 2006). Multi-scale models were

also developed to estimate carbon fluxes from selected eco-

systems using remotely sensed and in situ observations of

geographical, environmental, and meteorological variables

(e.g., Jahan and Gan 2013; Wylie et al. 2007; Mäkelä et al.

2008; Byrne et al. 2005; Oechel et al. 2000). However, lack of

knowledge on the general pattern of dominant predictors and

their complex interactions, as well as site-specificity of esti-

mated model parameters, still pose as major gaps in data-

driven, robust predictions of terrestrial carbon fluxes.

In this paper, we present a simple, systematic data-analytics

approach to analyze observational data and determine the

relative linkages of different climate and environmental

variables with the canopy-level, vertical CO2 fluxes of eight

US deciduous forests. Multivariate pattern recognition tech-

niques such as the principal component analysis (PCA) and

factor analysis (FA), in concert with the Pearson correlation

analysis, were utilized to classify and group climatic, envi-

ronmental, and ecological variables based on their similarity

as drivers, examining their interrelation patterns and relative

influences in different forest sites. Explanatory partial least

squares regression (PLSR) models were then developed to

estimate the relative linkages of CO2 fluxes with the climatic

and environmental variables. Our findings will guide the

development of parsimonious empirical models, while

informing the building of appropriate mechanistic models, for

robust predictions of ecosystem carbon fluxes from the

deciduous forests and other similar ecosystems.

Materials and Methods

Study Sites

The study sites include the following eight deciduous broad-

leaf forests, ranging from the upper mid-western to the

northeastern USA (Fig. 1): (i) Bartlett Experimental Forest,

New Hampshire; (ii) Harvard Forest, Massachusetts; (iii)

Missouri Ozark, Missouri; (iv) Morgan Monroe State Forest,

Indiana; (v) Ohio Oak Openings, Ohio; (vi) Silas Little

Experimental Forest, New Jersey; (vii) University of Mich-

igan Biological Station (UMBS), Michigan; and (viii) Wil-

low Creek Forest, Wisconsin. Although these sites have

similarity in vegetation cover, they represent diversity in

climate, topography, land uses, soil and hydrologic patterns,

etc. Consideration of the relatively large geographical

region, therefore, incorporates a potentially high spatial

gradient in land-atmospheric carbon flux dynamics.
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The Bartlett Experimental Forest (canopy height: 19 m)

has a rolling to mountainous topography with gentle slope

and spodosol soil order; climate is nearly extreme with a

minimum daytime temperature of around 90 �F during

summer and -30 �F during winter. Harvard forest (canopy

height: 23 m) has a temperate climate and a sandy soil

formation in the top layer and sand-gravel-silt at the bottom.

Missouri Ozark (canopy height: 24.2 m) and Morgan

Monroe State Forests (canopy height: 27 m) share a similar

temperate continental climate, while representing different

soil formations (silty loam with a rocky, thin soil cover at

Missouri, whereas a combination of clay, loam, and lime-

stone residue at the Morgan site). Ohio Oak Forest (canopy

height: 24 m) has a humid climate and a flat terrain with

sandy mixed soil. Silas Little Experimental Forest (canopy

height: 9.52 m) has a cool, temperate climate, and a sandy

soil formation. The UMBS site (canopy height: 12 m) is

characterized by the temperate northern climate and a sandy,

Entic Haplorthod, glacial till soil. The Willow Creek site

(canopy height: 24.2 m) represents the northern continental

climate with short, moist growing seasons and cold winters,

and a soil formation similar to that of the UMBS site.

Overall, the selected eight study sites incorporate the

potential effects of a variable canopy height (9.52–27 m),

different climatic regimes (humid to temperate to nearly

extreme), and diverse soil morphology on the carbon flux

dynamics.

Data Sets

Observational data of the half-hourly, canopy-level CO2

fluxes, and the corresponding climate and environmental

variables were obtained for different, recent annual cycles

(2006–2011) for the study sites from the AmeriFLUX

network (http://ameriflux.ornl.gov) (Table 1); selection of

the 5-year period incorporated the effect of multi-year

temporal gradients on carbon flux dynamics. Selected

variables were vertical CO2 flux (measured above the

canopy without correcting for underlying storage and

advection) (FCO2
; denoted as FC in AmeriFLUX); ambient

CO2 concentration (CCO2
); net radiation (RN); incoming

photosynthetically active radiation (PAR); sensible heat

flux (SHF); latent heat flux (LHF) (ecosystem water

exchanges); air temperature (TA); soil temperature (TS);

vapor pressure deficit (VPD); soil water content (SWC);

wind speed (WS); and friction velocity (UST). The TA,

Fig. 1 Locations of the selected eight deciduous forest study sites
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WS, PAR, LHF, and SHF represent measurements just

above the canopy level. The radiation measurements reflect

the impacts of cloudiness, which can significantly control

plant photosynthesis (Fuentes and Wang 1999).

Choice of the selected study years (2006–2011) was

based on the most recent, relatively high availability of

reliable data; the set of participatory variables was deter-

mined by a preliminary data analysis and leveraging cur-

rent understanding of carbon flux dynamics in the selected

ecosystems. The data sets contain four distinct process

partitions of flux, radiation, above-ground and below-

ground environmental variables. Most of the process-based

carbon flux prediction models used these components for

system representation (Carvalhais et al. 2005; Desai 2010;

Chen et al. 2011); some empirical models also adopted a

similar approach (e.g., Wylie et al. 2007).

Collected data are classified as level-2, which passed

through QA/QC checks. Since data sample for each forest

site was very large, gaps in the data matrix were not filled in

order to avoid any additional biases in the empirical model

building. We applied a two-step procedure to remove the

unsuitable data and prepare the final data set for each of our

eight sites. First, half-hourly data panels representing gaps

for more than two participatory variables were removed

from further analysis. This procedure led to the exclusion of

half-hourly panel data over a year by around 24 % for both

Missouri Ozark and Silas Forests, by 33 % from the UMBS,

by 49 % from the Willow Creek, by 55 % from the Ohio

Oak Forest, by 59 % from the Morgan Forest, by 67 % from

the Bartlett Forest, and by 74 % from the Harvard Forest

(see Table 1 for the final sample sizes). Although according

to Falge et al. (2001), flux towers can encounter around

35 % missing data annually at the half-hourly scale, our

removal percentages were higher for most stations because

some variables (e.g., soil water content), which had not been

collected by the eddy covariance method, encountered

higher gaps than the flux data. Second, the gap-filtered data

for each variable at each station were plotted with time (not

shown) to visually check the presence of any unreasonable

spikes (i.e., outliers), which were subsequently removed.

This secondary filtering led to the removal of 1 half-hourly

observation panel for the Silas Forest, 3 observation panels

for the UMBS, 2 observation panels for the Willow Creek, 3

observation panels for the Harvard Forest, and 14 observa-

tion panels for the Bartlett Forest. The final data sets

(N = 4,446–13,194; see Table 1) incorporated the effects of

analyzing an equivalent single to multiple seasons on carbon

flux dynamics among different stations. Per AmeriFLUX

sign conventions, positive sign represents upward fluxes

(land/forest to atmosphere) of FCO2 , LHF and SHF; negative

refers to their downward fluxes (atmosphere to land/forest).

In contrast, positive values of radiation (RN and PAR)

indicate downward (atmosphere to forest) fluxes and vice

versa.

Although photosynthesis and respiration are two dif-

ferent processes and can be dictated by different drivers

(e.g., radiation vs. temperature), they often share common

stressors. Partitioning of FCO2
into photosynthesis and

respiration was not considered in this study because the

objective was to understand (and quantify) the relative

linkages and groupings of different variables influencing

the overall diurnal (24-h) cycle of carbon exchanges. Since

the study goal was to determine the relative linkages of

mainly climate and environmental variables with the can-

opy-level vertical carbon fluxes, biological variables such

as the canopy leaf-area-index (LAI) were not included in

the data matrices. Precipitation was not also included

because of the lack of availability of 30-min interval;

instead SWC was used as a surrogate variable to represent

hydrologic effect. We also considered latent and sensible

heat fluxes in the data matrix in order to directly incorpo-

rate ecohydrologic dynamics.

Data Analysis and Empirical Modeling

We used a simple data-analytics approach that incorporates

Pearson correlation analysis, as well as the multivariate

PCA, FA, and PLSR to emphasize the entire methodology

and overall outcomes, rather than the individual analyses or

analysis steps. The data-analytics methodology is briefly

summarized in a flow diagram (Fig. 2); the analyses and

modeling were done using multiple computation software

and programming platforms such as MATLAB, R, and

Microsoft Excel.

Pearson Correlation Analysis

Pearson product-moment correlation coefficients were

computed to obtain background information on the linear

dependency between FCO2
and the climatic/environmental

variables for the different deciduous forest sites. Triangular

correlation matrices involving all participatory variables

were also computed to obtain a preliminary understanding

on the multicollinear structure of the data matrix.

Principle Component Analysis (PCA) and Factor Analysis

(FA)

Multivariate advanced data reduction, interpretation and

pattern recognition techniques such as the PCA and FA mine

relationships among participating variables in a matrix of

independent factors. PCA explains the variance–covariance

structure of a data matrix through some orthogonal, linear

combinations of original variables, emphasizing data
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interpretation, and reduction in an unsupervised manner

(Peres-Neto et al. 2003; Jolliffe 1993; Mahbub et al. 2010).

It was previously applied to investigate the spatial repre-

sentativeness of AmeriFLUX network by grouping homo-

geneous areas (Hargrove and Hoffman 2005). A virtue of

PCA is that it can unravel relationships hidden in the ori-

ginal data and allows interpretations that are not easy to

make using a Pearson correlation matrix. We applied

explanatory PCA on the data matrices of the biological,

climatic, and environmental variables for the eight study

sites. In order to bring different variable units and data

sources on a comparable reference scale, data for all the

variables were standardized (and made dimensionless to

obtain Z-scores) by dividing their instantaneous deviations

from the corresponding annual averages by the respective

standard deviations (i.e.,Z ¼ X�l
r ; where Z = Z-score =

normalized variable, X = original variable, l = annual

average of X, and r = standard deviation of X). First two

principal components (PCs) were extracted from the loading

matrix (that represents correlation between the PCs and the

original variables) and displayed through biplots, which

exhibit the possible groupings and interrelations (orientation

and correlation strengths) among participatory variables.

FA characterizes the covariance liaisons among many

variables with a few rudimental, but unobservable, quan-

tities called factors. FA has been successfully applied for

data mining and analysis in many disciplines (Panda et al.

2006; Dragon 2006; and Liu et al. 2003). We applied FA in

order to reanalyze the normalized data and verify findings

from the PCA by explaining the system variances with

fewer latent variables (factors). Individual latent factors

were extracted based on an initial eigenvalue criterion

(eigenvalue[1.0). Additionally, the ‘‘varimax’’ orthogonal

rotation was performed, maximizing the sum of the

variances of the loading matrices to optimize loading (i.e.,

correlation) values of the different variables on each factor.

Factors extracted thereby were able to describe most of the

variances of the data matrices for different study sites.

Partial Least Squares Regression (PLSR)

PLSR is a sophisticated data-driven method to integrate

features from a supervised principal component analysis

and multiple regressions, explaining the linear relationships

between the dependent (i.e., response) variable and inde-

pendent (i.e., predictor) variables (Wold 1966, 1982). The

unique advantage of using PLSR over traditional multiple

linear regressions is that it largely eliminates high vari-

ability and instability of estimated parameters caused by

multicollinearity among predictors. Since the PLSR

regression is performed in the transformed orthogonal

planes using the independent PLS components by maxi-

mally linking data covariance with the response variable,

all the predictor variables can be kept in the final model

(Kuhn and Johnson 2013). The regression coefficients of

the optimal PLSR model are leveraged to compute the

regression coefficients (BETA) of the original independent

variables by inverting the linear transformations between

the PLS components and original variables. Since the issue

of multicollinearity is resolved in the PLSR domain, the

derived regression coefficients (BETA) of the original

variables should ideally be unaffected by any multicollin-

earity existing in the data matrices.

In order to quantify the relative linkages of climatic and

environmental variables with the vertical CO2 fluxes, nor-

malized (dimensionless) PLSR models were developed

using Z-scores of all participatory variables. The PLSR

models were trained (i.e., fitted) and verified (i.e., tested)

with half-hourly data (N = 4,446–13,194 among different

stations) using the SIMPLS algorithm (de Jong 1993; Hu-

bert and Branden 2003) and a 10-fold cross-validation

method (Kuhn and Johnson 2013). The model intercept

was ‘‘zero’’ for all sites since Z-score variables were used

for the model fitting.

Application of PLSR requires the selection of optimum

number of PLS components to ensure minimal prediction

error (optimum F statistics) while retaining model stability.

The optimal numbers of PLS components were determined

using the Akaike Information Criterion (AIC) (Akaike

1974) and coefficient of determination (R2), as obtained

from the 10-fold cross-validations. Subject to the different

sample sizes, a normalized AICFCO2
was defined to bring all

sites to a comparable scale as follows:

AICFCO2
ðpÞ ¼ ln

SSEFCO2

N

� �
þ 2p

N
ð1Þ

Obtain the correlation structure of variables 
through Pearson correlation matrix

Identify groupings and inter-relation patterns of 
variables using principal component analysis

Determine the relative importance of different predictors
using variable importance on the PLS projection

Quantify the relative linkages of different variables with 
the CO2 fluxes using PLSR model coefficients 

Extract significant, hidden factors by factor analysis

Fig. 2 The data-analytics methodology to determine the relative

carbon flux linkages of different climate and environmental variables
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where p is the total number of the model PLS components,

N is the sample size, and SSEFCO2
is the total sum of squared

error upon estimation of carbon fluxes (FCO2
). Using the

optimum number of PLS components, we employed both

the ‘‘variable importance in the projection (VIP)’’ (i.e., PLS-

VIP) and ‘‘regression coefficients (BETA)’’ (i.e., PLS-

BETA) methods as the complementary approaches to

determine the relative importance of different predictors for

the model response (Wold et al. 1993, 2001; Chong and Jun

2005). Higher VIP scores and higher regression coefficients

indicate more influential predictors in the latent predictor-

response matrix; as a rule of thumb, VIP scores exceeding

1.0 can be considered as the most informative predictors for

the response (Kuhn and Johnson 2013). Further, the

regression coefficients (BETA) of the Z-score PLSR models

can represent the relative linkages of the predictor variables

(CCO2
, RN, PAR, SHF, LHF, TA, VPD, TS, WS, UST, and

SWC) with the response variable (FCO2
).

Results

Correlation Structure of the Data

The Pearson correlation coefficients between half-hourly FCO2

and the corresponding climatic/environmental variables were

significant at the 95 % level of confidence (a = 0.05 for a two

tailed test) (Table 2). Since the participatory variables (e.g.,

carbon and heat fluxes, temperatures) had both positive and

negative values, absolute values of the correlation coefficients

were used to describe the linear correspondences of different

variables. For all the study sites, FCO2
demonstrated strong

linear correspondences with the biosphere radiations (RN and

PAR) (|r| = 0.61–0.71) and LHF (ecosystem-atmospheric

heat and water exchanges due to evapotranspiration)

(|r| = 0.65–0.87); while showing moderate correlations

(|r| = 0.29–0.56) with the SHF (ecosystem-atmospheric heat

exchanges due to temperature gradient), as well as with the

ambient carbon storage (CCO2
) (|r| = 0.46–0.57). Moderate

linear correspondences of FCO2
were also apparent with the air

temperature (TA) (|r| = 0.28–0.51) and soil temperature (TS)

(|r| = 0.24–0.51) among the different study sites. Vapor

pressure deficit (VPD) and available soil moisture (SWC)

showed weak to moderate correlations with FCO2
(|r| = 0.10–

0.54 and |r| = 0.01–0.33, respectively). In contrast, the linear

correspondences of FCO2
with the aerodynamic drivers (WS

and UST) were relatively weak (|r| = 0.03–0.24). Further-

more, the triangular correlation matrices (not shown) for dif-

ferent study sites revealed high mutual correlations among the

flux related variables (SHF, LHF, RN, and PAR). For exam-

ple, the correlation coefficient (r) between RN and PAR was

0.99; correlation of the radiation variables (PAR and RN) with

the SHF and LHF ranged, respectively, from 0.80 to 0.87 and

from 0.71 to 0.80. The temperatures variables (TS, TA, and

VPD), as well as the velocity variables (WS and UST), were

also notably correlated within each group. This indicates the

presence of a substantial multicollinearity in the data matrix of

the climatic and environmental variables.

Dominant Groups and Orientation of the Variables

For the eight study forests, the first two PCs explained from

61.95 to 75.17 % of the total data variances exhibited by

the participatory (climatic, environmental, and biological)

variables. PCA loading matrices (showing the correlation

coefficients between the PCs and the original variables) for

different stations are presented through biplots (Figs. 3, 4).

The first two PCs explained 61.95 % of total data vari-

ances for the Bartlett Experimental Forest (Fig. 3a). The

orientations and lengths of SHF, PAR, RN, VPD, and LHF

suggest strong interrelationships, forming a dominant group

(A) that highly correlates with FCO2
and CCO2

. TA and TS

formed a second group (B), which appears to be moderately

correlated with FCO2
. SWC, WS and UST formed the third

group (C) that is relatively orthogonal to (i.e., weakly cor-

related with) FCO2
. Nearly orthogonal orientations of groups

A, B, and C suggest three different and relatively uncorre-

lated variance-based clusters of variables hidden in the data;

Table 2 Pearson correlation coefficients between the carbon fluxes (FCO2
) and the climate/environmental variables for the eight deciduous forest

study sites

Site RN PAR LHF SHF CCO2
TA TS VPD SWC WS UST

Bartlett Forest -0.70 -0.70 -0.72 -0.56 0.46 -0.51 -0.39 -0.10 0.06 0.03 0.03

Harvard Forest -0.66 -0.67 -0.65 -0.37 -0.39 -0.37 -0.44 -0.03 -0.12

Missouri Ozark -0.61 -0.61 -0.71 -0.33 0.47 -0.28 -0.24 -0.40 0.17 -0.04 -0.18

Morgan Forest -0.71 -0.71 -0.84 -0.40 -0.39 -0.38 0.01 0.24 0.06

Ohio Oak -0.71 -0.70 -0.87 -0.29 0.52 -0.43 -0.33 -0.16 0.26 0.09 0.04

Silas Forest -0.69 -0.66 -0.77 -0.46 -0.36 -0.26 -0.54 0.05 -0.15

UMBS Forest -0.67 -0.67 -0.80 -0.44 0.53 -0.38 -0.34 -0.50 0.25 0.07 -0.16

Willow Creek -0.65 -0.67 -0.84 -0.40 0.57 -0.51 -0.51 -0.42 0.33 -0.20 0.05

Blank indicates missing data
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A is dominated by the radiation and flux variables, whereas B

and C are dictated by, respectively, the temperature and

aerodynamic variables. The group-A variables and CCO2
, due

to their strongly non-orthogonal orientations with FCO2
, are

likely the dominant predictors of the carbon fluxes; group-B

variables would be the moderately strong predictors, while

group-C variables could be the weakest predictors. Similar

variable-groupings and interrelation patterns were observed

for the Harvard Forest (with missing SWC data) (Fig. 3b),

UMBS Forest (Fig. 3c), and Missouri Ozark Forest

(Fig. 3d), where the first two PCs explained, respectively,

71.26, 68.46, and 63.65 % of their total data variances.

Although the quadrant-locations of group-B and C were

flipped for the Missouri Forest, compared to the other three

stations, the relative orthogonality of the three groups, as

well as that between FCO2
and group-C variables, were

common for all four sites (Fig. 3).

The Silas Little Forest (with missing SWC data), as well

as the Willow Creek Forest, demonstrated a slightly different

pattern than that of Bartlett Forest, with the first two PCs

explaining, respectively, 75.17 and 67.03 % of the total data

variances (Fig. 4a, b). The group-A variables still demon-

strated the strongest links with FCO2
; however, they split into

two distinct, non-orthogonal groups of A1 (RN, PAR, SHF)

and A2 (VPD, LHF). Similar to the Bartlett Forest, the group-

B (temperature) variables showed moderate correspon-

dences, whereas the group-C (wind speed and soil water)

variables appeared to be weakly interrelated with the FCO2
.

The Morgan Monroe State Forest (the first two PCs

explained 64.38 % of the total data variance) also showed a

slightly different correlation and grouping pattern compared

to that of Bartlett or similar forests (Fig. 4c). Although

group-C was similar to the previous stations showing a rel-

atively orthogonal orientation with FCO2
, the VPD emerged

out of group-A and loaded highly with TA to form a mod-

erately linked group, D; this regrouping could be partly

caused by the missing soil temperature data for this station.

However, at the Ohio Oak Forest, where the two PCs

Group B

(a)

(a) (b)

(c) (d)

Group A

Group C

Group B

Group A

Group C

Group B

Group A
Group C

Group C

Group A

Group B

Fig. 3 Biplots obtained from principal component analysis showing

the groupings and interrelation patterns of the climate, environmental,

and biological variables for (a) Bartlett Experimental Forest (NH),

(b) Harvard Forest (MA), (c) UMBS Forest (MI), and (d) Missouri

Ozark Forest (MO). Percent variance explained by each PC is shown

in parenthesis
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explained 65.33 % of total data variance, all the variables

appeared to cluster into two distinct groups of E (SHF, PAR,

RN, LHF, TA, and TS) and F (SWC, WS, UST, and VPD)

(Fig. 4d). The group-E has a nearly linear (with 180�) ori-

entation with FCO2
, suggesting likely strong linkages

between them; the group-F variables were nearly orthogo-

nally oriented with FCO2
, indicating their possibly weak

linkages. The ambient carbon storage (CCO2
) was non-

orthogonally oriented with FCO2
, suggesting their strong

linkage.

Significant Hidden Factors

The eigenvalue criterion (eigenvalue [1) led to three

independent latent factors for all eight sites (Table 3). This

means that the extracted three factors adequately summa-

rized the system variance at each site; the first factor

explained the most variance (40.69–52.6 %), then the

second factor (16.8–24.64 %), while the third factor

described the least variance (8.9–15.5 %). FA with ‘vari-

max’ optimization provided more precise information into

the hidden patterns of the data matrices than that shown by

the two PCs (see Figs. 3, 4). Since the standardized par-

ticipatory variables had both positive and negative values,

the FA outcomes were interpreted mainly based on the

magnitudes (ignoring the positive or negative signs) of the

factor loadings.

The radiation and heat fluxes (RN, PAR, SHF, and LHF)

generally loaded highly (0.65–0.99) on the first factor,

which had moderate to high loadings (-0.57 to -0.70)

with FCO2
at different stations. The pressure variable (VPD)

showed moderate loadings (0.41–0.53) on Factor-1 for all

but one (Morgan State Forest) sites. The near-canopy car-

bon storage (CCO2
) showed a moderate loading (-0.38) on

Factor-1 only for the Bartlett Forest site. The higher

loadings of RN, PAR, SHF, and LHF indicate their

Group A1

Group C

Group A2
Group B

Group C

Group A1

Group A2

Group B

Group A

Group C

Group D

Group F

Group E

(a) (b)

(c) (d)

Fig. 4 Biplots obtained from principal component analysis showing

the groupings and interrelation patterns of the climate, environmental,

and biological variables for (a) Silas Little Forest (NJ), (b) Willow

Creek Forest (WI), (c) Morgan Monroe State Forest (IN), and

(d) Ohio Oak Openings Forest (OH). Percent variance explained by

each PC is shown in parenthesis
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dictating role on the first hidden factor, which, therefore,

can be termed ‘radiation-energy’ factor. Temperature

variables (TA and TS) loaded highly (0.75–0.98) with

Factor-2, which showed low to moderate loadings (-0.19

to -0.45) with FCO2
. The VPD had moderate to high

loadings (0.46–0.88) on Factor-2 for all stations; the soil

hydrology variable (SWC) loaded moderately (-0.44 to

-0.50) on Factor-2 for the Missouri Ozark, Morgan State,

and Ohio Oak Forests, while loading slightly highly

(-0.60) for the UMBS Forest. The CCO2
showed moderate

to high loadings (-0.44 to -0.72) on Factor-2 for the Ohio

Oak and UMBS sites only; of the radiation and heat fluxes,

only LHF loaded moderately (0.42–0.51) on Factor-2 for

the UMBS, Ohio Oak, and Willow Creek Forests. Since

temperature related variables and SWC dominated Factor-

2, it was termed ‘temperature-hydrology’ factor. Factor-3

(termed ‘aerodynamic’ factor) had a poor loading (0.02–

0.13) with FCO2
; only the WS and UST showed notable

loadings (0.74–0.99) on Factor-3 at different sites.

Similar to the PCA outcomes, the highest loadings of

FCO2
with Factor-1 (which explained most of the system

variances) refer to the relatively strong linkages of

radiation and heat fluxes with the turbulent, vertical CO2

fluxes; the strong loadings of LHF with both Factor-1 and

Factor-2 (ranking second in explaining system variances

and FCO2
loadings) indicate a dictating linkage of LHF with

FCO2
. Notable double-factor (Factor-1 and 2) associations

of VPD and CCO2
also suggest their relatively strong

linkages with the vertical carbon fluxes. The very high

loadings of TA and TS on Factor-2, as well as that of WS

and UST on Factor-3, can indicate their appreciable link-

ages with FCO2
. The moderate to strong loadings of mul-

tiple variables on the ‘radiation-energy’ and ‘temperature-

hydrology’ factors reiterate the interrelations (i.e., collin-

earity) among the radiation, heat fluxes, and temperature

variables.

Relative Carbon Flux Linkages of the Climate

and Environmental Variables

A combination of AIC and R2 criteria, obtained through a

10-fold cross-validation method, showed that a total of 3–5

PLS components led to the optimum PLSR models (min-

imum AICFCO2
and maximum R2), whereas three PLS

Table 3 Dominant latent factors extracted from the data matrices of the eight deciduous forest study sites

Site Factors WS UST SWC VPD TS TA CCO2
SHF LHF RN PAR FCO2

Bartlett Forest (NH) Fac 1 0.02 0.20 -0.01 0.48 0.08 0.28 20.38 0.91 0.65 0.97 0.97 20.65

Fac 2 0.04 0.02 -0.14 0.53 0.88 0.94 -0.35 -0.01 0.43 0.20 0.22 -0.38

Fac 3 0.99 0.89 0.14 0.22 -0.10 -0.02 -0.04 0.06 0.05 0.09 0.12 0.03

Harvard Forest (MA) Fac 1 0.08 0.25 0.51 0.12 0.16 0.86 0.68 0.95 0.97 20.63

Fac 2 -0.06 -0.06 0.49 0.93 0.98 -0.03 0.27 0.19 0.17 -0.29

Fac 3 0.91 0.97 0.08 -0.07 -0.06 0.20 0.19 0.14 0.16 0.02

UMBS Forest (MI) Fac 1 -0.07 0.27 -0.05 0.46 0.03 0.14 -0.22 0.85 0.67 0.98 0.98 20.63

Fac 2 -0.06 -0.10 20.60 0.64 0.96 0.96 20.72 -0.10 0.42 0.12 0.16 -0.34

Fac 3 0.86 0.96 0.19 0.03 -0.11 -0.07 0.00 0.12 0.07 0.10 0.07 -0.03

Missouri Ozark (MO) Fac 1 0.03 0.30 -0.07 0.41 0.09 0.17 -0.29 0.83 0.71 0.97 0.97 20.58

Fac 2 -0.08 -0.09 20.50 0.62 0.91 0.97 -0.26 -0.09 0.39 0.18 0.19 -0.20

Fac 3 0.99 0.78 0.18 0.22 -0.15 0.00 -0.14 0.12 0.08 0.12 0.13 -0.04

Silas Forest (NJ) Fac 1 0.13 0.29 0.53 0.11 0.23 0.84 0.72 0.95 0.94 20.67

Fac 2 -0.09 0.00 0.60 0.91 0.97 0.01 0.37 0.24 0.22 -0.21

Fac 3 0.99 0.86 0.15 -0.17 0.01 0.22 0.07 0.19 0.23 0.02

Willow Creek (WI) Fac 1 0.08 0.28 -0.02 0.41 0.18 0.25 -0.34 0.88 0.67 0.95 0.95 20.57

Fac 2 -0.10 -0.07 -0.36 0.46 0.95 0.92 20.39 0.01 0.51 0.21 0.26 20.45

Fac 3 0.88 0.96 0.16 0.03 -0.12 -0.08 -0.04 0.21 0.07 0.16 0.14 -0.08

Morgan Forest (IN) Fac 1 -0.21 0.30 0.04 0.34 0.29 0.82 0.78 0.99 0.98 20.70

Fac 2 0.04 -0.14 20.44 0.88 0.75 0.00 0.32 0.09 0.17 -0.19

Fac 3 0.74 0.94 0.01 0.04 -0.09 0.12 -0.05 0.03 0.02 0.13

Ohio Oak (OH) Fac 1 0.07 0.25 -0.03 0.52 0.05 0.25 -0.34 0.83 0.67 0.96 0.97 20.65

Fac 2 -0.15 -0.11 20.49 0.60 0.87 0.90 20.44 -0.14 0.50 0.21 0.22 -0.37

Fac 3 0.96 0.89 0.22 0.09 -0.24 -0.07 -0.13 0.25 0.04 0.13 0.11 0.04

‘‘Fac’’ represents factor. Factor 1: Radiation-energy factor; Factor 2: Temperature-hydrology factor; Factor 3: Aerodynamic factor. Bold values

indicated variables having moderate to high loadings (correlations) on factors. ‘‘Blank’’ refers to the missing data
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components captured most variations in FCO2
for different

sites (Fig. 5a, b); this is consistent with the FA outcome of

three independent factors adequately describing the varia-

tion in the overall data matrices (Table 3). Ranges of

optimal model fitting efficiency (R2 = 0.55–0.81) and

accuracy (ratio of root-mean-square error to the standard

deviation of observations, RSR = 0.44–0.67; mean square

error, MSE = 0.19–0.45) showed impressive predictions

of FCO2
for different study sites (Table 4). The model

residuals were approximately normally distributed with

constant variances (not shown). The R2 indicated the

amount of observed data variance explained by the model

(i.e., model efficiency), whereas the RSR (see notes of

Table 4 for the mathematical expression) and MSE indi-

cated the accuracy of model fitting. Moriasi et al. (2007)

provided a range of RSR values for the evaluation of model

accuracy; an RSR from 0 to 0.50 indicates a perfect to very

good model, from 0.5 to 0.6 indicates a good model, and

from 0.6 to 0.7 refers to a satisfactory model; a model with

RSR [0.70 is considered unsatisfactory.

The variable importance in the PLS projection (VIP)

scores and regression coefficients (BETA), as obtained

with the optimum number of PLS components, quantified

the relative linkage of each predictor with the model

response (FCO2
) (Fig. 6; Table 4). Since the Z-scores of the

participatory variables had both positive and negative

values, interpretation of the type (e.g., mutual increase or

decrease) of their relative carbon flux linkages based on the

positive or negative sign of BETA (b) would be potentially

misleading; the predictive influence of individual predic-

tors of FCO2
was, therefore, evaluated by comparing the

absolute values of the associated b. Total relative linkages

of the ‘radiation-energy’ (bRHF), ‘temperature-hydrology’

(bT), and ‘aerodynamic’ (bW) components were computed,

respectively, as:

bRHF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

RN þ b2
PAR þ b2

LHF þ b2
SHF

q
;

bT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

TA þ b2
TS þ b2

VPD þ b2
SWC

q
; and

bW ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

WS þ b2
UST

q

Bartlett Experimental Forest

The LHF, RN, PAR, SHF, and VPD had VIP scores higher

than unity (1.0) and were potentially strongly linked with

FCO2
(Fig. 6a); smaller VIPs of TA, CCO2

, and TS indicated

their likely moderate linkages with FCO2
; much lower VIP

scores indicated relatively weak linkages of FCO2
with UST,

WS, and SWC. Model coefficients (b) revealed almost

similar linkage pattern with some exceptions (Table 4); FCO2

showed relatively strong linkage with CCO2
and relatively

weak linkages with SHF and TA. LHF was the strongest

predictor in regression, exhibiting around 2 times stronger

linkages with FCO2
than that of RN, PAR and CCO2

; 2.5–

3.5 times stronger linkages than that of VPD and TS; and

around 9–36 times stronger linkages than that of the aero-

dynamic and soil moisture variables (WS, UST, and SWC).

Based on the ratio of bRHF=bT and bRHF=bW, the ‘radiation-

energy’ component had around 2.5 and 11 times stronger

linkages with the carbon fluxes than that of, respectively, the

‘temperature-hydrology’ and ‘aerodynamic’ components.

Harvard Forest

The VIP scores and PLSR coefficients slightly differed for

this site. The radiation and heat flux variables of PAR, RN,

LHF, and SHF had the higher VIP scores, referring to their

strong linkages with FCO2
(Fig. 6b). Lower VIP scores of the

temperature and aerodynamic variables (VPD, TA, TS, WS,

and UST) indicated their relatively weak to moderate link-

ages with FCO2
. In terms of regression coefficients (b;

Table 4), FCO2
had relatively high linkages with SHF, RN,

PAR, and LHF; moderate linkages with VPD and UST; and

low linkages with TA, TS, and WS. Unlike other study sites,

SHF appeared to be the strongest predictor of FCO2
, although

VIP scores indicated stronger dominance of LHF over SHF.

Overall, the ‘radiation-energy’ group had approximately 7
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Fig. 5 Plot of cross-validated (a) normalized AIC and (b) fitting

efficiency (R2) for FCO2
with the number of incorporated partial least

squares (PLS) components
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and 8 times stronger linkages with FCO2
than that of the

‘aerodynamic’ and ‘temperature-hydrology’ groups,

respectively. The relatively high coefficient of UST, com-

pared to other sites, indicated a notable influence of canopy

layer turbulent mixing on carbon flux transfer at this site.

UMBS

The VIP scores of LHF, PAR, RN, CCO2
, VPD, and SHF were

greater than (or equal to) 1.0, suggesting their strong relative

linkages with FCO2
; lower VIP scores indicated relatively weak

to moderate linkages of FCO2
with TA, TS, SWC, UST, and WS

(Fig. 6c). Relative influence (b) of the PLSR model variables

were mostly similar to that of VIPs (Table 4). LHF was the

strongest predictor of FCO2
; around 2–3.5 times stronger than

that of the CCO2
, RN and PAR. In contrast, the variables of WS,

VPD, TA, and SHF showed around 5–7.5 times lower linkages

with FCO2
. Based on b, FCO2

was very weakly linked with TS,

UST, and SWC. The ‘radiation-energy’ component had around

5 times stronger linkages with FCO2
than that of the ‘temper-

ature-hydrology’ and ‘aerodynamic’ components.

Missouri Ozark Forest

The higher VIP scores of LHF, RN, PAR, CCO2
, and VPD

indicate that these variables were potentially strongly

linked with FCO2
; lower VIPs of the other variables refer to

their low to moderate linkages with the carbon fluxes

(Fig. 6d). These results were consistent with the regression

modeling outcomes with the exceptions of SHF and VPD,

which showed, respectively, relatively high and low coef-

ficients with FCO2
. The LHF was the strongest predictor of

carbon fluxes, showing around 1.5 times stronger linkages

than that of CCO2
; 2.5–4 times stronger linkages than the

PAR, RN, and SHF; and 6–8 times stronger linkages than

TA, WS, and UST. The SWC and TS did not show note-

worthy linkages with FCO2
. Relatively lower model fitting

efficiency and accuracy (R2 = 0.55; RSR = 0.67; MSE =

0.45) also indicate the presence of more complicated

(exceedingly nonlinear) carbon processes. Overall, the

‘radiation-energy’ group had approximately 6 times

stronger linkages with FCO2
than that of the ‘aerodynamic’

or ‘temperature-hydrology’ group (Table 4).

Table 4 Coefficients (b) of the normalized (dimensionless) PLSR models of carbon fluxes (FCO2
) for different deciduous forest study sites

Predictor

variables

Bartlett Forest

(NH)

Harvard Forest

(MA)

UMBS Forest

(MI)

Missouri Ozark

(MO)

Silas Forest

(NJ)

Willow Creek

(WI)

Morgan

Forest (IN)

Ohio Oak

(OH)

RN -0.20 -0.53 -0.19 -0.17 -0.22 -0.19 -0.23 -0.26

PAR -0.17 -0.60 -0.15 -0.16 -0.15 -0.14 -0.18 -0.20

LHF -0.36 -0.30 -0.54 -0.44 -0.58 -0.69 -0.64 -0.67

SHF -0.08 0.68 0.07 0.11 0.11 0.22 0.24 0.23

VPD 0.14 0.11 0.09 0.04 -0.10 0.16 0.09 0.17

CCO2
0.18 0.26 0.28 0.15 0.13

TA -0.05 0.01 0.07 0.06 0.07 0.00 -0.06 0.07

TS -0.10 -0.06 0.03 0.02 0.10 0.00 0.00

WS 0.04 -0.06 0.11 0.07 0.06 0.02 0.04 0.10

UST 0.01 0.15 0.01 0.05 0.09 -0.04 0.02 -0.04

SWC -0.03 -0.01 -0.03 0.05 -0.07 0.01

PLS components 3 5 3 3 4 4 3 4

R2 0.64 0.64 0.69 0.55 0.63 0.75 0.74 0.81

RSR 0.60 0.59 0.56 0.67 0.61 0.50 0.51 0.44

MSE 0.37 0.35 0.31 0.45 0.37 0.25 0.26 0.19

bRHF=bT 2.5 8.3 5.0 6.3 4.1 4.5 5.8 4.2

bRHF=bW 11 6.8 5.4 5.9 6.0 18.8 16.6 7.2

Blank indicates missing data; RSR, the ratio of root-mean-square error to the standard deviation of observations, was calculated as:

RSR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1 ðFCO2 ;i;mod � FCO2 ;i;obsÞ2=N

q �
rFCO2

;obs, where N is the total number of standardized observations of FCO2
, FCO2 ;i;obs and FCO2 ;i;mod

are the ith observed and predicted value of standardized FCO2
(respectively), and rFCO2

;obs ¼ 1:0 is the standard deviation of the observed,

normalized FCO2
; and MSE is the mean square error of predicted, normalized FCO2

. The total relative linkages of the ‘radiation-energy’ (bRHF),

‘temperature-hydrology’ (bT), and ‘aerodynamic’ (bW) components were computed, respectively, as: bRHF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

RN þ b2
PAR þ b2

LHF þ b2
SHF

q
;

bT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

TA þ b2
TS þ b2

VPD þ b2
SWC

q
; and bW ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

WS þ b2
UST

q
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Silas Little Experimental Forest

Based on the common outcomes of VIP scores (Fig. 6e)

and PLSR coefficients (Table 4), the LHF, RN, and PAR

had high linkages with FCO2
, while the VPD, SHF, TA, TS,

WS, and UST had relatively low to moderate carbon flux

linkages. Per b, LHF was the strongest carbon flux pre-

dictor; around 2.5–4 times stronger than the RN and PAR;

5–6 times stronger than SHF, VPD, TS, and UST; and

8–10 times stronger than TA and WS. The ratio of

bRHF=bT and bRHF=bW showed that the ‘radiation-energy’

component had around 4 and 6 times stronger linkages with

FCO2
than that of, respectively, the ‘temperature-hydrology’

and ‘aerodynamic’ components.

Willow Creek Forest

Both the VIP scores (Fig. 6f) and regression coefficients

(Table 4) showed stronger linkages of carbon fluxes with the

LHF, PAR, RN, CCO2
, SHF, and VPD for this site; the soil

moisture (SWC), wind speed (WS), and friction velocity (UST)

had relatively low carbon flux linkages. The air and soil tem-

peratures (TA and TS) showed negligible linkages with FCO2
.

Based on b, the predictive influence of LHF was around

3–4 times stronger than that of RN, PAR, SHF, CCO2
; and

13–17 times stronger than SWC and UST. Overall, the ‘radi-

ation-energy’ group had approximately 4.5 and 19 times

stronger linkages with FCO2
than that of the ‘temperature-

hydrology’ and ‘aerodynamic’ groups, respectively (Table 4).

Morgan Monroe State Forest

The radiation and heat flux variables of LHF, RN, PAR,

and SHF had high VIP scores ([1.0), indicating their

potentially strong linkages with the carbon fluxes; small

VIP scores indicated relatively weak linkages of FCO2
with

VPD, TA, WS, UST, and SWC. The PLSR model coeffi-

cients (b) (Table 4), as well as the outcomes of PCA
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Fig. 6 Variable importance on the partial least squares projection

(VIP) of different predictors for the response variable (FCO2
) for

(a) Bartlett Experimental Forest (NH), (b) Harvard Forest (MA),

(c) UMBS Forest (MI), (d) Missouri Ozark Forest (MO), (e) Silas

Little Forest (NJ), (f) Willow Creek Forest (WI), (g) Morgan Monroe

State Forest (IN), and (h) Ohio Oak Openings Forest (OH). Dashed

line indicates predictors having VIP score greater than unity (1.0)
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(Fig. 4c) and FA (Table 3), revealed nearly an identical

linkage pattern. The LHF was the strongest predictor in

regression, exhibiting around 2.5–3.5 times stronger link-

ages with FCO2
than that of RN, PAR and SHF; 7–10 times

stronger linkages than that of VPD, SWC, and TA; and

around 16 times stronger linkages than WS. Based on

bRHF=bT and bRHF=bW, the ‘radiation-energy’ component

had around 6 and 16.5 times stronger linkages with the

carbon fluxes than that of, respectively, the ‘temperature-

hydrology’ and ‘aerodynamic’ components.

Ohio Oak Openings

The PLSR model had the highest fitting accuracy

(MSE = 0.19; RSR = 0.44) and efficiency (R2 = 0.81) for

this site. Both the VIP scores (VIP [1; Fig. 6h) and

regression coefficients (Table 4) showed relatively strong

linkages of carbon fluxes with the LHF, PAR, RN, and

VPD; the ambient carbon concentration (CCO2
) had a

moderate linkage, whereas the soil moisture (SWC) and

friction velocity (UST) had very low carbon flux linkages.

Although the sensible heat flux (SHF) and air temperature

(TA) had moderate VIP scores, the associated PLSR model

coefficients (b), as well as the PCA biplot (Fig. 4d) and FA

results (Table 3), showed relatively strong influence of

SHF and weak influence of TA in predicting FCO2
. How-

ever, contrary to the VIP scores and the PCA and FA

results, the wind speed (WS) had a moderately high

regression coefficient (i.e., moderate carbon flux linkage),

while the soil temperature (TS) showed a negligible coef-

ficient (little linkage) with FCO2
. Based on b, the predictive

influence of LHF was around 2.5–4 times stronger than

that of the RN, PAR, SHF, and VPD; 5–6.5 times stronger

than CCO2
and WS; and 9.5–17 times stronger than that of

TA and UST. Overall, the ‘radiation-energy’ group had

approximately 4 and 7 times stronger carbon flux linkages

than that of the ‘temperature-hydrology’ and ‘aerody-

namic’ group, respectively (Table 4).

Discussion

Linking Vertical Carbon Fluxes with the Climatic

and Environmental Variables

For all eight deciduous forest sites, the ‘radiation-energy’

component of RN, PAR, SHF, and LHF was strongly

linked with the canopy-level CO2 fluxes. Previous research

(e.g., Jung et al. 2011; Schmidt et al. 2011; Morales et al.

2005; Zhang et al. 2005; Baker et al. 2003; Sellers et al.

1997) also reported a similar finding. However, most

studies considered the latent heat flux (LHF) and sensible

heat flux (SHF), along with FCO2
, as the response variables

as functions of some common drivers such as the radiation,

temperature, vapor pressure, etc. In contrast, alike Melesse

and Hanley (2005), our study included the two heat fluxes

in the matrix of predictor variables; quantifying their rel-

atively high linkages with FCO2
exchanges within a large

set of climatic and environmental variables.

The mutual correlations among the three fluxes of FCO2
,

SHF and LHF could partly stem from the common

dynamic term (vertical wind speed fluctuations) of their

eddy covariance measurement equations (Launiainen et al.

2005); however, their interrelationships identified in this

study were mostly process-oriented. The carbon and energy

fluxes together represent the ecosystem’s biological

exchanges with atmosphere (Baldocchi et al. 2001). Heat

fluxes (LHF and SHF) help to maintain balance in atmo-

spheric radiation through evapotranspiration (ET) and tur-

bulent energy diffusion (Sellers et al. 1997). Plants’

stomata tend to close with increasing transpiration and

LHF slows down to maintain ecosystem water budget,

indirectly affecting carbon flux exchanges (Heber et al.

1986). Furthermore, the relative weight (i.e., ratio) between

the canopy-level photosynthesis and ET is a moderate

function of atmospheric humidity deficit (Baldocchi and

Meyers 1998), indicating ET-control on high rate of can-

opy growth.

Although the ambient CO2 concentration (CCO2
) was

not available for three of the eight study sites, it showed

relatively moderate to strong linkages with carbon fluxes

(FCO2
) for all available sites. Elevated CCO2

stimulates the

photosynthesis by increasing the carboxylation and oxy-

genation, leading to a fast plant growth and ultimately

increasing the litter production and soil carbon storage

(Masle 2000). Furthermore, high atmospheric carbon

concentrations often facilitate more efficient use of

available soil water for plant growth and productivity

(Schlesinger 1999). In contrast, Drake et al. (1999)

reported a negative functional relation between plant

respiration and CCO2
.

The ‘temperature-hydrology’ component (formed by

TA, TS, VPD, and SWC) had a moderate linkage with the

vertical carbon fluxes for almost all study forests. Water

availability, temperature, and light can play a significant

role in plants’ energy and water exchanges by transforming

stomatal aperture (short-term) and density (long-term)

(Haworth et al. 2011). High vapor pressure deficit (VPD)

can lead to stomatal closure (Loescher et al. 2003),

affecting the plant-atmospheric energy (latent heat) and

carbon fluxes. VPD also loaded appreciably in the ‘radia-

tion-energy’ factor (Table 3), which is consistent with

previous studies (e.g., Lund et al. 2010). Although soil

moisture (SWC) at most study sites grouped with the
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velocity variables in the PCA biplots (Figs. 2, 3), more

detailed (3-dimensional) information emerged in FA ana-

lysis showing its appropriate association with the ‘tem-

perature-hydrology’ component (Table 3). The SWC can

contribute to the plants’ photosynthesis by influencing the

water potential difference between the tree leaves and root

system. However, our five layer analysis (Pearson corre-

lation, PCA, FA, PLSR-VIP, and PLSR-BETA) with half-

hourly data of different years from different US deciduous

forests indicated a relatively low predictive influence of

soil moisture on vertical CO2 fluxes for the small time-

scale. The ‘aerodynamic’ component (WS, UST) was also

relatively weakly linked with the carbon flux exchanges.

Mechanistically UST and WS are not direct contributors of

carbon fluxes (Wilson et al. 2002); rather they influence the

boundary layer vertical mixing to facilitate transport.

Future studies should focus into the attributions of these

low carbon flux linkages of SWC, WS, and UST; for

example, whether aggregating data in larger time-scales

(e.g., daily, weekly, monthly, yearly) reveal a more notable

linkage of SWC with the FCO2
.

Despite the gradients of a variable canopy height (9.52–

27 m), different climatic regimes (humid to temperate to

nearly extreme), and diverse soil morphology among the

study sites, the relative linkages of major process compo-

nents, as well as individual climate and environmental

variables, with FCO2
were essentially similar. Our findings

of the relative carbon flux linkages, using a simple method

on half-hourly data for exclusively deciduous forests,

complement the findings of Schmidt et al. (2011) that

applied a complex neural network approach to analyze

daily averaged data for different types of ecosystems,

including five deciduous forests. For example, both studies

conclude that air temperature had a much lower effect on

turbulent carbon fluxes than that of other variables such as

the radiations; the same is true for the relatively weak

carbon flux linkage of wind and friction velocities. How-

ever, Schmidt et al.(2011) reported notably strong linkages

of daily precipitation and soil temperature with FCO2
,

whereas our study found relatively low to moderate carbon

flux linkages of soil moisture and soil temperature for the

smaller (half-hourly) time-scale.

Data Quality and Uncertainty

Error and uncertainty associated with the eddy fluxes and

other variables can cause superfluous biases in analysis and

modeling (Williams et al. 2009). Our two-step data filtering

procedure substantially eliminated the unsuitable data

representing gaps (for more than two variables in one half-

hourly panel) and unreasonable spikes (outliers) from the

final data sets, which were analyzed to derive and report

the results. Furthermore, previous research (Schmidt et al.

2012) reported relatively low measurement uncertainties

for canopy-level meteorological variables (relative error

B2 %), heat fluxes (relative error = 1.7–5.2 %) and ver-

tical CO2 fluxes (FCO2
) (relative error B8.2 %) of the

AmeriFLUX network. Schmidt et al. (2012) also suggested

high quality research applicability of the AmeriFLUX data.

Nevertheless, it is possible that our analysis and modeling

with half-hourly data may not be completely free from the

effect of random sampling errors of measurements (Bal-

docchi 2003).

Explanatory Modeling and Analysis

Theoretically process-based carbon dynamics models should

be more reliable than the empirical models, but all the relevant

processes are not understood yet (Keenan et al. 2011). This

reemphasizes the importance of developing data-informed

carbon flux modeling system (Keenan et al. 2012), which

requires proper mechanistic judgments in the selection of

model variables. The multicollinearity effect generally pro-

vides biased models with the traditional least squares regres-

sion method, which may be partially resolved by eliminating

predictors stepwise (backward or forward) or simultaneously

based on statistical significance. However, this elimination

sometimes results in removal of variables that has important

mechanistic basis, hampering the evaluation of comparative

linkages of relevant predictors with the response variable. Our

dimensionless, optimal PLSR modeling approach (capturing

maximum system variance and mechanisms) provided the

flexibility and statistical stability for retaining all predictors

since regression was primarily done with the orthogonal PLS

components and then transformed to the original domain.

Predictions with the linear PLSR models were quite impres-

sive (R2 = 0.55–0.81), as compared to the nonlinear half-

hourly data-driven models of Byrne et al. (2005) for GPP

(R2 = 0.78–0.81) and respiration (R2 = 0.86–0.83), hourly

mechanistic model of Wu and Chen (2013) for deciduous

forest carbon fluxes (R2 = 0.66–0.91), for example.

The PLSR models could not satisfactorily predict

extremely positive (upward) and negative (downward)

carbon fluxes likely due to the linear structure. Primary

production (GPP) and respiration have different mecha-

nisms and are not necessarily controlled by the same set of

drivers. Representing these two distinct processes by one of

set of regression coefficients at the half-hourly scale can

contribute errors to the model predictions. Seasonal vari-

ability in terrestrial carbon fluxes can also cause uncer-

tainty in a data-driven model developed with half-hourly

data (Jarvis et al. 1997; Xu and Baldocchi 2004). Fur-

thermore, instead of including multiple years of observa-

tions for each study site, single-year data, encompassing a
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5-year time frame (2006–2011) among the eight deciduous

study forests, were chosen for our analysis and modeling.

Although a 10-fold cross-validation improved consistency

in model fitting and robustness of estimated parameters,

incorporation of single (rather than multiple) year data for

an individual site could be seen as a limitation of this study.

Carbon fluxes can strongly respond to precipitation and

vegetation productivity (Piao et al. 2013; Schmidt et al.

2011) considering their control over the long-term carbon

balance. We used soil moisture (SWC) data as a surrogate for

precipitation subject to the lack of availability of half-hourly

precipitations. Since our study goal was to determine the

relative linkages of mainly climate and environmental vari-

ables with the canopy-level vertical carbon fluxes, biological

variables such as the canopy leaf-area-index (LAI) was

excluded from the predictor data matrix. Further, variables

such as SWC and LAI are less likely to change much over a

half-hourly interval; our results showed little carbon flux

linkages of SWC for the half-hour scale at the US deciduous

forests. Although ambient atmospheric concentrations of

CO2 were included in our data matrices, we did not explicitly

incorporate anthropogenic carbon sources, which could

influence the large-scale ecosystem carbon emissions.

Exclusion of these process components, apart from the linear

structure of PLSR, could have contributed to the reduction of

our model fitting accuracy (MSE; RSR) and efficiency (R2)

for different study sites.

Building linkages between statistical and mechanistic

modeling approaches has been a major challenge in eco-

logical modeling research (Larocque et al. 2011). Issues

such as the data requirements, complex parameterizations,

prediction uncertainties, computational expenses, and

expert knowledge basis of available mechanistic carbon-

cycle models highlight the importance of developing rel-

atively simple models without conceding the representation

of important processes at the relevant spatiotemporal

scales. Our study presented a simple, systematic multi-

variate approach to identify the dominant process compo-

nents by classifying the relevant climate and environmental

variables, quantifying their relative linkages with the can-

opy-level vertical carbon fluxes. The modeling and analysis

provides an objective, empirical foundation to obtain cru-

cial mechanistic insights a priori; complementing process-

based model building with a warranted complexity.

Conclusions

We used a data-analytics method to determine the relative

linkages of different climate and environmental variables

with the canopy-level, half-hourly CO2 fluxes of US decid-

uous forests. Three biophysical process components were

identified to adequately explain the canopy-level, vertical

CO2 fluxes. The ‘radiation-energy’ component had the

strongest linkages with the canopy-level CO2 fluxes. The

‘temperature-hydrology’ component showed low to moder-

ate carbon flux linkages. The ‘aerodynamic’ component was

relatively weakly connected with the carbon fluxes. The

relative linkage of ambient CO2 concentrations with the

vertical carbon fluxes was moderate to strong among dif-

ferent sites. The latent heat flux was the most influential

predictor of instantaneous CO2 fluxes at all study sites except

for Harvard Forest. On average, the ‘radiation-energy’

component showed around 5 and 8 times stronger carbon flux

linkages than that of the ‘temperature-hydrology’ and

‘aerodynamic’ components, respectively. The similarity of

observed patterns among different study sites (representing

sharp gradients in canopy heights, climatic regimes, and soil

formations) indicates that the findings are potentially trans-

ferrable to other deciduous forests around the world. The

observed similarities also highlight the scope of developing

robust, parsimonious models for appropriate predictions of

ecosystem carbon fluxes and potential sequestrations under a

changing climate and environment. Relatively good model

accuracy and efficiency reiterate the usefulness of multi-

variate analytics models for gap-filling in time-series of

instantaneous flux data.

Future research should investigate the relative linkage

patterns by aggregating data in larger time-scales (e.g.,

daily, weekly, monthly). Multi-scale linkage patterns in

other terrestrial ecosystems should also be investigated and

compared. More advanced data-analytics approaches such

as the system and network modeling, machine learning,

and fuzzy logic may also contribute toward developing a

robust understanding and prediction of ecosystem carbon

fluxes at different spatiotemporal scales.
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