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Abstract

Nontrivial diffeomorphisms act on the horizon of a generic 4D black holes and cre-
ate distinguishing features referred to as soft hair. Amongst these are a left-right pair
of Virasoro algebras with associated charges that reproduce the Bekenstein-Hawking
entropy for Kerr black holes. In this paper we show that if one adds a negative cos-
mological constant, there is a similar set of infinitesimal diffeomorphisms that act
non-trivially on the horizon. The algebra of these diffeomorphisms gives rise to a cen-
tral charge. Adding a boundary counterterm, justified to achieve integrability, leads
to well-defined central charges with cL = cR. The macroscopic area law for Kerr-AdS
black holes follows from the assumption of a Cardy formula governing the black hole
microstates.
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1 Introduction

The entropy of black hole can be understood by a type of ’soft hair’ associated to
a general class of nonabelian VirL × VirR diffeomorphisms. In fact, only recently, a
general class of VirL ×VirR diffeos of a generic spin J Kerr black hole were considered in
[1] to determine its entropy in a manner similar to their stringy black hole counterparts.

Strikingly, using the horizon itself as the surface permitting the analysis allow one
to infer that there are no independent interior black hole microstates. In the case
of black hole solutions in General Relativity, the black hole Hilbert space must be
contained within the Hilbert space of states on or outside the black hole horizon. The
observations seem to apply equally to the real-world Kerr black hole case [1], the Kerr-
Newman black hole solution [2] and to the stringy black holes with near-AdS3 regions.

An interesting property of many non-supersymmetric black holes, such as Kerr
and Kerr-AdS, is that its entropy remains finite for the extreme configuration where
the Hawking temperature vanishes. This suggests that for extremal black holes the
entropy can be reproduced as the statistical entropy of the dual CFT using the Cardy
formula. Previous attempts to determine the microscopic entropy of the black hole and
reproduce the macroscopic area law relied on the existence of a near horizon extremal-
AdS2 region. The so called Kerr/CFT correspondence [3], employed the near horizon
extremal (zero-temperature) Kerr to show that the microscopic entropy of the CFT,
calculated using the Cardy formula, coincides with the macroscopic the extremal Kerr
black hole entropy. [9] generalized these ideas, only assuming that the left and right
CFTs have identical central charges, and argued that even away from extremality
Kerr black hole’s entropy was reproduced. Similar results were presented for the five-
dimensional Myers-Perry black holes in [5] and non-vanishing cosmological constant
in [6, 7].
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In this paper we follow the soft-hair approach in a slightly different direction. In an
effort to test the applicability of the soft-hair conjecture we will focus on the Kerr-AdS
black holes. The twofold goal is to uniquely define the conformal phase space formalism
relevant to the approach and find a boundary counterterm to achieve integrability for
the existence of a well-defined charges. Assuming the existence of a quantum Hilbert
space on which these charges generate the symmetries, as well as the applicability of
the Cardy formula, the concrete example of Kerr-AdS that we explore gives identical
central charges cL = cR providing evidence for an actual explanation of the macroscopic
entropy.

The existence of a generic near-AdS3 regions is not ordinarily sufficient to determine
the conformal coordinates in which the Virasoro action takes a simple form and exhibits
the conformal structure of the black hole geometry. To supplement the approach, we
will argue that the Noether charge interpretation of the entropy first presented in [8]
gives the necessary input to uniquely fix the relevant conformal coordinates. We will
only assume that the theory admits stationary black hole solutions with a bifurcate
Killing horizon.

Having established the appropriate conformal coordinates, we will construct an
explicit set of VirL × VirR vector fields which generate the hidden conformal symmetry
in the near-horizon region. These act non-trivially on the horizon in the sense that their
boundary charges are non-vanishing. The covariant phase space formalism provides
a formula for the Virasoro charges as surface integrals on the horizon. Using the
covariant phase space formalism we find a boundary counterterm – that reduces to
the Wald-Zoupas boundary counterterm for Kerr – justified to achieve integrability for
well-defined charge and gives cL = cR.

The plan of the paper is as follows. In Section 2 we use the entropy as Noether
charge interpretation [8] to find expressions for the generators of these R,L sectors in
a conformal coordinate frame with a direct CFT interpretation. Section 3 presents the
identification of the AdS3 near horizon in conformal coordinates for generic Kerr-AdS
black holes in which the Virasoro action takes the simple form. The application of
the blended AdS3 near horizon identification and R,L entropy killing field generators
relevant for its Noether construction is presented in Section 4. This section includes
the explicit identification of the microscopic temperatures TL and TR in Kerr-AdS.
In Section 5 we compute the covariant right-left moving Virasoro charges and find a
counterterm for an integrable action. We then indicate how to do a similar calculation
for the left-moving charges. In section 6 we discuss the case of extreme black holes. In
Section 7 we briefly discuss the first law. Section 8 repeats the same exercise but for
the inner black hole horizon. The discussion of our findings are provided in Section 9.
We illustrate this black hole conformal structure method with the detailed Kerr black
hole example in Appendix A.

Throughout this paper we use units such that c = ~ = k = G = 1.

2 Entropy and (L,R) - generators

Consider a stationary black hole solution with a bifurcate Killing horizon. According
to Wald’s computation [8], the black hole entropy S± is simply 2π times the integral
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over the Noether charge associated with the Killing field

ζ̄± = κ± ζ± , (2.1)

Here κ± is the surface gravity 1 and ζ± = ∂t +
∑

i Ω±∂φ are the horizon Killing fields
(normalized so as to have unit surface gravity) vanishing on the bifurcation 2-surfaces
Σ±. With the aim to find a frame with a direct CFT interpretation for the outer/inner
event horizons, we proposed to consider new variables tL,R where the Killing field (2.1)
generating the entropy is

ζ̄± ∝ (∂tL ± ∂tR) . (2.2)

and vanishes respectively either on the inner or outer event horizon. This is possible,
for 4-dimensional black holes via the transformation

tR = αφ+ β t , (2.3)

tL = γ φ+ δ t .

for the following choice of parameters

β = −1

2
[γ (Ω+ − Ω−) + α (Ω+ + Ω−)] (2.4)

δ = −1

2
[α (Ω+ − Ω−) + γ (Ω+ + Ω−)] .

This choice, gives the Killing fields (2.1) in a frame where the right (R) and left (L)
sectors of the CFT is straightforward

ζ̄± = ±κ±K±(∂tL ∓ ∂tR) . (2.5)

where

K± =
1

2
(γ ∓ α) (Ω− − Ω+) . (2.6)

We can also now invert the relations to find expressions for the generators of these R,L
sectors 2. The choice of tR, tL coordinates that we have derived is very suggestive of the
fact that there maybe a universal correspondence of a 2d CFT for any 4-dimensional
black hole solution. To realize this conjecture we derive, in the following section,
a method to identify the microscopic temperatures TL and TR (or equivalently the
parameters α, γ). While the conformal coordinates are not uniquely defined, the choice
made here is unique in the sense that it would later give the correct thermodynamic
relations that verify of the first law of thermodynamics for black holes. As we will
now show the coordinate choice (tL, tR) also matches those found by computing the
monodromies around the inner and outer horizon in [4].

1The Hawking temperature is given by T± = κ±/(2π).
2In turn, we can also rewrite the above formulae in the form

∂tL =
1

2

[(
1

K+
− 1

K−

)
∂t +

∑
i

(
Ω

(φi)
+

K+
−

Ω
(φi)
−
K−

)
∂φi

]
, (2.7)

∂tR =
1

2

[(
1

K+
+

1

K−

)
∂t +

∑
i

(
Ω

(φi)
+

K+
+

Ω
(φi)
−
K−

)
∂φi

]
, (2.8)
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3 Conformal coordinates

In this section we propose a method for the identification of the microscopical temper-
atures of 2d CFT that relies on the properties of the black hole geometry close to the
bifurcation surfaces. This work is a logical outgrowth of the observation in [1] that the
existence of a generic near-AdS3 regions constrains the define the so-called conformal
coordinates (w±, y) and possibly the structure of the black hole geometry.

There is a large ambiguity in the choice of the conformal coordinates in which the
Virasoro action takes the simple form. The procedure does not fix uniquely the 2d
CFT temperatures TL,R. For the purpose of CFT identification, one can take Wald’s
construction to define the black hole entropy as a Noether charge associated with the
Killing fields in a frame where the right (R) and left (L) are distinguishable (see Section
2 for details). This suggests a natural modification of the warped AdS space-times
geometry identification. We propose the coordinate choice to be consistent with (2.3)-
(2.4) where we have decomposed the coordinates, which separate the corresponding
Killing fields in a (R,L) frame.

We now conjecture that the conformal coordinates (w±, y) clearly exhibiting the
conformal structure are

w+ = R(r) etR ,

w− = R(r) etL (3.1)

y = Q(r) e(tL+tR)/2

where (tL, tR) are defined in (2.3) with (2.4), R(r)2 +Q(r)2 = 1 and close to the event
horizon r = r+ the function R2(r) ∼ c (r−r+) with constant c. The bifurcation surface
in the conformal coordinates at the outer event horizon is at w± = 0 and w± = ∞ at
the inner event horizon.

It follows from (3.1) that a black hole solution (in Boyer-Lindquist type coordinates)
under the transformation

t =
1

2(γβ − αδ)

[
(α+ γ) ln

w+

w−
− (α− γ) ln (w+w− + y2)

]
,(

R(r)

Q(r)

)2

=
w+w−

y2
(3.2)

φ =
1

2α
ln
w+(w+w− + y2)

w−
− β

α
t ,

becomes at the leading order around the bifurcation surface

ds2 =
4 ρ+(θ)2

y2
dw+dw− +

F (θ) sin2 θ

y2ρ+(θ)2
dy2 + ρ+(θ)2dθ2 + ... , (3.3)

for specific values of α and γ. Here ρ+(θ), F (θ) are arbitrary functions of θ. This is
simply a warped AdS spacetime in conformal coordinates. Hence these coordinates
are well-adapted to an analysis of 4D black holes mirroring that of the 3D BTZ black
holes.

Physically this means that there is a unique 2d CFT dual description for generic
types black hole geometries. We observe that under azimuthal identification φ→ φ+2π
of the conformal variables

w+ ∼ e2παw+ , w− ∼ e2πγw− , y ∼ eπ(α+γ)y . (3.4)
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This is the same as the identification employed in [10] that turns AdS3 in Poincare
coordinates into BTZ with temperatures (TL, TR)

w+ ∼ e4π2TRw+ , w− ∼ e4π2TLw− , y ∼ e2π2(TR+TL)y . (3.5)

The periodicities analysis yields

α = 2πTR , γ = 2πTL . (3.6)

or equivalently

TR = α/(2π) , TL = γ/(2π) . (3.7)

We argue, that with the proposed systematic approach one can identify a CFT dual
for generic types black hole geometries, allowing the computation of the left and right
2d CFT temperatures and the microscopic entropy using a Cardy formula. In the
next section, we present results for the 2d CFT temperatures in explicit examples that
include Kerr black hole, and Kerr-AdS black holes that are the main focus of the paper.

4 Conformal Coordinates for Kerr-AdS Black Hole

In the previous section we made a rather general proposal to identify the 2d CFT
temperatures via the conformal coordinates definitions. In this section we put flesh on
this proposal and show the explicit application of the proposed method to the Kerr-
AdS black hole solution. In the flat space-time limit L→∞ our results reduce to the
Kerr black hole identifications found in [1] (see the appendix).

The metric of the four dimensional Kerr-AdS black hole [11], satisfying Rµν =
−3L−2 gµν is given by

ds2 = ρ2

(
dr2

∆
+
dθ2

∆θ

)
+

∆θ sin2 θ

ρ2

(
a dt− r2 + a2

Ξ
dφ

)2

− ∆

ρ2

(
dt− a sin2 θ

Ξ
dφ

)2

,

ρ2 = r2 + a2 cos2 θ ∆ = (r2 + a2)(1 + r2L−2)− 2Mr ,

∆θ = 1− a2L−2 cos2 θ , Ξ = 1− a2L−2 . (4.1)

The metric is asymptotic to AdS4 in a rotating frame, with angular velocity ΩΛ =
−aL−2. The outer and inner event horizons are located at ∆(r±) = 0. The physical
parameters are

E =
M

Ξ2
, J =

Ma

Ξ2
, (4.2)

T± =
∆′(r±)

4π(r2
± + a2)

Ω± =
aΞ

r2
± + a2

, S± =
π(r2
± + a2)

Ξ
.

corresponding to the physical mass, angular momentum, Hawking’s temperature, an-
gular velocity of the horizon (as measured in the asymptotically rotating frame), and
the entropy respectively. As shown in [12], the angular velocity which is measured
relative to a non-rotating frame at infinity is determined by

Ω±∞ = Ω± − ΩΛ =
a(1 + r2

±/L
2)

r2
± + a2

. (4.3)
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To proceed with the interpretation, we first take the transformation (3.2) with (2.4),
and set c = 1/∆′(r+) in the function R2(r) ∼ c (r − r+) close to the event horizon of
the black hole, such that the black hole metric around the bifurcation surface is

ds2 =
4 ρ+(θ)2

y2
dw+dw− +

k2 ∆θ(θ) sin2 θ

y2ρ+(θ)2
dy2 +

ρ+(θ)2

∆θ(θ)
dθ2

+
4w+

y3

(
a2∆θ(θ) sin2 θ (2 δ r+ + 1)

δ2ρ+(θ)2
+

(
a2 + r2

+

)
(r− − r+)

r+

)
dw−dy (4.4)

− 4w−

y3

(
a2∆θ(θ) sin2(θ) (2 δ r+ − 1)

δ2ρ+(θ)2
+

(a2 + r2
+)(r− + r+)− 2a2r+ sin2 θ

r+

)
dw+dy

+ ... ,

where

ρ+(θ)2 = r2
+ + a2 cos2 θ , k = 2a/δ . (4.5)

In this case, we find the parameters in the transformation become

α =
∆′(r+)

2 aΞ
, β = 0 , γ =

(Ω+ + Ω−)

(Ω− − Ω+)
α , δ = −Ω+(α+ γ) (4.6)

and from (3.7) one can identify the right and left-temperatures arising from the CFT
giving

TR =
∆′(r+)

4π aΞ
, TL =

(Ω+ + Ω−)

(Ω− − Ω+)

∆′(r+)

4π aΞ
. (4.7)

In the case of vanishing cosmological constant, L → ∞, the results for the CFT tem-
peratures reduce to those for Kerr black holes given in [1]. Further details about the
conformal coordinates for Kerr are presented in Appendix A.

The general result (4.7) for the right and left-temperatures arising from the CFT
for the AdS-Kerr black holes can be combined with the Cardy entropy formula

S± =
π2

3
(cLTL ± cRTR) . (4.8)

Using (4.7) and the entropies (4.2), one finds that for Kerr-AdS black holes the left
and right CFTs have identical central charges

cL = cR = −6a

δ
=

6a(r2
+ − r2

−)

∆′(r+)
. (4.9)

Inverse metric

gyy ∼
δ2y2ρ2

+

4a2 sin2 θ∆θ(θ)
, gθθ ∼ ∆θ

ρ2
+

, g+− ∼ y2

4ρ2
+

,

g+y ∼ −w+y

4

(
2 δ r+ + 1

ρ2
+

−
δ2
(
a2 + r2

+

)
(r+ − r−)

a2r+ sin2 θ∆θ

)
, (4.10)

g−y ∼ w−y

4

(
2 δ r+ − 1

ρ2
+

+
δ2((a2 + r2

+)(r− + r+)− 2a2r+ sin2 θ)

a2r+ sin2 θ∆θ

)
.
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Volume element

The volume element is

ε+−yθ =
4a sin θρ2

+

δy3
+ ... . (4.11)

Conformal vectors

We consider the conformal vector fields

ζn = εn∂+ +
1

2
∂+εny∂y , (4.12)

ζ̄n = ε̄n∂− +
1

2
∂−ε̄ny∂y . (4.13)

and restrict the full set of functions (ε, ε̄) so that (ζ, ζ̄) are invariant under 2π azimuthal
rotations is

εn = α (w+)1+ in
α = 2πTR(w+)

1+ in
2πTR , (4.14)

ε̄n = γ (w−)
1+ in

γ = 2πTL(w−)
1+ in

2πTL . (4.15)

Taking ζn ≡ ζ(εn) and ζ̄n = ζ̄(εn), the vector fields (4.12) obey the Lie bracket algebra

[ζm, ζn] = i(n−m)ζm+n , [ζ̄m, ζ̄n] = i(n−m)ζ̄m+n . (4.16)

and the two set commuting with another

[ζm, ζ̄n] = 0 . (4.17)

The zero modes in this case are

ζ0 = α(w+∂+ +
1

2
y ∂y) = 2πTR(w+∂+ +

1

2
y ∂y) = ∂φ −

2πTL
δ

∂t ≡ −i ωR ,(4.18)

ζ̄0 = γ(w−∂− +
1

2
y ∂y) =

2πTL
δ

∂t ≡ i ωL (4.19)

5 Covariant charges

In this section we construct the linearized covariant charges δQn = δQ(ζ, h; g) asso-
ciated to the diffeos ζn acting on the horizon. We are interested in the central term
Km,n in the Virasoro charge algebra (for the right movers)

{Qn,Qm} = (m− n)Qm+n +Km,n , (5.1)

where the central term is given by

Km,n = δQ(ζn,Lζmg; g) =
cRm

3

12
δm+n . (5.2)

It turns out that the general form for the linearized charge associated to a diffeo ζ
on a surface Σ with boundary ∂Σ is

δQ = δQIW + δQct (5.3)
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On the one hand, there is a nonzero contribution from the Iyer-Wald charge

δQIW =
1

16π

∫
∂Σ
∗F(IW ) (5.4)

with

F(IW )ab
=

1

2
∇aζbh+∇ahcbζc +∇cζahcb +∇chca ζb −∇ah ζb − a↔ b . (5.5)

Here we follow the conventions of [1]. The variation hab is defined as gab → gab + hab.
We take the metric perturbation hab = Lζ̃mg

ab due to the second diffeomorphism ζ̃ and

h = habgab.

On the other hand, one also needs to add a counterterm

δQct =
1

16π

∫
∂Σ
F(ct)ab

dΣab (5.6)

where N is the volume two-form on the normal bundle to the Σbif .

F(ct)ab
= −2Nd

c∇c(ζahdb)− a↔ b , (5.7)

Note that the addition of this counterterm is justified to achieve integrability. The
nonzero contributions to Kn,m come only from

δQ =
1

16π

∫
dθdw+εθ+−y(F(IW )

−y + F(ct)
−y) (5.8)

We find that

F(IW )
−y = 4hy−ζyΓ−y− , (5.9)

Considering N+
+ = 1, N−

− = −1 then

F(ct)
−y = −2∇+(ζ−h+y) + 2∇+(ζyh+−) + 2∇−(ζ−h−y)− 2∇−(ζyh−−)(5.10)

= 2ζy(∇+h
+−) + 2(∇−ζ−)h−y − 2ζy(∇−h−−) (5.11)

= 2ζyh−y(Γ+
+y + Γ−−y − 2Γ−−y) (5.12)

= 2ζyh−y(Γ+
+y − Γ−−y) (5.13)

Note that

h+− = 0 , h−− = 0 , ∇+ζ
− = 0 , ∇−ζ− = Γ−−yζ

y , (5.14)

and also

∇+h
+y = 0 , ∇+h

+− = Γ+
+yh

−y , ∇−h−y = 0 , ∇−h−− = 2Γ−−yh
−y .(5.15)

Adding the terms together one finds

δQ =
1

16π

∫
dθdw+ε+−yθ(4h

y−ζyΓ−y− + 2ζyh−y(Γ+
+y − Γ−−y)) , (5.16)

=
1

16π

∫
dθdw+ 4a sin θρ2

+

δy3
2hy−ζy(Γ−y− + Γ+

+y) , (5.17)
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By working at small w+ and taking the w+ limit (which amounts to approaching Σbif

along the future horizon) one finds

h−y = g+−∂+ζ
y =

y3ε̃′′

4ρ2
+

with ′ = ∂+ , (5.18)∫
dθ sin θ = 2, and Γ+

+y + Γ−−y = −2

y
. (5.19)

Choosing ζ to be ζn and ζ̃ to be ζm, the variation becomes

Km,n = δQ =
1

16π

∫
dθdw+ 4a sin θρ2

+

δy3
2

(
y3ε′′m
4ρ2

+

)(
1

2
yε′n

)(
−2

y

)
(5.20)

= − 1

16π

∫
dθdw+ 2a sin θ

δ
ε′′mε
′
n (5.21)

= − 1

16π

∫
dw+

w+

4a

δ
ε′′mε
′
n , (5.22)

= − 1

16π
(4π2TR)

4a

δ

im3

2πTR
δm+n,0 (5.23)

=
a

2δ
im3δm+n,0 . (5.24)

Here we have computed the Dirac bracket of two charges. Passing to the commutator
introduces a factor of −i resulting in a central charge of

cR =
6a

δ
(5.25)

in agreement with (8.6).

Left-moving charges

The computation of the central charge in the left-moving sector exactly parallels the
computation in the right moving sector. All one needs to do is to exchange ε for
ε̄, interchange w+ ↔ w− together with a similar exchange in the components of the
tensors and Christoffel symbols and finally replace TR by TL. The result for the left-
moving central charge cL is

cL =
6a

δ
, (5.26)

which is exactly the same as cR.

6 Extremal AdS-Kerr black hole

In the extreme limit (when T± = 0), the inner and outer horizons degenerate to a
single horizon at r0 ≡ r+ = r−. The extremality condition is ∆(r0) = ∆′(r0) = 0 that
implies

a2 =
r2

0(1 + 3r2
0/L

2)

(1− r2
0/L

2)

M =
r0(1 + r2

0/L
2)2

(1− r2
0/L

2)
. (6.1)
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At extremality, the right temperature arising for the CFT vanishes. And, the left
temperature in the extremal limit agrees exactly with previous results [13,14]

TR = 0 , TL =
1 + 6r2

0L
−2 − 3r4

0L
−4

2π(1− 3r2
0L
−2)
√

(1 + 3r2
0L
−2)(1− r2

0L
−2)

. (6.2)

where r0 ≤ L/
√

3 to restrict the values of 0 < TL. The central charge (8.6) becomes

cL =
12r0

√
r2

0(1 + 3r2
0/L

2)(1− r2
0/L

2)

1 + 6r2
0/L

2 − 3r4
0/L

4
. (6.3)

For a unitary conformal field theory at temperature TL, the microscopic entropy from
the Cardy formula is given by

S+ =
π2

3
cLTL . (6.4)

From (6.3) and (6.2), we therefore obtain the microscopic entropy

S+ =
2πr2

0

1− 3r2
0/L

2
. (6.5)

This is in perfect agreement with the extreme black hole entropy given in (4.2). For
vanishing cosmological constant (L→∞) the results reduce to the asymptotically flat
Kerr black hole.

7 First Law of Thermodynamics

In this section we discuss the first law of thermodynamics for the AdS-Kerr black
holes [12], that is given by

δE = ±T±δS± + Ω±∞δJ . (7.1)

Remarkably, the first law may also be written

δS± =
δEL
TL
± δER

TR
. (7.2)

where 3

δEL = −γ
δ
δE +

γ

δ

a

L2
δJ , (7.3)

δER = −γ
δ
δE +

(
−1 +

γ

δ

a

L2

)
δJ , (7.4)

and the right and left temperatures are defined in (4.7). We have also used here
δEL = −γ δEL and δER = α δER 4.

3As described in [4], we consider the change φ→ φ̂− a t/L2 in (2.3).
4Provided ε in the vector field ζ = ε∂+ + 1

2∂+εy∂y, and similarly ε̄ in ζ̄ = ε̄∂− + 1
2∂−ε̄y∂y, is invariant

under 2π azimuthal rotations [1] we define the normalized functions ε = 2πTR(w+)
1+ in

2πTR = α (w+)1+
in
α

and ε̄ = 2πTL(w−)
1+ in

2πTL = γ (w−)1+
in
γ .
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8 Inner black hole horizon

We could choose the inner horizon r− instead to proceed with the approach. We
first take the transformation (3.2) with (2.4), and set c̃2 = 1/∆′(r−) in the function
R2(r) ∼ c̃ (r− r−) close to the Cauchy horizon of the black hole, such that the leading
order of the black hole metric around the bifurcation surface is

ds2 =
4 ρ−(θ)2

y2
dw+dw− +

k2 ∆θ(θ) sin2 θ

y2ρ−(θ)2
dy2 +

ρ−(θ)2

∆θ(θ)
dθ2 + ... ,

where

ρ−(θ)2 = r2
− + a2 cos2 θ , k = 2a/δ̃ . (8.1)

In this case we find the parameters in the transformation become

α̃ =
∆′(r−)

2 aΞ
, β̃ = 0 , γ̃ =

(Ω+ + Ω−)

(Ω− − Ω+)
α̃ , δ̃ = −Ω− (α̃+ γ̃) , (8.2)

or

α̃ = 2πTR , β̃ = 0 , γ̃ = 2πTL , δ̃ = −2πaΞ (TL + TR)

(a2 + r2
−)

. (8.3)

To proceed with the interpretation of the right and left-temperatures arising from the
CFT we compute (3.7) that brings them to the form

TR =
∆′(r−)

4π aΞ
, TL =

(Ω+ + Ω−)

(Ω− − Ω+)

∆′(r−)

4π aΞ
. (8.4)

The general result (8.4) for the right and left-temperatures arising from the CFT
for the AdS-Kerr black holes can be combined with the Cardy entropy formula

S± =
π2

3
(cLTL ± cRTR) , (8.5)

using (8.4) and the entropies (4.2), that for Kerr black holes the left and right CFTs
have identical central charges

cL = cR = −6a

δ̃
=

6a(r2
− − r2

+)

∆′(r−)
. (8.6)

9 Discussion

The hidden conformal symmetries of black holes are of particular interest to explain
the leading black hole microstate degeneracy. Because many of the most intriguing
results along these lines have been found in the context of asymptotically flat black
holes, the extension of the soft hair approach to include spacetimes with cosmological
constant is both natural and important.

Our investigations of the soft hair has allowed us to establish a set of infinitesimal
diffeomorphisms that act non-trivially on the horizon of generic Kerr-AdS black holes.
Amongst these are a left-right pair of Virasoro algebras with associated charges that
reproduce the Bekenstein-Hawking entropy for AdS black holes.
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The fact that there are generic near-AdS3 regions exhibiting the conformal structure
of the black hole geometry is in general not sufficient to determine the conformal
coordinates relevant to the application of this formalism. We argued that the Noether
charge interpretation of the entropy in [8] gives the necessary input to uniquely fix the
relevant conformal coordinates. Adding a boundary counterterm, justified to achieve
integrability, lead to well-defined central charges cL = cR. We do not herein prove
uniqueness of the counterterm or attempt to tackle other difficult problems related to
the characterizing diffeomorphisms or charges.

It is worth emphasizing that the choice of counterterm considered in our paper -
that generalizes the Wald-Zoupas counterterm for asymptotically AdS space-times -
gives a result that is compatible with all other results in the literature for Kerr-AdS
black holes, see e.g. [13,14]. In the case of asymptotically flat rotating black holes and
electrically charged black holes, the contributions from the counterterm reduce to the
same ones from the Wald-Zoupas counterterm [1,2].

A connection between the generic Kerr-AdS black hole results in this paper and
previous results involving their extremal counterparts indicates a close link between the
different computational approaches. By providing a first law of thermodynamics we
also made a step in giving further evidence of the robustness of the soft hair formalism
in reproducing the Bekenstein-Hawking entropy.
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A Appendix: Conformal Coordinates for Kerr Black Holes

The metric of the four dimensional Kerr black hole, satisfying Rµν = 0 is given by

ds2 = ρ2

(
dr2

∆
+ dθ2

)
+

sin2 θ

ρ2

(
a dt− (r2 + a2) dφ

)2 − ∆

ρ2

(
dt− a sin2 θdφ

)2
,

ρ2 = r2 + a2 cos2 θ ∆ = r2 + a2 − 2Mr , (A.1)

Note that the metric is asymtotically flat. The outer and inner event horizons are
located at ∆(r±) = 0. The physical parameters are given by

T± =
r2
± − a2

4πr±(r2
± + a2)

, S± = π(r2
± + a2) ,

J = Ma , Ω± =
a

r2
± + a2

. (A.2)
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Employing the transformation (3.2) with (2.4), as well as c = 1/∆′(r+) in the function
R2(r) ∼ c (r− r+) close to the event horizon of the black hole, the leading order of the
black hole metric around the bifurcation surface becomes

ds2 =
4 ρ+(θ)2

y2
dw+dw− +

16J2 sin2 θ

y2ρ+(θ)2
dy2 + ρ+(θ)2dθ2 + ... , (A.3)

where ρ+(θ)2 = r2
+ + a2 cos2 θ, we find the parameters

α =
∆′(r+)

2 a
, β = 0 , γ =

(Ω+ + Ω−)∆′(r+)

2 a(Ω− − Ω+)
, δ = − Ω−∆′(r+)

(r2
+ + a2)(Ω− − Ω+)

(A.4)

that can be written more explicitly by

α =
r+ − r−

2 a
, β = 0 , γ =

r+ + r−
2 a

, δ = − 1

2M
(A.5)

Now, we can define the left and right-moving temperatures via (3.7)

TR =
r+ − r−

4π a
, TL =

r+ + r−
4π a

. (A.6)

This agrees perfectly with the results in [1]. Moreover, at extremality the right tem-
perature vanishes, while the left temperature goes to the result obtained in [3] in the
extremal limit (where r+ = r−):

TR = 0 , TL =
1

2π
(at extremality) . (A.7)

The structure we find is generic (in particular it is valid for extremal, and non-extremal
Kerr black holes). Together with the fact that the Cardy entropy formula is defined
by

S± =
π2

3
(cLTL ± cRTR) , (A.8)

we can show, using (A.6) and the entropies (A.2), that for Kerr black holes the left
and right CFTs have identical central charges

cL = cR =
6a(r2

+ − r2
−)

∆′(r+)
= 12J . (A.9)
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