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Abstract—The detection and estimation of sinusoids is a
fundamental signal processing task for many applications related
to sensing and communications. While algorithms have been
proposed for this setting, quantization is a critical, but often
ignored modeling effect. In wireless communications, estimation
with low resolution data converters is relevant for reduced power
consumption in wideband receivers. Similarly, low resolution
sampling in imaging and spectrum sensing allows for efficient
data collection. In this work, we propose SignalNet, a neural
network architecture that detects the number of sinusoids and
estimates their parameters from quantized in-phase and quadra-
ture samples. We incorporate signal reconstruction internally
as domain knowledge within the network to enhance learning
and surpass traditional algorithms in mean squared error and
Chamfer error. We introduce a worst-case learning threshold for
comparing the results of our network relative to the underlying
data distributions. This threshold provides insight into why
neural networks tend to outperform traditional methods and
into the learned relationships between the input and output
distributions. In simulation, we find that our algorithm is always
able to surpass the threshold for three-bit data but often cannot
exceed the threshold for one-bit data. We use the learning
threshold to explain, in the one-bit case, how our estimators learn
to minimize the distributional loss, rather than learn features
from the data.

Index Terms—Sinusoid decomposition,
learning, low-resolution, detection

estimation, deep-

I. INTRODUCTION

Detecting the number of sinusoids and estimating the am-
plitude, frequency, and phase is a common problem in signal
processing [1]-[3]. In these settings, information is contained
in the sinusoidal parameters of the data, i.e. in the Doppler
shift from a radar signal or the angles of arrival and departure
in the spatial domain. As bandwidth and array size continue
to increase, e.g. in mmWave communications or wideband
automotive radar, traditional systems require analog-to-digital
converters (ADCs) with high resolution and rates approaching
100 Gbps or more. High resolution data converters become a
limiting factor for low power consumption [4]. One solution
to reduce power consumption is to reduce the resolution in
ADCs, transferring the difficulty of the problem from the
replaced power ADCs to practical digital signal processing
algorithms [4]-[7].

*Ryan M. Dreifuerst and Robert W. Heath Jr. are with North
Carolina State University, Raleigh, NC 27695 (rmdreifu@ncsu.edu,
rwheathjr@ncsu.edu). This work is based upon work supported in part by
Samsung Research America and the National Science Foundation under Grant
No. ECCS-1711702.

In principle, low resolution techniques improve efficiency—
computationally, economically, or in power consumption—at
the cost of introducing quantization error. With high resolu-
tion sampling the quantization error is often modeled as an
additive noise term [5], [8]. This is motivated by techniques
to linearize the quantization, such as Bussgang Decomposition
[9], [10]. Ultimately, the linearization has more error for 1-3
bit quantizers, which are the most desirable from an efficiency
perspective. To overcome this limitation, we investigate neu-
ral network techniques for low resolution signal processing
because of their ability to learn analytical models directly
from data. The use cases for such algorithms are broad, with
varying compute constraints (server, cloud, deployed), but
our algorithm is primarily intended for edge computer signal
processing, so we also consider important characteristics such
as memory, training sample size, and execution time in our
investigation.

There is, to the best of our knowledge, little prior work
that has focused directly on the joint task of detection and
estimation of sinusoids from quantized data. In contrast, the
field of unquantized detection and estimation of sinusoids has
a rich history [11]-[15]. These techniques tend to divide the
problem into separate, but related, tasks for detection and
estimation. Detection is usually performed using model order
estimators such as Minimum Description Length (MDL) [13],
[16] or Akaike Information Criterion (AIC) [12], [17]. Then,
given a prediction of the number of sinusoids, the estimation is
typically solved using non-parametric or parametric methods
[15], [18], [19]. Alternatively, the problem can be approached
using compressive sensing [20] techniques. In this paradigm,
the recovered signal vector is the frequency representation of
the multiple sinusoids, enabling sparse reconstruction tech-
niques. Notable algorithms in this domain are based on the
message passing algoritm [21], [22]. These methods are re-
stricted to on-grid measurements, however, which affects the
accuracy for limited samples. More recently, an additional
class of algorithms based on neural networks have also been
tasked with the same problem [23]. This has led to new
state of the art results for the detection and estimation of
sinusoid frequencies [23]. Neural networks have the advantage
of learning directly from training data, so no assumptions
regarding the SNR or model order are necessary. Instead, the
model learns assumptions and distributions from the training
data, possibly leading to inadvertent bias. While inductive bias
is necessary for successful learning [24], it can have adverse
effects when data distribution changes. Our results specifically



look at the effects of data distribution and distribution shift for
model validation.

More prior work has focused on the estimation of a sin-
gle quantized sinusoid in noise [25]-[27]. The Cramér Rao
Bound was derived in [25]. Algorithms using correlation [25],
dithering [26], and time-varying thresholding [27] have been
proposed for quantized sinusoid estimation. Dithering and
time-varying thresholding are related by effectively adjusting
the sampling comparator by either a known (time-varying
thresholds) or unknown factor (dithering). These methods rely
on knowledge of the amplitude of the signal, or the ability to
estimate by iterative grid search. Unlike the unquantized case,
non-parametric methods, such as the Periodogram, are often
the best estimators with extremely low-resolution sinusoid
estimation [26], [28]. All of these techniques (non-parametric
estimators [19], correlation-based estimators [25], dithering
[26] and time-varying thresholds [27]) do not make use of
the quantization noise correlation [10]. This correlation is not
easily modeled in accurate and tractable forms. Instead, our
neural network attempts to learn the underlying relationships
directly from data, bypassing the need for explicit models.
We also contend with new concepts such as the minimum
recognizable separation between signals, which strongly limits
the performance of the previously mentioned estimators.

Our paper is a rigorous investigation into deep learning
for sinusoidal parameter estimation from low resolution sam-
pling. We propose and analyze a state of the art architecture,
SignalNet, that relies on internal reconstruction to success-
fully estimate multi-sinusoidal representations. Traditional al-
gorithms do not account for quantization effects and instead
are applied with Bussgang Decomposition to linearize the
nonlinear distortion. This is the defacto approach for other
low resolution problems like channel estimation [7], [10].
While it may not be surprising that neural networks are well-
suited to handle nonlinear systems, we show that the use of
domain knowledge within SignalNet outperforms other neural
networks. Finally, we analyze the proposed network with both
statistical measures through a new learning threshold and
out-of-distribution data, which is testing data drawn from a
different distribution than the training data. These tests show
that the SignalNet architecture is able to learn meaningful
features that generalize well and ensure the neural model
is capable of handling crucial signal processing tasks across
many domains. Our algorithm follows traditional approaches
by dividing the task into two separate networks, which we
identify as the detection module and the estimation module.
The focal point of our algorithm is the estimation module,
which sequentially estimates sinusoid parameters. Within the
estimation module, we configure the network to reconstruct the
input sequences and feed the error back into the estimation
module, thereby explicitly defining the relationship between
the output estimates and input sequences. This method instills
domain knowledge within the network and helps the model
directly capture the input-output relationship for the sinusoid
detection and estimation problem. We then benchmark our
algorithm against classical methods for each module, as well
as define and derive learning thresholds for the problem based
on estimation theory. In simulation, we show that both of our

modules outperform traditional algorithms for quantized data.
In spite of this, our detection module and amplitude estimation
algorithms are not able to surpass the learning threshold for
one-bit resolution data. Our contributions can be summarized
as follows:

e We propose a novel deep learning algorithm for sinusoid
parameter estimation. Our algorithm uses reconstruction
as an internal mechanism for learning the relationship
between sinusoidal parameters and input data. We show
that this method is able to estimate sinusoids significantly
more accurately than traditional algorithms for quantized
data. We further show that our network generalizes nearly
ideally to out-of-distribution datasets.

o We extend our sinusoid parameter estimator to include
multiple sinusoid estimation and detection. We find that
the overall network, SignalNet, is able to accurately detect
the number of sinusoidal signals and their associated
parameters from limited observations of quantized data.
The proposed algorithm achieves state of the art results
and universally improves upon the benchmark algorithms.

o We define a new benchmark for comparing neural net-
work algorithms and traditional algorithms based on the
loss function and distribution of the output distribution.
The resulting threshold defines the worst-case error ex-
pected for non-adversarial data, and provides insight into
why neural networks tend to outperform other algorithms
within signal processing—even for nearly random data.
Applying this threshold to our simulations shows that
our one-bit sinusoid detection algorithm and one-bit
amplitude estimates are not able to learn meaningful
input-output relationships. All other networks surpass the
learning threshold and traditional algorithms, suggesting
our algorithms are learning substantial information from
the data.

Notation: A is a matrix, a and {a[i]}}Y, are column
vectors and a, A denote scalars. AT, A and A* represent
the transpose, conjugate, and conjugate transpose of A. The
real and imaginary parts of A are denoted by Re(A) and
Im(A). Ak, {] denotes the entry of A in the k™ row and the
/M column. ay refers to the /M element of a and a, refers
to the /M column of A. Similarly, A[:, k] refers to the k™
column of A. Unspecified norm equations are |lall, = a*a
for vectors, and the Frobenius norm ||A||, = /Tr(AA*) for
matrices. We define j = y/—1. |a] is the nearest integer from
truncating a and [a| is the nearest integer greater than or equal
a.

II. SYSTEM MODEL

We begin by defining the classical representation of a
received sample set, comprised of multiple sinusoids, in noise.
We then clarify how quantization and normalization are per-
formed, based on common hardware considerations for gain
control. Afterwards, we summarize the learning objects of
each subtask and present two loss functions based on prior
work and the role of our algorithm in processing signals.

An m multi-sinusoidal signal is represented by vectors
of amplitudes, phases, and frequencies a,,f € RM. The



sinusoidal components are summed and sampled at sampling
intervals 7" as

uln] = a;exp (j2n finT + ¢:). (1)

=1

Given an infinite number of samples, the exact signal com-
ponents can be resolved from this model, so long as the
sampling period is small enough such that the sampling
theorem [29] is maintained. In realistic settings, the number
of samples is finite and the desired signal is obstructed by
noise v[k], which is often modeled as additive, independent,
and identically distributed (IID), Gaussian noise. For brevity
of notation, we define the m x N-dimensional matrix G such
that g; = {27 finT+¢;} ;. Now (1) can be represented as a
finite set of IV real and imaginary components with complex-
valued noise

a; ( cos (g;) + 7 sin (gz)) +v. (2)
1

u=

1=

This model aligns with classic [11]-[15] and recent [23]
approaches. We now extend the system model to include
quantization effects.

Prior work with quantization has generally considered the
estimation of only a single sinusoid [25], [30], [31] or one-
bit resolution [26], [27], [32], thus defining the quantization
levels to maximize the dynamic range (and limit clipping) is
straightforward. Modeling quantization effects for multiple bit
quantizers with varying signals is not as simple, and is not
done consistently in literature [5], [7], [25], [33]. Yet, defining
the quantization levels in a realistic manner is crucial for the
system model. As a result, we define the quantization model
for unit-norm power, based on ideal traditional gain control
hardware found in wireless systems. Specifically, the signal
model is normalized and quantized according to a b bit uniform
quantizer Qp as

2= Q (N“2> 3)

[lull
Qu(A+jB) = Qu(A) + jQu(B) 4
Qp(A) =g if A€ (gi—1,q] &)

The assumption of ideal gain control is a simplification, how-
ever, the nonlinear effects of a realistic gain controller would
almost certainly be eclipsed by the subsequent quantization
function. There are 2° quantization levels q := {qi}fio that
can be output from Qp covering 2° + 1 bins in the range of
[—1,1]. The output of the quantization function is assigned
g; if the input is in the range (g¢;—1,¢;], and the first and
last bins extend to +co. We are interested in low resolution
settings, where B € {1, 2, 3}. Higher resolutions are often not
significantly different from 3 bit resolution with idealized gain
control, as we assume in (3). We further restrict our system
to the two edge cases, B = {1,3} bits to highlight the key
differences between extremely low resolution (one-bit) and
modestly low resolution (three-bit) sampling.

Complex number support is limited in many deep learning
frameworks, so we vectorize the real and imaginary compo-
nents to form the R™V*? received signal matrix as

X = {Re(z),lm(z)]T. (6)

It is noteworthy that an alternative approach could be to use
a polar representation, or define complex layers that operate
using complex-valued optimization [34]. Such architectures
are an interesting topic of future investigation.

Given the input to the system from (6), we mathematically
summarize the goal of our neural network from a general
learning perspective. First, we divide the problem into two
tasks, detection and estimation, to be learned by two different
neural network architectures. Detection is performed first. The
goal is for our algorithm to learn the parameters W for a
function B(X; W) that relates a set of observations X to
the true number of sinusoidal components m in the original
u, based on a loss function Lg.t. The estimation network
function, ©(X; Wy, m), has parameters Wy and is trained to
predict {&, f, ¢}, assuming perfect knowledge of m, with
a loss function Ly. The parameters, which are the neural
network weights, are learned from feasible sets W ger, Weg for
the corresponding tasks and neural architectures. The training
can be summarized as solving the problem

W = argmin Ex [Lqet (m, 5(X; W)] @)
W EeW g

W, = argmin Ex [Leq({a, f, ¢}, O(X;W,m))|m]. (8)
W eW

The networks are combined and the overall estimate is pro-
duced according to

1 = B(X; W) )
{a, £, ¢} = O(X; W, ). (10)

All of the outputs in (10) are real vectors of size m. Addi-
tionally, (10) and (8) imply that the estimator ©(X; W, )
is specific to the value of m provided during detection. We
make use of this in Section III, where internal reconstruction
is used to estimate the 71 signal set.

We note that (7)-(10) can be applied to the traditional
algorithms without quantization by reframing the training steps
and meaning of W, W,. By regarding the “learning” phase
as a period of collecting sample statistics, (7) and (8) can
be thought of as a tuning process for determining Bussgang
gain [10] and algorithm parameters such as dither scaling
[26]. The minimization is performed using known equations,
such as the multi-level quantization presented in [7]. Then
the functions 3,6 can be regarded as the combination of the
Bussgang Decomposition, a detection algorithm (e.g. AIC) and
an estimation algorithm (non-parametric/parametric).

The goal of our network is to estimate the relevant sinu-
soidal components as an initial signal processing task, leaving
possible filtering or decoding to subsequent algorithms. As
a result, the detection algorithm should learn to overestimate
the number of signals during uncertainty, rather than underes-
timate. This way higher level algorithms can filter out small or
irrelevant components rather than miss signals altogether. To



instill this knowledge, we define a heavy-sided loss function
for the detection network

em—m _ 1 ifm>m

L (m, 172) = 11
det ( ) %(m_m)Q otherwise. (b

The specific internal functions comprising (11) are chosen
to be differentiable, smooth, and ensuring that the loss has
the relationship Lget(m,m + 1) < Lget(m,m — 1) <
Lget(m, m + 2), which we make use of in our analysis of the
learning threshold. Note that differentiability and smoothness
are determined by the functions, rather than the input space.

In the estimation module, we will train the network based
on mean squared error (MSE), assuming the true number of
signals m is known. Because the final model could potentially
have different model order predictions, a similar loss function
cannot be used for the overall SignalNet. Instead, when both
modules are combined, we evaluate the network according to
the Chamfer distance [35], which is used in [23] and defined
as

Lchamfer = Zmln‘fz_fk|+2§nlel%‘fz_fk‘ (12)
k

fref bt
fief rE f,ef

The comparison can be applied to the frequency estimates
as shown, or the other desired quantities. Effectively, this loss
function penalizes for detecting the incorrect number of signals
m # m as well as for incorrect estimates. Poor estimates
are penalized twice, however, due to the two summations. An
alternative loss function could be based on cosine similarity
or other metrics such as the optimal subpattern assignment
metric [36]. We believe that the correct approach, however, is
to use the Chamfer distance between the vectors of different
sizes. The reason is that the complexity is very simple and the
parameter values can not necessarily be chosen to indicate
model order. For example, zeros in the amplitude vector
indicate the absence of a sinusoid while while zeros in the
phase vector imply the presence of a sinusoid with zero phase.

III. SIGNALNET

In this section, we define the SignalNet architecture, com-
prised of two sub-networks for detection and estimation.
Readers interested in learning more about the basics of deep
learning are encouraged to review [37]. We focus heavily on
the estimation side of the problem, because extraneous signals
can be eliminated at later points, but poorly estimated signals
are detrimental to application-specific information. To improve
the learning of our estimation module, we include domain
knowledge through reconstruction and cancellation, similar to
successive interference cancellation [38], with similar algo-
rithms also based on it such as [39]. We provide a description,
figures, and a table summarizing the operation of SignalNet,
as well as source code'.

We design SignalNet, shown by the modules and overall
architecture in Figures 1-3, according to the general structure
in (6)-(10), where one module detects the number of sinusoids
in the signal and another estimates the sinusoids parameter
from an observed sequence X. The detection module is used

Ihttps://github.com/Ryandry 1st/Carrier-Frequency-Offset
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Fig. 1. A diagram of a block estimator used to determine the parameters
for a specific number of sinusoids. The two path network is made up of an
unnormalized branch for amplitude estimation and a normalized branch for
frequency and phase estimation. Frequency and phase estimation are linked
because of the natural linear relationship between frequency and change in
phase over a set of IV samples. This is equivalent to determining the frequency
as the average phase change over the N samples.

to estimate the number of sinusoids present in a signal, and is
modeled using a three layer convolutional neural network with
a softmax output. We use a softmax activation function on the
output, which outputs a one-hot vector representing the most
likely number of sinusoids detected. Although a real-valued
system could be used with rounding, the domain of the output
is significantly larger (i.e. the outputs are no longer a discrete
set of M values), causing the performance to be negatively
impacted.

The sinusoid estimation module, however, requires more
direct knowledge of the relationship between the output param-
eters and the input X to effectively capture the information. To
do this, we design the estimator around the idea of successive-
estimation and cancellation, similar to interference cancella-
tion methods in non-orthogonal communications [38]. The
network architecture first estimates the parameters for a single
sinusoid, reconstructs the time-domain signal, and compares it
with the original input. Then, it estimates the parameters for
the next sinusoid from the difference. This knowledge helps
our neural architecture better handle multiple frequencies. A
block diagram of the sinusoid estimator is shown in Figure
2. Internally, each sinusoid estimator has two branches of two
convolutional layers where one branch has batch normalization
for estimating frequency and phase components and the other
does not to retain amplitude information. Hyperparameters are
tuned using iterative grid search for both the sinusoid estimator
and detection module, and layer specifics can be found in Table
1 in the supplementary material.

Recalling (10), we train all of the networks independently,
where each m € {1,...M} possible number of outputs and
each quantization resolution b € {1,...B} result in a different
network, totaling M x B networks in our investigation. In
this setup, we build the b-bit SignalNet architecture from M
different sinusoid estimator networks. The need for having
separate estimators for each number of sinusoids is based
on two considerations: real-time feasibility and our choice
of internal reconstruction. The real-time feasibility is a re-
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Fig. 2. The sinusoid estimator is comprised of multiple block estimators.
These networks successively estimate {1,...m} sinusoids by estimating and
reconstructing each number of sinusoids and recomputing on the error. Internal
reconstruction is used to provide clear relationships between the estimated
outputs [a, f, ¢] and the input X. This formulation results in each m €
1,...M estimator producing different outputs and learning different features.
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Fig. 3. A block diagram of SignalNet. The architecture includes M sinusoid
estimator modules and one detection module, all trained for a specific quan-
tization resolution b. Each subnetwork is highlighted, with the top nextwork
being the detection module, and the following networks are the {1, 2, and M }
sinusoid estimators. In our investigation, we develop a SignalNet variant for
one-bit and three-bit resolutions, resulting in (M + 1) X 2 total networks.

sult of graph-based optimization, which does not allow for
dynamically-sized outputs without sacrificing inference speed.
Offline training time evaluation is not considered in this paper,
as our algorithm only needs to be trained and then deployed.
Along with computational performance, our use of internal
reconstruction requires separate estimators for each number
of sinusoids. When estimating and reconstructing an unknown
number of sinusoids, the first sinusoid estimated will be
different depending on the total number of sinusoids because
of the goal of reconstructing a similar set of samples as the
network’s input. In other words, our network does not attempt
to find the peaks of DFT bins. Instead, it finds the parameters
that generate a signal most closely approximating the input,
while gradients are only updated from the parameter error.
This is best understood from Fig. 10 in the supplementary
section where we show a two-sinusoid signal with the best
reconstruction using {1, 2, 3} sinusoids. The output of the sin-

gle sinusoid estimator will not be either of the two underlying
sinusoids, but some sinusoid between the two. After training,
the detection and estimation modules are joined according to
Figure 3.

IV. SIMULATION SETUP

We consider a simulation setup similar to [23], with the
notable exception of considering a reduced range of sinusoids
M = 5. The most important aspect is the non-uniform
frequency distribution of our data generation, as outlined
in Algorithm 1. The frequency generation is unusual by
necessity due to limitations on the frequency spacing and to
remove unintended bias from the network performance. One
might consider using frequency components drawn from an
independently sampled uniform distribution. Unfortunately, it
has been shown that resolving frequency content with spacing
equal or less than 1/N from N discrete, noisy samples is
non-convergent and may result in excessive errors [40], [41].
Although off-grid techniques can be used to resolve sparse
signals (for some appropriate basis), resolving two signals
with less separation and in the presence of noise is provably
inconsistent [41]. In contrast, we could use uniformly spaced
frequency content, however, this would introduce significantly
more structure to the data that would unintentionally bias
the neural network. For example, rather than estimate each
sinusoid, the network would simply need to learn to estimate
the spacing and a single frequency with high accuracy, thereby
changing the structure and goal of the system. A neural
network trained in such a way would be unlikely to generalize
well to less structured settings.

Instead, we use a similar setting to [23], where we start
by selecting a random number of sinusoids to be present.
Then the uncertainty in the spacing is selected by a folded
normal distribution along with the initial frequency offset from
a uniform distribution. Finally, the maximum frequency is
compared with 0.5, to ensure that no frequency content is
undersampled according to the Nyquist criterion [29]. The
frequency distribution for each m is shown in Fig. 11. Then
amplitudes and phases are drawn from uniform distributions
and the signal is constructed by summing over all of the
sinusoids and adding Gaussian noise to obtain {y}fyz_ol for
a desired SNR. In the final steps, the signal is normalized to
unity power norm, representative of an ideal automatic gain
controller or similar control systems at the input to the data
converter. Finally, quantization Q) is applied according to the
number of bits b.

We select the simulation setup based on two considera-
tions for the difficulty (i.e. challenge in achieving accurate
estimates) of the problem: the length of the data and the sepa-
ration of the frequencies. For length NV discrete observations,
resolving unquantized data with separation of 1/N is nearly
impossible in the presence of noise [40], [41], and in particular
when the signal to quantization noise ratio (SQNR) is below
20 [42] as we have here. We do not strictly enforce this
separation, but use the folded normal distribution to discourage
it, resulting in some situations that are nearly unresolvable.
This leads to estimators that may have overlapping frequency



Algorithm 1 Simulation Data Generation
1: Draw a random integer, m from [0, M — 1]
do
wWo ~ U(O, 025)
f1 +wo
foric[1,..m—1] do
w; ~ JN(0,2.5/N)|
fit1 < wo +i/N +w;
end for
while max f; > 0.5
10: a; ~U(0.1,1.0) i€ ]l,..m]
s ~U0,27) i€l ..m]
12y = Y gaiexp(2mjfin + ¢i) + v
13: y; HyTH 1€{0,1,.N —1}
14: x; < Qp(y:)
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content that could represent interference. Additionally, the
amplitude of the signal directly contributes to the estimation
error of the problem, so we constrain the amplitudes to
the range of [0.1,1.0]. These choices create a challenging
simulation setup, as seen by the simulation results in Section
VIII, especially the amplitude estimation results in Figure 6.

When testing the results, the data is drawn again from the
same distributions according to Algorithm 1. This is not the
same as if the training data is used for testing, only that the
distributions the values are drawn from are the same, which is
not a particularly strict assumption considering train-test splits
are often done so that the distributions remain the same. That
being said, we also evaluate the case where the frequencies
are drawn from a different distribution in Section VIII-F.

V. BENCHMARKS

Because there are, to the best of our knowledge, no other
algorithms designed for sinusoidal decomposition and esti-
mation from quantized data, we limit the benchmarks to
well-established estimators, in combination with Bussgang
Decomposition [10]. We first provide a brief recount of
Bussgang Decomposition and how it applies to our system
model. Afterwards, we highlight the two common detection
methods, AIC and MDL and the limitations that minimizing
model order has on the detection loss function, (11). An
alternative method, BIC [43] also has potential, though it is
known to penalize over-estimation even more than AIC, which
will inherently perform worse for our loss function, and can be
shown to have equal performance to MDL in our scenario [24,
pg. 236]. We also investigate EM-VAMP, a message passing
algorithm, as a method for determining the model order in a
compressed sensing form. EM-VAMP is an excellent bridge
between traditional methods like AIC, and data driven methods
like deep learning. In fact, AMP-based methods have been
shown to outperform neural networks in similar scenarios such
as low-resolution channel estimation [44]. Finally, we suggest
the non-parametric methods we compare against based on the
Fast Fourier Transform (FFT) and Periodogram.

The Bussgang Decomposition is a method for linearizing a
function by computing the linear minimum mean squared error

estimator. In the case of quantization, it has been shown to be
a useful tool to separate the signal and quantization noise into
two uncorrelated terms [7], [10] assuming a Gaussian signal.
The essence of the decomposition is to calculate a gain factor
G such that, for a nonlinear function y = U(z), the result is

y=Gr+n
Elyn] = 0
Elzn] =0

which is the linear minimum mean squared error estimator
(LMMSE) of x from y. This formulation extends to vector
signals, causing G to become G which is a diagonal matrix.
The exact formulation for multi-bit quantization, U = Qy, is
provided in [7]. One of the key components in the formulation
is knowledge of the first and second moments of x. Because of
our power normalization and gaussian noise, we observe that
the complex observation vector X[:, 0] + jX[:, 1] ~ CN(0,1).
Then, by using the inverse of G and neglecting the distortion,
we can obtain the linearized recovery of x

% = G (X[, 0] + 5 X[:, 1]). (13)

We will apply this decomposition to the following benchmark
detection and estimation algorithms in our simulation results.
We evaluate our detection module against AIC and MDL, al-
though both of these methods are suboptimal due to misaligned
goals. Fundamentally, these methods attempt to minimize the
complexity while capturing the number of spectral compo-
nents. In contrast, the loss function (11), penalizes under-
estimates more than over-estimates. This, in part, leads to
significantly under-performing detection results for AIC and
MDL. Additionally, AIC and MDL are not well-suited for low
resolution sampling, so in the case of 1-bit data, the results
are non-convergent and have loss values far greater than other
algorithms. To keep the scaling of the graphs meaningful,
we instead show the 2- and 3— bit results for these two
algorithms. We also show the EM-VAMP method, using a
learned threshold for determining the model order from the
recovered vector support. While not following the exact same
structure as we outlined in Section II, this benchmark is similar
to data driven algorithms, but is more structured than neural
networks. The EM-VAMP method recovers the frequency-
grid-aligned sparse signal x (the sinusoidal components in the
frequency domain) from a 2x oversampled DFT observation
matrix A. Mathematically, the EM-VAMP method works to
minimize the error from observations y for the model

y = sign(A x +w) (14)

by recovering the sinusoidal amplitudes and phases in the
sparse coefficients of x. This framework is limited due to its
on-grid nature, however, so we only consider it for detection.
For more information on EM-VAMP and GAMP methods, see
[21], [22].

To benchmark our multi-sinusoid estimator, we employ the
Periodogram, because it has been shown to produce better
estimates for low resolution sinusoidal data than eigendecom-
position and dithering methods [26], [28]. The Periodogram
is calculated from the scaled-and-squared, zero-padded Fast



Fourier Transform (FFT) with Ny = 26 to ensure that grid
resolution is not a limiting factor. Although amplitude and
frequency information can be obtained from the Periodogram,
the phase information is recovered from the inverse tangent of
the ratio between the imaginary and real components of the
FFT. Precisely, the phase estimate is calculated first by the
FFT of the samples, then selecting the m-largest magnitude
of the FFT, and finally applying the inverse tangent (this would
be atan2 in many programming languages). The steps can be
mathematically expressed as

r = FFT([x, 0, n]) € CNoT (15)
p = m — argmax(r) (16)
= {i for p; € abs(r) : |abs(r) N (—oo,p;)| < m} (17)

arctan (Im(r[p]), Re(r[P])) .

We note two important clarifications in (15)-(18). First, the
peak finding algorithm in step 2 simply finds the m largest
maxima of the oversampled Nggr FFT. Second, we make use
of of both the absolute value and the size of a vector in the
definitions, so we use abs() to refer to the magnitude of the
complex values and | .. .| to refer to the cardinality of the set.

PFFT

(18)

VI. LEARNING THRESHOLD

Before looking at the simulation results, we first introduce
a baseline for algorithmic comparison, particularly for neu-
ral network evaluation. Because machine learning algorithms
learn from data, there are inherent constraints and underlying
distributions that algorithms can optimize for, creating unfair
bias when compared to traditional algorithms. For this reason,
we also define a learning threshold based on statistical esti-
mation theory and Empirical Risk Minimization [24]. First,
let a € RP be the input and b € R be the true output,
with joint distribution P(a,b). The goal is for an estimator,
go(a) that is defined by parameters 6, to predict b. We wish to
minimize a loss function, and for simplicity we start with mean
squared error (MSE), for K predictions. Note, sample-wise
MSE is defined as Lyse(b, go(a)) = 1/K S35 (bi—go(a:))?,
where the parameters 6 are updated based on training data. If
the dataset is representative of the distribution, which occurs
for sufficiently large numbers of samples in expectation, the
empirical formulation matches the theoretical formulation as

min Lyse(b, go(a)) = meinEa Eyal(y — go())?la]  (19)
go(a) =E[b|al. (20)

Now, we define the learning threshold as the worst-case
training error, in the non-adversarial case, that occurs when
a is independent from b. That is, when a is both independent
from b and not chosen by an adversary to intentionally mislead

an algorithm to the wrong outcome. This simplifies (19)-(20)
to

ey
(22)

Lun(b, go(a)) = min By (b — go(2))’]
go(a) =E[b] Va.

The result, for this trivial example, is that the estimator
should simply estimate the mean of the output variable, and

the resulting error will be the variance of b. This well-
known relationship is a foundational concept of our learning
threshold, and is directly used for our algorithms trained
with MSE loss. It is similar to other established estimation
techniques such as the minimum variance unbiased estimator
or the minimum mean squared error estimator when the loss
function is the mean squared error. The formulation extends
beyond mean squared error though, and can be applied to more
interesting cases, in particular the detection module with loss
function defined by (11). This distribution is heavy-sided and
the output variable can only take integer values, leading to
more extensive analysis.

The threshold analysis is not just an interesting derivation.
We show in Section VIII that our algorithms for both detection
and amplitude estimation converge to this threshold for one-
bit data. This implies that the learning done by the neural
networks is limited to distributional learning, which is simply
learning to minimize the loss for an output variable’s distri-
bution and loss function. This can be thought of as “blind
optimization” in the sense that the neural network achieves
performance equivalent to a constant output function that
ignores the input. Therefore, we can also see the inherent
limitations of the threshold estimator: the output distribution
and loss function must be known, and the constant estimator is
only reasonable in expectation, with potentially poor results.
Its intent is to judge whether a basic level of learning has
occurred, rather than act as a true estimator.

The learning threshold will show that there is an inherent
bias (in a learning theory sense) that is observable just from the
distributions and loss function that can often surpass traditional
methods. The threshold is relevant for two reasons: 1) it
provides a scalar metric for the uncertainty in the output
variable, with respect to the loss function, and 2) comparing
the neural network’s loss with this threshold provides clarity
about whether a neural network is learning features or just
optimizing for the output distribution. In general, we expect
our neural network estimators to outperform the learning
threshold, suggesting some relationship is learned between the
input and the output. Because the quantization effects are not
independent from the noise however, low SNR data can be
misleading or adversarial. In contrast, the threshold does not
change with the input SNR, so we would expect to see results
that are similar to or worse than the learning threshold for
sufficiently low signal to noise ratios and quantized signals.
In the subsequent sections we will derive learning thresholds
for the detection and estimation problems based on our sim-
ulation setting to lend some intuition to why neural networks
outperform traditional methods. In the final section, we will
evaluate our network using data from a different distribution,
showing the generalizability of our model and the relationship
to the learning threshold.

VII. MODEL TRAINING

In our setup, we train the two modules, the detection module
and the sinusoid estimation module, separately. We employ
the loss function in (11) to train the detection module for 20
epochs with 50,000 realizations of one-hot encoded signal



counts. We evaluate the estimation module using the MSE in
the training data, assuming that the true number of signals
is known. This way each amplitude-frequency-phase estimate
corresponds to a true set of parameters. Note that the mean-
squared-error is defined for multi-output systems as the mean
over the stacked vector of outputs, which is
Lyis(c, &) = })H c—¢? cécRP, 23)
Unfortunately, not all parameters have the same scale or degree
of randomness, relative to the loss function. Classically, this
is mitigated by scaling all of the sample outputs to roughly
mimic a standard normal distribution, or to be within the same
range i.e. [0, 1] [45]. In our case, because the output variables
are not drawn from the same distribution, but the distribution is
known, this technique does not appropriately scale the outputs.
The learning threshold, as we defined in Section VI, is used to
solve this problem by measuring the loss function with respect
to the distribution of the output variables. We define the overall
normalization used to achieve a unified scalar loss function as

T
‘= [L<a,a>,L<f,f>,L<¢,<z‘s>] 4)
11 117
o= | 25
. |:Llh,a Lin,f Lth,¢:| (25)
1
b = —L7 8y, (26)
m

In this case, each of the respective estimated parameters is
stacked into a vector, and compared to the true parameters
in mean squared error and represented by L(x,x).Then the
scaling (26) is applied to prevent the gradients from being
dominated by parameters that have larger variance. We then
train on 100,000 data samples, using gradient updates from a
scaled sum of loss functions based on the learning thresholds.
We also use (26) again for computing the overall chamfer
loss as a unified metric for SignalNet. The specific learning
thresholds are derived in Section VIII. While training, we use
learning rate reduction and early stopping based on a separate
validation set to optimize the gradient learning. Batch sizes
are set to 32, and networks are all trained using an Adam
optimizer [51], with an initial learning rate of 0.001. When
evaluating our algorithms, we generate 8,000 samples of new
data following the same algorithm for our test data.

Before evaluating our algorithm, we briefly remark on data
size and memorization. The size of the training dataset, while
initially appearing large, is extremely small compared to the
input data space. For example, in the smallest case, b = 1,
the size of the input data space is 22V, where N = 64
each taking a value of £1. Similarly, the size of our neural
networks is much smaller than the data dimension as well,
with the total number of parameters for SignalNet being
300,000 parameters, but only at most 120,000 parameters
in any individual network. As a result, our algorithm is not
capable of memorizing the data and could potentially benefit
from increasing the dataset size by orders of magnitude. Fur-
thermore, near real-time inference is achievable with modern
processing hardware. With an Nvidia 3090 GPU and limited
optimization, we were able to achieve inferences in under

1 ms. Our results in Section VIII show the efficacy of our
algorithm to learn under these strict data and size constraints.

VIII. SIMULATION RESULTS

In this section, we evaluate each SignalNet component,
first individually, then as a whole. We derive the learning
threshold for each subtask, shown by dashed lines in each
plot, and compare the simulation results of our algorithm along
with the benchmark traditional algorithm. In the final setting,
we combine the two modules and compare it with different
combinations of our modules and the traditional methods.

A. Detection results

First, we evaluate the detection module, which is compared
with EM-VAMP, AIC and MDL algorithms in Fig. 4. In this
situation, the loss function is the detection loss defined in (11),
and the possible outputs are m € {1,2,..5}. Then, the learning
threshold is defined as

Lth,m(ma 9o (X)) = H}?ILH En [Ldet (m, Tﬁ)} (27)
where m = gp(X) V X is a constant estimator. Because the

function is smooth, differentiable, and convex, it is a simple
step to go from (27) to solving for m from

0
0=-—
om
Then, because Lget is bounded over the inputs, the derivative
and expectation can be interchanged by the bounded conver-
gence theorem. Following from (28),

E, [Laet (m, m)]. (28)

d )
0= Em |:8TTL Ldet (m; m):| (29)
M
1 d .
=7 m; 5, Laet (m, ). (30)

The step from (29) to (30) is because m is uniformly dis-
tributed and discrete, so the expectation is the arithmetic mean.
In our definition of Lg¢, we made the important restriction that
Laet(m,m + 1) < Lget(m, m — 1) < Lqet(m, m + 2), so the
resulting threshold estimator will be 7 € ([M/2], [M/2+1])
for our simulation setting. We now ignore the constant 1/M
factor, replace aa—m Lget with its derivative components, and
solve for the threshold estimator

L)

M ~
0= Z(m—ﬁl)—i— Z em—m

(3D
m=1 m=[m]
1 [ ] 1 M )
= -—m+ — mem 32
g 2 gy 2 O
TR SR TN,
= = m+LmJ m;me . (33)



Defining « % simplifies the results to achieve a
expression for the constant estimator:
M
O=a—m+—— Y " (34)
K
1 M
= —M(h—a)+ = Y e (39)
] —~
1 M
— _em—a(A _a)_|_ A Z em—a (36)
lr] &
m=[m]
1 M
= W(A > em—a> +a (37)
L]
m=[m]
1 M
= W< em“) + a. (38)
[M)/2] m_%;z 1

Here, W () is the Lambert W function, and the final expression
comes from the choice of Lqe and 1 € ([M /2], [M/2+1]).
Evaluating for M = 5 leads to ™ ~ 3.69, Ly, ~ 1.67.
We note that although the definition of m and /M must be
integer values, fractional amounts can be effectively obtained
by choosing between the floor and ceiling values with the
appropriate regularity. In this setting, the threshold estimator
is not truly constant, but the estimator does not depend on the
input. The threshold is shown in Figure 4 by the dashed line
and provides a metric for the maximum expected error if the
noise and quantization effects are negligible.

Evaluating the estimators, we first start with the simplest
consideration: can the estimators perform better than a blind
estimator? Most importantly, all of the estimators fail to
reach the threshold for SNR < —5dB, showing that the
noise and quantization effects cause the algorithms to perform
worse than if the data X was ignored. Additionally, the one-
bit detection module is never able to surpass the threshold,
suggesting that the multiple sinusoid detection algorithm is not
able to learn meaningful results from one-bit data. The three
bit results are able to improve upon the threshold for SNR
> —4dB, and perform better than higher resolution versions
of AIC and MDL across the entire SNR range. Further, it
can be observed that extremely low SNR data with greater
variation (higher bit resolution) results in worse estimators.

We can see that the neural network algorithms show a
significant advantage over the traditional algorithms. It might
be assumed this is due to the choice of loss function, which is
different than the benchmark algorithms are designed for. This
is not the case, however, as we show the results using simple
mean-squared-error in Figure 12 in the supplementary results.
While our algorithm’s performance is not entirely due to the
choice of loss function, we have already seen that the learning
threshold is quite low, so we know that a simple estimator that
estimates m = 3,4 with the correct regularity will produce
effective results.

B. Frequency estimation

Next, we evaluate the frequency estimation performance of
the estimation module. The distribution of the output vector

-“- 1 bit Detection Mod

2 bit Detection Mod
=& 1 bit AIC
=& 3 bit AIC

2 bit MDL

6 bit MDL

1 bit EM-VAMP
“fe= 3 bit EM-VAMP

Detection Loss

SNR [dB]

Fig. 4. Our detection module compared to EM-VAMP, MDL and AIC with
the proposed detection loss metric. We do not show the results of 1-bit data
resolution for MDL and AIC, due to a lack of convergence, which cause
the detection loss to be too high and makes it harder to see the differences
between the other performance results. Instead, we show the 2 and 3 bit results
for comparison. It can be seen that the one-bit detection module is unable to
surpass the learning threshold. The threshold is also far below either MDL or
AIC until 7dB, showing the inherent advantage data driven techniques have,
even for relatively uninformative distributions like a discrete uniform.

f comes from both the initial wqy and the offsets, w;. While
the compared algorithms must search for each point with no
prior, the actual frequency distributions have structure that can
be exploited for better estimation at low SNR. This is one
reason why the Periodogram estimator performs significantly
worse than the neural architecture in Figure 5, and does not
reach the threshold for SNR < —5dB. Following Algorithm
1, the learning threshold is calculated for each number of
sinusoidal components shown by assuming m is known and
computing the expected mean squared error. The estimator,
go(X) is simply the mean estimator because the loss function
is the mean squared error, exactly as shown in Section VI.

First, we note the first and second moments of the folded
normal distribution, used for the frequency components be-
yond the initial one and approximated for our simulation
settings

/5
2.5 5 2
2 = _Bw? = —=(1-2)~0.0142. (4

Based on these statistics and similar measures associated with
uniform variables, we can get the threshold and constant vector
estimator for the frequency estimation results

90(X) = (41)

N

(m—1) 5
[0.125, e 01254 ey [ ()

The independence of w; is used in (41) to separate the
expectations. Because gg(X) is an unbiased estimator, the
threshold only depends the variance of the random vector f;.

{E[wo], ooy Elwo] + m_1 + ]E[wm]}



We use 02() to refer to the variance of a random variable, so
the threshold is

1 m
Lae(m) = — > _o*(fi) (43)
=1

m

1 <1 1 5 2
= =N _—_ 4N _"(1-Z 44
m;64+mz;2N< 77) “4)

1 1 5 2
= m*(lm)m(lﬁ)

Here we average over all samples and outputs for multiple
output mean squared error to produce a scalar loss value.
This results in Ly ¢ ~ [-18dB, —16.4dB, —16dB, —15.8dB,
—15.7dB] for each value of 1 < m < M. While there
is potential for the max-cutoff at f = 0.5 to cause the
distributions to be heavy-tailed (see e.g. Fig. 11), this does not
occur in expectation, so we do not include it in the simplified
learning threshold. It can be seen, however, that it does have
an effect on the distributions for m = {4,5} in Figure 11
within the supplementary materials.

Our results show that, especially for m € {2, 3}, our algo-
rithm consistently outperforms the Periodogram by 3 — 8dB,
and is only surpassed for the m = 1 case with SNR > —4dB.
Given more data, it is likely that our algorithm would reach or
surpass the Periodogram consistently, however we only train
on a small dataset to focus on the insights and learning of our
architecture. Our results are especially interesting, because the
potential gain of using our algorithm for two- or three-sinusoid
signals is an order of magnitude better performance.

(45)

C. Amplitude estimation

Next, we consider the amplitude estimates of our algorithm.
While the frequency estimates are resolvable for any bit resolu-
tion with sufficiently many samples /N and reasonable spacing,
the amplitude estimates can be particularly challenging near
critical frequencies [25]. For example, consider the following:
a single sinusoid with normalized frequency of f = 0.25 L,
where ¢ < 1/N, ¢ = 0.1, and one-bit quantization. In
this setting, every subset of 1/f = 4 points are identical
and only contain {1 + j,—1+ j,—1 — 4,1 — j}. Thus the
received sequence, without noise, will be N/4 repetitions of
that sequence, which makes accurate amplitudes estimation
infeasible. While this is true for frequency estimation as well,
the repetition improves the frequency estimate, and as N — oo
the frequency estimate will converge to f. There is no similar
guarantee for the amplitude estimates, because regardless of
the amplitude, the observation sequence is still the same.
Even with infinite SNR very little amplitude information is
recoverable from such limited data. Nevertheless, the learning
threshold does not depend on the input data, so we can
still analyze the expected worst case non-adversarial results.
Because a; are independent, the threshold is simply

Efa;] = 0.55
1 m
Lth,a(m) = E ZUQ(ai)
=1

= 0%(a;) = 0.0675.
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Fig. 5. Two plots of the results of our sinusoidal estimation module’s
frequency outputs (Freq Mod —) for a given m. Our estimator outperforms
the threshold universally and the periodogram (...) except in the m = 1
case for SNR > —4dB. For m > 1, our estimator is consistently better than
the periodogram. In (a) the Periodogram results in worsening performance at
high SNR, which we also observed in our past work with one-bit quantization
[28]. Our results only show the performance loss for m = 2. The plot in (b)
no longer shows regressing performance and the increased data resolution

especially improves the m = 2,3 cases, where our estimator improves upon
the Periodogram by 11-15dB.

While the amplitude learning threshold is on a similar scale
to the frequency learning threshold, actually achieving this
value is challenging for low resolution due to quantization
effects directly impacting the amplitude of the signal. We will
again rely on the Periodogram as a benchmark for amplitude
estimation.

From Figure 6 we obtain insight into what is happening
between the one- and three-bit versions. In 6a most of the
estimators are not learning any meaningful features from the
input and are simply minimizing the loss over the distribution,
based on the lack of improvement with increasing SNR. In 6b,
the estimators perform worse initially because of the quantiza-
tion and noise effects, but outperform the threshold for SNR
> —3dB. Thus our three-bit results are much more useful and
generalizable than the one-bit case, even if the performance
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Fig. 6. A comparison of our sinusoid estimator’s amplitude results (Amp Est
—). Unexpectedly, our estimator appears to perform better for one-bit data than
three-bit at low SNR. Identifying the learning threshold, however, shows the
Periodogram and our m = {1, 2} estimators converging to a similar level in
(a). In contrast, all of our estimators surpass the threshold for three-bit data
in (b).

is initially worse for low SNR. From these plots in particular,
we can see the value of defining the learning threshold when
evaluating deep learning algorithms. Interestingly, increasing
the number of sinusoids to m = {3,4,5} leads to better
results, even though the true amplitudes are independent. We
believe this is because as m increases, the average error tends
toward the arithmetic mean of each the amplitude estimates,
but in the case of m = {2, 3}, if the minimum separation is not
sufficient, the estimation error is dominated by the overlapping
components.

D. Phase estimation

In the final evaluation of the sinusoid estimator, we look
at the phase estimates. We begin in a similar fashion to the
amplitude and phase results by first solving for the learning
threshold. Similar to the amplitude distribution, the phases are
uniformly distributed, ¢; € [0, 27], so the constant estimator
and learning threshold are simply

E[g;] =m

1 m
Lin,¢(m) = > % (%)
i=1

2

2
=0"(¢1) 3
From the learning thresholds, we expect the phase error to be
significantly higher than the other estimator losses, which is
why we scale the sum training loss according to the learning
thresholds in Section IV. This should help ensure none of
the losses affect the model significantly more than the others,
based on the simulation setup.

As mentioned in Section V, the Periodogram is replaced
with the FFT as a benchmark for estimating the phase of a
signal. We show the results of this algorithm with ours in
Figure 7, this time without dB scaling. We can see that the one-
bit results in Fig. 7a are better than the amplitude estimates, in
the sense that every estimator is able to learn and improve with
increasing SNR. Similar to the results from Figure 5b, only
the m = 1 case shows the benchmark (FFT) performing better
than our estimator. In the three-bit results, Fig. 7b, we see that
the FFT results are largely unchanged from the one-bit version,
but our estimator now shows a noticeable improvement with
increasing SNR. We also show the case where we increase
N — 2048 for the two-sinusoid FFT to show that sample
length is the limiting factor.

E. SignalNet results

In the final results, we join the two modules, and consider
pairings with different traditional estimators. We no longer
show the learning threshold, instead comparing across different
combinations of algorithms to see how effective our algorithm
is in the overall performance. We start by demonstrating the
effects of normalization on SignalNet. As we previously found,
the phase estimates tend to have much higher error, simply
because the phase values are drawn from a distribution with
a higher variance. Because the Chamfer loss, assuming the
correct number of sinusoids (m = ), is just two times the
mean absolute error, we can approximate the thresholds by
the root mean squared error, which is an upper bound on the
mean absolute error. Thus, we normalize by the square root
of the learning thresholds from Section VIII.

After normalizing, we evaluate benchmarks using AIC
with the Periodogram/FFT against SignalNet. AIC is chosen
because of its success over MDL in Figure 4. We interchange
AIC with our detection module as well and interchange the
Periodogram/FFT with our sinusoidal estimator to identify
which components provide the most gain in Figure 8. We color
in the two regions corresponding to the gain from using our
sinusoidal estimator (red \\ shading) and our detection module
(blue // shading).

The final results in Fig. 8, show the sinusoid estimation
module providing the most noticeable gain. We can also see
that the combination is not uniform: switching to our detection
module from AIC provides significant gain, but so does
switching to our sinusoid estimator from the Periodogram/FFT.
This is because our sinusoid estimator has learned to fit the
best estimates for a given number of sinusoids, so even with
poor detection results, it still has reasonable Chamfer loss.
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Fig. 7. A comparison of the estimation performance of our estimator and
the FFT for one-bit data and three-bit data. The chart in (a) shows all of
the estimators achieving and passing the threshold beyond SNR = —5dB,
however most of the estimators have only a slight improvement over the
threshold. In contrast, our estimator in (b) is able to successfully surpass the
threshold for SNR > —3dB for every value of m. Interestingly, the FFT does
not noticeably improve with the data resolution, but does improve with longer
sequences.

This explains the asymmetric gain from adding or subtracting
one of our modules between the AIC+FFT curve and our
SignalNet curve. Recall however, that the learning threshold
normalization has been applied to the estimation module, but
not to the detection module, as there is no intuitive way to
apply that with the Chamfer loss definition. Based on the re-
sults from the one-bit detection module in Fig. 4, a significant
portion of the gain being seen by the detection module can be
attributed to learning the distribution, rather than learning that
generalizes beyond our simulation. Ultimately, our SignalNet
architecture appears to provide a valuable improvement over
other techniques, when compared in our simulation setup.
However, we cannot give conclusive statements until we
also evaluate how our algorithm generalizes to different data
distributions.

F. Generalizability

In our final results, we evaluate the out-of-distribution
(OOD) results of our algorithm, determined from uniformly
distributed frequency content. Given the structure of our
generation process in Algorithm 1, we wish to also have a
measure of the performance on more general data settings.
As we mentioned in Section IV, it is crucial that we generate
frequency content that is separated by at least 1/N, but also
should not be equally spaced. In this section, we generate the
sinusoidal frequencies from a uniform distribution, with the
restriction that no frequency content can be within 1/N of
any other. If there is insufficient spacing, we regenerate an
entirely new set. For each value of m, we draw frequencies
from a uniform distribution with the same domain as our
original estimator, to ensure that the learned domain remains
consistent.

We show the results of all three estimators for the m = 2
case, which is the distribution furthest from a uniform distribu-
tion, and therefore experiences the greatest distribution shift.
We can determine which case has the greatest distribution
shift through a variety of metrics, but it is most intuitive to
compare the distributions in Fig. 11 with a uniform distribution
over the same domain in the supplementary material. We
can see from the results in Figure 9, that there is almost
no performance impact due to the change in distribution.
Based on the ability of our neural network to generalize
and outperform the benchmarks, we can conclude that the
SignalNet architecture is a valuable improvement over other
techniques for the detection and estimation task.

IX. CONCLUSION

In this paper, we described and evaluated SignalNet, a
novel deep neural network for multi-sinusoidal decomposi-
tion from low resolution sampling. While no other work
has considered quantized, multi-sinusoidal decomposition, our
network follows traditional setups by dividing the problem
into the subtasks of detection and estimation. We describe a
distinct architecture for each subtask and specifically focus
on developing a novel estimation network. Our estimation
network uses internal reconstruction to explicitly learn the
input-output relationship. We saw the benefit that instilling
this domain knowledge provided to our estimator, allowing
it to efficiently learn features from the data in most settings.
While our results strictly consider the case of estimating all
sinusoidal parameters, in the case that a specific parameter is
not necessary or is known a priori, a constant vector can be
inserted in its place during reconstruction.

We also proposed a theoretical tool for comparing our
networks and normalizing across distributions by defining
a learning threshold. The threshold is used to express the
distribution of the output variable for a specific loss function.
We used the insight from the learning threshold to understand
why the performance of our model did not universally increase
going from the one-bit to the three-bit versions and often
had better low SNR performance with one-bit data—by not
learning meaningful features. This prevented the estimator
from performing well, but also made it robust to noise. We
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from our detector (blue //) and the other to show the gain from our sinusoid estimator (red \\). At low SNR, the estimator provides significant gains, in part
from distributional learning, while at high SNR, the detector provides a larger gain due to the limitations of low resolution sampling for AIC (Fig. 4).
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Fig. 9. A comparison of our proposed network testing with the training
distribution (black) and out-of-distribution samples (red) for the m = 2 case.
Frequency content is drawn from a uniform distribution with the same domain
as the training data. The results are almost identical, showing that the features
learned by our model are effective, even under distribution shift.

found that our learning threshold is a useful metric to consider
when comparing neural networks with broader algorithms
and determining the success and generalizability of learning
algorithms.

Finally, we combined our networks together to complete the
SignalNet architecture. Our unified network is able to surpass
the benchmark algorithms universally. We were able to directly
quantify the improvement from our sinusoid estimator which
provided between 2-10dB improvement. We conclude that
a domain-aware detection module could improve the results
further, as well as additional investigation into appropriate loss
functions. Our results suggest that multi-sinusoid estimation
can be performed even with extremely low resolution quanti-
zation using our SignalNet architecture.
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