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Optimization-Based Safe Stabilizing Feedback
With Guaranteed Region of Attraction

Pol Mestres™, Graduate Student Member, IEEE, and Jorge Cortés™, Fellow, IEEE

Abstract—This letter proposes an optimization with
penalty-based feedback design framework for safe stabi-
lization of control affine systems. Our starting point is
the availability of a control Lyapunov function (CLF) and
a control barrier function (CBF) defining affine-in-the-input
inequalities that certify, respectively, the stability and safety
objectives for the dynamics. Leveraging ideas from penalty
methods for constrained optimization, the proposed design
framework imposes one of the inequalities as a hard con-
straint and the other one as a soft constraint. We study
the properties of the closed-loop system under the result-
ing feedback controller and identify conditions on the
penalty parameter to eliminate undesired equilibria that
might arise. Going beyond the local stability guarantees
available in the literature, we are able to provide an inner
approximation of the region of attraction of the equilib-
rium, and identify conditions under which the whole safe
set belongs to it. Simulations illustrate our results.

Index Terms—Safety-critical control, control barrier func-
tions, penalty methods.

. INTRODUCTION

AFETY-CRITICAL control has garnered a lot of atten-
S tion in the controls and robotics communities motivated
by applications to many different classes of engineered and
natural systems. Safety refers to the ability to ensure by design
that the evolution of the dynamics stays within a desired set.
Control barrier functions (CBFs) are a useful tool to deal with
safety specifications that do not require addressing the difficult
task of computing the system’s reachable set. In many scenar-
ios, safety must be achieved together with some stabilization
goal, and this raises interesting challenges for control design in
order to ensure that both are achieved via feedback controllers
that are easily implemented and have appropriate smoothness
guarantees. These challenges motivate us to develop here an
optimization with penalty-based feedback design framework
for safe stabilization of control affine systems.

Literature Review: We rely on ideas from two different bod-
ies of work. The first one is CLFs [1], which have been
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successfully used in the control design for stabilization of
nonlinear systems. Of particular interest to this letter is the
pointwise-minimum norm (PMN) formula [2], that uses a CLF
to compute a stabilizing controller. The second relevant body
of work pertains to CBFs [3], [4], whose aim is to render
a certain predefined safe set forward invariant. However, in
applications where both safety and stability must be certi-
fied, CBFs fall short of providing provable stability guarantees.
To tackle this issue, [5] combines a CLF and a CBF into a
so-called CLBF, and then uses Sontag’s universal formula to
derive a smooth controller. However, in general it might be
difficult to satisfy the conditions required for the existence of
such a CLBF [6]. Another approach is the universal formula
for smooth safe stabilization from [7]. However, this formula is
only applicable in a set where both the CLF and the CBF are
compatible (i.e., there exists a control satisfying their asso-
ciated inequalities at every point of the set). An alternative
approach [4] to tackle joint safety and stability specifications is
to combine the CLF and the CBF in a quadratic program (QP).
To guarantee the feasibility of the program when the func-
tions are not compatible and to avoid the resulting controller
to be non-Lipschitz when they are [8], the stability constraint
is often relaxed. This results in a lack of guarantee of stability,
even for arbitrarily large penalties in the relaxation parame-
ter [9]. Moreover, as shown in [10], [11], this QP formulation
can introduce undesired equilibria beyond the original equi-
librium, which can even be asymptotically stable. This line
of work [9], [11] then identifies conditions under which local
stability guarantees of the equilibrium can be given. Although
the region of attraction is not explicitly characterized, a strat-
egy similar to the one pursed here could be employed. An
alternative design, e.g., [12], assumes a priori knowledge of
a CBF and a nominal (possibly unsafe) stabilizing controller.
Then, a safety filter is applied to this nominal controller. As a
result, the filtered controller generally lacks stability guaran-
tees. The recent paper [13] gives an estimate of the region of
attraction of the closed-loop system obtained by using such a
filtered controller.

Statement of Contributions: We consider the problem of
safe stabilization of control affine systems. Given a control
Lyapunov function and a control barrier function whose O-
superlevel set defines an arbitrary, possibly non-convex safe
set, we aim to synthesize a safe, stabilizing feedback and
identify the region of attraction of the origin for the result-
ing closed-loop system. In particular, we study under what
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conditions such region of attraction contains the safe set.
The contributions of this letter are the following. Given the
safety and stability objectives, our first contribution designs
an optimization with penalty-based controller that has one
of the objectives as a hard constraint and the other as a
soft constraint. The controller depends on a penalty param-
eter that can be tuned to enhance the soft objective at the
cost of reduced optimality, while guaranteeing the satisfac-
tion of the hard constraint. An advantage of the proposed
design is that the controller is automatically Lipschitz and
has a closed-form expression. Our second contribution shows
that the controller can introduce undesired equilibrium points
different from the origin. By choosing the penalty parame-
ter appropriately, and under some technical conditions, these
undesired equilibria can be eliminated. Finally, our third con-
tribution shows that the proposed controller can be tuned to
provide an inner approximation of the region of attraction of
the origin for the closed-loop system. As a consequence of
this analysis, we provide conditions under which all of the
safe set belongs to the region of attraction of the origin for the
closed-loop system. Simulations on a planar system compare
our design with other approaches in the literature.

II. PRELIMINARIES ON CLFs AND CBFs

This section presents' preliminaries on control Lyapunov
and barrier functions. Consider a control-affine system

X =f(x) +gWu, (D

where f : R” — R"” and g : R" — R™™ are locally
Lipschitz functions, with x € R" the state and u € R the
input. Throughout this letter, and without loss of generality,
we assume f(0) = 0, so that the origin x = 0 is the desired
equilibrium point of the (unforced) system.

We start by recalling the notion of Control Lyapunov
function (CLF) [1], [2].

Definition 1 (Control Lyapunov Function): Given an open
set D C R", with 0 € D, a continuously differentiable function
V :R" - Ris a CLF on D for system (1) if

e Vis proper in D, ie., {x € D: V(x) < ¢} is a compact

set for all ¢ > 0,
o V is positive definite,

IWe denote by Z-¢,R and R-( the set of positive integers, real, and
nonnegative real numbers, resp. We write int(S), dS for the interior and the
boundary of the set S, resp. Given x € R”, ||x| denotes its Euclidean norm.
Givenf: R" — R", g : R" — R"*™ and a smooth function W : R” — R, the
notation LW : R" — R (resp. LgW : R" — R™) denotes the Lie derivative
of W with respect to f (resp. g), that is LW = VWTf (resp. VWTg). We
denote by C L(R") and C2(R") the set of continuously differentiable and twice
continuously differentiable functions in R”, respectively. Given a € R" and
b € R, let H denote the hyperplane defined by H = {x € R" : (a,x) = b}.

We denote the projection of v € R" onto H by Py(v) = v — <a”’vi|;ha A
a

function B : R — R is of class KC if 8(0) = 0 and B is strictly increasing.
If moreover lim;—s o B(f) = 00, B is of class Kxo. A function V : R? — R
is positive definite if V(0) = 0 and V(x) > O for x # 0. Given a matrix
M € R"™" ker(M) = {x € R™ : Mx = 0,}. Given a square matrix A €
R™ with eigenvectors {v;}?"_; and corresponding eigenvalues {A;}"_,, the
stable subspace of A is de('jmed as Vs(A) = span({v; : R(Rj) < 0, j =
1,..., n}), where 9i(%;) denotes the real part of A;. We denote by Amin(A)
and Amax(A) the smallest non-zero and largest real parts of the eigenvalues
of A, respectively.

o there exists a continuous positive function W : R” — R
such that, for each x € D\{0}, there exists a control u €
R™ satisfying

LV () + LyV@u < —W(). @

CLFs provide a way to guarantee asymptotic stability of the
origin. Namely, if a Lipschitz controller u satisfies (2) for all
x € D\{0}, then the origin of the closed-loop system is asymp-
totically stable [1]. If W(x) in (2) is replaced by y(V(x)),
where y is a class /C function, then such Lipschitz controller
makes the origin exponentially stable. Such controllers can be
synthesized by means of the pointwise minimum-norm (PMN)
control optimization [2, Ch. 4.2],

1
~lull?
ueR 2
s.t. (2) holds.

u(x) = arg min
< m

Note that, at each x € R”, this is a quadratic program in u.

Next we recall the notion of Control Barrier Function
(CBF) [4]. Let C € R”" be a closed set describing the safe
states for the system (1).

Definition 2 (Control Barrier Function): Let h : R" — R
be a continuously differentiable function such that C = {x €
R” : h(x) > 0}. The function % is a CBF of C for system (1)
if there exists a class K function « such that, for all x € C,
there exists a control u € R satisfying

Lh(x) + Leh(x)u + a(h(x)) > 0. (3)

CBFs can be used to guarantee safety, i.e., forward invari-
ance of C under the dynamics (1). Namely, if a Lipschitz
continuous controller satisfies (3) for all x € C, then C is for-
ward invariant [4, Th. 2]. Similar to the PMN controller above,
a common design methodology [4] is via the optimization

1
u(x) = arg min S lul’?
s.t. (3) holds,

which results in a Lipschitz controller [14, Th. 2].

When dealing with both the stability and safety of system
trajectories under the dynamics (1), it is important to note that
an input u# might satisfy (2) but not (3), or vice versa. The
following notion, adapted from [7, Definition 2.3], captures
when the CLF and the CBF are compatible.

Definition 3 (Compatibility of CLF-CBF Pair): Let D C R”
be open, C C D closed, V a CLF on D and & a CBF of C.
Then, V and h are compatible at x € C if there exists u €
R™ satisfying (2) and (3) simultaneously. We refer to both
functions as compatible if V and h are compatible at every
point of C.

[1l. PROBLEM STATEMENT

We are interested in designing controllers that are both sta-
bilizing and safe. We also require them to be Lipschitz in
order to guarantee existence and uniqueness of solutions of the
closed-loop system. Formally, consider a control-affine system
of the form (1). Let V : R” — R be a CLF on the open set
D CR"and h: R" — R be a CBF of the closed set C C D.
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We assume the origin belongs to C. Given the availability of
these functions, it seems reasonable to employ V to ensure
the stabilizing aspect of the controller and % to ensure safety.
We also seek to provide formal characterizations of the region
of attraction of the equilibrium for the resulting closed-loop
system. If V and & are compatible at every point in the safe set,
one option is to find the control through pointwise optimization
with (2) and (3) as constraints. However, [8] gives a counterex-
ample that shows that this pointwise minimization can result in
a non-Lipschitz controller. To remedy this, and also to extend
the design to scenarios where V and & might not be compat-
ible at some points in the safe set, a popular approach [4]
is to relax one of the inequalities (2), (3) (in safety-critical
applications, the CLF constraint (2)), and formulate a QP that
penalizes the relaxation parameter:

min > ull® + po?,
u,8)eRm+1 2
st (3), LV + LV@u < —W(x) +68. (4)

u(x) = arg
(

Nevertheless, even in the case where the CLF and the CBF
are compatible at all points in the safe set, the resulting
controller might not be stabilizing even for arbitrarily large
values of p [9]. Moreover, as pointed out in [10], [11], this
design might introduce undesired equilibria in the closed-loop
system, which can even be asymptotically stable. To the best
of the authors’ knowledge, only local stability guarantees exist
[11, Th. 3], [9, Th. 1], and no estimates of the region of
attraction are available in the literature.

An alternative design, e.g., [12], assumes a nominal (possi-
bly unsafe) stabilizing controller unom is available, and seeks
to modify it as little as possible while guaranteeing safety.
This can be done by solving the following QP:

1
u() = arg min - — ttpom ()|,

s.t. (3). ®)

In general, the resulting modified controller might not retain
the stability properties of the original nominal controller but,
under certain conditions [13], one can provide an estimate
of the region of attraction of the equilibrium. Interestingly,
nominal controllers other than the given one might result in
larger regions of attraction, so in this sense the design directly
with the CLF offers greater flexibility.

We are interested in building an alternative to the
designs (4), (5) to solve the aforementioned issues. In par-
ticular, we tackle the following problem:

Problem 1: Determine a Lipschitz control law u and a
region of attraction ' € R”, I' N C # 0 such that for all
x(0) e ' NC, x(¢t) € C for all + > 0 and the system (1) in
closed-loop with u is asymptotically stable with respect to the
origin.

IV. SAFETY AND STABILITY VIA QP WITH PENALTY

In this section we design a candidate control law to solve
Problem 1 by leveraging the CLF V and the CBF h. We
first present our exposition in a general context, then partic-
ularize to our setting. Consider general Lipschitz functions

a,c:R" - R and b,d : R" — R™. Consider the following
two affine inequalities in u € R™,

ax) +bx)u <0, cx)+dxu <O0.

Given a neighborhood C of C, we assume that for every x € C,
there exist u;,up € R™ such that a(x) + b(x)u; < 0 and
c(x) + d(x)up < 0. To select u, we regard at the first inequal-
ity as a soft constraint and the second as a hard constraint.
Inspired by the theory of penalty methods for constrained
optimization [15, Ch. 13], we formulate a QP where we
include the soft constraint in the objective function with a
penalty parameter (¢ > 0) and enforce the hard constraint.
The resulting solution of the QP is parametrized by x € R"
and e:

U (x) = arg min lIIMII2 + l(Ci(x) + b(x)u),
uekm 2 €
st. c(x) +dx)u <0. (6)

Since this optimization problem is a QP, it is convex. The
following result gives a closed-form expression for u. and
establishes that it is Lipschitz.

Proposition 1 (Closed-Form Expression for Lipschitz
Controller): Let a,¢c : R — R and b,d : R" — R™
be Lipschitz, C a neighborhood of C and assume that
for every x € C_, there exist uj,up € R™ such that
ax) + b(x)u; < 0 and c(x) + dx)up < 0. For each

x € C,let Hx) = {u € R™ : ¢(x) + dx)u = 0} and
e(x) = c(x) — 2d(x)b(x). Then,
126 if e(x) <0,
te (x) = {PH(X)(—gb(x)) if e(x) > 0, @

and u, is Lipschitz on C\{0}. Moreover, if d(0) # 0, u. is
Lipschitz at 0.

Proof: The expression (7) follows by calculating the KKT
points of (6). Note that (7) is well defined because if d(x) = 0,
necessarily e(x) = c(x) < 0. Lipschitzness of u(x) follows
from [16, Sec. 3.10, Th. 2], which as a special case includes
the minimization of a quadratic cost function subject to affine
inequality constraints. |

We next particularize the general design (6) to our setup.
We consider two cases:

Safety QP With Stability Penalty: The selection a(x) =
LeV(x)+W(x), b(x) = LgV(x), c(x) = —Lgh(x) —a(h(x)), and
d(x) = —Lgh(x) makes the CLF inequality (2) a soft constraint
and the CBF inequality (3) a hard one. We denote by uiafe the
controller resulting from (6). If Lyh(0) # 0, Proposition 1
guarantees that #%3® is Lipschitz on C. Moreover, since it
satisfies the CBF inequality (3) for all x € C, the resulting
closed-loop system is safe for all € > 0;

Stability QP With Safety Penalty: Alternatively, the selection
a(x) = —Leh(x) — a(h(x)), b(x) = —Lgh(x), c(x) = LV (x) +
W(x), and d(x) = L,V (x), makes the CBF inequality (3) a
soft constraint and the CLF inequality (2) a hard one. We
denote by u?ab]e the resulting controller from (6). In this case,
d(0) = 0 and hence Proposition 1 only guarantees that S
is Lipschitz in C_\{O}. Moreover, since (2) is satisfied for all
x € C\{0}, the origin is asymptotically stable for the resulting
closed-loop system.
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From this point onwards, we formulate the results for the
controller uiafe. With minor modifications, similar results can
be stated for u3®', Note also that Proposition 1 provides
a closed-form expression for the controllers. This allows the
closed-loop system to be implemented without having to con-
tinuously solve the optimization (6), which is something one
faces with (4), e.g., [4]. The expression (7) indicates that
smaller ¢ lead to controllers with larger norms. Even though
here the input is unconstrained, this should be taken into
account in applications with limited actuation power.

Remark 1 (Nominal Controller): Our framework can be
adapted to the scenario described in (5), where instead of a
CLF, one has access to a nominal stabilizing controller upom
and a certificate of stability in the form of a Lyapunov func-
tion V satisfying LV (x) + LgV(X)unom(x) + W(x) < 0 for
x € D, with D some open set. To design a control u as
close as possible to unom that is safe and stabilizing, one
can set v = u — upom. Then, it is easy to check that V is
a CLF for x = f(x) + g(x)v, where f(x) = f(x) 4+ g(x)ttnom (x).
In this case, one could use the safety QP with stability
penalty setting a(x) = L];V(x) + W), b(x) = LgV(x),
c(x) = —th(x) —a(h(x), and d(x) = —Lgh(x).

V. ANALYSIS OF SAFETY QP WITH STABILITY PENALTY

Here, we analyze the closed-loop properties of (1) under
usde, We first show how to choose € to avoid undesired equi-
libria of the closed-loop system and then go on to solve
Problem 1. Throughout the section,

e(x) = —Leh(x) + %Lgh(x)TLgV(x) — a(h(x)).

A. Ruling out Undesired Equilibrium Points

Here we show that the closed-loop implementation of the
safety QP with stability penalty controller might introduce new
equilibria other than the origin. The next result characterizes
such equilibria and shows that, under some conditions, they
can be confined to an arbitrarily small neighborhood of the
origin for small enough e.

Proposition 2 (Characterization of Equilibria): For € > 0,
the set of equilibrium points of the closed-loop system x =
fx) + g(x)uiafe(x) inCis Q= Qf U Q5, with

1
Qi ={xeC:ex) =<0, f(x) = Z8WLV ()},

Leh
QS == {xedC:e(x) >0, f(x) = Lx)zg(x)Lgh(x)
| Leh |
T
+ @(LgV(x) _ M%h@))}’
€ |Lh () |

and 0 € Qf. Let V be a neighborhood of the origin, V a
neighborhood of Py = {x € C\{0} : LyV(x) = 0} and let
N1, Ny, N;}’V and N4 be defined by

Ny = sup[lf (D)l
xeC
Leh(x)
Ny = sup |f(x) — ————=g(W)Lh()|,
VO o)

N;}’V = inf Hg(x)LgV(x) ”
xeC\(YUYV)
, Loh(x)TLeV (x)
Ny = inf, g (LgV(x) — F———2""Leh(x) .
e)z)f)>0 ”Lgh(x) ”
then, }
. . . NV
e if Nj is finite, then Qi CVforall 0 <e < ]3\,1 R
o if N> is finite and Ny is positive, then Q; =@ for 0 <
e<

Proof: Since u$®(x) takes a different form depending on
the sign of e(x), we distinguish two cases:

Case 1 (e(x) < 0): In this case, the equilibrium points of
the closed-loop system satisfy f(x) = %g(x)LgV(x). Note that
if g(x)LgV(x) = 0, by multiplying on the left by vVx)T we
obtain L,V (x) = 0. Since V is a CLF, LV (x) < 0if x # 0. This
implies that f(x) # 0 and hence x is not an equilibrium point.
Hence, no point other than the origin satisfies L,V (x) = 0 and
fx) = %g(x)LgV(x), and we can choose a neighborhood Y of
Pg with Q7 N V = ¢. Now, by taking any neighborhood V of

A
the origin, the choice € < Nf\,l rules out any equilibrium of
this kind in C\V. Note that, since f(0) = 0 and VV(0) = 0,
we have e(0) = —a(h(0)) <0, and hence 0 € Qf.

Case 2 (e(x) > 0): In this case the equilibrium points of the

closed-loop system satisfy

Lh(x) + a(h(x))

(x) — (X)Lgh(x)
AN TSI
T
_ 89y - EO LT ) @)
‘ L]

Let us show that these equilibria can only occur in
dC. Multiplying both sides of (8) by Vh(x)?, we obtain
—a(h(x)) = 0. Since « is a class Ko function, this can only
occur when A(x) = 0, i.e., x € 3C. Now, by taking € < ]NL‘Z‘, all
equilibrium points of these kind are ruled out.

Note that the assumption that N; and N, are finite in
Proposition 2 is satisfied if C is bounded. The neighborhood
V of the origin in the statement can be taken arbitrarily small
and, consequently, if Ny is positive, the controller uiafe with
sufficiently small € confines the equilibria of the closed-loop
system arbitrarily close to the origin. However, as V' gets arbi-
trarily small, N;) (and hence €) could also get arbitrarily small.
In Corollary 1 later, we give sufficient conditions to ensure that
this does not happen.

Remark 2 (Existence of Boundary Equilibria): The assump-
tion that N4 is positive is not satisfied if g(x)L,V(x) and
g(x)Lgh(x) are linearly dependent. In this scenario, using
condition (8), we infer that the equilibrium points in 9C
that cannot be removed by tuning € are those where f(x),
g(x)LgV(x) and g(x)Lgh(x) are collinear and e(x) > 0 for
all e.

B. Incompatibility and Region of Attraction

Here we show that u3* solves Problem 1. The flexibility

provided by the design parameter € is instrumental in doing so.
We first introduce a characterization of points where the CLF
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and the CBF are incompatible, the proof of which follows as
a special case of [17, Th. 1].

Lemma 1 (Characterization of Incompatible Points): Let
D C R" be open, C C D closed, V a CLF on D and h a
CBF of C. V and h are incompatible at x € C if and only if
LV (x) and Lgh(x) are linearly dependent, LgV(x)TLgh(x) >0

T
and LV (x) + W(x) > W(th(x) + a(h(x))).
8

The next result shows that, by taking e sufficiently small for
the closed-loop system, any level set of V that does not contain
incompatible points is a region of attraction of a neighborhood
of the origin.

Theorem 1 (Parameter Tuning for Guaranteed Region of
Attraction): Let D € R" be open, C C D closed, V a CLF on
D and h a CBF of C. Let v > 0 be such that the sublevel set

= {x € R" : V(x) < v} does not contain any incompatible
points. For x such that e(x) > 0 (which implies Lgh(x) # 0
since A is a CBF), define

Lh(x) + a(h(x))

B(x) = LiV(x)+W(x)—
| Leh)]®

LoV(x) Leh(x),

L, V()T L,h(x))?
Clx) = EeV® Ly ix)) - ”LgV(x)Hz'
|Zeh ) |

Let V be a neighborhood of the origin, V a neighbor-
hood of P, = {x € C\{0} L,V(x) = 0} such that
LyV(x) + W(x) < 0 for all x € V and W a neighborhood
of P, ={xel,:e(x) >0}, C(x) =0 such that e(x) > 0 and
B(x) < 0 for all x € W\{0}. Define constants M, M3, MV 8%
and MX’V’W by

MY = sup |LsV(x) + W),
xelly
Leh h
M} La(z(x))Lgh(x)TLgV(x)l,
R TR
e(x)>0 g
MYV = inf LV
xel,\(VUY)
MY = i CW).
xel,\(WUY)
e(x)>0

v y.w MV VA%
Then, for € < € = min{ 4~ M M., }, V is asymptotically
stable and I', N C is forward invariant and a subset of the
region of attraction of V.
Proof: Let z¢(x) = LiV(x) + LV(@)us(x) + W(x). It
follows from (7) that

if e(x) <0,
if e(x) > 0.

LV + W) — 1L,V

B(x) + o)

We show that z.(x) < O for all x € C\V if € < €, from
which the result follows. First, note that ) as required in the
statement exists because V is a CLF and hence, any point
x # 0 that satisfies LV (x) = 0 is such that LsV(x) +W(x) < 0
(without loss of generality, since if LyV(x) + W(x) = 0 we
can take W(x) = lW(x)). Hence, by continuity there exists a
neighborhood V' of P, where LV (x) + W(x) — L | L, V() ||
LiV(x) + W(x) < 0 for all x € V, for any € > 0. Hence

by taking € < €, we ensure that z.(x) < O for all x € V

Ze(x) =

independently of the sign of e(x). Note also that JV as required
in the statement exists because I'), does not contain any point
where V and & are incompatible and therefore by Lemma 1,
all points in I'}, satisfying C(x) = 0 necessarily also satisfy
B(x) < 0 (without loss of generality, using a similar argument
as above). Therefore, by continuity of B(x) for any € > 0
we can take a neighborhood W around P, so that B(x) +
%C (x) < B(x) <0 for all x € W (since by Cauchy-Schwartz’s
inequality, C(x) < 0). Hence, by taking € < €, independently
of whether e(x) < 0 or e(x) > 0 we ensure that z.(x) < 0
for all x € WU V. Now we argue that if € < €, z¢(x) < 0
for all x € T,\(W UV U V). Note that T',\(W UV U V)
does not contain any points where LgV(x) and L,W(x) are
linearly dependent, since that would imply C(x) = 0 and hence
x € W. Thus, by Cauchy-Schwartz’s 1ne‘9uahty, C(x) < 0 for
all x e LL\OWU VU V). Hence, M > 0. Note also

that M; VY > (. Therefore, regardless of whether e(x) < 0
or e(x) > 0, by taking € < € we ensure that z.(x) < 0 for
all x e T,\W UV U 1_}), as claimed. Moreover, since by
construction u‘dfe satisfies (3) and is Lipschitz, by [4, Th. 2],
trajectories stay inside C for all ¢ > 0. u
Note that in the statement of Theorem 1, one can pick V
arbitrarily small, which might require an arbitrarily small €.
The next result states that under some additional reasonable
assumptions, this does not happen and hence there exists a
finite € for which trajectories converge to the origin.
Corollary 1 (Convergence to the Origin): Under the same
assumptions and notation of Theorem 1, assume additionally
that f, g € C'(R"), V € C2(R"), 0 € int(C) and ker(g(0)") C

2
Vs(gé(O)) Then, for € < € == mm{%(w €}, the
origin is asymptotically stable and I')yNC is forward invariant

and a subset of the region of attraction of the origin.

Proof: Since 0 € int(C), e(0) < 0 and the Jacobian
of the closed-loop system evaluated at 0 is J = %(0) -
%g(O)g(O)TVZV(O). We show that, with ¢ < €, one
has vIJv <0 for v e R"{0}. First, consider v €
ker(g(O)T) By assumption, v € Vs (gx (0)), and hence
vy = Taf(O)v < 0. Now, assume v ¢ ker(g(0)7).
Since V2V(0) is positive definite and g(O)g(O)T is positive
semidefinite, ker(g(0)g(0)"VZV(0)) = ker(g(0)g(0)") and
2(0)g(0)"V2V(0) has non- negative eigenvalues [18, 7.2.P21].
Hence, v/ Jv < (hax( %Xw))—lxmm<g(0)g<0)TV2V(0>)>||v||2
This implies that J4-J* is negative definite, and since the real
parts of its eigenvalues are twice those of J, we obtain that J
is Hurwitz. Therefore, we can take )V in Theorem 1 such that

T
the closed-loop trajectories with € < *mmﬁ“’)g;? (()V))|V(O))
max X
ing at V converge to 0. Finally, reasoning as in Theorem 1, V

is decreasing on I',\V, and the result follows. [ |

Under the assumptions of Corollary 5.4, by ensuring that
the origin is asymptotically stable in I',, we rule out the
existence of equilibrium points in I', other than the origin.
If the conditions of Corollary 1 are not satisfied or € > €,
other undesired behaviors like limit cycles or convergence to
undesired equilibria like the ones found in Proposition 2 cannot
be ruled out. Theorem 1 and Corollary 1 solve Problem 1. Under
the stated assumptions, by taking ' with € < & as a safe
stabilizing controller, an inner approx1mation of the region of

start-
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Fig. 1. Safe stabilization of a planar system. The green ball is the set
of unsafe states and the small dots display ten initial conditions for the
system trajectories under the CLF-CBF QP, the M-CLF-CBF QP, and
the safety QP with stability penalty controllers. The orange dotted curve
marks the boundary of the estimate I's of the region of attraction. The
CLF-CBF QP controller (with p = 1) preserves safety but does not reach
the origin because of undesired equilibrium points. The safety QP with
stability penalty (with e = 0.01) and the M-CLF-CBF QP (with p = 1)
preserve safety and have trajectories converge to the origin, except for
the one starting at (0, 9).

attraction of the origin is the largest level set of V that does
not contain any incompatible points inside it. In particular, if
there exists a sublevel set of V that contains C, uf3® with e < é
safely stabilizes the origin and the whole safe set C is in its
region of attraction.

VI. SIMULATIONS

Here, we compare the stability QP with safety penalty
controller with the CLF-CBF QP (4) and its modification,
M-CLF-CBF QP, introduced in [11, Th. 3] to avoid undesired
equilibria. We focus on the following planar system

(2) N @) + ((1) (1))“ ©)

For this system, V(x, x2) = %x% + %x% is a CLF. The safe set
C is the complement of the ball {x € R? : |lx — (0, 4)] <2},
and we use the CBF h(xi,x2) = x7 + (x2 — 4)? — 4, with
a(s) = s. According to [11], the CLF-CBF QP (4) creates
undesired equilibria in int(C) for all values of p. Instead, both
M-CLF-CBF QP and the stability QP with safety penalty con-
troller uiafe, with € # 1, do not introduce undesired equilibria
in int(C). The latter can be checked from the definition of Qf
given in Proposition 2. In this example, the incompatible points
are given by {(x1,x2) € R? : x; = 0,xo > 4}. Therefore, the
approximation of the region of attraction given by Theorem 1
isTh = {xeR2: ||x||> < 4). Figure 1 shows that the stability
QP with safety penalty controller and M-CLF-CBF QP behave
similarly, whereas CLF-CBF QP (4) fails to stabilize the ori-
gin. The plot also illustrates that trajectories starting at (0, 9)
converge to the boundary equilibrium point at (0, 6) for all
three approaches (this corresponds to a point where f, gLV,
and gLch are collinear, cf. Remark 2). This is not surprising
since, for scenarios where the unsafe set is bounded, global
convergence with a smooth vector field is impossible due to

topological obstructions [6]. An advantage of the approach
proposed here is the explicit inner approximation of the region
of attraction which, as Figure 1 shows, is conservative.

VIlI. CONCLUSION

We have addressed the problem of safe stabilization of
nonlinear affine control systems by proposing an optimization-
based feedback design framework inspired by penalty methods
for constrained optimization. Our design enforces strictly
either stability or safety via a hard constraint while promot-
ing the satisfaction of the other property via a soft constraint.
We have characterized the equilibria of the closed-loop system
under the proposed controllers. We have shown how to tune
the penalty parameter to eliminate spurious equilibria and to
increase the region of attraction to all Lyapunov level sets
that do not include points where the CLF and the CBF are
not compatible. Future work will develop tighter estimates
of the region of attraction, consider extra design parame-
ters and explore the extension of the proposed framework to
generalized notions of CBFs.
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