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In recent years, Convolution Neural Networks (CNN) have been extensively adopted in broad Artificial 
Intelligence (AI) applications and have demonstrated ability and effectiveness in solving learning 
problems. However, developing high-performance hardware accelerators on Field Programmable Gate 
Array (FPGA) for CNNs often demands skills in hardware design and verification, accurate distribution 
localization, and long development cycles. Besides, the depth of CNN architectures increases by reusing 
and replicating several layers. In this work, we take advantage of the replication of CNN layers to achieve 
improvement in design performance and productivity. We propose a programming flow for CNNs on 
FPGA to generate high-performance accelerators by assembling CNN pre-implemented components as 
a puzzle based on the graph topology. Using pre-implemented components allows us to use minimum 
of resources, predict the performance, and gain in productivity since there is no need to synthesize 
any Hardware Description Language (HDL) source code. Furthermore, the pre-implemented components 
are reused for different range of applications, reducing the engineering time. Through prototyping, we 
demonstrate the viability and relevance of our approach. Experiments show a productivity improvement 
of up to 69% compared to a traditional FPGA implementation while achieving over 1.75× higher Fmax 
with lower resources and higher energy efficiency.

© 2022 Elsevier Inc. All rights reserved.
1. Introduction

In recent years, the implementation of Convolutional Neural 
Networks (CNN) on Field Programmable Gate Arrays (FPGAs) has 
drawn considerable attention as the need for more efficiency and 
accuracy is mitigated by the rapid increase in computational cost. 
CNNs achieve higher quality of result (QoR) at the cost of sig-
nificant computing and memory requirements due to their deep 
topological structures, complicated neural connections, and mas-
sive data to process [15,7]. As a result, to keep up with the ver-
satile performance needs of CNN applications in several domains 
like image and video processing, hardware accelerators such as 
Application-Specific Integrated Circuits (ASICs), FPGAs, and Graph-
ics Processing Units (GPUs) are increasingly used to improve the 
throughput of the CNN network. Though ASICs and GPUs have 
long been the default solution to speed up computation in high-
performance computing platforms, FPGAs are now a rising trend, 
mainly due to their performance/watt advantage over GPUs and 
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flexibility over ASICs [3,8]. Furthermore, the continuous growth of 
integration capacity in FPGA technology has led to the advent of 
large devices capable of hosting millions of logic components and 
thousands of hard IP blocks [47,27,12]. The innovation in FPGA 
hardware architecture provides the basis for unprecedented flex-
ibility and acceleration in high-performance computing and em-
bedded system applications. It also requires computer-aided de-
sign (CAD) tools capable of extracting application and domain-
specific features to leverage the resources available in high-end 
FPGAs. As the complexity of FPGA architectures increases, so is 
the need for improved productivity and performance in several 
computing domains such as image processing, financial analytics, 
edge computing, and deep learning. However, vendor tools are pri-
marily general-purpose. They attempt to provide acceptable results 
on various applications, which may not exploit application and 
domain-specific characteristics to deliver higher QoR.

This paper presents a divide-and-conquer design flow that en-
ables application and domain-specific optimization on the design 
of CNN architectures using Xilinx FPGAs. The proposed approach 
follows three fundamental steps. The first step consists in divid-
ing the design into smaller components. The granularity of the 
sub-components is left at the designer’s choice. Next, each com-
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Fig. 1. Motivation example. (a) Compilation time comparison. (b) Fmax comparison. The results from previous research show that the pre-implemented design flow with 
RapidWright can lead to improved productivity and QoR compared to the traditional design flow with Vivado [25] (MM=Matrix Multiplication; OP=Outer Product; RC=Robert 
Cross; SM=Smoothing).
ponent is synthesized and implemented. Finally, we generate the 
targeted CNN architecture by assembling pre-built components 
with minimal QoR loss to achieve various design goals such as 
decreased latency, reduced power consumption, optimized maxi-
mum frequency, and low hardware utilization. Recent research has 
demonstrated that such an approach provides improved QoR than 
that of the traditional Vivado flow in some instances [18,25,16]. 
By pre-implementing specific components of a design, higher per-
formance is achieved locally and maintained with minimal loss 
when assembling the final circuit. This observation is supported 
by two major considerations: (1) vendor tools such as Vivado tend 
to deliver high-performance results on small modules in a de-
sign [18,17]. (2) Computing applications such as CNN architectures 
increase in size and complexity by replicating design modules. 
By carefully selecting principal design modules found in common 
CNNs, we leverage Vivado optimization to generate highly special-
ized implementations that can be combined into the desired CNN 
topology.

As motivation example illustrating the advantages of the pre-
implemented flow, Fig. 1 summarizes a few results from the work 
of Mandebi et al. [25]. It studies the compilation time and max-
imum frequency achieved when implementing FPGA accelerators 
for matrix multiplication, outer product, Roberts Cross edge de-
tection, and image smoothing using the Vivado flow and the pre-
implemented flow with RapidWright. The results show that the 
pre-implemented designs flow achieve up to 37% gain in produc-
tivity and 33% higher Fmax compared to compiling the same de-
signs with Vivado. While little details are provided on the choice 
of granularity for the pre-built components, the work demon-
strated that pre-implementing modules could significantly improve 
the QoR when exploiting application and domain-specific features. 
However, the work only focused on micro kernels and small scale 
applications [25]. As a result, it remains necessary to evaluate the 
performance benefits of using the pre-implemented flow on more 
complex data flow architectures such as CNN accelerators.

In the context of this work, we aim to explore the performance 
that can be achieved when utilizing RapidWright in the design 
flow of an FPGA accelerator for CNNs. Specifically, our contribu-
tion includes:

(1) Reviewing the design of CNN architectures on FPGAs: we will 
explore the features of state-of-art CNNs that are suitable for 
FPGA-based acceleration.

(2) Reviewing the pre-implemented flow with RapidWright: we 
will discuss key steps to follow to efficiently leverage Rapid-
Wright in the design of crafted application and domain-specific 
FPGA accelerators.
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(3) A complete component-based framework that maps CNN mod-
els to FPGA implementations without tedious HDL program-
ming and verifications, while improving the QoR compared to 
the traditional design flow with Vivado.

(4) An effective and efficient algorithm is proposed for high-
quality and scalable routability-drive placement of components 
on FPGA

As opposed to vendor tools that are closed source, we believe 
the access to RapidWright internal features and design resources 
makes it suitable for design flow exploration and the implementa-
tion of targeted FPGA solutions.

2. Overview on CNN FPGA architectures

2.1. Architecture topology

CNN inference refers to the forward propagation of M input im-
ages through L layers. In recent years, multiple CNN architectures 
on FPGA have been proposed [29,7]. They can be reviewed in two 
categories: Single Instruction, Multiple Data-based (SIMD) accelerators
and streaming-based accelerators. In this section we highlight the 
potential benefits of designing FPGA-based CNN architectures with 
the pre-implemented flow, as well as the challenges that may arise. 
We do not discuss any architecture implementation detail.

In general, the SIMD accelerators start by fetching feature 
maps and weights from an external memory to on-chip buffers 
[43,42,49]. The data is then streamed into computing engines com-
posed of several processing elements (PEs). The PEs typically im-
plement general-purpose matrix multiplication circuits in which 
computations are scheduled to execute the CNN layers in sequence 
[1,9]. At the end of the PE computations, the results are streamed 
back to on-chip buffers and, if necessary, to the external memory 
to be processed in subsequent CNN layers. Each PE is configurable 
and has its own computing resources mainly using DSP blocks, and 
data caching relying on on-chip registers. Computing engines are 
usually composed of hundreds of identical PEs that are replicated 
across the chip for accelerating specific layers of the CNN [32]. The 
recurrence of components within CNN architectures makes them 
suitable candidates for RapidWright implementation as the CNN 
sub-modules can be optimized for performance, and the achieved 
performance can be preserved when replicating and relocating the 
modules across the FPGA. The main advantage of this approach is 
its flexible, as it fits the implementation of various CNN topolo-
gies. However, the resulting CNN architecture has a major limita-
tion. It requires frequent memory transfer between FPGA on-chip 
scratchpad memories and external memory (DDR/HBM) to fetch 
the weights and feature maps. Furthermore, the layer-by-layer ex-
ecution flow makes real-time inference difficult.
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Accelerators with the streaming architecture always tailor the 
hardware with respect to the target network [26,29]. The topology 
of such CNN accelerators is transformed into a layer-by-layer exe-
cution schedule, following the structure of the DAG [23]. Shen et al. 
[35] note that FPGA-based acceleration used a Convolutional Layer 
Engine (CLE) to process consecutive CNN layers one at a time. The 
intermediate results between layers are stored in registers, on-chip 
memory (OCM), or directly pipelined into the next layer. However, 
since the dimension as well as filter parameters from consecutive 
layers might be different, using a fixed CLE for all layers leads to 
poor performance and inefficient utilization of resources. For an 
L-layer CNN, they propose using Q CLEs, where Q < L, to maxi-
mize to BRAM availability for each CLEs. With Q < L, some layers 
are replicated in the design, thus making this architecture suit-
able for the pre-implemented flow. In the same line of work, a 
streamed accelerator [26,10] consists on a sequential execution of 
all the layers of a given CNN. In the same line of work, fpgaCon-
vNet [40,38] framework generates a specialized circuit to run a 
convolutional neural network given its high-level description. The 
framework then partitions the network’s graph and generates dis-
tinct bitstreams for each part of the graph to dynamically configure 
the FPGA. The architecture analyzes inter-output and kernel paral-
lelism. Given the area constraints associated with the design, fpga-
ConvNet shares MAC units to reduce required resources, which cre-
ates a trade-off between area and performance. The main advan-
tage of this type of architecture is to minimize the latency caused 
by communication with off-chip memory and thereby, maximize 
on-chip memory communication, ensuring high throughput and 
avoiding any latency [33]. On the downside, this accelerator archi-
tecture cannot scale to arbitrarily large CNNs and can difficulty be 
applied for embedded devices. It is essentially restricted by avail-
able on-chip resources needed to implement compute units for 
each CNN layer, and critically, the size of OCM required to store 
the weights.

In this work, we propose a framework to generate an accel-
erator with a streaming architecture. Regarding such accelerators, 
several semi-automated design flows have been proposed in the 
literature. In the section below, we review some of them.

2.2. Component-based approaches

Previous research has shown that pre-implementing specific de-
sign components are a practical approach to reduce FPGA compi-
lation time. [19,45]. The placement and routing of complex FPGA 
designs on large devices is generally time consuming. Therefore, 
component-based design flow is leveraged to reduce implementa-
tion time in FPGA architectures. Just In Time (JIT) [22] compilation 
supplies the users with Domain Specific Language (DSL) to develop 
FPGAs, linking the design patterns with precompiled bitstreams at 
runtime. On top of the FPGAs, the overlay connects all the re-
configurable tiles similar to the switch boxes, but it only routes 
word-wide data. In the same line of work, [45] presents a block-
based compilation framework to reduce compilation time through 
partial reconfiguration (PR). The FPGA capacity is divided into a 
set of regions of predefined size. The physical PR regions are dedi-
cated to the user logic. Finally, a packet-switched overlay network 
provides connectivity between the PR regions. In [44], the authors 
propose a placement model of pre-implemented components us-
ing set theory. The module placer is implemented as a constraint 
solver, which computes feasible placement positions for relocat-
able modules. Most of the works presented above use a Network 
On Chip (NOC) to interconnect the different components/modules, 
adding additional logic. Furthermore, the number and the size of 
PR regions are predefined, limiting the flexibility and might lead 
to the under-utilization of the PR regions by components.
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2.3. Design flows

To improve the compute units resources and data movement, 
several optimizations [36,30] are employed on each layer of a given 
CNN. FlexCNN [36,30], uses a SW/HW co-design approach to com-
pose an architecture for different types of convolution layers using 
techniques including dynamic tiling and data layout optimization 
across different layers. With OpenPose as an application driver, 
they drive up effective DSP utilization on 3 × 3 − 1 × 1 kernel 
to reach a lowest latency. Nguyen et al. [30] focus on two layer-
specific optimizations: layer-specific mixed data flow and layer-
specific mixed precision. The mixed data flow aims to minimize 
the off-chip access while demanding a minimal OCM resource. 
The mixed precision quantization achieves both a lossless accuracy 
and model compression to reduce the off-chip accesses. Finally, a 
Bayesian optimization approach is used to select the best sparsity 
for each layer, achieving the best trade-off between accuracy and 
compression.

Numerous works [50,5,34] present a multi-layer processor ap-
proach, in which a dedicated hardware unit processes each layer 
to maximize the utilization of computing resources. Sine the OCM 
is not enough for multiple hardware units, the data must be stored 
in off-chip memory. Therefore, these works require a considerable 
amount of memory access for data. Even they work fine for shal-
low networks; it is challenging to scale up to deeper networks.

Streaming dataflow aims to tailor the accelerator in regard to 
the model topology. In this line of work, Sharma et al. [34] pro-
posed DNNWEAVER, a framework that automatically generates a 
synthesizable accelerator for a given (DNN,FPGA) pair from a high-
level specification in Caffe. To achieve large benefits while pre-
serving automation, DNNWEAVER generates accelerators by using 
a virtual instruction set to describe a network. The model is then 
translated into an instruction sequence. The sequence is mapped 
as hardware FSM states. The design flow in [23] searches the op-
timized parameter for a handcrafted Verilog template with the 
input network description and platform constraint, which leads to 
a uniform mapping of PEs that reduces the accelerator architec-
ture complexity. The acceleration strategy is further generalized 
for different CNN models with varying dimensions and topology. 
Ahmad et al. [2] analyze Winograd minimal filtering or fast con-
volution algorithms to reduce the arithmetic complexity of con-
volutional layers of CNNs. They propose a pipelined and parallel 
Winograd convolution engine that improves the throughput and 
power-efficiency while reducing the computational complexity of 
the overall system. The proposed techniques focus on automati-
cally generate the HDL design based on the network parameters. 
The main contribution of this approach is the selection of an inter-
mediate level description of the network to cover the gap between 
high-level network description and low-level hardware design.

3. Pre-implemented flow with Vivado and RapidWright

In this section, we present RapidWright and describe its inte-
gration in common design steps with Vivado. We also elaborate 
on background concepts such as the “out-of-context” design flow 
in Vivado. Finally, we provide necessary discussion on the pre-
implementation of design components.

3.1. RapidWright

RapidWright [18] is an open source Java framework from Xil-
inx Research Labs that provides a bridge to Vivado backend at 
different compilation stages (synthesis, optimization, placement, 
routing, etc) using design checkpoint (DCP) files as illustrated in 
Fig. 2. Once a DCP is loaded within RapidWright, the logical/phys-



D. Tchuinkou Kwadjo, E. Nghonda Tchinda, J. Mandebi Mbongue et al. Journal of Parallel and Distributed Computing 167 (2022) 123–135
Fig. 2. Vivado and RapidWright interaction.

ical netlist data structures and functions provided in the Rapid-
Wright APIs enable custom netlist manipulations such as cell and 
net instantiation, edition, and deletion. The hundreds of APIs in 
RapidWright make it possible to directly access logic and routing 
resources such as look-up tables (LUT), flip-flops (FF) and pro-
grammable interconnect points (PIPs) from a high-level program-
ming language like Java. They also provide means to run some 
operations such as timing analysis, placement, and routing. Upon 
completing the netlist manipulation, RapidWright enables storing 
the changes in a netlist into a new DCP that can directly be loaded 
into Vivado.

3.2. Out-of-context design flow

The “out-of-context” (OOC) Flow [46] is a netlist generation 
mode ensuring that the placement of I/O buffers is disabled at 
compile time to facilitate the design of internal components of 
an architecture. It has several advantages among which: (1) it al-
lows to implement and analyze (resource analysis, timing analysis, 
power analysis, etc) a module independently of the rest of the de-
sign. (2) It enables reusing and preserving the characteristics of 
placed and routed modules within a top-level design.

3.3. Pre-implementing design components

Vendor CAD tools such as Vivado use heuristics for the phys-
ical implementation (placement and routing). They consider the 
number of cells in a design, their connections, and the physical 
architecture of the target FPGA device to generate a circuit accord-
ing to specified constraints. Consequently, vendor tools generally 
achieve better QoR on smaller designs as the resource alloca-
tion problem addressed in the physical implementation is well-
known to be NP-hard [28]. Focusing the optimization on smaller 
modules may therefore lead to overall QoR improvement in a 
design. Furthermore, several works in the literature have shown 
that pre-implementing components or macros can significantly de-
crease the overall FPGA compilation time with performance bene-
fits [22,20,25]. The pre-implemented flow therefore aims to gen-
erate high-performance implementations by reusing in multiple 
contexts and chip locations, high-quality and customized pre-built 
circuits. Using an iterative process, the top-level design can then 
be constructed by assembling the pre-built circuits with minimal 
QoR loss.

To fully exploit the benefits of the pre-implemented flow with 
RapidWright, the design architect must first restructure the CNN 
HDL codes hierarchically. The reorganization of the HDL sources 
must consider three main design characteristics [18] that are:

1. Modularity: highlights the design structure so that it can be 
strategically mapped to architectural models.
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2. Module replication: when modules are replicated, it allows the 
reuse of high-quality solutions in the design while increasing 
productivity.

3. Latency tolerance: if the modules in a design tolerate addi-
tional latency, inserting pipeline elements between them im-
proves both synchronization performance and offshoring.

4. Proposed design flow

In this section, we present the design exploration steps imple-
mented to optimize CNN components to fully exploit the benefit of 
our approach. The overview of the pre-implemented flow is pre-
sented in Fig. 3. The flow has two major steps that are: function 
optimization and architecture optimization. The function optimization
essentially consists in performing a design space exploration of 
the performances that can be achieved on sub-functions. It takes 
into consideration some design constraints such as device, timing, 
floor planning, and power. If the design space exploration results 
in satisfiable performance, the produced netlists are saved into a 
database in the form of DCPs. This step is semi-manual as the de-
signer must choose and pre-compile the sub-functions in a design 
using vendor tools. It is however performed exactly once, and the 
saved netlists may serve in multiple designs. The architecture op-
timization is a fully automated process that aims to combine the 
pre-built components (the netlists saved in the function optimiza-
tion phase) into a CNN architecture as defined by the users.

4.1. Function optimization

This section describes the major steps involved in the design of 
optimized sub-functions.

4.1.1. Granularity exploration
The design space exploration only supports CNNs. A typical 

CNN is usually composed of:

(1) Convolution: The convolution layer convolves the input image 
with a set of learnable filters, each producing one feature map 
in the output image.

(2) Pooling: Max-pooling splits the input image into a set of non-
overlapping rectangles and, for each of these sub-regions, out-
puts the maximum value.

(3) Rectified-Linear: Given an input value x, the ReLU is a simple 
calculation that returns the value provided as input directly x if 
x > 0 and 0 otherwise. Several ReLU functions exist and might 
be employed.

(4) Fully Connected (FC): Each activation of a FC layer is the result 
of a scalar product composed of input values, weights, and a 
bias.

By porting these 4 layers onto the FPGA, the vast majority of 
forward processing networks can be implemented on the FPGA. 
The modules implementations should resolve around this mini-
mum of granularity. Automated decomposition of user logic into 
leaf components is complementary future work.

4.1.2. Performance exploration
We start by manually building the CNN components OOC. The 

OOC flow ensures that I/O buffers and global clocks resources are 
not inserted into the netlists as the pre-built components are still 
to be inserted within the top-level module of the design. While 
efficiently designing components OOC requires hardware expertise, 
it is done exactly once, and the pre-built netlists may be reused in 
several other applications.

Optimization and implementation of components: the archi-
tecture of a convolution engine is depicted in Fig. 4a. The input 
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Fig. 3. General overview of the proposed design flow.

Fig. 4. Pre-implemented Design Components.
samples are read in a streaming fashion from the local buffer. For 
a convolution of size K, at least K-1 lines of data must be fetched 
before the circuit can process the first sample. All the computa-
tions performed before this are simply discarded through the use 
of conditionals. Each line buffer can store up to K+1 data. When 
a new sample is read, another sample is pushed out of the line 
buffer. Interestingly, the newest sample is used in the calculation, 
and then the sample is stored into the line buffer, and the old sam-
ple is ejected out. Therefore, it ensures that only K+1 lines must 
be cached rather than an unknown number of lines and minimize 
local storage use. Fig. 4b illustrates the Compute unit (CU) data 
path of a convolution engine. It starts by multiplying the input 
feature map data and the corresponding weights via the multi-
ple parallel multiplication arrays; then, the final cumulative values 
are determined by the adder tree in a pipeline. Several slices of 
CUs constitute the convolution engine. The 27x18 multiplier in 
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the DSP48E2 slice carries two parallel 8-bit multiplications that 
share one common operand. Precisely, the two INT8 operands are 
packed into the 27-bit port and then multiplied in parallel by the 
third, shared INT8 operand in the 18-bit port. The output of the 
DSP48E2 slice can generate two parallel products in a particular 
full-precision dual-product format, reducing by half the number of 
DSP48E2.

The design of the pooling layer is similar to [11] and is depicted 
in Fig. 5. The designs flow presents an implementation of the max-
pooling in a stride of 2 samples. The main components of the 
architecture are a shift register with only L+2 stages, a comparator 
core, and a controller. The comparator core consists of three com-
parators for finding the maximum pixel value in the 2×2 window. 
This circuit is implemented independently from the convolution 
engine to accommodate most CNNs topologies. I/O interfaces of 
components implement a producer-consumer scheme with a glob-
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Fig. 5. Max-pooling Computing Engine.

ally asynchronous locally synchronous approach for weight storage, 
whereby memory resources operate faster than the compute logic. 
It then allows adjacent layers to start operation before the pro-
ducer layers are completed. Each layer feeds its output to the next 
layer using similar datatype layouts and allows it to overlap in 
their operation once enough data has been accumulated in the 
previous layer. There is no need to store each layer’s intermedi-
ate results in off-chip memory with a streaming architecture since 
they are directly piped down the stream.

To achieve high QoR in the performance exploration phase, the 
implementation of components follows the following design con-
siderations:

(a) Strategic floorplanning: utilizing pblock constraints allows 
carefully selecting the FPGA resources that will be used by 
each design component. It helps improving the module-level 
performance and area. Hence, the designer has the possibil-
ity to only use necessary resources as opposed to letting the 
CAD tool utilize as many chip tiles as it wants. Given that 
Xilinx architectures generally replicate the resource structures 
(CLBs, DSPs, BRAM, URAM, etc) over an entire column of clock 
regions (see Fig. 8), the smaller the area of a pblock is, the 
more RapidWright will be capable of relocating the design 
components across the chip, which increases the reusability. 
The automated definition of pblock range is out of the scope 
of this work.

(b) Strategic port planning: the placement of the ports when pre-
implementing modules are one of the most important steps to 
ensure high performance and productivity improvement. Fail-
ure to plan the location of the ports of the pre-implemented 
modules may result in long compilation time, poor perfor-
mance, and high congestion in the design in which they are 
inserted.

As example, let us consider a design in which we pre-
implement the two sub-modules Module1 and Module2. In 
order to preserve the QoR of the sub-modules in the final de-
sign, we should foresee the length of the nets connecting the 
cells at the interface of the sub-modules. In fact, the maxi-
mum frequency is proportional to the highest delay on the 
timing paths. We must therefore reduce the length of the net 
between the modules by ensuring that the cells at the inter-
face of the pre-built components are placed near the edge 
of the pblocks of the modules. However, the modules are 
pre-implemented independently. Hence, the CAD tool is not 
aware of the context in which the modules will be inserted 
into a design and connected to other components. A pre-
implemented component may then achieve a high maximum 
frequency in standalone but perform poorly when inserted 
into a design because of very long inter-module nets. We 
therefore pre-implement the modules with partition pin con-
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straints (PartPins) [46] to specify the interconnect tiles that 
will route the nets connecting to the other modules of a de-
sign. Fig. 6a presents a possible outcome of pre-implementing 
the two sub-modules without considering the port planning. 
The distance between the two FFs that are identified by the 
green and red marks may become a source high delay, re-
sulting in reduced maximum frequency. On the other hand, 
Fig. 6b shows that partpins make it possible to shorten the 
length of the net, which decreases the Fmax degradation when 
connecting the components in a design.

(c) Clock routing: to accurately run the timing analysis on the 
OOC modules, source clock buffers must be specified using the 
constraint HD.CLK_SRC. Though the buffers are not inserted 
in the OOC modules, clock signals are partially routed to the 
interconnect tiles and the timing analysis tool can then run 
timing estimations.

(d) Logic locking: the main goal of the performance exploration 
is to achieve high QoR locally. Once a module attains a desir-
able performance (Fmax , area, power, etc), we lock the place-
ment and routing to prevent Vivado from altering the design 
later and preserve design performance. The other advantage of 
locking the design is that the final inter-module routing with 
Vivado will only consider non-routed nets. This decreases 
compilation times and improves the productivity.

(e) Checkpoint file generation: pre-implemented modules are 
stored in the form of DCPs. The top-level design will then 
implement synthesis black-boxes that will be filled by the op-
timized pre-built modules.

The implementation here is done using vendor tools and con-
siders several constraints such as timing and floor planning. The 
pblock partitioning is performed for each component according to 
its needs in terms of hardware resources and the physical structure 
of the FPGA. However, when synthesizing components OOC, there 
is not control on how the I/O ports are placed. With pblocks and 
timing constraints, I/O ports might be contained anywhere in the 
pblock resulting in routing congestion and timing issues around 
I/O interfaces when generating the whole design as described in 
Section 4.2.

4.2. Architecture optimization

In this section, we discuss the generation of a CNN accelerator 
based on user definition. The architecture optimization follows four 
major stages that are: component extraction, component match-
ing, architecture composition, and inter-component routing. The 
following paragraphs will elaborate on each of these phases.

4.3. Hardware generation

In this section, we discuss the generation of a CNN accelerator 
based on user definition. The architecture optimization follows four 
major stages: component extraction, component matching, archi-
tecture composition, and inter-component routing. The following 
paragraphs will elaborate on each of these phases.

4.3.1. Component extraction
From the library of pre-built components, users compose the 

CNNs hardware accelerator’s resources on FPGA. This implies pro-
viding information about the topology and the type of layers that 
compose the CNN in a form that we call: “CNN architecture defini-
tion.” In the following stage, a CNN hardware generator designed 
with the RapidWright C API automatically produces the corre-
sponding CNN accelerator. The major function of the Component 
Extraction is to parse the CNN architecture definition from the DFG 
specification and identify the components. It then creates a data 
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Fig. 6. Illustration of the importance of port planning. (a) Without PartPins, the FFs 
are placed randomly, resulting in a high distancing. (b) Defining PartPins provides 
context to Vivado when pre-implementing the modules, which results in shorter 
distance between the FFs.

flow graph (DFG) structure in which the nodes represent the com-
ponents, and the edges account for the connections between them. 
Each node of the graph can be a component candidate. Neverthe-
less, consecutive nodes in the graph can be pre-implemented as 
one component if the data movement between them does not re-
quire a memory controller. In that case, a simple handshake proto-
col is enough to provide node-to-node communication with simply 
single-source, single-sink FIFO queues with unbounded length. For 
instance, the first convolution of LeNet outputs 6@28 × 28 features 
maps, and pooling outputs 6@14 × 14 feature maps from a 2 ×
2 sliding windows. This architecture requires a memory controller 
to compose the addresses to read/store the data from/to the mem-
ory and feed the FIFOs, as shown in Fig. 7. That constraint is not 
required for the following ReLu, and the operation can be directly 
applied to intermediate results of the pooling layers.

4.3.2. Component matching
The RapidWright application first parses the DFG using a 

breath-first search (BFS) approach (Algorithm 1 line 1-10). This 
enables efficiently discovering the components to load into the 
CNN architecture as well as their connectivity. We choose the BFS 
traversal as the DFGs representing CNN architectures are generally 
deeper than wider. Each node is described with a set of charac-
teristics. For instance, a convolution is identified with information 
such as input width and height, the number of channels, the kernel 
size, the padding, and the strike. The hardware generator that we 
implement with the RapidWright API loads the DCPs correspond-
ing to the components defined in the CNN architecture definition 
from the database of pre-built checkpoints to compose the final 
architecture.

To achieve physical hardware re-usability, some requirements 
must be fulfilled: each component must implement a specific in-
terface to communicate with the other design modules. As shown 
in Fig. 7, components are pre-implemented with two interfaces. 
The first interface called “source”, is a dedicated memory controller 
that read data from a memory and feed their computing units. The 
second interface called “sink” controls the writing of feature maps 
in OCM. Finally, since all the components implement a well-known 
interface, we use the RapidWright API to create interconnections. 
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Fig. 7. Communication Interface between Components.

It is done by inserting specific nets in the netlist of the design 
to implement logic routing between the different components that 
communicate in the design (Algorithm 1 line 11-18). After stitch-
ing, the blocks are placed, a DCP file is generated, then read into 
Vivado to complete the inter-component routing.

4.3.3. Component placement
The placement algorithm is based on Xilinx Ultrascale architec-

ture, which is an array of programmable logic blocks consisting of 
configurable logic blocks (CLB), Embedded Memory (BRAM), and 
multiplier (DSP) blocks. CLB slices are organized in a regular ar-
ray. Each connects to a switch box to access general routing re-
sources, which run vertically and horizontally between rows and 
columns. The device is surrounded by I/O Blocks allowing off-chip 
connections. DSP blocks and BRAMs are arranged in columnar-wise 
and spread across the device. We aim to find a congestion-aware 
timing-driven placement for components of the input graph.

Problem formulation Given an Utrascale FPGA with logic ele-
ments, its architecture, and a graph G of components, we need 
to map the component’s netlist to the logic elements of the FPGA 
and determine their positions to minimize routed wirelength and 
congestion. In summary, (1) each component must be assigned to 
a valid position on the FPGA, and (2) the placement legalization 
rules of each tile are satisfied.

The algorithm works as follows: we recursively parse the in-
put graph and place the first component. Since components are 
pre-implemented within pblocks, the number of resources used 
and allocated is reported. For each adjacent component, we as-
sign a location on the FPGA grid, with minimal interconnect wire 
length, i.e., the estimated half-perimeter wire length (HPWL) from 
the placed cells locations. To fulfill that requirement, we define 
timing and congestion cost functions to evaluate the cost of the 
assigned location.

The timing cost is defined by the wire length between two com-
ponents.
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Algorithm 1: Hardware generation Algorithm.
Input : Design d, Graph G, Node root
Output : DCP file

1 let Q be a queue ;
2 let t be the max number of iterations ;
3 mark root as discovered ;
4 Q.enqueue(root) ;
5 while Q.size() != 0 do
6 Node v = Q.dequeue() if v is the goal then
7 return v ;
8 end
9 ParseGraph (v, G, Q, 0);

10 end

11 Function ParseGraph(G, v, Q , iter):
12 q = locate an optimal placement for v;
13 addNodeToDesign(q);
14 Nodes w = G.Next();
15 foreach edges from v to w do
16 if w is not marked then

17 p = locate an optimal placement for w;
18 addNodeToDesign(p);
19 Ports ports_v = selectPortOfInterest (v);
20 Ports ports_w = selectPortOfInterest (w);
21 nets = create_nets (ports_v, ports_w, v, w);
22 timing, cost = TimingEstimation (nets, v, w);
23 if (not (timing & cost) & (iter < t)) then

24 iter ++;
25 p = G.Previous();
26 ParseGraph (G, p, Q);
27 end
28 mark w as discovered ;
29 w.parent = v ;
30 Q.enqueue(w) ;
31 end
32 end
33 End Function

34 Function TimingEstimation(nets, v, w):
35 foreach net ∈ nets do
36 if size(net) > 1 then
37 timing = getTileSize();
38 else
39 timing = timing_cost(nets);
40 end
41 cost = cgtcost (v, w);
42 end
43 return (timing, cost)
44 End Function

timing_cost =
n−1∑

i=1,i< j

H PW L(Wi, j) (1)

Where Wi, j is the wire between component i and j (distance from 
physical net’s source pin to sink pin). A fan-out greater than one 
will in most cases, have some branching farther (reusing a path). 
In this case, the unit of length is the dimension size of a tile.

Congestion estimation for optimal routing, a placement algorithm 
must consider the number of resources used by each inter-
component nets and the interaction between them. For instance, if 
all nets are limited to a relatively small portion of the chip area, 
the routing path request will probably be very high. Furthermore, 
the number of switch boxes to traverse factor into the total de-
lay [48]. The algorithm tries to build a solution incrementally, one 
component at a time, removing those solutions that fail to satisfy 
the problem’s constraints at any point in time. A placement is val-
idated if the costs are lower than a defined threshold. Otherwise, 
for each previously placed component, we unplaced them, find an-
other location, until the costs are satisfied. After a certain number 
of predefined iterations, if not placement satisfying the constraints 
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Fig. 8. Xilinx Ultrascale Architecture.

is found, we move to the next component. The proposed solution 
works as follows: we recursively parse the input graph and place 
the first component (Line 3-13). For each adjacent component, we 
assign a valid location on the FPGA grid (Line 14-18). We evaluate 
the cost of the current assignment (Line 22). If the placement sat-
isfies the constraints (timing and congestion cost), we move to the 
next component (Line 28-30). Otherwise, we recursively unplace 
previous components and try to find another location (Line 23-27).

cgtcoef =
∑

i

Ci

cgt_cost =
∑

Wi, j

ωi, j × cgtcoef k
#SwBox

(2)

Where Ci is the number of components overlapping within a 
tilek , ωi, j is a weight proportional to the number of pins of wire 
Wi, j , and #SwBox is the number of switch boxes traversed by the 
nets.

Although RapidWright provides a lightweight timing model [24], 
it works at the BEL level, which is more fine-grained than what is 
required here.

4.3.4. Datapath regularization
To reduce overall latency and data management overhead, dat-

apaths must be regularized. Each component comes with its own 
latency in number of clock cycles. We must therefore ensure that 
operands arrive at the boundary of each component at the same 
time to expect correct results. This task is done by inserting FFs 
on the critical path. Inserting FFs do not increase overall latency as 
the number of FFs is the cumulative latency of operations on the 
datapath.

4.3.5. Inter-component routing
After the architecture composition, the design contains all the 

necessary CNN modules. Each design module still has the logic and 
the internal routing locked. However, the RapidWright hardware 
generator only enables the logic routing between the components. 
While recent updates in the RapidWright API provide some func-
tions to route the designs, the routing heuristics are still a work 
in progress and are not as mature as Vivado. We, therefore, utilize 
Vivado for the final routing, which essentially consists in finding 
FPGA interconnects to implement the logic routes created within 
RapidWright in a way that minimizes timing delays.
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Table 1
FPGA Resource Utilization.

CLB LUTs CLB Registers BRAMs DSPs

Data Precision 8 bit

LeNet 17005 (7.90%) 7591 (1.61%) 109 (18.44%) 121 (5.22%)
Pre-implemented
LeNet

14533
(14.89%) ↓

6847
(9.57%) ↓ 104 (5.43%) ↓ 121.00 ⇔

VGG-16 100767 (41.35%) 151646 (38.80%) 462 (37.84%) 986 (50.83%)

Pre-implemented VGG-16
85204
(15.44%) ↓

121879
(11.25%)↓

437
(2.07%)↓

935
(1.12%) ↓
5. Experimental results

5.1. Evaluation platform and setup

For evaluation purposes, designs are implemented on a Xilinx 
FPGA XCKU060. The hardware is generated using Vivado v2019.2 
and RapidWright v2019.1, and the components are implemented 
with vivado HLS. The hardware generation is conducted on a com-
puter equipped with an Intel Corei7-9700K CPU@3.60GHz×4 pro-
cessor and 32GB of RAM.

5.2. Benchmarks

We study two CNN architectures: LeNet [21] and VGG [37]. We 
run applications individually with the purpose of assessing achiev-
able performances, in particular: (1) global latency, (2) Maximum 
Frequency (Fmax) and productivity and (3) resource utilization, 
when comparing pre-implemented to full implemented CNNs. For 
both networks, we use a 8 bit data precision. Table 2 presents the 
different the workload and the requirement in terms of memory 
of the two networks. We compare the pre-implemented circuits 
to the corresponding classic implementation. Here, a classic imple-
mentation refers to a circuit generated from a single top level file, 
following the vivado design flow [13].

5.2.1. LeNet architecture
It’s built by replication of four main modules: (1) The convo-

lution: this module performs the convolution computing using a 
systolic array architecture. The fully connecting layers are also im-
plemented as convolution, with the kernel size equal to input data 
size. (2) The max pool layers, (3) The relu layers, (4) The mem-
ory_managment unit, jogging around the input data, and feed the 
computing units. The weights and biases are hard coded in ROM. 
This choice has been decided out of simplicity

5.2.2. VGG-16 architecture
VGG consists of 16 convolutional layers and is very appealing 

for the pre-implemented flow because of its very uniform archi-
tecture. Input images are passed through a stack of convolutional 
layers with the fixed filter size of 3×3 and the stride of 1. There 
are five max pooling filters built-in between convolutional layers. 
The stack of convolutional layers is followed by 3 fully connected 
layers. Each convolution layer is made of 2 or 3 convolutions with 
same parameters, followed by a pooling layer. The replicability of 
layers within VGG suits the pre-implemented flow. With 124 M of 
weights, there is not enough resources on-chip to store them. We 
use off-chip memory to store the coefficient data and data layout 
configuration files. The coefficient data files contain the parame-
ters of each layer and the data layout configuration files include 
the size of the input feature map and the output feature map, as 
well as the shape of the tensor coefficients. The off-chip memory 
allocation is based on a Best-Fit with Coalescing algorithm. The 
goal of this allocator is to support defragmentation via coalescing. 
The principle behind this algorithm is to divide the memory into 
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Table 2
Computational hardware resources for 
state-of-art DNNs.

LeNet-5 VGG-16

# CONV Layer 2 16
# weights 26 K 14.7 M
# MACs 1.9 M 15.3 G
# FC Layers 2 3
# weights 406 K 124 M
# MACs 405 K 124 M
Total Weights 431 K 138 M
Total MACs 2,3 M 15.5 G

a series of memory blocks, each of which is managed by a block 
data structure. From the block structure, information such as the 
base address of the memory block, the state of use of the memory 
block, the size of the block, the pointer on the previous block and 
the following can be obtained. All memory can be represented by 
a block structure with a double-link list.

5.3. Resource utilization

Pre-implementing basic components have the potentiality of 
reducing resource utilization as shown in Table 1. The classic im-
plementation LeNet and VGG use respectively 7.90% and 41.35% of 
LUTs, 1.61% and 17.80% of registers. The pre-implemented version 
of LeNet uses less than 14.89% of LUTs and 9.57% of registers (resp. 
VGG uses less 9.09% of LUTs and 11.255% of registers) when com-
pared to the classic implementation. Overall, the pre-implement 
networks use less resources than the baseline implementation. 
When the design is small, vivado can provide a better optimiza-
tion of the resources. Furthermore, when pre-implementing com-
ponents, we define pblocks, which limit the amount of resources 
that vivado can use and hence, forcing some area optimizations. 
When the design is bigger, vivado tends to maximize the capacity 
of adaptation and becomes difficult to capture all its specificities. 
A snapshot of Lenet of the FPGA fabric is shown in Fig. 10.

LeNet uses 18.44% of the BRAM available on the chip. This is 
simply because the weights and biases are hard coded in ROM 
and uses more resources. The pre-implemented LeNet (resp pre-
implemented VGG) uses 5.43% less BRAM (resp. 37.84%). Vivado 
can optimize individual component IR without BRAM insertion 
while adding such resources when compiling bigger design, which 
translates into a higher power consumption. The amount of DPS 
is the same for LeNet implementation. However, we notice a slight 
decrease of 1.12% the pre-implemented VGG. By defining pblock for 
each component, we sometimes provide more DSPs than needed 
to have enough resources to place the design. This is due to the 
topology of Xilinx FPGA which are organized column-wise.

5.4. Productivity

With the continuous growth of CNNs parameters and depth, 
improving the productivity is an important factor when it comes 
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Fig. 9. Performance Exploration of LeNet.

Table 3
Energy Efficiency Comparison.

CPU Cloud-DNN [6] Caffeine [51]
Biookaghazadeh
et al. [4]

Zhu et al. [52] Pang et al. [31] Ours

FPGA Device - XC7Z045 KU060 Arria 10 ZCU102 VC707 KU060
Data Precision float 16 16 8/16 16 16 8
Power (W) 140 49.25 26 23 23.6 8.152 25.2
Energy Efficiency
(GOPS/W)

1.36 37.13 28.85 39.1 13.05 23.1 42
Fig. 10. Lenet circuit on FPGA fabric.

to hardware design. In this section, we show how the proposed 
flow can leverage component reuse to reduce both compile time 
and implementation cycles. Table 4 presents the time in seconds to 
generate the design checkpoint with both rapidwright and vivado. 
This time measure the implementation and the generation of DCP. 
For the Baseline LeNet and VGG, implementation time is the sum 
of Vivado’s opt_design, place_design, phys_opt_design and route_de-
sign functions. For the networks that are pre-implemented, since 
components have already implemented off-line, we only measure 
DCP generation with rapidwright and inter-component routing 
with vivado. With the pre-implemented flow, it takes 13.54 min 
(resp. 41.94 min) to generate LeNet (resp. VGG). There is a pro-
ductivity improvement of 69% for LeNet and 61% for VGG when 
using the pre-implemented flow. For LeNet (resp VGG), the stitch-
ing with RapiWright represents only 6.2% (resp. 8%) of the total 
time. RapidWright has minimal impact on the productivity. The 
biggest portion of the time is used to route the nets between com-
ponents.
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Table 4
Design Generation Time for implementation of LeNet and VGG with vi-
vado and the pre-implemented flow in seconds.

LeNet
Pre-Implemented Flow

Classic LeNet

RapidWright
Inter-node
Routing

Placement Routing

Time (min) 0.84 12.7 18.32 25.67
Ratio 6.2% 96.54% 39.6% 60.4%
Total (min) 13.54 (69% ↑) 45

VGG Pre-Implemented
Flow

Classic VGG

RapidWright Routing Placement Routing

Time (min) 5.27 35.67 8.77 128.23
Ratio 8.00% 92.00% 6.40% 93.60%
Total (min) 41.94 (61% ↑) 137.00

5.5. Performance

This section presents a comparison with FPGA designs that uti-
lize a batch size of 1, and we report simultaneously latency and 
Frequency. In Fig. 9, we present the performance of each compo-
nent as well as the pre-implemented LeNet. Overall, LeNet achieves 
up to 1.2× higher frequency than the classic stream-like archi-
tecture. The first convolution reaches 562 MHz. However, with 
a higher number of parameters (from 156 in conv1 to 2416 in 
conv2), the number of multiplications increases from 117600 to 
240000, and having a negative impact on the frequency. Further-
more, the frequency of the pre-built design is upper bounded by 
the slowest component in the design. Fig. 9 also present the vari-
ation of the latency in micro seconds (μs) of each component. The 
pre-implemented LeNet reaches a 16.3% lower latency.

The pre-implementing VGG has 1.17× higher frequency than 
the baseline VGG implementation, with a 23.19% lower latency 
(Figs. 11, 12). Hence, a given design reflecting the properties of 
modularity, module replication, and latency tolerance, a circuit 
generated with our approach will have better performance than 
the classic implementation. In contrary to LeNet, VGG has more 
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Table 5
VGG-16 Performance Comparison with state-of-art approaches.

Biookaghazadeh
et al. [4]

Super-LIP
[14]

ELB-NN [41] Caffeine [51]
McDanel
et al. [26]

fpgaConvNet
[40]

Venieris
et al. [39]

Cloud-DNN
[6]

Ours

FPGA Device Arria 10 ZCU102 ZC706 KU060 VC707 Zynq-7045 XC7Z045 XC7Z045 KU060
Architecture
Topology

SIMD Dataflow Dataflow SIMD SIMD Dataflow Dataflow
SIMD -
Dataflow

Dataflow

Fmax (MHz) 212 200 200 200 170 125 125 214 263
Data Precision
(bit)

8 - 16 16 4 8 5 16 16 16 8

DSP - 57.87% 33% (298) 38% (1058) 4% (112) 95% 100% (900) 78% 48%
BRAM - 92.43% 93 % (509) 56% (782) 81% (834) - - 74.4% 36%
LUTs - - 52% (112992) 60% (200K) 78% (239K) - 89% (216.60 K) 58.5% 40%
Latency (ms) 26.52 - 30.3 71.46 5.84 25.3 2.28 249.50 249.50 16.92 8.51
Throughput
(GOPS)

990 - 3.3 TOPS 365 - 155.81 123.12 1828.61 1059

Fig. 11. Performance Exploration of VGG.
and dense layers to place and route on the chip. When several 
design components must be spread around the chip, a rising is-
sue is how to deal with fabric discontinuities such as erratic tile 
patterns and I/O columns. Those discontinuities increase the dat-
apath and have a negative effect on the performance. Hence, in-
serting pipeline elements such as FFs on the critical path improves 
the timing performance, while increasing the overall latency. Even 
with a projecting higher latency, the proposing flow succeed on 
providing better performance.

To show the performance of our approach, we compare our 
implementation of VGG-16 with state-of-the art accelerators in Ta-
ble 5. For each work, we report the architecture topology, data 
precision, resource utilization and throughput in GOPS. Due to dif-
ferences in technology, hardware resources and system setup, it 
is hard to make an apple to apple comparison between differ-
ent implementations. But we list some recent works for qualitative 
reference. The latency here represents the time it takes for a sin-
gle frame inference. McDanel et al. [26] have the lowest latency. 
They can achieve such performance because they use a Selector-
Accumulator (SAC) for Multiplication-free Systolic Array. It reduces 
the number of operations by which 92× for VGG-16. We want 
highly that the SAC implementation can also be used to pre-
implement the components to achieve competitive results. When 
it comes to the throughput, ELB-NN [41] has the highest perfor-
mance of 3.3 TOPS with ultra-low data precision of 4 bit. Despite 
impressive throughput, the accuracy of the proposed circuit drops 
to 55.8%. Our work achieves a throughput of 1059 GOPS, which is 
lower than Cloud-DNN and ELB-NN. Nevertheless, it uses less than 
50% of the FPGA fabric, with 2× lower latency than Cloud-DNN. 
Overall, our paper has the best ration performance/resources, with 
the highest frequency.
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Fig. 12. VGG architecture with labelled components.

We also compare the FPGA energy efficiency to the existing de-
signs on FPGAs and CPU (Table 3). For fair comparison, we use 
GOP/WS as the standard metric. Our implementation using 8-bit 
fixed-point has the highest energy efficient over a batch of 1. De-
spite having a higher frequency than most of the design, our im-
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plementation has the smallest number of resources, which results 
in lower power consumption.

6. Conclusion

This paper proposes a pre-implemented flow based on a divide 
and conquers approach to accelerate model inference on FPGA. 
The flow takes as input an abstract representation of the CNN 
model inference to perform model mapping and design checkpoint 
generating, by assembling pre-implemented CNN components with 
RapidWright. With the pre-implemented flow, each component is 
implemented to reach maximum performance. Experiments and 
results show that our approach offers improvements in terms of 
latency and maximum frequency, with little to no impact on the 
number of resources used. Our workflow is designed in a modular 
fashion, allowing easy integration for new layer types.

However, there are still several aspects that we plan to investi-
gate with the goal of improving the current work, such as support-
ing a more exhaustive range of DNNs. Particularly an optimized 
and automated floor planning to achieve higher performance. Fur-
thermore, the maximum frequency of the pre-implemented net-
work is bounded by the slowest component of the design. We 
are planning to investigate optimization approaches to improve 
the performance of components during the function optimization 
stage. Furthermore, the input to this framework is a “CNN architec-
ture definition” we are working on extending our current flow to 
support other frameworks like ONNX and PyTorch. We also plan to 
expand our approach to utilize multiple FPGAs with larger models 
in the future.
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