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Abstract We used a simple, systematic data-analytics
approach to determine the relative linkages of different
climate and environmental variables with the canopy-level,
half-hourly CO, fluxes of US deciduous forests. Multi-
variate pattern recognition techniques of principal com-
ponent and factor analyses were utilized to classify and
group climatic, environmental, and ecological variables
based on their similarity as drivers, examining their inter-
relation patterns at different sites. Explanatory partial least
squares regression models were developed to estimate the
relative linkages of CO, fluxes with the climatic and
environmental variables. Three biophysical process com-
ponents adequately described the system-data variances.
The ‘radiation-energy’ component had the strongest link-
age with CO, fluxes, whereas the ‘aerodynamic’ and
‘temperature-hydrology’ components were low to moder-
ately linked with the carbon fluxes. On average, the
‘radiation-energy’ component showed 5 and 8 times
stronger carbon flux linkages than that of the ‘temperature-
hydrology’ and ‘aerodynamic’ components, respectively.
The similarity of observed patterns among different study
sites (representing gradients in climate, canopy heights and
soil-formations) indicates that the findings are potentially
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transferable to other deciduous forests. The similarities also
highlight the scope of developing parsimonious data-driven
models to predict the potential sequestration of ecosystem
carbon under a changing climate and environment. The
presented data-analytics provides an objective, empirical
foundation to obtain crucial mechanistic insights; com-
plementing process-based model building with a warranted
complexity. Model efficiency and accuracy (R* = 0.55—
0.81; ratio of root-mean-square error to the observed
standard deviations, RSR = 0.44-0.67) reiterate the use-
fulness of multivariate analytics models for gap-filling of
instantaneous flux data.

Keywords Relative linkages - CO, fluxes -
Data-analytics - Pattern recognition - Empirical modeling -
Deciduous forests

Introduction

Terrestrial ecosystems are the major components of earth’s
carbon cycle and traditionally regarded as the reservoirs of
green carbon. Turbulent land-atmospheric fluxes of vertical
CO, contribute to ecosystem-scale carbon budget by bal-
ancing between the above-ground assimilatory processes
(photosynthesis) and both above-ground and below-ground
respiratory processes (Heimann and Reichstein 2008; Cao
and Woodward 1998; Schimel et al. 2001). The carbon flux-
climate feedback process is sensitive to various meteoro-
logical, hydrological, and ecological variables at different
spatiotemporal scales. Although much research has been
conducted to characterize the role of key environmental
stressors and climatic variability on land-atmospheric carbon
and heat fluxes (e.g., Schmidt et al. 2011), a robust under-
standing and prediction of turbulent carbon flux dynamics is
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yet to be achieved (Piao et al. 2013; Morales et al. 2005;
Geider et al. 2001). Investigation of the relative effects of
climatic and environmental variations on turbulent carbon
fluxes is, therefore, an area of active research. In particular,
quantification of the relative linkages of climatic and envi-
ronmental variables with the vertical CO, fluxes is an
important step toward building relatively simple empirical to
complex mechanistic (i.e., process-based) models for robust
predictions and management of ecosystem carbon. For
example, altering land uses/cover can change surface albedo
(light reflectance), net radiation, temperature, soil moisture,
heat fluxes, canopy height, roughness height, and friction
velocity. Knowledge and insights on the relative carbon flux
linkages of climatic and environmental variables would,
therefore, help in developing land management strategies
and priorities for a maximum uptake (sequestration) and
minimum emission of ecosystem carbon.

Numerous process-oriented biosphere models are
available for simulation and prediction of carbon fluxes by
mechanistically capturing the necessary ecosystem con-
stituents such as plant photosynthesis, respiration, and soil
biogeochemical processes. Examples of mechanistic mod-
els include IFUSE (Desai 2010), Ecosystem Demography
(ED) (Moorcroft et al. 2001), BIOME-BGC (Running and
Coughlan 1988; Running and Gower 1991), Equilibrium
Boundary Layers (EBL) (Shir and Bornstein 1977), Carbon
Tracker (CT) (http://carbontracker.noaa.gov), HYBRID
(White et al. 1999), ECOSYS (Grant et al. 2012), CEN-
TURY (Glimanov et al. 1997), LINKAGE (Post and Pastor
1996), etc. Most models use photosynthetically active
radiation, vegetation index, atmospheric CO, concentra-
tion, air and soil temperatures, vapor pressure deficit, and
soil moisture as inputs (Chen et al. 2011; Sims et al. 2008;
Schubert et al. 2012; Li et al. 2007; Turner et al. 2006).
These models attempt to predict sub-daily to seasonal and
inter-annual variability of carbon flux dynamics.

Process-based models are built on numerous scientific
hypotheses and their outcome inherently depends on the
embedded process formulations and parameterizations (Beer
et al. 2010; Keenan et al. 2012). Further, mechanistic mod-
eling generally involves a complex structure; requires data for
many input variables that are not always available, and
involves a large parameter set making the model predictions
quite uncertain. Application of the mechanistic models also
requires high computational resources, expert knowledge and
specialized skills, hindering their wide-spread applications as
tools for a sustainable management of ecosystem carbon
under a changing climate and environment.

Data-driven analytic approaches can lay out the foundation
for building an appropriate process-based model of warranted
complexity. Standard techniques (e.g., linear regressions,
nonlinear regressions using mainly Arrhenius and Michaelis—
Menten equations, artificial neural networks) have already
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been successfully applied to fill gaps in measured data of
ecosystem fluxes and environmental variables (Falge et al.
2001; Carrara et al. 2003; Lloyd and Taylor 1994; Richardson
et al. 2006; Hollinger et al. 2004; Barr et al. 2004; Gove and
Hollinger 2006; Aubinet et al. 1999; Braswell et al. 2005; Hui
et al. 2004; Stauch and Jarvis 2006). Multi-scale models were
also developed to estimate carbon fluxes from selected eco-
systems using remotely sensed and in situ observations of
geographical, environmental, and meteorological variables
(e.g., Jahan and Gan 2013; Wylie et al. 2007; Mikela et al.
2008; Byrne et al. 2005; Oechel et al. 2000). However, lack of
knowledge on the general pattern of dominant predictors and
their complex interactions, as well as site-specificity of esti-
mated model parameters, still pose as major gaps in data-
driven, robust predictions of terrestrial carbon fluxes.

In this paper, we present a simple, systematic data-analytics
approach to analyze observational data and determine the
relative linkages of different climate and environmental
variables with the canopy-level, vertical CO, fluxes of eight
US deciduous forests. Multivariate pattern recognition tech-
niques such as the principal component analysis (PCA) and
factor analysis (FA), in concert with the Pearson correlation
analysis, were utilized to classify and group climatic, envi-
ronmental, and ecological variables based on their similarity
as drivers, examining their interrelation patterns and relative
influences in different forest sites. Explanatory partial least
squares regression (PLSR) models were then developed to
estimate the relative linkages of CO, fluxes with the climatic
and environmental variables. Our findings will guide the
development of parsimonious empirical models, while
informing the building of appropriate mechanistic models, for
robust predictions of ecosystem carbon fluxes from the
deciduous forests and other similar ecosystems.

Materials and Methods
Study Sites

The study sites include the following eight deciduous broad-
leaf forests, ranging from the upper mid-western to the
northeastern USA (Fig. 1): (i) Bartlett Experimental Forest,
New Hampshire; (ii) Harvard Forest, Massachusetts; (iii)
Missouri Ozark, Missouri; (iv) Morgan Monroe State Forest,
Indiana; (v) Ohio Oak Openings, Ohio; (vi) Silas Little
Experimental Forest, New Jersey; (vii) University of Mich-
igan Biological Station (UMBS), Michigan; and (viii) Wil-
low Creek Forest, Wisconsin. Although these sites have
similarity in vegetation cover, they represent diversity in
climate, topography, land uses, soil and hydrologic patterns,
etc. Consideration of the relatively large geographical
region, therefore, incorporates a potentially high spatial
gradient in land-atmospheric carbon flux dynamics.
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Fig. 1 Locations of the selected eight deciduous forest study sites

The Bartlett Experimental Forest (canopy height: 19 m)
has a rolling to mountainous topography with gentle slope
and spodosol soil order; climate is nearly extreme with a
minimum daytime temperature of around 90 °F during
summer and —30 °F during winter. Harvard forest (canopy
height: 23 m) has a temperate climate and a sandy soil
formation in the top layer and sand-gravel-silt at the bottom.
Missouri Ozark (canopy height: 24.2 m) and Morgan
Monroe State Forests (canopy height: 27 m) share a similar
temperate continental climate, while representing different
soil formations (silty loam with a rocky, thin soil cover at
Missouri, whereas a combination of clay, loam, and lime-
stone residue at the Morgan site). Ohio Oak Forest (canopy
height: 24 m) has a humid climate and a flat terrain with
sandy mixed soil. Silas Little Experimental Forest (canopy
height: 9.52 m) has a cool, temperate climate, and a sandy
soil formation. The UMBS site (canopy height: 12 m) is
characterized by the temperate northern climate and a sandy,
Entic Haplorthod, glacial till soil. The Willow Creek site
(canopy height: 24.2 m) represents the northern continental
climate with short, moist growing seasons and cold winters,
and a soil formation similar to that of the UMBS site.
Overall, the selected eight study sites incorporate the

potential effects of a variable canopy height (9.52-27 m),
different climatic regimes (humid to temperate to nearly
extreme), and diverse soil morphology on the carbon flux
dynamics.

Data Sets

Observational data of the half-hourly, canopy-level CO,
fluxes, and the corresponding climate and environmental
variables were obtained for different, recent annual cycles
(2006-2011) for the study sites from the AmeriFLUX
network (http://ameriflux.ornl.gov) (Table 1); selection of
the 5-year period incorporated the effect of multi-year
temporal gradients on carbon flux dynamics. Selected
variables were vertical CO, flux (measured above the
canopy without correcting for underlying storage and
advection) (Fco,; denoted as Fc in AmeriFLUX); ambient
CO, concentration (Cco,); net radiation (RN); incoming
photosynthetically active radiation (PAR); sensible heat
flux (SHF); latent heat flux (LHF) (ecosystem water
exchanges); air temperature (TA); soil temperature (TS);
vapor pressure deficit (VPD); soil water content (SWC);
wind speed (WS); and friction velocity (UST). The TA,
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WS, PAR, LHF, and SHF represent measurements just
above the canopy level. The radiation measurements reflect
the impacts of cloudiness, which can significantly control
plant photosynthesis (Fuentes and Wang 1999).

Choice of the selected study years (2006-2011) was
based on the most recent, relatively high availability of
reliable data; the set of participatory variables was deter-
mined by a preliminary data analysis and leveraging cur-
rent understanding of carbon flux dynamics in the selected
ecosystems. The data sets contain four distinct process
partitions of flux, radiation, above-ground and below-
ground environmental variables. Most of the process-based
carbon flux prediction models used these components for
system representation (Carvalhais et al. 2005; Desai 2010;
Chen et al. 2011); some empirical models also adopted a
similar approach (e.g., Wylie et al. 2007).

Collected data are classified as level-2, which passed
through QA/QC checks. Since data sample for each forest
site was very large, gaps in the data matrix were not filled in
order to avoid any additional biases in the empirical model
building. We applied a two-step procedure to remove the
unsuitable data and prepare the final data set for each of our
eight sites. First, half-hourly data panels representing gaps
for more than two participatory variables were removed
from further analysis. This procedure led to the exclusion of
half-hourly panel data over a year by around 24 % for both
Missouri Ozark and Silas Forests, by 33 % from the UMBS,
by 49 % from the Willow Creek, by 55 % from the Ohio
Oak Forest, by 59 % from the Morgan Forest, by 67 % from
the Bartlett Forest, and by 74 % from the Harvard Forest
(see Table 1 for the final sample sizes). Although according
to Falge et al. (2001), flux towers can encounter around
35 % missing data annually at the half-hourly scale, our
removal percentages were higher for most stations because
some variables (e.g., soil water content), which had not been
collected by the eddy covariance method, encountered
higher gaps than the flux data. Second, the gap-filtered data
for each variable at each station were plotted with time (not
shown) to visually check the presence of any unreasonable
spikes (i.e., outliers), which were subsequently removed.
This secondary filtering led to the removal of 1 half-hourly
observation panel for the Silas Forest, 3 observation panels
for the UMBS, 2 observation panels for the Willow Creek, 3
observation panels for the Harvard Forest, and 14 observa-
tion panels for the Bartlett Forest. The final data sets
(N = 4,446-13,194; see Table 1) incorporated the effects of
analyzing an equivalent single to multiple seasons on carbon
flux dynamics among different stations. Per AmeriFLUX
sign conventions, positive sign represents upward fluxes
(land/forest to atmosphere) of Fco,, LHF and SHF; negative
refers to their downward fluxes (atmosphere to land/forest).
In contrast, positive values of radiation (RN and PAR)

indicate downward (atmosphere to forest) fluxes and vice
versa.

Although photosynthesis and respiration are two dif-
ferent processes and can be dictated by different drivers
(e.g., radiation vs. temperature), they often share common
stressors. Partitioning of Fco, into photosynthesis and
respiration was not considered in this study because the
objective was to understand (and quantify) the relative
linkages and groupings of different variables influencing
the overall diurnal (24-h) cycle of carbon exchanges. Since
the study goal was to determine the relative linkages of
mainly climate and environmental variables with the can-
opy-level vertical carbon fluxes, biological variables such
as the canopy leaf-area-index (LAI) were not included in
the data matrices. Precipitation was not also included
because of the lack of availability of 30-min interval;
instead SWC was used as a surrogate variable to represent
hydrologic effect. We also considered latent and sensible
heat fluxes in the data matrix in order to directly incorpo-
rate ecohydrologic dynamics.

Data Analysis and Empirical Modeling

We used a simple data-analytics approach that incorporates
Pearson correlation analysis, as well as the multivariate
PCA, FA, and PLSR to emphasize the entire methodology
and overall outcomes, rather than the individual analyses or
analysis steps. The data-analytics methodology is briefly
summarized in a flow diagram (Fig. 2); the analyses and
modeling were done using multiple computation software
and programming platforms such as MATLAB, R, and
Microsoft Excel.

Pearson Correlation Analysis

Pearson product-moment correlation coefficients were
computed to obtain background information on the linear
dependency between Fco, and the climatic/environmental
variables for the different deciduous forest sites. Triangular
correlation matrices involving all participatory variables
were also computed to obtain a preliminary understanding
on the multicollinear structure of the data matrix.

Principle Component Analysis (PCA) and Factor Analysis
(FA)

Multivariate advanced data reduction, interpretation and
pattern recognition techniques such as the PCA and FA mine
relationships among participating variables in a matrix of
independent factors. PCA explains the variance—covariance
structure of a data matrix through some orthogonal, linear
combinations of original variables, emphasizing data
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Obtain the correlation structure of variables
through Pearson correlation matrix

U

Identify groupings and inter-relation patterns of
variables using principal component analysis

U

Extract significant, hidden factors by factor analysis

U

Determine the relative importance of different predictors
using variable importance on the PLS projection

v

Quantify the relative linkages of different variables with
the CO, fluxes using PLSR model coefficients

Fig. 2 The data-analytics methodology to determine the relative
carbon flux linkages of different climate and environmental variables

interpretation, and reduction in an unsupervised manner
(Peres-Neto et al. 2003; Jolliffe 1993; Mahbub et al. 2010).
It was previously applied to investigate the spatial repre-
sentativeness of AmeriFLUX network by grouping homo-
geneous areas (Hargrove and Hoffman 2005). A virtue of
PCA is that it can unravel relationships hidden in the ori-
ginal data and allows interpretations that are not easy to
make using a Pearson correlation matrix. We applied
explanatory PCA on the data matrices of the biological,
climatic, and environmental variables for the eight study
sites. In order to bring different variable units and data
sources on a comparable reference scale, data for all the
variables were standardized (and made dimensionless to
obtain Z-scores) by dividing their instantaneous deviations
from the corresponding annual averages by the respective
standard deviations (i.e.,Z = %; where Z = Z-score =
normalized variable, X = original variable, pu = annual
average of X, and ¢ = standard deviation of X). First two
principal components (PCs) were extracted from the loading
matrix (that represents correlation between the PCs and the
original variables) and displayed through biplots, which
exhibit the possible groupings and interrelations (orientation
and correlation strengths) among participatory variables.
FA characterizes the covariance liaisons among many
variables with a few rudimental, but unobservable, quan-
tities called factors. FA has been successfully applied for
data mining and analysis in many disciplines (Panda et al.
2006; Dragon 2006; and Liu et al. 2003). We applied FA in
order to reanalyze the normalized data and verify findings
from the PCA by explaining the system variances with
fewer latent variables (factors). Individual latent factors
were extracted based on an initial eigenvalue criterion
(eigenvalue >1.0). Additionally, the “varimax” orthogonal
rotation was performed, maximizing the sum of the
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variances of the loading matrices to optimize loading (i.e.,
correlation) values of the different variables on each factor.
Factors extracted thereby were able to describe most of the
variances of the data matrices for different study sites.

Partial Least Squares Regression (PLSR)

PLSR is a sophisticated data-driven method to integrate
features from a supervised principal component analysis
and multiple regressions, explaining the linear relationships
between the dependent (i.e., response) variable and inde-
pendent (i.e., predictor) variables (Wold 1966, 1982). The
unique advantage of using PLSR over traditional multiple
linear regressions is that it largely eliminates high vari-
ability and instability of estimated parameters caused by
multicollinearity among predictors. Since the PLSR
regression is performed in the transformed orthogonal
planes using the independent PLS components by maxi-
mally linking data covariance with the response variable,
all the predictor variables can be kept in the final model
(Kuhn and Johnson 2013). The regression coefficients of
the optimal PLSR model are leveraged to compute the
regression coefficients (BETA) of the original independent
variables by inverting the linear transformations between
the PLS components and original variables. Since the issue
of multicollinearity is resolved in the PLSR domain, the
derived regression coefficients (BETA) of the original
variables should ideally be unaffected by any multicollin-
earity existing in the data matrices.

In order to quantify the relative linkages of climatic and
environmental variables with the vertical CO, fluxes, nor-
malized (dimensionless) PLSR models were developed
using Z-scores of all participatory variables. The PLSR
models were trained (i.e., fitted) and verified (i.e., tested)
with half-hourly data (N = 4,446-13,194 among different
stations) using the SIMPLS algorithm (de Jong 1993; Hu-
bert and Branden 2003) and a 10-fold cross-validation
method (Kuhn and Johnson 2013). The model intercept
was “zero” for all sites since Z-score variables were used
for the model fitting.

Application of PLSR requires the selection of optimum
number of PLS components to ensure minimal prediction
error (optimum F statistics) while retaining model stability.
The optimal numbers of PLS components were determined
using the Akaike Information Criterion (AIC) (Akaike
1974) and coefficient of determination (R?), as obtained
from the 10-fold cross-validations. Subject to the different
sample sizes, a normalized AICk,, was defined to bring all

sites to a comparable scale as follows:

SSEFC%>+2P

AlCr () =ty ) 4 3

(1)
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where p is the total number of the model PLS components,
N is the sample size, and SSE,,, is the total sum of squared
error upon estimation of carbon fluxes (Fcop,). Using the
optimum number of PLS components, we employed both
the “variable importance in the projection (VIP)” (i.e., PLS-
VIP) and “regression coefficients (BETA)” (i.e., PLS-
BETA) methods as the complementary approaches to
determine the relative importance of different predictors for
the model response (Wold et al. 1993, 2001; Chong and Jun
2005). Higher VIP scores and higher regression coefficients
indicate more influential predictors in the latent predictor-
response matrix; as a rule of thumb, VIP scores exceeding
1.0 can be considered as the most informative predictors for
the response (Kuhn and Johnson 2013). Further, the
regression coefficients (BETA) of the Z-score PLSR models
can represent the relative linkages of the predictor variables
(Cco,, RN, PAR, SHF, LHF, TA, VPD, TS, WS, UST, and
SWC) with the response variable (Fco, ).

Results
Correlation Structure of the Data

The Pearson correlation coefficients between half-hourly Fco,
and the corresponding climatic/environmental variables were
significant at the 95 % level of confidence (« = 0.05 for a two
tailed test) (Table 2). Since the participatory variables (e.g.,
carbon and heat fluxes, temperatures) had both positive and
negative values, absolute values of the correlation coefficients
were used to describe the linear correspondences of different
variables. For all the study sites, Fco, demonstrated strong
linear correspondences with the biosphere radiations (RN and
PAR) (I1 = 0.61-0.71) and LHF (ecosystem-atmospheric
heat and water exchanges due to evapotranspiration)
(I = 0.65-0.87); while showing moderate correlations
(In = 0.29-0.56) with the SHF (ecosystem-atmospheric heat
exchanges due to temperature gradient), as well as with the
ambient carbon storage (Cco,) (Il = 0.46-0.57). Moderate

linear correspondences of Fco, were also apparent with the air
temperature (TA) (Irl = 0.28-0.51) and soil temperature (TS)
(I = 0.24-0.51) among the different study sites. Vapor
pressure deficit (VPD) and available soil moisture (SWC)
showed weak to moderate correlations with Fco, (IH = 0.10-
0.54 and Irl = 0.01-0.33, respectively). In contrast, the linear
correspondences of Fco, with the aerodynamic drivers (WS
and UST) were relatively weak (Irl = 0.03-0.24). Further-
more, the triangular correlation matrices (not shown) for dif-
ferent study sites revealed high mutual correlations among the
flux related variables (SHF, LHF, RN, and PAR). For exam-
ple, the correlation coefficient (r) between RN and PAR was
0.99; correlation of the radiation variables (PAR and RN) with
the SHF and LHF ranged, respectively, from 0.80 to 0.87 and
from 0.71 to 0.80. The temperatures variables (TS, TA, and
VPD), as well as the velocity variables (WS and UST), were
also notably correlated within each group. This indicates the
presence of a substantial multicollinearity in the data matrix of
the climatic and environmental variables.

Dominant Groups and Orientation of the Variables

For the eight study forests, the first two PCs explained from
61.95 to 75.17 % of the total data variances exhibited by
the participatory (climatic, environmental, and biological)
variables. PCA loading matrices (showing the correlation
coefficients between the PCs and the original variables) for
different stations are presented through biplots (Figs. 3, 4).

The first two PCs explained 61.95 % of total data vari-
ances for the Bartlett Experimental Forest (Fig. 3a). The
orientations and lengths of SHF, PAR, RN, VPD, and LHF
suggest strong interrelationships, forming a dominant group
(A) that highly correlates with Fco, and Cco,. TA and TS
formed a second group (B), which appears to be moderately
correlated with Fco,. SWC, WS and UST formed the third
group (C) that is relatively orthogonal to (i.e., weakly cor-
related with) Fco,. Nearly orthogonal orientations of groups
A, B, and C suggest three different and relatively uncorre-
lated variance-based clusters of variables hidden in the data;

Table 2 Pearson correlation coefficients between the carbon fluxes (Fco,) and the climate/environmental variables for the eight deciduous forest

study sites

Site RN PAR LHF SHF Cco, TA TS VPD SWC WS UST

Bartlett Forest -0.70 -0.70 -0.72 —0.56 0.46 -0.51 -0.39 —0.10 0.06 0.03 0.03
Harvard Forest —0.66 -0.67 —0.65 -0.37 -0.39 -0.37 —0.44 -0.03 -0.12
Missouri Ozark —0.61 —0.61 -0.71 -0.33 0.47 —0.28 -0.24 —0.40 0.17 —0.04 —0.18
Morgan Forest —-0.71 -0.71 —0.84 —0.40 —0.39 —0.38 0.01 0.24 0.06
Ohio Oak —-0.71 —0.70 —-0.87 -0.29 0.52 —0.43 —0.33 —0.16 0.26 0.09 0.04
Silas Forest —0.69 —0.66 -0.77 —0.46 —0.36 —0.26 —0.54 0.05 —0.15
UMBS Forest —0.67 —0.67 —0.80 —0.44 0.53 —0.38 —0.34 —0.50 0.25 0.07 —0.16
Willow Creek —0.65 —0.67 —0.84 —0.40 0.57 —0.51 —0.51 —-0.42 0.33 —0.20 0.05

Blank indicates missing data
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A is dominated by the radiation and flux variables, whereas B
and C are dictated by, respectively, the temperature and
aerodynamic variables. The group-A variables and Cco,, due
to their strongly non-orthogonal orientations with Fco,, are
likely the dominant predictors of the carbon fluxes; group-B
variables would be the moderately strong predictors, while
group-C variables could be the weakest predictors. Similar
variable-groupings and interrelation patterns were observed
for the Harvard Forest (with missing SWC data) (Fig. 3b),
UMBS Forest (Fig. 3c), and Missouri Ozark Forest
(Fig. 3d), where the first two PCs explained, respectively,
71.26, 68.46, and 63.65 % of their total data variances.
Although the quadrant-locations of group-B and C were
flipped for the Missouri Forest, compared to the other three
stations, the relative orthogonality of the three groups, as
well as that between Fco, and group-C variables, were
common for all four sites (Fig. 3).

The Silas Little Forest (with missing SWC data), as well
as the Willow Creek Forest, demonstrated a slightly different
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Fig. 3 Biplots obtained from principal component analysis showing

the groupings and interrelation patterns of the climate, environmental,
and biological variables for (a) Bartlett Experimental Forest (NH),
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pattern than that of Bartlett Forest, with the first two PCs
explaining, respectively, 75.17 and 67.03 % of the total data
variances (Fig. 4a, b). The group-A variables still demon-
strated the strongest links with Fco,; however, they split into
two distinct, non-orthogonal groups of Al (RN, PAR, SHF)
and A2 (VPD, LHF). Similar to the Bartlett Forest, the group-
B (temperature) variables showed moderate correspon-
dences, whereas the group-C (wind speed and soil water)
variables appeared to be weakly interrelated with the Fco,.
The Morgan Monroe State Forest (the first two PCs
explained 64.38 % of the total data variance) also showed a
slightly different correlation and grouping pattern compared
to that of Bartlett or similar forests (Fig. 4c). Although
group-C was similar to the previous stations showing a rel-
atively orthogonal orientation with Fco,, the VPD emerged
out of group-A and loaded highly with TA to form a mod-
erately linked group, D; this regrouping could be partly
caused by the missing soil temperature data for this station.
However, at the Ohio Oak Forest, where the two PCs
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(b) Harvard Forest (MA), (¢) UMBS Forest (MI), and (d) Missouri
Ozark Forest (MO). Percent variance explained by each PC is shown
in parenthesis
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Fig. 4 Biplots obtained from principal component analysis showing
the groupings and interrelation patterns of the climate, environmental,
and biological variables for (a) Silas Little Forest (NJ), (b) Willow

explained 65.33 % of total data variance, all the variables
appeared to cluster into two distinct groups of E (SHF, PAR,
RN, LHF, TA, and TS) and F (SWC, WS, UST, and VPD)
(Fig. 4d). The group-E has a nearly linear (with 180°) ori-
entation with Fco,, suggesting likely strong linkages
between them; the group-F variables were nearly orthogo-
nally oriented with Fco,, indicating their possibly weak
linkages. The ambient carbon storage (Cco,) was non-
orthogonally oriented with Fco,, suggesting their strong
linkage.

Significant Hidden Factors

The eigenvalue criterion (eigenvalue >1) led to three
independent latent factors for all eight sites (Table 3). This
means that the extracted three factors adequately summa-
rized the system variance at each site; the first factor
explained the most variance (40.69-52.6 %), then the
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0:5
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Creek Forest (WI), (¢) Morgan Monroe State Forest (IN), and
(d) Ohio Oak Openings Forest (OH). Percent variance explained by
each PC is shown in parenthesis

second factor (16.8-24.64 %), while the third factor
described the least variance (8.9-15.5 %). FA with ‘vari-
max’ optimization provided more precise information into
the hidden patterns of the data matrices than that shown by
the two PCs (see Figs. 3, 4). Since the standardized par-
ticipatory variables had both positive and negative values,
the FA outcomes were interpreted mainly based on the
magnitudes (ignoring the positive or negative signs) of the
factor loadings.

The radiation and heat fluxes (RN, PAR, SHF, and LHF)
generally loaded highly (0.65-0.99) on the first factor,
which had moderate to high loadings (—0.57 to —0.70)
with Fco, at different stations. The pressure variable (VPD)
showed moderate loadings (0.41-0.53) on Factor-1 for all
but one (Morgan State Forest) sites. The near-canopy car-
bon storage (Cco,) showed a moderate loading (—0.38) on
Factor-1 only for the Bartlett Forest site. The higher
loadings of RN, PAR, SHF, and LHF indicate their
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Table 3 Dominant latent factors extracted from the data matrices of the eight deciduous forest study sites

Site Factors WS UST SWC VPD TS TA Cco, SHF LHF RN  PAR Fco,
Bartlett Forest (NH) Fac 1 0.02 020 —-0.01 048 0.08 028 —0.38 0.91 065 097 097 —0.65
Fac 2 0.04 002 —-0.14 0.53 0.88 094 035 —0.01 043 020 022 —-038
Fac 3 0.99 0.89 0.14 022 -0.10 —-0.02 —0.04 0.06 0.05 0.09 0.12 0.03
Harvard Forest (MA)  Fac 1 0.08 0.25 0.51 0.12 0.16 0.86 068 095 097 —0.63
Fac 2 —-0.06 —0.06 0.49 0.93 0.98 —0.03 027 019 017 -0.29
Fac 3 0.91 0.97 008 —0.07 —0.06 0.20 0.19 0.14 0.16 0.02
UMBS Forest (MI) Fac 1 -0.07 027 —0.05 0.46 0.03 0.14 -0.22 0.85 0.67 098 098 —0.63
Fac 2 —-0.06 —-0.10 —0.60 0.64 0.96 096 —0.72 —0.10 042 0.2 0.16 —0.34
Fac 3 0.86 0.96 0.19 003 -0.11 —-0.07 0.00 0.12 0.07 0.10 0.07 —-0.03
Missouri Ozark (MO)  Fac 1 0.03 030 —-0.07 041 0.09 0.17 —0.29 0.83 071 097 097 -0.58
Fac 2 —-0.08 —-0.09 -0.50 0.62 0.91 097 -026 —0.09 039 0.18 0.19 -020
Fac 3 0.99 0.78 0.18 022 —0.15 0.00 —0.14 0.12 008 0.12 0.13 —-0.04
Silas Forest (NJ) Fac 1 0.13 0.29 0.53 0.11 0.23 0.84 072 095 094 —0.67
Fac 2 -0.09 0.00 0.60 0.91 0.97 0.01 037 024 022 -0.21
Fac 3 0.99 0.86 0.15  -0.17 0.01 0.22 0.07 0.19 0.23 0.02
Willow Creek (WI) Fac 1 0.08 028 —-0.02 041 0.18 025 —0.34 0.88 0.67 095 095 —0.57
Fac 2 -0.10 —-0.07 -036 0.46 0.95 092 -0.39 0.01 051 021 026 —045
Fac 3 0.88 0.96 0.16 003 —-0.12 —-0.08 —0.04 0.21 0.07 0.16 0.14 —0.08
Morgan Forest (IN) Fac 1 —-0.21 0.30 0.04 034 0.29 0.82 078 099 098 —0.70
Fac 2 004 -0.14 —-044 0.88 0.75 0.00 032 0.09 017 -0.19
Fac 3 0.74 0.94 0.01 0.04 -0.09 0.12  -0.05 0.03 0.02 0.13
Ohio Oak (OH) Fac 1 0.07 025 —0.03 0.52 0.05 025 —0.34 0.83 0.67 096 097 —0.65
Fac 2 —-0.15 —-0.11 -0.49 0.60 0.87 090 —-044 —0.14 050 021 022 =037
Fac 3 0.96 0.89 022 009 -024 -007 —-0.13 0.25 0.04 0.13 0.11 0.04

“Fac” represents factor. Factor 1: Radiation-energy factor; Factor 2: Temperature-hydrology factor; Factor 3: Aerodynamic factor. Bold values
indicated variables having moderate to high loadings (correlations) on factors. “Blank™ refers to the missing data

dictating role on the first hidden factor, which, therefore,
can be termed ‘radiation-energy’ factor. Temperature
variables (TA and TS) loaded highly (0.75-0.98) with
Factor-2, which showed low to moderate loadings (—0.19
to —0.45) with Fco,. The VPD had moderate to high
loadings (0.46—0.88) on Factor-2 for all stations; the soil
hydrology variable (SWC) loaded moderately (—0.44 to
—0.50) on Factor-2 for the Missouri Ozark, Morgan State,
and Ohio Oak Forests, while loading slightly highly
(—0.60) for the UMBS Forest. The Cco, showed moderate
to high loadings (—0.44 to —0.72) on Factor-2 for the Ohio
Oak and UMBS sites only; of the radiation and heat fluxes,
only LHF loaded moderately (0.42—0.51) on Factor-2 for
the UMBS, Ohio Oak, and Willow Creek Forests. Since
temperature related variables and SWC dominated Factor-
2, it was termed ‘temperature-hydrology’ factor. Factor-3
(termed ‘aerodynamic’ factor) had a poor loading (0.02—
0.13) with Fco,; only the WS and UST showed notable
loadings (0.74-0.99) on Factor-3 at different sites.
Similar to the PCA outcomes, the highest loadings of
Fco, with Factor-1 (which explained most of the system
variances) refer to the relatively strong linkages of
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radiation and heat fluxes with the turbulent, vertical CO,
fluxes; the strong loadings of LHF with both Factor-1 and
Factor-2 (ranking second in explaining system variances
and Fco, loadings) indicate a dictating linkage of LHF with
Fco,. Notable double-factor (Factor-1 and 2) associations
of VPD and Cco, also suggest their relatively strong
linkages with the vertical carbon fluxes. The very high
loadings of TA and TS on Factor-2, as well as that of WS
and UST on Factor-3, can indicate their appreciable link-
ages with Fcp,. The moderate to strong loadings of mul-
tiple variables on the ‘radiation-energy’ and ‘temperature-
hydrology’ factors reiterate the interrelations (i.e., collin-
earity) among the radiation, heat fluxes, and temperature
variables.

Relative Carbon Flux Linkages of the Climate
and Environmental Variables

A combination of AIC and R> criteria, obtained through a
10-fold cross-validation method, showed that a total of 3—-5
PLS components led to the optimum PLSR models (min-
imum AICg,,, and maximum R?), whereas three PLS
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components captured most variations in Fco, for different
sites (Fig. 5a, b); this is consistent with the FA outcome of
three independent factors adequately describing the varia-
tion in the overall data matrices (Table 3). Ranges of
optimal model fitting efficiency (R* = 0.55-0.81) and
accuracy (ratio of root-mean-square error to the standard
deviation of observations, RSR = 0.44-0.67; mean square
error, MSE = 0.19-0.45) showed impressive predictions
of Fco, for different study sites (Table 4). The model
residuals were approximately normally distributed with
constant variances (not shown). The R> indicated the
amount of observed data variance explained by the model
(i.e., model efficiency), whereas the RSR (see notes of
Table 4 for the mathematical expression) and MSE indi-
cated the accuracy of model fitting. Moriasi et al. (2007)
provided a range of RSR values for the evaluation of model
accuracy; an RSR from 0 to 0.50 indicates a perfect to very
good model, from 0.5 to 0.6 indicates a good model, and
from 0.6 to 0.7 refers to a satisfactory model; a model with
RSR >0.70 is considered unsatisfactory.

The variable importance in the PLS projection (VIP)
scores and regression coefficients (BETA), as obtained
with the optimum number of PLS components, quantified
the relative linkage of each predictor with the model
response (Fco,) (Fig. 6; Table 4). Since the Z-scores of the
participatory variables had both positive and negative

(a) —o— Bartlett
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—¥— Ohio Oak
——UMBS
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—o—Silias

—— Willow Creek
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Fig. 5 Plot of cross-validated (a) normalized AIC and (b) fitting
efficiency (R?) for Fco, with the number of incorporated partial least
squares (PLS) components

values, interpretation of the type (e.g., mutual increase or
decrease) of their relative carbon flux linkages based on the
positive or negative sign of BETA () would be potentially
misleading; the predictive influence of individual predic-
tors of Fco, was, therefore, evaluated by comparing the
absolute values of the associated f5. Total relative linkages
of the ‘radiation-energy’ (frur), ‘temperature-hydrology’
(B1), and ‘aerodynamic’ (fiyy) components were computed,
respectively, as:

Prur :\/ﬁ2RN + Boar + Bur + Biur:

Pr = \/ﬁ%A + Brs + Buep + Bswes and

Bw =/ Bus + Bust

Bartlett Experimental Forest

The LHF, RN, PAR, SHF, and VPD had VIP scores higher
than unity (1.0) and were potentially strongly linked with
Fco, (Fig. 6a); smaller VIPs of TA, Cco,, and TS indicated
their likely moderate linkages with Fco,; much lower VIP
scores indicated relatively weak linkages of Fco, with UST,
WS, and SWC. Model coefficients (f) revealed almost
similar linkage pattern with some exceptions (Table 4); Fco,
showed relatively strong linkage with Cco, and relatively
weak linkages with SHF and TA. LHF was the strongest
predictor in regression, exhibiting around 2 times stronger
linkages with Fco, than that of RN, PAR and Cco,; 2.5—
3.5 times stronger linkages than that of VPD and TS; and
around 9-36 times stronger linkages than that of the aero-
dynamic and soil moisture variables (WS, UST, and SWC).
Based on the ratio of fixyp/fr and frup/Pw, the ‘radiation-
energy’ component had around 2.5 and 11 times stronger
linkages with the carbon fluxes than that of, respectively, the
‘temperature-hydrology’ and ‘aerodynamic’ components.

Harvard Forest

The VIP scores and PLSR coefficients slightly differed for
this site. The radiation and heat flux variables of PAR, RN,
LHF, and SHF had the higher VIP scores, referring to their
strong linkages with Fco, (Fig. 6b). Lower VIP scores of the
temperature and aerodynamic variables (VPD, TA, TS, WS,
and UST) indicated their relatively weak to moderate link-
ages with Fco,. In terms of regression coefficients (f;
Table 4), Fco, had relatively high linkages with SHF, RN,
PAR, and LHF; moderate linkages with VPD and UST; and
low linkages with TA, TS, and WS. Unlike other study sites,
SHF appeared to be the strongest predictor of Fco,, although
VIP scores indicated stronger dominance of LHF over SHF.
Overall, the ‘radiation-energy’ group had approximately 7
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Table 4 Coefficients () of the normalized (dimensionless) PLSR models of carbon fluxes (Fco,) for different deciduous forest study sites

Predictor Bartlett Forest Harvard Forest UMBS Forest Missouri Ozark Silas Forest Willow Creek Morgan Ohio Oak
variables (NH) (MA) (MI) (MO) (NJ) (WD Forest (IN) (OH)
RN —0.20 —0.53 —0.19 —0.17 —0.22 —0.19 —0.23 —0.26
PAR -0.17 —0.60 —0.15 —0.16 —0.15 —0.14 —0.18 —-0.20
LHF —0.36 —0.30 —-0.54 —0.44 —0.58 —0.69 —0.64 —0.67
SHF —0.08 0.68 0.07 0.11 0.11 0.22 0.24 0.23
VPD 0.14 0.11 0.09 0.04 —0.10 0.16 0.09 0.17
Cco, 0.18 0.26 0.28 0.15 0.13
TA —0.05 0.01 0.07 0.06 0.07 0.00 —0.06 0.07
TS —0.10 —0.06 0.03 0.02 0.10 0.00 0.00
A 0.04 —0.06 0.11 0.07 0.06 0.02 0.04 0.10
UST 0.01 0.15 0.01 0.05 0.09 —0.04 0.02 —0.04
SWC —0.03 —0.01 —0.03 0.05 —0.07 0.01
PLS components 3 5 3 3 4 4 3 4
R’ 0.64 0.64 0.69 0.55 0.63 0.75 0.74 0.81
RSR 0.60 0.59 0.56 0.67 0.61 0.50 0.51 0.44
MSE 0.37 0.35 0.31 0.45 0.37 0.25 0.26 0.19
Prur/ Pt 2.5 8.3 5.0 6.3 4.1 4.5 5.8 4.2
Prur/ Pw 11 6.8 54 5.9 6.0 18.8 16.6 7.2

Blank indicates missing data; RSR, the ratio of root-mean-square error to the standard deviation of observations, was calculated as:

RSR = \/ Zf\;l (Fcoy,imod — FC()N-‘yobs)2 /N / OFco, obs>» Where N is the total number of standardized observations of Fco,, Fco,,iobs ad Fco, imod

are the ith observed and predicted value of standardized Fco, (respectively), and OFco, obs = 1.0 is the standard deviation of the observed,
normalized Fco,; and MSE is the mean square error of predicted, normalized Fco,. The total relative linkages of the ‘radiation-energy’ (frur),

‘temperature-hydrology’ (fir), and ‘aerodynamic’ (fiy) components were computed, respectively, as: fryp = \/ ,32RN + ﬂ%AR + ﬂiHF + ﬂéHF;

Br =/ Ba + Bis + oo + By and Py =/ Bius + Brr

and 8 times stronger linkages with Fco, than that of the
‘aerodynamic’ and  ‘temperature-hydrology’  groups,
respectively. The relatively high coefficient of UST, com-
pared to other sites, indicated a notable influence of canopy
layer turbulent mixing on carbon flux transfer at this site.

UMBS

The VIP scores of LHF, PAR, RN, Cco,, VPD, and SHF were
greater than (or equal to) 1.0, suggesting their strong relative
linkages with Fo, ; lower VIP scores indicated relatively weak
to moderate linkages of Fco, with TA, TS, SWC, UST, and WS
(Fig. 6¢). Relative influence (f5) of the PLSR model variables
were mostly similar to that of VIPs (Table 4). LHF was the
strongest predictor of Fco,; around 2-3.5 times stronger than
that of the Co,, RN and PAR. In contrast, the variables of WS,
VPD, TA, and SHF showed around 5-7.5 times lower linkages
with Fco,. Based on f3, Fco, was very weakly linked with TS,
UST, and SWC. The ‘radiation-energy’ component had around
5 times stronger linkages with Fco, than that of the ‘temper-
ature-hydrology’ and ‘aerodynamic’ components.
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Missouri Ozark Forest

The higher VIP scores of LHF, RN, PAR, Cco,, and VPD
indicate that these variables were potentially strongly
linked with Fco,; lower VIPs of the other variables refer to
their low to moderate linkages with the carbon fluxes
(Fig. 6d). These results were consistent with the regression
modeling outcomes with the exceptions of SHF and VPD,
which showed, respectively, relatively high and low coef-
ficients with Fco,. The LHF was the strongest predictor of
carbon fluxes, showing around 1.5 times stronger linkages
than that of Ccop,; 2.5-4 times stronger linkages than the
PAR, RN, and SHF; and 6-8 times stronger linkages than
TA, WS, and UST. The SWC and TS did not show note-
worthy linkages with Fco,. Relatively lower model fitting
efficiency and accuracy (R2 = 0.55; RSR = 0.67; MSE =
0.45) also indicate the presence of more complicated
(exceedingly nonlinear) carbon processes. Overall, the
‘radiation-energy’ group had approximately 6 times
stronger linkages with Fco, than that of the ‘aerodynamic’
or ‘temperature-hydrology’ group (Table 4).
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Fig. 6 Variable importance on the partial least squares projection
(VIP) of different predictors for the response variable (Fco,) for
(a) Bartlett Experimental Forest (NH), (b) Harvard Forest (MA),
(c) UMBS Forest (MI), (d) Missouri Ozark Forest (MO), (e) Silas

Silas Little Experimental Forest

Based on the common outcomes of VIP scores (Fig. 6¢)
and PLSR coefficients (Table 4), the LHF, RN, and PAR
had high linkages with Fco,, while the VPD, SHF, TA, TS,
WS, and UST had relatively low to moderate carbon flux
linkages. Per f/, LHF was the strongest carbon flux pre-
dictor; around 2.5-4 times stronger than the RN and PAR;
5-6 times stronger than SHF, VPD, TS, and UST; and
8-10 times stronger than TA and WS. The ratio of
Prur/Pr and Prup/Pw showed that the ‘radiation-energy’
component had around 4 and 6 times stronger linkages with
Fco, than that of, respectively, the ‘temperature-hydrology’
and ‘aerodynamic’ components.

Willow Creek Forest

Both the VIP scores (Fig. 6f) and regression coefficients
(Table 4) showed stronger linkages of carbon fluxes with the

Little Forest (NJ), (f) Willow Creek Forest (WI), (g) Morgan Monroe
State Forest (IN), and (h) Ohio Oak Openings Forest (OH). Dashed
line indicates predictors having VIP score greater than unity (1.0)

LHF, PAR, RN, Cco,, SHF, and VPD for this site; the soil
moisture (SWC), wind speed (WS), and friction velocity (UST)
had relatively low carbon flux linkages. The air and soil tem-
peratures (TA and TS) showed negligible linkages with Fco,.
Based on f, the predictive influence of LHF was around
3—4 times stronger than that of RN, PAR, SHF, Cco,; and
13-17 times stronger than SWC and UST. Overall, the ‘radi-
ation-energy’ group had approximately 4.5 and 19 times
stronger linkages with Fco, than that of the ‘temperature-
hydrology’ and ‘aerodynamic’ groups, respectively (Table 4).

Morgan Monroe State Forest

The radiation and heat flux variables of LHF, RN, PAR,
and SHF had high VIP scores (>1.0), indicating their
potentially strong linkages with the carbon fluxes; small
VIP scores indicated relatively weak linkages of Fco, with
VPD, TA, WS, UST, and SWC. The PLSR model coeffi-
cients (f) (Table 4), as well as the outcomes of PCA
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(Fig. 4c) and FA (Table 3), revealed nearly an identical
linkage pattern. The LHF was the strongest predictor in
regression, exhibiting around 2.5-3.5 times stronger link-
ages with Fco, than that of RN, PAR and SHF; 7-10 times
stronger linkages than that of VPD, SWC, and TA; and
around 16 times stronger linkages than WS. Based on
Prur/Pr and Prup/Pw, the ‘radiation-energy’ component
had around 6 and 16.5 times stronger linkages with the
carbon fluxes than that of, respectively, the ‘temperature-
hydrology’ and ‘aerodynamic’ components.

Ohio Oak Openings

The PLSR model had the highest fitting accuracy
(MSE = 0.19; RSR = 0.44) and efficiency (R* = 0.81) for
this site. Both the VIP scores (VIP >1; Fig. 6h) and
regression coefficients (Table 4) showed relatively strong
linkages of carbon fluxes with the LHF, PAR, RN, and
VPD; the ambient carbon concentration (Cco,) had a
moderate linkage, whereas the soil moisture (SWC) and
friction velocity (UST) had very low carbon flux linkages.
Although the sensible heat flux (SHF) and air temperature
(TA) had moderate VIP scores, the associated PLSR model
coefficients (f3), as well as the PCA biplot (Fig. 4d) and FA
results (Table 3), showed relatively strong influence of
SHF and weak influence of TA in predicting Fco,. How-
ever, contrary to the VIP scores and the PCA and FA
results, the wind speed (WS) had a moderately high
regression coefficient (i.e., moderate carbon flux linkage),
while the soil temperature (TS) showed a negligible coef-
ficient (little linkage) with Fco,. Based on f, the predictive
influence of LHF was around 2.5-4 times stronger than
that of the RN, PAR, SHF, and VPD; 5-6.5 times stronger
than Cco, and WS; and 9.5-17 times stronger than that of
TA and UST. Overall, the ‘radiation-energy’ group had
approximately 4 and 7 times stronger carbon flux linkages
than that of the ‘temperature-hydrology’ and ‘aerody-
namic’ group, respectively (Table 4).

Discussion

Linking Vertical Carbon Fluxes with the Climatic
and Environmental Variables

For all eight deciduous forest sites, the ‘radiation-energy’
component of RN, PAR, SHF, and LHF was strongly
linked with the canopy-level CO, fluxes. Previous research
(e.g., Jung et al. 2011; Schmidt et al. 2011; Morales et al.
2005; Zhang et al. 2005; Baker et al. 2003; Sellers et al.
1997) also reported a similar finding. However, most
studies considered the latent heat flux (LHF) and sensible
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heat flux (SHF), along with Fco,, as the response variables
as functions of some common drivers such as the radiation,
temperature, vapor pressure, etc. In contrast, alike Melesse
and Hanley (2005), our study included the two heat fluxes
in the matrix of predictor variables; quantifying their rel-
atively high linkages with Fco, exchanges within a large
set of climatic and environmental variables.

The mutual correlations among the three fluxes of Fco,,
SHF and LHF could partly stem from the common
dynamic term (vertical wind speed fluctuations) of their
eddy covariance measurement equations (Launiainen et al.
2005); however, their interrelationships identified in this
study were mostly process-oriented. The carbon and energy
fluxes together represent the ecosystem’s biological
exchanges with atmosphere (Baldocchi et al. 2001). Heat
fluxes (LHF and SHF) help to maintain balance in atmo-
spheric radiation through evapotranspiration (ET) and tur-
bulent energy diffusion (Sellers et al. 1997). Plants’
stomata tend to close with increasing transpiration and
LHF slows down to maintain ecosystem water budget,
indirectly affecting carbon flux exchanges (Heber et al.
1986). Furthermore, the relative weight (i.e., ratio) between
the canopy-level photosynthesis and ET is a moderate
function of atmospheric humidity deficit (Baldocchi and
Meyers 1998), indicating ET-control on high rate of can-
opy growth.

Although the ambient CO, concentration (Cco,) was
not available for three of the eight study sites, it showed
relatively moderate to strong linkages with carbon fluxes
(Fco,) for all available sites. Elevated Cco, stimulates the
photosynthesis by increasing the carboxylation and oxy-
genation, leading to a fast plant growth and ultimately
increasing the litter production and soil carbon storage
(Masle 2000). Furthermore, high atmospheric carbon
concentrations often facilitate more efficient use of
available soil water for plant growth and productivity
(Schlesinger 1999). In contrast, Drake et al. (1999)
reported a negative functional relation between plant
respiration and Cco,.

The ‘temperature-hydrology’ component (formed by
TA, TS, VPD, and SWC) had a moderate linkage with the
vertical carbon fluxes for almost all study forests. Water
availability, temperature, and light can play a significant
role in plants’ energy and water exchanges by transforming
stomatal aperture (short-term) and density (long-term)
(Haworth et al. 2011). High vapor pressure deficit (VPD)
can lead to stomatal closure (Loescher et al. 2003),
affecting the plant-atmospheric energy (latent heat) and
carbon fluxes. VPD also loaded appreciably in the ‘radia-
tion-energy’ factor (Table 3), which is consistent with
previous studies (e.g., Lund et al. 2010). Although soil
moisture (SWC) at most study sites grouped with the
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velocity variables in the PCA biplots (Figs. 2, 3), more
detailed (3-dimensional) information emerged in FA ana-
lysis showing its appropriate association with the ‘tem-
perature-hydrology’ component (Table 3). The SWC can
contribute to the plants’ photosynthesis by influencing the
water potential difference between the tree leaves and root
system. However, our five layer analysis (Pearson corre-
lation, PCA, FA, PLSR-VIP, and PLSR-BETA) with half-
hourly data of different years from different US deciduous
forests indicated a relatively low predictive influence of
soil moisture on vertical CO, fluxes for the small time-
scale. The ‘aerodynamic’ component (WS, UST) was also
relatively weakly linked with the carbon flux exchanges.
Mechanistically UST and WS are not direct contributors of
carbon fluxes (Wilson et al. 2002); rather they influence the
boundary layer vertical mixing to facilitate transport.
Future studies should focus into the attributions of these
low carbon flux linkages of SWC, WS, and UST; for
example, whether aggregating data in larger time-scales
(e.g., daily, weekly, monthly, yearly) reveal a more notable
linkage of SWC with the Fco,.

Despite the gradients of a variable canopy height (9.52—
27 m), different climatic regimes (humid to temperate to
nearly extreme), and diverse soil morphology among the
study sites, the relative linkages of major process compo-
nents, as well as individual climate and environmental
variables, with Fco, were essentially similar. Our findings
of the relative carbon flux linkages, using a simple method
on half-hourly data for exclusively deciduous forests,
complement the findings of Schmidt et al. (2011) that
applied a complex neural network approach to analyze
daily averaged data for different types of ecosystems,
including five deciduous forests. For example, both studies
conclude that air temperature had a much lower effect on
turbulent carbon fluxes than that of other variables such as
the radiations; the same is true for the relatively weak
carbon flux linkage of wind and friction velocities. How-
ever, Schmidt et al.(2011) reported notably strong linkages
of daily precipitation and soil temperature with Fco,,
whereas our study found relatively low to moderate carbon
flux linkages of soil moisture and soil temperature for the
smaller (half-hourly) time-scale.

Data Quality and Uncertainty

Error and uncertainty associated with the eddy fluxes and
other variables can cause superfluous biases in analysis and
modeling (Williams et al. 2009). Our two-step data filtering
procedure substantially eliminated the unsuitable data
representing gaps (for more than two variables in one half-
hourly panel) and unreasonable spikes (outliers) from the
final data sets, which were analyzed to derive and report

the results. Furthermore, previous research (Schmidt et al.
2012) reported relatively low measurement uncertainties
for canopy-level meteorological variables (relative error
<2 %), heat fluxes (relative error = 1.7-5.2 %) and ver-
tical CO, fluxes (Fco,) (relative error <8.2 %) of the
AmeriFLUX network. Schmidt et al. (2012) also suggested
high quality research applicability of the AmeriFLUX data.
Nevertheless, it is possible that our analysis and modeling
with half-hourly data may not be completely free from the
effect of random sampling errors of measurements (Bal-
docchi 2003).

Explanatory Modeling and Analysis

Theoretically process-based carbon dynamics models should
be more reliable than the empirical models, but all the relevant
processes are not understood yet (Keenan et al. 2011). This
reemphasizes the importance of developing data-informed
carbon flux modeling system (Keenan et al. 2012), which
requires proper mechanistic judgments in the selection of
model variables. The multicollinearity effect generally pro-
vides biased models with the traditional least squares regres-
sion method, which may be partially resolved by eliminating
predictors stepwise (backward or forward) or simultaneously
based on statistical significance. However, this elimination
sometimes results in removal of variables that has important
mechanistic basis, hampering the evaluation of comparative
linkages of relevant predictors with the response variable. Our
dimensionless, optimal PLSR modeling approach (capturing
maximum system variance and mechanisms) provided the
flexibility and statistical stability for retaining all predictors
since regression was primarily done with the orthogonal PLS
components and then transformed to the original domain.
Predictions with the linear PLSR models were quite impres-
sive (R2 = 0.55-0.81), as compared to the nonlinear half-
hourly data-driven models of Byrne et al. (2005) for GPP
(R* = 0.78-0.81) and respiration (R* = 0.86-0.83), hourly
mechanistic model of Wu and Chen (2013) for deciduous
forest carbon fluxes (R2 = 0.66-0.91), for example.

The PLSR models could not satisfactorily predict
extremely positive (upward) and negative (downward)
carbon fluxes likely due to the linear structure. Primary
production (GPP) and respiration have different mecha-
nisms and are not necessarily controlled by the same set of
drivers. Representing these two distinct processes by one of
set of regression coefficients at the half-hourly scale can
contribute errors to the model predictions. Seasonal vari-
ability in terrestrial carbon fluxes can also cause uncer-
tainty in a data-driven model developed with half-hourly
data (Jarvis et al. 1997; Xu and Baldocchi 2004). Fur-
thermore, instead of including multiple years of observa-
tions for each study site, single-year data, encompassing a
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5-year time frame (2006-2011) among the eight deciduous
study forests, were chosen for our analysis and modeling.
Although a 10-fold cross-validation improved consistency
in model fitting and robustness of estimated parameters,
incorporation of single (rather than multiple) year data for
an individual site could be seen as a limitation of this study.

Carbon fluxes can strongly respond to precipitation and
vegetation productivity (Piao et al. 2013; Schmidt et al.
2011) considering their control over the long-term carbon
balance. We used soil moisture (SWC) data as a surrogate for
precipitation subject to the lack of availability of half-hourly
precipitations. Since our study goal was to determine the
relative linkages of mainly climate and environmental vari-
ables with the canopy-level vertical carbon fluxes, biological
variables such as the canopy leaf-area-index (LAI) was
excluded from the predictor data matrix. Further, variables
such as SWC and LAI are less likely to change much over a
half-hourly interval; our results showed little carbon flux
linkages of SWC for the half-hour scale at the US deciduous
forests. Although ambient atmospheric concentrations of
CO, were included in our data matrices, we did not explicitly
incorporate anthropogenic carbon sources, which could
influence the large-scale ecosystem carbon emissions.
Exclusion of these process components, apart from the linear
structure of PLSR, could have contributed to the reduction of
our model fitting accuracy (MSE; RSR) and efficiency (R%
for different study sites.

Building linkages between statistical and mechanistic
modeling approaches has been a major challenge in eco-
logical modeling research (Larocque et al. 2011). Issues
such as the data requirements, complex parameterizations,
prediction uncertainties, computational expenses, and
expert knowledge basis of available mechanistic carbon-
cycle models highlight the importance of developing rel-
atively simple models without conceding the representation
of important processes at the relevant spatiotemporal
scales. Our study presented a simple, systematic multi-
variate approach to identify the dominant process compo-
nents by classifying the relevant climate and environmental
variables, quantifying their relative linkages with the can-
opy-level vertical carbon fluxes. The modeling and analysis
provides an objective, empirical foundation to obtain cru-
cial mechanistic insights a priori; complementing process-
based model building with a warranted complexity.

Conclusions

We used a data-analytics method to determine the relative
linkages of different climate and environmental variables
with the canopy-level, half-hourly CO, fluxes of US decid-
uous forests. Three biophysical process components were
identified to adequately explain the canopy-level, vertical
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CO, fluxes. The ‘radiation-energy’ component had the
strongest linkages with the canopy-level CO, fluxes. The
‘temperature-hydrology’ component showed low to moder-
ate carbon flux linkages. The ‘aerodynamic’ component was
relatively weakly connected with the carbon fluxes. The
relative linkage of ambient CO, concentrations with the
vertical carbon fluxes was moderate to strong among dif-
ferent sites. The latent heat flux was the most influential
predictor of instantaneous CO, fluxes at all study sites except
for Harvard Forest. On average, the ‘radiation-energy’
component showed around 5 and 8 times stronger carbon flux
linkages than that of the ‘temperature-hydrology’ and
‘aerodynamic’ components, respectively. The similarity of
observed patterns among different study sites (representing
sharp gradients in canopy heights, climatic regimes, and soil
formations) indicates that the findings are potentially trans-
ferrable to other deciduous forests around the world. The
observed similarities also highlight the scope of developing
robust, parsimonious models for appropriate predictions of
ecosystem carbon fluxes and potential sequestrations under a
changing climate and environment. Relatively good model
accuracy and efficiency reiterate the usefulness of multi-
variate analytics models for gap-filling in time-series of
instantaneous flux data.

Future research should investigate the relative linkage
patterns by aggregating data in larger time-scales (e.g.,
daily, weekly, monthly). Multi-scale linkage patterns in
other terrestrial ecosystems should also be investigated and
compared. More advanced data-analytics approaches such
as the system and network modeling, machine learning,
and fuzzy logic may also contribute toward developing a
robust understanding and prediction of ecosystem carbon
fluxes at different spatiotemporal scales.
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