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Abstract—1In this letter, we consider a Linear Quadratic
Gaussian (LQG) control system where feedback occurs over a
noiseless binary channel and derive lower bounds on the min-
imum communication cost (quantified via the channel bitrate)
required to attain a given control performance. We assume that
at every time step an encoder can convey a packet containing
a variable number of bits over the channel to a decoder at
the controller. Our system model provides for the possibility
that the encoder and decoder have shared randomness, as is
the case in systems using dithered quantizers. We define two
extremal prefix-free requirements that may be imposed on the
message packets; such constraints are useful in that they allow
the decoder, and potentially other agents to uniquely identify
the end of a transmission in an online fashion. We then derive
a lower bound on the rate of prefix-free coding in terms of
directed information; in particular we show that a previously
known bound still holds in the case with shared randomness.
We also provide a generalization of the bound that applies if
prefix-free requirements are relaxed. We conclude with a rate-
distortion formulation.

I. INTRODUCTION

In this letter, we derive and analyze lower bounds on
the minimum bitrate of feedback communication required
to obtain a given LQG control performance. We consider
the setting of variable-length coding; at each discrete time
instant an encoder that can fully observe the plant conveys
a packet containing a variable number of bits to a decoder
co-located with the controller. Various prefix constraints can
be imposed on the packets; these allow the decoder, and
perhaps other agents, to uniquely identify the end of each
codeword given varying degrees of common knowledge/side
information (SI). This is useful in a shared communication
channel-upon detecting the end one user’s codeword, other
users can identify the channel as free-to-use. While we
assume that the packets are conveyed over an noiseless, error-
free communication channel, the lower bounds we obtain are
useful even the communication channel is noisy. The bounds
we derive can be compared directly with an appropriately
defined capacity of the noisy channel (maximum achievable
reliable bitrate); if the channel’s capacity is less than that
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given by the lower bound, the desired control performance
is not achievable. Likewise, if one imposes source-channel
separation on the design of the communication architecture,
our lower bounds apply directly to the optimal source
codec (encoder/decoder pair) design. Note, that while our
motivations are practical, the contribution of this letter is
purely theoretical; we rigorously prove lower bounds to
which proposed coding schemes may be compared.

We allow for the possibility that the encoder and decoder
have access to shared randomness; namely an IID sequence
of exogenous random variables that are revealed causally
to both the encoder and decoder. Shared randomness of this
nature arises in the setting where the encoder and decoder use
dithered quantization. In dithered quantization, randomness
is intentionally introduced into the quantization process to
ensure that the quantization noise is “well-behaved” and
more amenable to analysis. In particular, dithered quan-
tization has been used to design schemes for minimum
bitrate LQG control (cf. [1][2]).While shared randomness
is generally used as a tool to show achievability results
and it has been argued that synchronized pseudorandom
number generators can be used to approximately achieve
any level of desired performance, truly shared randomness
is a resource. We show that for all notions of “prefix-free”
that we consider, irrespective of the marginal distribution of
the shared randomness, the channel bitrate is lower bounded
by the time-average directed information (DI) from the state
vector to the control input. Notably, this is the same lower
bound that applies without shared randomness [3][4]. This
demonstrates that systems employing dithered quantization
are subject to the same fundamental lower bounds as systems
without shared randomness; this sheds some optimism on
efforts to “remove the dither” from achievability results like
[2]. It is known that for discrete sources, the bitrate of
lossless source coding can be reduced by relaxing the prefix-
free assumption [5]. We show how the lower bounds change
when the prefix constraint is lifted. We conclude with a
rate distortion formulation, specialized to the case of time-
invariant plants and the infinite horizon problem, that follows
from [3]. As our main result, Theorem 1, is proved in the
finite horizon, other relevant rate distortion formulations can
be derived from, for example, [3] and [6]. We proceed with
a review the prior art, a summary of our contributions, and
an outline of this letter.

A. Literature Review

Our work follows from the problem formulation of [1],
which considered a SISO LQG control system where feed-
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Fig. 1. The factorization in (5b) states that both the shared dither and
the process noise are drawn independently given all prior encoder and and
control actions. The factorization in (5a) provides that the codeword at time
t can be drawn from some distribution that depends on its prior observations
of the state and dither sequence, as well as its past actions. Likewise, the
control input can be drawn randomly given its the decoder’s observations
of received codewords, the dither, and its past actions.

back measurements were conveyed from an encoder to a de-
coder over a noiseless binary channel. In the variable length
setting and enforcing a prefix constraint on the packets, [1]
derived a lower bound for the time-average expected channel
bitrate in terms of Massey’s DI [7]. Given a constraint on
the LQG cost, [1] showed that the lower bound is nearly
achievable when the encoder and decoder share access to a
common dither signal. In [3] and [2], the work in [1] was
extended to MIMO plants. In particular, [3] developed a rate-
distortion formulation in terms of semidefinite programming;
a semidefinite program (SDP) was derived to compute the
tradeoff between the minimum DI and LQG cost. The
achievability of the lower bound, again assuming dithering,
was demonstrated in [2]. Analytical lower bounds on the
relevant DI as a function of the maximum tolerable LQG cost
were developed in [4]. It was also shown that the entropy rate
of an innovations quantizer approaches this bound without
the use of dithering. Notably, [4] described how to generalize
the entropy lower-bound for prefix-free coding to the setting
without prefix constraints (see also [5]).

We consider a setup where the encoder and decoder share
randomness. This is in contrast to a setup where the decoder
can access a more traditional notion of SI, namely a random
variable correlated with the plant’s state vector. The impact
of this latter notion of SI on the communication/LQG cost
tradeoff was investigated in [8], [9], [10], and [11]. In
particular, these works consider linear/Gaussian observations
of the plant available at the decoder. Rate distortion formu-
lations were considered in [8], [9], and [10], meanwhile an
achievability approach (assuming noiseless SI also available
at the encoder) was given in [11]. We will show that shared
randomness does not affect lower bounds on bitrate.

The lower bound on bitrate derived in [1] purported to
apply to quantization/coding schemes with shared dither
sequences at the encoder and decoder. A flaw in the proof
of the bound from [1] was recently discovered by [12]. The
proof was revised using new DI data processing inequalities
derived in [13]. In our letter, while we prove a lower bound
similar to that in [12], our problem formulation and proof
techniques differ significantly. The data processing inequali-
ties in [13] apply to general feedback systems consisting of
causal stages, where system blocks are randomized through

exogenous inputs. In this work, we consider randomized
encoder and decoder policies directly, which we believe
simplify our proofs. Under natural conditional independence
assumptions between the system variables, we prove a data
processing inequality. The lower bounds then follow directly.

B. Our contributions

In summary, the contributions of this letter are:

1) we define two different prefix constraints that can
be imposed on the feedback packets. In prior work,
these constraints have been used somewhat ambigu-
ously. Namely, we define a strict as well as a relaxed
constraint and show that they are subject to the same
lower bound. We highlight the operational significance
of these constraints in control systems.

2) in the case where the encoder and decoder share
randomness, we derive a DI data processing inequality
directly from the factorization of the joint distribution
of the system variables. This inequality proves that for
two extremal notions of what it means to be “prefix-
free”, the DI lower bound from [2] holds even when
the encoder and decoder share randomness. Following
from [4] and [5], we generalize the bound to codecs
without prefix constraints.

The lower bounds lead to a rate distortion formulation,
which, following from [3], can be written as an SDP.

C. Organization and Notation

We describe the system model in Section II. We describe
prefix constraints that can be imposed on the system and
establish the lower bounds in Section III-A. We conclude
with a rate distortion formulation in Section III-B.

We denote constant scalars and vectors in lowercase
x, scalar and vector random variables in boldface x, and
matrices by capital letters X. The set of finite-length binary
strings is denoted {0,1}*. We use H for the entropy of a
discrete random variable and I for mutual information (MI).
For time domain sequences, let {x;} denote (xg,x1,...).
We let x% denote (xg,...,%p) if b > a, and let x° = ()
otherwise. Likewise, let x* = x}. Given {x;} we define the
shifted sequence {x;"} by (0,xg,X1,...). For {a;,bs,c;},
Massey’s causally conditioned DI is defined by (cf. [7])

T—1

I@" = b ") = > 1@ b b ). (1)
t=0

II. SYSTEM MODEL AND PROBLEM FORMULATION

The system model under consideration is depicted in
Figure 1. We consider a general MIMO plant with a feedback
model where communication takes place over a noiseless
binary channel. We assume that a time-invariant plant is
fully observable to an sensor/encoder block, which conveys
a binary codeword a; € {0,1}* over the channel to a
combined decoder/controller. Upon receipt of the codeword,
the decoder/controller designs the control input. We denote
the state vector as x; € R™ and the control input as u; € R“.
We assume that the sensor/encoder and decoder/controller



share access to a common random dither signal, {d;}. The
dither is assumed to be IID over time. Note that this system
model includes systems where a dither is unavailable as a
special case (e.g. we could always set d; = 0 for all t).
The process noise w; ~ N(0,W) is assumed to be IID
over time. We assume W > 0,,x,,. We assume assume
that xo ~ MN(0,X,) for some X, = 0, and that {w;},
{d:}, and x( are mutually independent. Given a sequence
of system matrices A; € R™*™ and feedback gain matrices
By € R™*" for t > 0 the plant dynamics are given by

Xi+1 = Aexe + Boug + wy. )

We assume that the sensor/encoder and the de-
coder/controller are stochastic; i.e. that they can use random-
ized strategies.! The sensor/encoder policy is assumed to be
a sequence of causally conditioned kernels given by

Ppa||d™, x> = {Pg[a/a’™,d!,x'] for t € No}. (3)

Likewise, the corresponding decoder/controller policy is
given by the sequence of causally conditioned kernels

Pc[u™|a*,d*>] = {Pc[us|a’,d?, u?~1] for t € No}. (4)

By (2), for all ¢, x? is a deterministic function of xg, u*~!,

and w'~!. We assume that the one-step transition kernels
between a;, d;, u;, and w;, factorize for all ¢t > 0 as

Plasr1, urfa’, d ! ul, wh xo] =
Pelaiila’, d x" 1 Pclugyq]a’ ™t A uf], (5a)
and
P[at+l7dt+1;ut+lawt+1|at7dt7ut7wtaX0] =
Plag+1, urla’,d’, u’, wh,xo]P[ds41]P[wig1].  (5b)

Implications of these factorization are discussed in Fig. 1.

The length of the binary codewords {a;} provides a notion
of communication cost. This is motivated by a scenario
where measurements from a remote sensor platform are
conveyed over wireless to control a plant. In general, mini-
mizing the necessary bitrate from the remote platform to the
controller minimizes the amount of physical layer resources
that must be allocated to the particular link. The problem of
interest is to minimize this bitrate subject to a constraint on
the LQG control performance. In this work, we are concerned
primarily with deriving lower bounds on the bitrate. At every
time ¢, we require a; to satisfy a prefix constraint. This
allows the decoder (and possibly other agents sharing the
same communication network) to uniquely identify the end
of the transmission from the encoder. For a € {0,1}*, let
¢(a) denote the length of a in bits. The prefix constraint
allows us to derive simple lower-bounds on E[¢(a;)]. We are
interested in the optimization problem

1 T
e L :
Pofe T + 1 L2—t=0 [£(a)]
T
2 2
T Do Elletllf + el < 7.

1
!For example, the encoder can draw the codeword randomly conditioned
on its input.

(6)

S.t.

where @ = 0, R > 0, and ~y is the maximum tolerable LQG
cost. The minimization is over admissible sensor/encoder and
decoder/controller policies described by (3) and (4). In [3],
it was shown that, for policies without additive dithering, (6)
is lower-bounded by an SDP (technically a log-determinant
optimization) where a particular DI is minimized over the
space of linear/Gaussian policies. In the sequel, we show that
this lower bound still holds for architectures with additive
dither satisfying (3)-(5).

III. LOWER BOUNDS

In this section, we state a generic bound on the rate of
prefix-free source coding within the feedback loops of Fig.
1 that apply irrespective of the marginal distribution of the
dither signal d,;. Thus, lower bounds applying to the system
of Fig. 1 apply to systems without dithering as a special case.

A. Directed information lower bound

We first formally define various prefix constraints that may
be imposed on the codeword a;. We consider two distinct
notions, and demonstrate that the same lower bound applies
to both. We first require that, at every time ¢, a,; is a codeword
from a prefix-free code that can be decoded by any decoder
with knowledge of the marginal distribution P,,. Assumption
1 formalizes this constraint.

Assumption 1 For all distinct aj,a2 € {0,1}* with
Pa,[a: = a1] > 0 and P,,[a: = ag] > 0, a; is not a prefix
of as and vice-versa.

Assumption 1 ensures that the decoder can uniquely iden-
tify the end of the codeword without relying on its knowledge
of the previously received codewords a’~!, its previously
designed control inputs u’~!, and the common randomness
d? it shares with the encoder. However, Assumption 1 is
perhaps too restrictive; at time ¢ both the encoder and the
decoder have access to some common knowledge, including
a’~! and d’. While information known only to the encoder
cannot reduce the minimum codeword length, information
known to the decoder can. Thus, we consider prefix-free
codes that are instantaneous with respect to realizations of
the random variables known to the decoder, as detailed in
Assumption 2.

Assumption 2 For any realizations (a'~! = a'~1,d" =
dt,ut=!t = 1), for all distinct ay,as € {0,1}* with
Pat‘at—17dt’ut—1[at = al\at*I = atil,dt = dt,ut*1 =
w1 > 0 and Py, jar-1 gt w12y = agla’™t = a7t d =
dt,ul=t = u'=1 > 0, ay is not a prefix of ay and vice-versa.

This requirement ensures that given the knowledge of
a’~!, d?, and u’~! the decoder can uniquely identify the end
of the codeword. While Assumption 2 is somewhat relaxed in
comparison to Assumption 1, the implementation of a coding
scheme under Assumption 2 is likely more cumbersome with
respect to that of Assumption 1. Under Assumption 1 a
decoder-side system that detecting the end of the codeword
need not consider the realizations of a'~!, d* = d*, and
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Fig. 2. The virtual encoder produces the codeword c; given access to a; and realizations of (af~!, d*, u~1). The virtual codec is lossless; we require
that given c¢ and the realizations of (a*~1 d* u*~—1), the virtual encoder reconstruct a; exactly, ensuring equivalent control performance in the original
system. The virtual codewords c; must also satisfy Assumption 2. Notably, the virtual encoder has access to more side information than the sensor/encoder.

t=1 t=1 | whereas under Assumption 2 this is not

necessarily the case. Our main result is a lower bound on
codeword length applying to both Assumptions 1 and 2.

Theorem 1: In a system conforming to Fig. 1 and (5)
with fixed encoder and decoder policies such that either
Assumption 1 or 2 is satisfied at every ¢, the time-average
expected codeword length satisfies

T

ﬁ S Efe(ay)] > ﬁI(XT Sal). )

Theorem 1 follows from Lemmas 2 and 3, stated presently.
Lemma 2: If a, satisfies either of the prefix-free condi-
tions outlined in Assumptions 1 or 2, we have

T

1 1

I(x" — a”||d", ul).

®)
Proof: We first derive a bound on the codeword length

under Assumption 1. Assume that the encoder and decoder
policies are fixed and conform to Assumption 1. Consider
a; itself as an information source with a range in {0, 1}*.
Define the identity map C* : {0,1}* — {0, 1}* such that for
all a € {0,1}*, C'(a) = a. By Assumption 1, at every time
t, C! is a lossless, prefix-free source code for a;. Thus, we
have (cf. [14, Theorem 5.3.1])

E[t(ar)] = E[¢(C' ()] ©)
> H(ay) (10)
> H(asa!™t,d" u’™!)) (11)
> I(at;xt\atfl,dt,utfl) (12)

where (9) follows since C' is an identify map, (10) follows
from the fact that C" is a prefix-free code for a, and thus
has an expected length lower bounded by the entropy of a;.
Equation (11) follows from the fact that conditioning reduces
entropy. Finally, (12) follows from subtracting the (nonneg-
ative) discrete conditional entropy H(a;]a’~!, d?,u’~! x?)
from (11) and applying the definition of MI.

We now demonstrate that the lower bound in (12) also
applies under Assumption 2. Consider modifying the sys-
tem model of Fig. 1 (with fixed sensor/encoder and de-
coder/controller policies) by inserting a second ‘“virtual”
(hypothetical), deterministic lossless source codec between
the original encoder/sensor and decoder/controller. Fig. 2
gives an overview of this modification. Note that the original
sensor/encoder does not have access to uf, but that the
virtual encoder does. Assume the (fixed) sensor/encoder and

decoder/controller policies satisfy Assumption 2. At every
time ¢, we allow the virtual encoder to produce the codeword
c; given a; and realizations of (a’~! u‘~! d’). We require
that, given realizations of (a’~!,u’~!, d’) and the codeword
ct, the decoder reproduce a; exactly. We require that the
codewords {c;} also satisfy Assumption 2 (replacing a; with
the virtual codeword c;).

Fix the realizations a™! = @'~ 1, df = d, ut~! =
u!~!, and consider encoding a; into c;. Define the virtual
encoder function mapping a; to c; given the realizations
by Cpi—1 gt ye—1 = {0,1}* — {0,1}*. Likewise, define the
decoder function Dgi-1 g o1 @ {0,1}* — {0,1}*. By
assumption, Dgt—1 gt yt—1(Cyt=1 gt yt-1(a¢)) = a;. Assume
Cyt—1 gt yt—1 is chosen to minimize E[¢(c;)]. Thus,

[Ew(at)‘atfl _ atfl’dt _ dt,ut71 _ utfl]

E[¢(cy)|a’ ™t =o', d! =d',u ™t =u!TY], (13)

Y]

since choosing both Cyi-1 gt yt—1 and Dge-1 g ¢—1 to be
identity (i.e. choosing c; = a;) ensures that the decoder
recovers a; and that the {c;} satisfy Assumption 2. Since the
prefix constraint in Assumption 2 applies for all realizations,
we can lower bound E[/(c;)|al™! = a!~1,d} = d',ul~! =
u'~1] using the standard Kraft-McMillan inequality based
proof. For any realizations (a'~', d?, u'~') and choice of
code Cgyt-1 gt t-1, we have (cf. [14, Theorem 5.3.1])

[E[ﬂ(ct)\atfl _ atfl,dt — dt,utfl _ utfl 2

H(at|at71 — atil,dt — dt,utfl — utfl).

(14)

Taking the expectation of (13) and (14) with respect to the
joint measure (a’~1, d?, u’~!) over realizations allows us to
proceed as in (9). We have

E[¢(as)] > E[£(cy)] (15)
> H(asa!™t,d" u’™) (16)
> I(a;;x'[a" ", d" u'™ ), (17)

where (15) is by taking expectations over realizations in (13),
(16) follows likewise from (14), and (17) follows as in (12).

Summing the identical bounds in (12) and (17) over
t = {0,...,T} and applying the definition of causally
conditioned DI from (1) proves (8). [ |

In the next lemma, we show that the DI in Lemma 2 can be
lower bounded by a DI that is amenable to the rate-distortion
formulation from [3].



Lemma 3: In the system model of Figure 1, we have

I(x" — a”||d", 07" > 1(x" —» u”). (18)
Proof: Let
by = I(x'5aa’t df ™t — I(xugul™) (19)
and note that summing the ¢, at applying (1) gives
I(x" = a”|[d", ul ") — 1(x” — u” Zsbt (20)
We first demonstrate that
I(xt;at|at71 dt tfl)
—I( (at,dt,ut)\ t_l,dt_l,ut_l). (21)
Using the chain rule, we have
I(x%; (a,dg, ug)|al =1, dP =1 1) = I(xt wglat,df, 1)
+I(xagjal =t dful ) + I(xt dglal =t di 7 ul ). We
have, by (5) that d; is independent of (a’~!,d*~% u’~1 x!)

so I(xt;dsal=t, d*=1,u'~t) = 0. Likewise, (5) induces
the Markov chain (x! — (af,d’,u’™!) — u;) (e.g. the
control action at time t is independent of the past
states given the information at the decoder) and so
I(x%;u]al,d?,ut~1) = 0. Substituting (21) in (19) gives

o = I(x'; (ag, dg,ug)[a L, A7 w1t — I(xh uy[uf ™)
= I(x% (al,d")|u’) — I(x'; ("L, d"H[ut™t)  (22)
= I(x% (al,d")|u?) — I(x' L (@1, A H |t (23)

Equality (22) follows via expanding I(x!; (af, d?, u;)[u’~1)
via chain rule two different ways to show that

I(Xt; (at—l7 dt—l)lut—1)+
I(x"; (ag, dy,up)|at =t At
1)+I(Xt

and then adding right hand side and subtracting the
left hand side of (24) from the preceding equation.
For t > 1, (23) follows since by the chain rule
I(Xt;(atfl,dtflﬂut*l) _ I(thl;(atfl’dtfl)hltfl) +
I(xg; (@t~ d=1)[ut~1,x!~1). However, by the system
model (5) we have the Markov chain ((a’~!,d‘~!

ut—l) _

I(x"';ugu'™ (@, dH'), (24

(xt=1 ut~1) —x;) and so I(xt (@'t diH)ull xi 1) =
0. When t = 0, we have I(x'; (a’~? dt But~1) = 0 and so
we adopt the convention that Ix Y @t,d )t =0

We can then apply (23) to telescope the sum in (20). This
gives 3.1 dp = I(xT; (aT,dT)[u”). Substituting this into
(20) and applying the non-negativity of MI proves (18). H
Theorem 1 is immediate upon combining Lemmas 2 and 3.

We now briefly discuss how the lower bound in Theorem
1 can be modified if we do not require that the codewords
a; conform to prefix constraints. While prefix constraints can
be useful in settings where multiple agents access a shared
communication medium, they may be overly restrictive, in
particular for the point-to-point case when the encoder and
decoder share a common clock signal. The prefix constraints
allowed us to use the entropy lower bounds in (10) and (14)

respectively, but lifting them permits a reduction in expected
bitrate [4] [5]. Define the function #(z) : R* — RT via
O(x) = x+ (1+x)logy (1 +2) — xlogy(z). It can be shown
that f(x) is strictly increasing and concave. Thus, the inverse
0~ : Rt — Rt exists, is strictly increasing, and is convex.
Assume that in the setting of Lemma 2, we lift the prefix
constraint in Assumption 2 as applied to the virtual codeword
c, but that we require that the virtual codec be lossless with
respect to the encoder and decoder’s common knowledge at
time t. In other words, we require that for all realizations of
(=1, d’, u'~!) the virtual encoding function Cye—1 g o1 :
{0,1}* — {0, 1}* is injective. The bound (15) becomes

E[¢(a)] > E[¢(ct)] (25)
>0 (H(ala' !, d" u'™)) (26)
> 07! (I(agx'|a"~ !, d", u' 1)) 27

where (26) follows from [5, Equation (13)] and (27) follows
from (15)-(17) and the fact that 6~ is increasing. Likewise,
under Assumption 1, relaxing the prefix constraint gives
Elt(a;)] > 07" (I(ag;x'|a’~ ", d", u')). (28)
Let Ry = I(ay;x'|a’~1,d?,ut~!). By the convexity of §~!
and Jensen’s inequality, taking the time average gives
T

0N (Ry) _ ., [~ R
R S 2
> 711 27 ;TJrl

=0
- <I(XT — a’||d”,ul" 1)) o)

(29)

T+1
S g1 I(xT —uT)
- T+1

where (30) is the definition of DI and (31) follows from
the fact that 6~ is increasing and the DI data processing
inequality in Lemma 3. Thus, if the prefix constraints in
either Assumption 1 or 2 are relaxed, we have

e (1550).

=0

€29

(32)

The next section motivates a rate-distortion optimization
seeking to minimize the time-average DI lower bound from
(7) subject to constraints on control performance. As 67!
is increasing and convex, (32) makes this meaningful even
when prefix constraints are relaxed.

B. Rate Distortion Formulation

We reexamine the optimization proposed in (6) in light
of the converse result obtained in Theorem 1. We assume a
time-invariant plant, e.g. A, = A and B; = B, where (A,B)
are stabilizable to ensure finite-control cost is attainable.
Define the infinite-horizon generalization of (6) via

1 T
f i _— E[¢
Yo Pobe ol T Z [f(az)]
B ot hmsupzt=o [th+1”Q + [ [1%] <
- T—o0 T+1 =7



By Theorem 1,

1
inf limsup TI(XT — u’)

e Pe.Pc T—o0 1
= T )
ol hmsupZt:o Efllxe+1l13) + [[uell%] <~
- T—o00 T+1 N

(33)

where the policy spaces {Pg,Pc} are given by (3) and
(4). We can relax the optimization problem in (33) by
expanding these policy spaces. Note that both the control
and communication costs involve only {x;,u;}. Under the
system model, we have that the joint probability measure of
these random variables factorizes via Py ,r[x”, u’]
HZ:O Ith|ut,1,xt,1 [Xt|ut—1a Xt—l][Put|u”*1,x” [ut|ut717 Xt]'
In a sense, this factorization follows from the causality
of the systems under investigation. The kernels
{Px;juy_y 3, [XelUs—1,%;_1]} are time-invariant and
fixed by the plant model. Meanwhile, the kernels of
the form Py, jut—1 xt[ugfu’~" x'] are induced by the
encoder and controller policies. Let Py« denote the set
of all sequences of Borel-measurable kernels of the form
{Puyjut-1 xt[ug[u’~!, x]}. Note that Py contains all
kernels that can be induced by encoder and controller
policies satisfying (3) and (4). Consider the optimization

1
inf lim sup TI(XT —u’)

Pujjx T—o0
T
> im0 Elllxera1d + [luell %] -
T+1 -

(34)

s.t. lim sup
T—o00
Since the domain of optimization in (34) is expanded with
respect to that the of the optimization on the right-hand side
of (33), we have that R < L*.

The optimization in (34) is the subject of [3]. While, a
priori, the optimization in (34) is over an infinite-dimensional
policy space, [3] demonstrated that the minimum in (34)
could be computed by a finite dimensional log-determinant
optimization. Let .S be a stabilizing solution to the discrete
algebraic Riccati equation ATSA — S — ATSB(BTSB +
R)™!BTSA+Q =0, let K = —(BYSB + R)"!BTSA,
and let © = KT(BTSB + R)K. It can be shown (cf. [3,
Section IV.B]) that the optimization in (34) is equivalent to

1
inf = (—log, det IT + log, det W)
PII,eR™*™ 2
PII-0

st. Tr(OP) + Tr(WS) <~
P=<APAT + W
P-1I PAT <0
AP  APAT+W| —

(35)

Convex optimizations like (35) are solvable via standard
libraries.

IV. CONCLUSION

In [1], [2] prefix-free coding schemes that conform to As-
sumption 2 were shown to nearly achieve the communication
cost for systems with a shared uniform dither sequence at

the encoder and decoder. Likewise, bounds on the quantizer
output entropy from [4] (not assuming dithering) can be
used to demonstrate the existence of a scheme conforming to
Assumption 1 that approximately achieves the lower bound
in the high communication rate/strict control cost regime.

The prefix constraints discussed in this work apply “at time
t” in the sense that both definitions allow different prefix-
free codebooks to be used at every time ¢. For example,
under Assumption 1 there is nothing preventing a codeword
at time ¢+ 1 from being a prefix of some codeword at time .
Likewise, proofs of the achievability results in [2], [4] imply
the codebook is time-varying. Enforcing a time-invariant
prefix constraint could enable more computationally efficient
communication resource sharing in a network scenario; the
end of the codeword can be detected by comparing received
transmissions against a time-invariant list. Likewise, a fully
time-invariant source coding scheme (e.g. where both the
quantizer and the the mapping from quantizations to prefix-
free codewords is itself time-invariant) will eliminate the
need to update codebooks at every timestep and reduce the
computational complexity of both encoders and decoders.
Upper and lower bounds for time-invariant codecs is an
opportunity for future work.
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