
IEEE CONTROL SYSTEMS LETTERS, VOL. 7, 2023 367
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Abstract—This letter proposes an optimization with
penalty-based feedback design framework for safe stabi-
lization of control affine systems. Our starting point is
the availability of a control Lyapunov function (CLF) and
a control barrier function (CBF) defining affine-in-the-input
inequalities that certify, respectively, the stability and safety
objectives for the dynamics. Leveraging ideas from penalty
methods for constrained optimization, the proposed design
framework imposes one of the inequalities as a hard con-
straint and the other one as a soft constraint. We study
the properties of the closed-loop system under the result-
ing feedback controller and identify conditions on the
penalty parameter to eliminate undesired equilibria that
might arise. Going beyond the local stability guarantees
available in the literature, we are able to provide an inner
approximation of the region of attraction of the equilib-
rium, and identify conditions under which the whole safe
set belongs to it. Simulations illustrate our results.

Index Terms—Safety-critical control, control barrier func-
tions, penalty methods.

I. INTRODUCTION

S
AFETY-CRITICAL control has garnered a lot of atten-

tion in the controls and robotics communities motivated

by applications to many different classes of engineered and

natural systems. Safety refers to the ability to ensure by design

that the evolution of the dynamics stays within a desired set.

Control barrier functions (CBFs) are a useful tool to deal with

safety specifications that do not require addressing the difficult

task of computing the system’s reachable set. In many scenar-

ios, safety must be achieved together with some stabilization

goal, and this raises interesting challenges for control design in

order to ensure that both are achieved via feedback controllers

that are easily implemented and have appropriate smoothness

guarantees. These challenges motivate us to develop here an

optimization with penalty-based feedback design framework

for safe stabilization of control affine systems.

Literature Review: We rely on ideas from two different bod-

ies of work. The first one is CLFs [1], which have been
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successfully used in the control design for stabilization of

nonlinear systems. Of particular interest to this letter is the

pointwise-minimum norm (PMN) formula [2], that uses a CLF

to compute a stabilizing controller. The second relevant body

of work pertains to CBFs [3], [4], whose aim is to render

a certain predefined safe set forward invariant. However, in

applications where both safety and stability must be certi-

fied, CBFs fall short of providing provable stability guarantees.

To tackle this issue, [5] combines a CLF and a CBF into a

so-called CLBF, and then uses Sontag’s universal formula to

derive a smooth controller. However, in general it might be

difficult to satisfy the conditions required for the existence of

such a CLBF [6]. Another approach is the universal formula

for smooth safe stabilization from [7]. However, this formula is

only applicable in a set where both the CLF and the CBF are

compatible (i.e., there exists a control satisfying their asso-

ciated inequalities at every point of the set). An alternative

approach [4] to tackle joint safety and stability specifications is

to combine the CLF and the CBF in a quadratic program (QP).

To guarantee the feasibility of the program when the func-

tions are not compatible and to avoid the resulting controller

to be non-Lipschitz when they are [8], the stability constraint

is often relaxed. This results in a lack of guarantee of stability,

even for arbitrarily large penalties in the relaxation parame-

ter [9]. Moreover, as shown in [10], [11], this QP formulation

can introduce undesired equilibria beyond the original equi-

librium, which can even be asymptotically stable. This line

of work [9], [11] then identifies conditions under which local

stability guarantees of the equilibrium can be given. Although

the region of attraction is not explicitly characterized, a strat-

egy similar to the one pursed here could be employed. An

alternative design, e.g., [12], assumes a priori knowledge of

a CBF and a nominal (possibly unsafe) stabilizing controller.

Then, a safety filter is applied to this nominal controller. As a

result, the filtered controller generally lacks stability guaran-

tees. The recent paper [13] gives an estimate of the region of

attraction of the closed-loop system obtained by using such a

filtered controller.

Statement of Contributions: We consider the problem of

safe stabilization of control affine systems. Given a control

Lyapunov function and a control barrier function whose 0-

superlevel set defines an arbitrary, possibly non-convex safe

set, we aim to synthesize a safe, stabilizing feedback and

identify the region of attraction of the origin for the result-

ing closed-loop system. In particular, we study under what
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conditions such region of attraction contains the safe set.

The contributions of this letter are the following. Given the

safety and stability objectives, our first contribution designs

an optimization with penalty-based controller that has one

of the objectives as a hard constraint and the other as a

soft constraint. The controller depends on a penalty param-

eter that can be tuned to enhance the soft objective at the

cost of reduced optimality, while guaranteeing the satisfac-

tion of the hard constraint. An advantage of the proposed

design is that the controller is automatically Lipschitz and

has a closed-form expression. Our second contribution shows

that the controller can introduce undesired equilibrium points

different from the origin. By choosing the penalty parame-

ter appropriately, and under some technical conditions, these

undesired equilibria can be eliminated. Finally, our third con-

tribution shows that the proposed controller can be tuned to

provide an inner approximation of the region of attraction of

the origin for the closed-loop system. As a consequence of

this analysis, we provide conditions under which all of the

safe set belongs to the region of attraction of the origin for the

closed-loop system. Simulations on a planar system compare

our design with other approaches in the literature.

II. PRELIMINARIES ON CLFS AND CBFS

This section presents1 preliminaries on control Lyapunov

and barrier functions. Consider a control-affine system

ẋ = f (x) + g(x)u, (1)

where f : R
n → R

n and g : R
n → R

n×m are locally

Lipschitz functions, with x ∈ R
n the state and u ∈ R

m the

input. Throughout this letter, and without loss of generality,

we assume f (0) = 0, so that the origin x = 0 is the desired

equilibrium point of the (unforced) system.

We start by recalling the notion of Control Lyapunov

function (CLF) [1], [2].

Definition 1 (Control Lyapunov Function): Given an open

set D ⊆ R
n, with 0 ∈ D, a continuously differentiable function

V : Rn → R is a CLF on D for system (1) if

• V is proper in D, i.e., {x ∈ D : V(x) ≤ c} is a compact

set for all c > 0,

• V is positive definite,

1We denote by Z>0,R and R≥0 the set of positive integers, real, and
nonnegative real numbers, resp. We write int(S), ∂S for the interior and the
boundary of the set S, resp. Given x ∈ R

n, ‖x‖ denotes its Euclidean norm.
Given f : Rn → R

n, g : Rn → R
n×m and a smooth function W : Rn → R, the

notation Lf W : Rn → R (resp. LgW : Rn → R
m) denotes the Lie derivative

of W with respect to f (resp. g), that is Lf W = ∇WT f (resp. ∇WT g). We

denote by C1(Rn) and C2(Rn) the set of continuously differentiable and twice
continuously differentiable functions in R

n, respectively. Given a ∈ R
n and

b ∈ R, let H denote the hyperplane defined by H = {x ∈ R
n : 〈a, x〉 = b}.

We denote the projection of v ∈ R
n onto H by PH(v) = v −

〈a,v〉−b

‖a‖2 a. A

function β : R → R is of class K if β(0) = 0 and β is strictly increasing.
If moreover limt→∞ β(t) = ∞, β is of class K∞. A function V : Rn → R

is positive definite if V(0) = 0 and V(x) > 0 for x 
= 0. Given a matrix
M ∈ R

n×m, ker(M) = {x ∈ R
m : Mx = 0n}. Given a square matrix A ∈

R
n×n with eigenvectors {vj}

n
j=1

and corresponding eigenvalues {λj}
n
j=1

, the

stable subspace of A is defined as Vs(A) = span({vj : ℜ(λj) < 0, j =

1, . . . , n}), where ℜ(λj) denotes the real part of λj. We denote by λ̄min(A)

and λmax(A) the smallest non-zero and largest real parts of the eigenvalues
of A, respectively.

• there exists a continuous positive function W : Rn → R

such that, for each x ∈ D\{0}, there exists a control u ∈

R
m satisfying

Lf V(x) + LgV(x)u ≤ −W(x). (2)

CLFs provide a way to guarantee asymptotic stability of the

origin. Namely, if a Lipschitz controller u satisfies (2) for all

x ∈ D\{0}, then the origin of the closed-loop system is asymp-

totically stable [1]. If W(x) in (2) is replaced by γ (V(x)),

where γ is a class K function, then such Lipschitz controller

makes the origin exponentially stable. Such controllers can be

synthesized by means of the pointwise minimum-norm (PMN)

control optimization [2, Ch. 4.2],

u(x) = arg min
u∈Rm

1

2
‖u‖2

s.t. (2) holds.

Note that, at each x ∈ R
n, this is a quadratic program in u.

Next we recall the notion of Control Barrier Function

(CBF) [4]. Let C ⊆ R
n be a closed set describing the safe

states for the system (1).

Definition 2 (Control Barrier Function): Let h : Rn → R

be a continuously differentiable function such that C = {x ∈

R
n : h(x) ≥ 0}. The function h is a CBF of C for system (1)

if there exists a class K∞ function α such that, for all x ∈ C,

there exists a control u ∈ R
m satisfying

Lf h(x) + Lgh(x)u + α(h(x)) ≥ 0. (3)

CBFs can be used to guarantee safety, i.e., forward invari-

ance of C under the dynamics (1). Namely, if a Lipschitz

continuous controller satisfies (3) for all x ∈ C, then C is for-

ward invariant [4, Th. 2]. Similar to the PMN controller above,

a common design methodology [4] is via the optimization

u(x) = arg min
u∈Rm

1

2
‖u‖2

s.t. (3) holds,

which results in a Lipschitz controller [14, Th. 2].

When dealing with both the stability and safety of system

trajectories under the dynamics (1), it is important to note that

an input u might satisfy (2) but not (3), or vice versa. The

following notion, adapted from [7, Definition 2.3], captures

when the CLF and the CBF are compatible.

Definition 3 (Compatibility of CLF-CBF Pair): Let D ⊆ R
n

be open, C ⊂ D closed, V a CLF on D and h a CBF of C.

Then, V and h are compatible at x ∈ C if there exists u ∈

R
m satisfying (2) and (3) simultaneously. We refer to both

functions as compatible if V and h are compatible at every

point of C.

III. PROBLEM STATEMENT

We are interested in designing controllers that are both sta-

bilizing and safe. We also require them to be Lipschitz in

order to guarantee existence and uniqueness of solutions of the

closed-loop system. Formally, consider a control-affine system

of the form (1). Let V : Rn → R be a CLF on the open set

D ⊆ R
n and h : Rn → R be a CBF of the closed set C ⊂ D.
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We assume the origin belongs to C. Given the availability of

these functions, it seems reasonable to employ V to ensure

the stabilizing aspect of the controller and h to ensure safety.

We also seek to provide formal characterizations of the region

of attraction of the equilibrium for the resulting closed-loop

system. If V and h are compatible at every point in the safe set,

one option is to find the control through pointwise optimization

with (2) and (3) as constraints. However, [8] gives a counterex-

ample that shows that this pointwise minimization can result in

a non-Lipschitz controller. To remedy this, and also to extend

the design to scenarios where V and h might not be compat-

ible at some points in the safe set, a popular approach [4]

is to relax one of the inequalities (2), (3) (in safety-critical

applications, the CLF constraint (2)), and formulate a QP that

penalizes the relaxation parameter:

u(x) = arg min
(u,δ)∈Rm+1

1

2
‖u‖2 + pδ2,

s.t. (3), Lf V(x) + LgV(x)u ≤ −W(x) + δ. (4)

Nevertheless, even in the case where the CLF and the CBF

are compatible at all points in the safe set, the resulting

controller might not be stabilizing even for arbitrarily large

values of p [9]. Moreover, as pointed out in [10], [11], this

design might introduce undesired equilibria in the closed-loop

system, which can even be asymptotically stable. To the best

of the authors’ knowledge, only local stability guarantees exist

[11, Th. 3], [9, Th. 1], and no estimates of the region of

attraction are available in the literature.

An alternative design, e.g., [12], assumes a nominal (possi-

bly unsafe) stabilizing controller unom is available, and seeks

to modify it as little as possible while guaranteeing safety.

This can be done by solving the following QP:

u(x) = arg min
u∈Rm

1

2
‖u − unom(x)‖2,

s.t. (3). (5)

In general, the resulting modified controller might not retain

the stability properties of the original nominal controller but,

under certain conditions [13], one can provide an estimate

of the region of attraction of the equilibrium. Interestingly,

nominal controllers other than the given one might result in

larger regions of attraction, so in this sense the design directly

with the CLF offers greater flexibility.

We are interested in building an alternative to the

designs (4), (5) to solve the aforementioned issues. In par-

ticular, we tackle the following problem:

Problem 1: Determine a Lipschitz control law u and a

region of attraction Ŵ ⊆ R
n, Ŵ ∩ C 
= 0 such that for all

x(0) ∈ Ŵ ∩ C, x(t) ∈ C for all t ≥ 0 and the system (1) in

closed-loop with u is asymptotically stable with respect to the

origin.

IV. SAFETY AND STABILITY VIA QP WITH PENALTY

In this section we design a candidate control law to solve

Problem 1 by leveraging the CLF V and the CBF h. We

first present our exposition in a general context, then partic-

ularize to our setting. Consider general Lipschitz functions

a, c : Rn → R and b, d : Rn → R
m. Consider the following

two affine inequalities in u ∈ R
m,

a(x) + b(x)u ≤ 0, c(x) + d(x)u ≤ 0.

Given a neighborhood C̄ of C, we assume that for every x ∈ C̄,

there exist u1, u2 ∈ R
m such that a(x) + b(x)u1 ≤ 0 and

c(x) + d(x)u2 ≤ 0. To select u, we regard at the first inequal-

ity as a soft constraint and the second as a hard constraint.

Inspired by the theory of penalty methods for constrained

optimization [15, Ch. 13], we formulate a QP where we

include the soft constraint in the objective function with a

penalty parameter (ǫ > 0) and enforce the hard constraint.

The resulting solution of the QP is parametrized by x ∈ R
n

and ǫ:

uǫ(x) := arg min
u∈Rm

1

2
‖u‖2 +

1

ǫ
(a(x) + b(x)u),

s.t. c(x) + d(x)u ≤ 0. (6)

Since this optimization problem is a QP, it is convex. The

following result gives a closed-form expression for uǫ and

establishes that it is Lipschitz.

Proposition 1 (Closed-Form Expression for Lipschitz

Controller): Let a, c : R
n → R and b, d : R

n → R
m

be Lipschitz, C̄ a neighborhood of C and assume that

for every x ∈ C̄, there exist u1, u2 ∈ R
m such that

a(x) + b(x)u1 ≤ 0 and c(x) + d(x)u2 ≤ 0. For each

x ∈ C, let H(x) := {u ∈ R
m : c(x) + d(x)u = 0} and

e(x) := c(x) − 1
ǫ
d(x)b(x). Then,

uǫ(x) =

{

− 1
ǫ
b(x) if e(x) ≤ 0,

PH(x)(−
1
ǫ
b(x)) if e(x) > 0,

(7)

and uǫ is Lipschitz on C̄\{0}. Moreover, if d(0) 
= 0, uǫ is

Lipschitz at 0.

Proof: The expression (7) follows by calculating the KKT

points of (6). Note that (7) is well defined because if d(x) = 0,

necessarily e(x) = c(x) ≤ 0. Lipschitzness of uǫ(x) follows

from [16, Sec. 3.10, Th. 2], which as a special case includes

the minimization of a quadratic cost function subject to affine

inequality constraints.

We next particularize the general design (6) to our setup.

We consider two cases:

Safety QP With Stability Penalty: The selection a(x) =

Lf V(x)+W(x), b(x) = LgV(x), c(x) = −Lf h(x)−α(h(x)), and

d(x) = −Lgh(x) makes the CLF inequality (2) a soft constraint

and the CBF inequality (3) a hard one. We denote by usafe
ǫ the

controller resulting from (6). If Lgh(0) 
= 0, Proposition 1

guarantees that usafe
ǫ is Lipschitz on C. Moreover, since it

satisfies the CBF inequality (3) for all x ∈ C, the resulting

closed-loop system is safe for all ǫ > 0;

Stability QP With Safety Penalty: Alternatively, the selection

a(x) = −Lf h(x) − α(h(x)), b(x) = −Lgh(x), c(x) = Lf V(x) +

W(x), and d(x) = LgV(x), makes the CBF inequality (3) a

soft constraint and the CLF inequality (2) a hard one. We

denote by ustable
ǫ the resulting controller from (6). In this case,

d(0) = 0 and hence Proposition 1 only guarantees that ustable
ǫ

is Lipschitz in C̄\{0}. Moreover, since (2) is satisfied for all

x ∈ C̄\{0}, the origin is asymptotically stable for the resulting

closed-loop system.
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From this point onwards, we formulate the results for the

controller usafe
ǫ . With minor modifications, similar results can

be stated for ustable
ǫ . Note also that Proposition 1 provides

a closed-form expression for the controllers. This allows the

closed-loop system to be implemented without having to con-

tinuously solve the optimization (6), which is something one

faces with (4), e.g., [4]. The expression (7) indicates that

smaller ǫ lead to controllers with larger norms. Even though

here the input is unconstrained, this should be taken into

account in applications with limited actuation power.

Remark 1 (Nominal Controller): Our framework can be

adapted to the scenario described in (5), where instead of a

CLF, one has access to a nominal stabilizing controller unom

and a certificate of stability in the form of a Lyapunov func-

tion V satisfying Lf V(x) + LgV(x)unom(x) + W(x) ≤ 0 for

x ∈ D, with D some open set. To design a control u as

close as possible to unom that is safe and stabilizing, one

can set v = u − unom. Then, it is easy to check that V is

a CLF for ẋ = f̄ (x) + g(x)v, where f̄ (x) = f (x) + g(x)unom(x).

In this case, one could use the safety QP with stability

penalty setting a(x) = Lf̄ V(x) + W(x), b(x) = LgV(x),

c(x) = −Lf̄ h(x) − α(h(x)), and d(x) = −Lgh(x).

V. ANALYSIS OF SAFETY QP WITH STABILITY PENALTY

Here, we analyze the closed-loop properties of (1) under

usafe
ǫ . We first show how to choose ǫ to avoid undesired equi-

libria of the closed-loop system and then go on to solve

Problem 1. Throughout the section,

e(x) = −Lf h(x) +
1

ǫ
Lgh(x)TLgV(x) − α(h(x)).

A. Ruling out Undesired Equilibrium Points

Here we show that the closed-loop implementation of the

safety QP with stability penalty controller might introduce new

equilibria other than the origin. The next result characterizes

such equilibria and shows that, under some conditions, they

can be confined to an arbitrarily small neighborhood of the

origin for small enough ǫ.

Proposition 2 (Characterization of Equilibria): For ǫ > 0,

the set of equilibrium points of the closed-loop system ẋ =

f (x) + g(x)usafe
ǫ (x) in C is Q = Qǫ

1 ∪ Qǫ
2, with

Qǫ
1 := {x ∈ C : e(x) ≤ 0, f (x) =

1

ǫ
g(x)LgV(x)},

Qǫ
2 := {x ∈ ∂C : e(x) > 0, f (x) =

Lf h(x)
∥

∥Lgh(x)
∥

∥

2
g(x)Lgh(x)

+
g(x)

ǫ
(LgV(x) −

Lgh(x)TLgV(x)
∥

∥Lgh(x)
∥

∥

2
Lgh(x))},

and 0 ∈ Qǫ
1. Let V be a neighborhood of the origin, V̄ a

neighborhood of Pg := {x ∈ C\{0} : LgV(x) = 0} and let

N1, N2, N
V,V̄
3 and N4 be defined by

N1 := sup
x∈C

‖f (x)‖,

N2 := sup
x∈∂C

e(x)>0

∥

∥

∥

∥

∥

f (x) −
Lf h(x)

∥

∥Lgh(x)
∥

∥

2
g(x)Lgh(x)

∥

∥

∥

∥

∥

,

N
V,V̄
3

:= inf
x∈C\(V∪V̄)

∥

∥g(x)LgV(x)
∥

∥.

N4 := inf
x∈∂C

e(x)>0

∥

∥

∥

∥

∥

g(x)(LgV(x) −
Lgh(x)TLgV(x)

∥

∥Lgh(x)
∥

∥

2
Lgh(x))

∥

∥

∥

∥

∥

.

then,

• if N1 is finite, then Qǫ
1 ⊆ V for all 0 < ǫ <

N
V,V̄
3

N1
,

• if N2 is finite and N4 is positive, then Qǫ
2 = ∅ for 0 <

ǫ <
N4
N2

.

Proof: Since usafe
ǫ (x) takes a different form depending on

the sign of e(x), we distinguish two cases:

Case 1 (e(x) ≤ 0): In this case, the equilibrium points of

the closed-loop system satisfy f (x) = 1
ǫ
g(x)LgV(x). Note that

if g(x)LgV(x) = 0, by multiplying on the left by ∇V(x)T we

obtain LgV(x) = 0. Since V is a CLF, Lf V(x) < 0 if x 
= 0. This

implies that f (x) 
= 0 and hence x is not an equilibrium point.

Hence, no point other than the origin satisfies LgV(x) = 0 and

f (x) = 1
ǫ
g(x)LgV(x), and we can choose a neighborhood V̄ of

Pg with Qǫ
1 ∩ V̄ = ∅. Now, by taking any neighborhood V of

the origin, the choice ǫ <
N
V,V̄
3

N1
rules out any equilibrium of

this kind in C\V . Note that, since f (0) = 0 and ∇V(0) = 0,

we have e(0) = −α(h(0)) ≤ 0, and hence 0 ∈ Qǫ
1.

Case 2 (e(x) > 0): In this case the equilibrium points of the

closed-loop system satisfy

f (x) −
Lf h(x) + α(h(x))

∥

∥Lgh(x)
∥

∥

2
g(x)Lgh(x)

=
g(x)

ǫ
(LgV(x) −

Lgh(x)TLgV(x)
∥

∥Lgh(x)
∥

∥

2
Lgh(x)). (8)

Let us show that these equilibria can only occur in

∂C. Multiplying both sides of (8) by ∇h(x)T , we obtain

−α(h(x)) = 0. Since α is a class K∞ function, this can only

occur when h(x) = 0, i.e., x ∈ ∂C. Now, by taking ǫ <
N4
N2

, all

equilibrium points of these kind are ruled out.

Note that the assumption that N1 and N2 are finite in

Proposition 2 is satisfied if C is bounded. The neighborhood

V of the origin in the statement can be taken arbitrarily small

and, consequently, if N4 is positive, the controller usafe
ǫ with

sufficiently small ǫ confines the equilibria of the closed-loop

system arbitrarily close to the origin. However, as V gets arbi-

trarily small, NV
3 (and hence ǫ) could also get arbitrarily small.

In Corollary 1 later, we give sufficient conditions to ensure that

this does not happen.

Remark 2 (Existence of Boundary Equilibria): The assump-

tion that N4 is positive is not satisfied if g(x)LgV(x) and

g(x)Lgh(x) are linearly dependent. In this scenario, using

condition (8), we infer that the equilibrium points in ∂C

that cannot be removed by tuning ǫ are those where f (x),

g(x)LgV(x) and g(x)Lgh(x) are collinear and e(x) > 0 for

all ǫ.

B. Incompatibility and Region of Attraction

Here we show that usafe
ǫ solves Problem 1. The flexibility

provided by the design parameter ǫ is instrumental in doing so.

We first introduce a characterization of points where the CLF
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and the CBF are incompatible, the proof of which follows as

a special case of [17, Th. 1].

Lemma 1 (Characterization of Incompatible Points): Let

D ⊆ R
n be open, C ⊂ D closed, V a CLF on D and h a

CBF of C. V and h are incompatible at x ∈ C if and only if

LgV(x) and Lgh(x) are linearly dependent, LgV(x)TLgh(x) > 0

and Lf V(x) + W(x) >
LgV(x)T Lgh(x)

‖Lgh(x)‖2 (Lf h(x) + α(h(x))).

The next result shows that, by taking ǫ sufficiently small for

the closed-loop system, any level set of V that does not contain

incompatible points is a region of attraction of a neighborhood

of the origin.

Theorem 1 (Parameter Tuning for Guaranteed Region of

Attraction): Let D ⊆ R
n be open, C ⊂ D closed, V a CLF on

D and h a CBF of C. Let ν > 0 be such that the sublevel set

Ŵν = {x ∈ R
n : V(x) ≤ ν} does not contain any incompatible

points. For x such that e(x) > 0 (which implies Lgh(x) 
= 0

since h is a CBF), define

B(x) := Lf V(x)+W(x)−
Lf h(x) + α(h(x))

∥

∥Lgh(x)
∥

∥

2
LgV(x)TLgh(x),

C(x) :=
(LgV(x)TLgh(x))2

∥

∥Lgh(x)
∥

∥

2
−

∥

∥LgV(x)
∥

∥

2
.

Let V be a neighborhood of the origin, V̄ a neighbor-

hood of Pg := {x ∈ C\{0} : LgV(x) = 0} such that

Lf V(x) + W(x) ≤ 0 for all x ∈ V̄ and W a neighborhood

of Pν = {x ∈ Ŵν : e(x) > 0}, C(x) = 0 such that e(x) > 0 and

B(x) ≤ 0 for all x ∈ W\{0}. Define constants Mν
1 , Mν

2 , M
ν,V,V̄
3

and M
ν,V,W
4 by

Mν
1 := sup

x∈Ŵν

|Lf V(x) + W(x)|,

Mν
2 := sup

x∈Ŵν
e(x)>0

|
Lf h(x) + α(h(x))

∥

∥Lgh(x)
∥

∥

2
Lgh(x)TLgV(x)|,

M
ν,V,V̄
3

:= inf
x∈Ŵν\(V∪V̄)

∥

∥LgV(x)
∥

∥

2
,

M
ν,V,W
4

:= inf
x∈Ŵν\(W∪V)

e(x)>0

|C(x)|.

Then, for ǫ < ǭ := min{
M

ν,V,W
4

Mν
1+Mν

2
,

M
ν,V,V̄
3

Mν
1

}, V is asymptotically

stable and Ŵν ∩ C is forward invariant and a subset of the

region of attraction of V .

Proof: Let zǫ(x) := Lf V(x) + LgV(x)usafe
ǫ (x) + W(x). It

follows from (7) that

zǫ(x) =

{

Lf V(x) + W(x) − 1
ǫ

∥

∥LgV(x)
∥

∥

2
if e(x) ≤ 0,

B(x) + 1
ǫ
C(x) if e(x) > 0.

We show that zǫ(x) ≤ 0 for all x ∈ C\V if ǫ < ǭ, from

which the result follows. First, note that V̄ as required in the

statement exists because V is a CLF and hence, any point

x 
= 0 that satisfies LgV(x) = 0 is such that Lf V(x)+W(x) < 0

(without loss of generality, since if Lf V(x) + W(x) = 0 we

can take W̃(x) = 1
2
W(x)). Hence, by continuity there exists a

neighborhood V̄ of Pg where Lf V(x)+ W(x)− 1
ǫ

∥

∥LgV(x)
∥

∥

2
≤

Lf V(x) + W(x) < 0 for all x ∈ V̄ , for any ǫ > 0. Hence

by taking ǫ < ǭ, we ensure that zǫ(x) ≤ 0 for all x ∈ V̄

independently of the sign of e(x). Note also that W as required

in the statement exists because Ŵν does not contain any point

where V and h are incompatible and therefore by Lemma 1,

all points in Ŵν satisfying C(x) = 0 necessarily also satisfy

B(x) < 0 (without loss of generality, using a similar argument

as above). Therefore, by continuity of B(x) for any ǫ > 0

we can take a neighborhood W around Pν so that B(x) +
1
ǫ
C(x) ≤ B(x) ≤ 0 for all x ∈ W (since by Cauchy-Schwartz’s

inequality, C(x) ≤ 0). Hence, by taking ǫ < ǭ, independently

of whether e(x) ≤ 0 or e(x) > 0 we ensure that zǫ(x) ≤ 0

for all x ∈ W ∪ V̄ . Now we argue that if ǫ < ǭ, zǫ(x) ≤ 0

for all x ∈ Ŵν\(W ∪ V ∪ V̄). Note that Ŵν\(W ∪ V ∪ V̄)

does not contain any points where LgV(x) and LgW(x) are

linearly dependent, since that would imply C(x) = 0 and hence

x ∈ W . Thus, by Cauchy-Schwartz’s inequality, C(x) < 0 for

all x ∈ Ŵν\(W ∪ V ∪ V̄). Hence, M
ν,V,W
4 > 0. Note also

that M
ν,V,V̄
3 > 0. Therefore, regardless of whether e(x) ≤ 0

or e(x) > 0, by taking ǫ < ǭ we ensure that zǫ(x) ≤ 0 for

all x ∈ Ŵν\(W ∪ V ∪ V̄), as claimed. Moreover, since by

construction usafe
ǫ satisfies (3) and is Lipschitz, by [4, Th. 2],

trajectories stay inside C for all t ≥ 0.

Note that in the statement of Theorem 1, one can pick V

arbitrarily small, which might require an arbitrarily small ǫ.

The next result states that under some additional reasonable

assumptions, this does not happen and hence there exists a

finite ǫ for which trajectories converge to the origin.

Corollary 1 (Convergence to the Origin): Under the same

assumptions and notation of Theorem 1, assume additionally

that f , g ∈ C1(Rn), V ∈ C2(Rn), 0 ∈ int(C) and ker(g(0)T) ⊆

Vs(
∂f
∂x

(0)). Then, for ǫ < ǫ̂ := min{
λ̄min(g(0)g(0)T∇2V(0))

|λmax(
∂f
∂x

(0))|
, ǭ}, the

origin is asymptotically stable and Ŵν ∩C is forward invariant

and a subset of the region of attraction of the origin.

Proof: Since 0 ∈ int(C), e(0) < 0 and the Jacobian

of the closed-loop system evaluated at 0 is J =
∂f
∂x

(0) −
1
ǫ
g(0)g(0)T∇2V(0). We show that, with ǫ < ǫ̂, one

has vTJv < 0 for v ∈ R
n\{0}. First, consider v ∈

ker(g(0)T). By assumption, v ∈ Vs(
∂f
∂x

(0)), and hence

vTJv = vT ∂f
∂x

(0)v < 0. Now, assume v /∈ ker(g(0)T).

Since ∇2V(0) is positive definite and g(0)g(0)T is positive

semidefinite, ker(g(0)g(0)T∇2V(0)) = ker(g(0)g(0)T) and

g(0)g(0)T∇2V(0) has non-negative eigenvalues [18, 7.2.P21].

Hence, vTJv ≤ (λmax(
∂f
∂x

(0))− 1
ǫ
λ̄min(g(0)g(0)T∇2V(0)))‖v‖2.

This implies that J +JT is negative definite, and since the real

parts of its eigenvalues are twice those of J, we obtain that J

is Hurwitz. Therefore, we can take V in Theorem 1 such that

the closed-loop trajectories with ǫ <
λ̄min(g(0)g(0)T∇2V(0))

|λmax(
∂f
∂x

(0))|
start-

ing at V converge to 0. Finally, reasoning as in Theorem 1, V

is decreasing on Ŵν\V , and the result follows.

Under the assumptions of Corollary 5.4, by ensuring that

the origin is asymptotically stable in Ŵν , we rule out the

existence of equilibrium points in Ŵν other than the origin.

If the conditions of Corollary 1 are not satisfied or ǫ ≥ ǫ̂,

other undesired behaviors like limit cycles or convergence to

undesired equilibria like the ones found in Proposition 2 cannot

be ruled out. Theorem 1 and Corollary 1 solve Problem 1. Under

the stated assumptions, by taking usafe
ǫ with ǫ < ǫ̂ as a safe

stabilizing controller, an inner approximation of the region of
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Fig. 1. Safe stabilization of a planar system. The green ball is the set
of unsafe states and the small dots display ten initial conditions for the
system trajectories under the CLF-CBF QP, the M-CLF-CBF QP, and
the safety QP with stability penalty controllers. The orange dotted curve
marks the boundary of the estimate Ŵ2 of the region of attraction. The
CLF-CBF QP controller (with p = 1) preserves safety but does not reach
the origin because of undesired equilibrium points. The safety QP with
stability penalty (with ǫ = 0.01) and the M-CLF-CBF QP (with p = 1)
preserve safety and have trajectories converge to the origin, except for
the one starting at (0, 9).

attraction of the origin is the largest level set of V that does

not contain any incompatible points inside it. In particular, if

there exists a sublevel set of V that contains C, usafe
ǫ with ǫ < ǫ̂

safely stabilizes the origin and the whole safe set C is in its

region of attraction.

VI. SIMULATIONS

Here, we compare the stability QP with safety penalty

controller with the CLF-CBF QP (4) and its modification,

M-CLF-CBF QP, introduced in [11, Th. 3] to avoid undesired

equilibria. We focus on the following planar system
(

ẋ1

ẋ2

)

=

(

x1

x2

)

+

(

1 0

0 1

)

u. (9)

For this system, V(x1, x2) = 1
2
x2

1 + 1
2

x2
2 is a CLF. The safe set

C is the complement of the ball {x ∈ R
2 : ‖x − (0, 4)‖ ≤ 2},

and we use the CBF h(x1, x2) = x2
1 + (x2 − 4)2 − 4, with

α(s) = s. According to [11], the CLF-CBF QP (4) creates

undesired equilibria in int(C) for all values of p. Instead, both

M-CLF-CBF QP and the stability QP with safety penalty con-

troller usafe
ǫ , with ǫ 
= 1, do not introduce undesired equilibria

in int(C). The latter can be checked from the definition of Qǫ
1

given in Proposition 2. In this example, the incompatible points

are given by {(x1, x2) ∈ R
2 : x1 = 0, x2 > 4}. Therefore, the

approximation of the region of attraction given by Theorem 1

is Ŵ2 = {x ∈ R
2 : ‖x‖2 < 4}. Figure 1 shows that the stability

QP with safety penalty controller and M-CLF-CBF QP behave

similarly, whereas CLF-CBF QP (4) fails to stabilize the ori-

gin. The plot also illustrates that trajectories starting at (0, 9)

converge to the boundary equilibrium point at (0, 6) for all

three approaches (this corresponds to a point where f , gLgV ,

and gLgh are collinear, cf. Remark 2). This is not surprising

since, for scenarios where the unsafe set is bounded, global

convergence with a smooth vector field is impossible due to

topological obstructions [6]. An advantage of the approach

proposed here is the explicit inner approximation of the region

of attraction which, as Figure 1 shows, is conservative.

VII. CONCLUSION

We have addressed the problem of safe stabilization of

nonlinear affine control systems by proposing an optimization-

based feedback design framework inspired by penalty methods

for constrained optimization. Our design enforces strictly

either stability or safety via a hard constraint while promot-

ing the satisfaction of the other property via a soft constraint.

We have characterized the equilibria of the closed-loop system

under the proposed controllers. We have shown how to tune

the penalty parameter to eliminate spurious equilibria and to

increase the region of attraction to all Lyapunov level sets

that do not include points where the CLF and the CBF are

not compatible. Future work will develop tighter estimates

of the region of attraction, consider extra design parame-

ters and explore the extension of the proposed framework to

generalized notions of CBFs.
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