
Journal of Parallel and Distributed Computing 167 (2022) 123–135

Contents lists available at ScienceDirect

Journal of Parallel and Distributed Computing

www.elsevier.com/locate/jpdc

Towards a component-based acceleration of convolutional neural
networks on FPGAs

Danielle Tchuinkou Kwadjo ∗, Erman Nghonda Tchinda, Joel Mandebi Mbongue,
Christophe Bobda

Electrical and Computer Engineering Department, University of Florida, Gainesville, 32603, FL, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 26 July 2021
Received in revised form 21 January 2022
Accepted 24 April 2022
Available online 6 May 2022

MSC:
0000
1111

Keywords:
FPGA
Data flow graph
CNN inference
Pre-implemented flow

In recent years, Convolution Neural Networks (CNN) have been extensively adopted in broad Artificial
Intelligence (AI) applications and have demonstrated ability and effectiveness in solving learning
problems. However, developing high-performance hardware accelerators on Field Programmable Gate
Array (FPGA) for CNNs often demands skills in hardware design and verification, accurate distribution
localization, and long development cycles. Besides, the depth of CNN architectures increases by reusing
and replicating several layers. In this work, we take advantage of the replication of CNN layers to achieve
improvement in design performance and productivity. We propose a programming flow for CNNs on
FPGA to generate high-performance accelerators by assembling CNN pre-implemented components as
a puzzle based on the graph topology. Using pre-implemented components allows us to use minimum
of resources, predict the performance, and gain in productivity since there is no need to synthesize
any Hardware Description Language (HDL) source code. Furthermore, the pre-implemented components
are reused for different range of applications, reducing the engineering time. Through prototyping, we
demonstrate the viability and relevance of our approach. Experiments show a productivity improvement
of up to 69% compared to a traditional FPGA implementation while achieving over 1.75× higher Fmax
with lower resources and higher energy efficiency.

© 2022 Elsevier Inc. All rights reserved.
1. Introduction

In recent years, the implementation of Convolutional Neural
Networks (CNN) on Field Programmable Gate Arrays (FPGAs) has
drawn considerable attention as the need for more efficiency and
accuracy is mitigated by the rapid increase in computational cost.
CNNs achieve higher quality of result (QoR) at the cost of sig-
nificant computing and memory requirements due to their deep
topological structures, complicated neural connections, and mas-
sive data to process [15,7]. As a result, to keep up with the ver-
satile performance needs of CNN applications in several domains
like image and video processing, hardware accelerators such as
Application-Specific Integrated Circuits (ASICs), FPGAs, and Graph-
ics Processing Units (GPUs) are increasingly used to improve the
throughput of the CNN network. Though ASICs and GPUs have
long been the default solution to speed up computation in high-
performance computing platforms, FPGAs are now a rising trend,
mainly due to their performance/watt advantage over GPUs and

* Corresponding author.
E-mail address: dtchuinkoukwadjo@ufl.edu (D. Tchuinkou Kwadjo).
https://doi.org/10.1016/j.jpdc.2022.04.025
0743-7315/© 2022 Elsevier Inc. All rights reserved.
flexibility over ASICs [3,8]. Furthermore, the continuous growth of
integration capacity in FPGA technology has led to the advent of
large devices capable of hosting millions of logic components and
thousands of hard IP blocks [47,27,12]. The innovation in FPGA
hardware architecture provides the basis for unprecedented flex-
ibility and acceleration in high-performance computing and em-
bedded system applications. It also requires computer-aided de-
sign (CAD) tools capable of extracting application and domain-
specific features to leverage the resources available in high-end
FPGAs. As the complexity of FPGA architectures increases, so is
the need for improved productivity and performance in several
computing domains such as image processing, financial analytics,
edge computing, and deep learning. However, vendor tools are pri-
marily general-purpose. They attempt to provide acceptable results
on various applications, which may not exploit application and
domain-specific characteristics to deliver higher QoR.

This paper presents a divide-and-conquer design flow that en-
ables application and domain-specific optimization on the design
of CNN architectures using Xilinx FPGAs. The proposed approach
follows three fundamental steps. The first step consists in divid-
ing the design into smaller components. The granularity of the
sub-components is left at the designer’s choice. Next, each com-

https://doi.org/10.1016/j.jpdc.2022.04.025
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2022.04.025&domain=pdf
mailto:dtchuinkoukwadjo@ufl.edu
https://doi.org/10.1016/j.jpdc.2022.04.025

D. Tchuinkou Kwadjo, E. Nghonda Tchinda, J. Mandebi Mbongue et al. Journal of Parallel and Distributed Computing 167 (2022) 123–135

Fig. 1. Motivation example. (a) Compilation time comparison. (b) Fmax comparison. The results from previous research show that the pre-implemented design flow with
RapidWright can lead to improved productivity and QoR compared to the traditional design flow with Vivado [25] (MM=Matrix Multiplication; OP=Outer Product; RC=Robert
Cross; SM=Smoothing).
ponent is synthesized and implemented. Finally, we generate the
targeted CNN architecture by assembling pre-built components
with minimal QoR loss to achieve various design goals such as
decreased latency, reduced power consumption, optimized maxi-
mum frequency, and low hardware utilization. Recent research has
demonstrated that such an approach provides improved QoR than
that of the traditional Vivado flow in some instances [18,25,16].
By pre-implementing specific components of a design, higher per-
formance is achieved locally and maintained with minimal loss
when assembling the final circuit. This observation is supported
by two major considerations: (1) vendor tools such as Vivado tend
to deliver high-performance results on small modules in a de-
sign [18,17]. (2) Computing applications such as CNN architectures
increase in size and complexity by replicating design modules.
By carefully selecting principal design modules found in common
CNNs, we leverage Vivado optimization to generate highly special-
ized implementations that can be combined into the desired CNN
topology.

As motivation example illustrating the advantages of the pre-
implemented flow, Fig. 1 summarizes a few results from the work
of Mandebi et al. [25]. It studies the compilation time and max-
imum frequency achieved when implementing FPGA accelerators
for matrix multiplication, outer product, Roberts Cross edge de-
tection, and image smoothing using the Vivado flow and the pre-
implemented flow with RapidWright. The results show that the
pre-implemented designs flow achieve up to 37% gain in produc-
tivity and 33% higher Fmax compared to compiling the same de-
signs with Vivado. While little details are provided on the choice
of granularity for the pre-built components, the work demon-
strated that pre-implementing modules could significantly improve
the QoR when exploiting application and domain-specific features.
However, the work only focused on micro kernels and small scale
applications [25]. As a result, it remains necessary to evaluate the
performance benefits of using the pre-implemented flow on more
complex data flow architectures such as CNN accelerators.

In the context of this work, we aim to explore the performance
that can be achieved when utilizing RapidWright in the design
flow of an FPGA accelerator for CNNs. Specifically, our contribu-
tion includes:

(1) Reviewing the design of CNN architectures on FPGAs: we will
explore the features of state-of-art CNNs that are suitable for
FPGA-based acceleration.

(2) Reviewing the pre-implemented flow with RapidWright: we
will discuss key steps to follow to efficiently leverage Rapid-
Wright in the design of crafted application and domain-specific
FPGA accelerators.
124
(3) A complete component-based framework that maps CNN mod-
els to FPGA implementations without tedious HDL program-
ming and verifications, while improving the QoR compared to
the traditional design flow with Vivado.

(4) An effective and efficient algorithm is proposed for high-
quality and scalable routability-drive placement of components
on FPGA

As opposed to vendor tools that are closed source, we believe
the access to RapidWright internal features and design resources
makes it suitable for design flow exploration and the implementa-
tion of targeted FPGA solutions.

2. Overview on CNN FPGA architectures

2.1. Architecture topology

CNN inference refers to the forward propagation of M input im-
ages through L layers. In recent years, multiple CNN architectures
on FPGA have been proposed [29,7]. They can be reviewed in two
categories: Single Instruction, Multiple Data-based (SIMD) accelerators
and streaming-based accelerators. In this section we highlight the
potential benefits of designing FPGA-based CNN architectures with
the pre-implemented flow, as well as the challenges that may arise.
We do not discuss any architecture implementation detail.

In general, the SIMD accelerators start by fetching feature
maps and weights from an external memory to on-chip buffers
[43,42,49]. The data is then streamed into computing engines com-
posed of several processing elements (PEs). The PEs typically im-
plement general-purpose matrix multiplication circuits in which
computations are scheduled to execute the CNN layers in sequence
[1,9]. At the end of the PE computations, the results are streamed
back to on-chip buffers and, if necessary, to the external memory
to be processed in subsequent CNN layers. Each PE is configurable
and has its own computing resources mainly using DSP blocks, and
data caching relying on on-chip registers. Computing engines are
usually composed of hundreds of identical PEs that are replicated
across the chip for accelerating specific layers of the CNN [32]. The
recurrence of components within CNN architectures makes them
suitable candidates for RapidWright implementation as the CNN
sub-modules can be optimized for performance, and the achieved
performance can be preserved when replicating and relocating the
modules across the FPGA. The main advantage of this approach is
its flexible, as it fits the implementation of various CNN topolo-
gies. However, the resulting CNN architecture has a major limita-
tion. It requires frequent memory transfer between FPGA on-chip
scratchpad memories and external memory (DDR/HBM) to fetch
the weights and feature maps. Furthermore, the layer-by-layer ex-
ecution flow makes real-time inference difficult.

D. Tchuinkou Kwadjo, E. Nghonda Tchinda, J. Mandebi Mbongue et al. Journal of Parallel and Distributed Computing 167 (2022) 123–135
Accelerators with the streaming architecture always tailor the
hardware with respect to the target network [26,29]. The topology
of such CNN accelerators is transformed into a layer-by-layer exe-
cution schedule, following the structure of the DAG [23]. Shen et al.
[35] note that FPGA-based acceleration used a Convolutional Layer
Engine (CLE) to process consecutive CNN layers one at a time. The
intermediate results between layers are stored in registers, on-chip
memory (OCM), or directly pipelined into the next layer. However,
since the dimension as well as filter parameters from consecutive
layers might be different, using a fixed CLE for all layers leads to
poor performance and inefficient utilization of resources. For an
L-layer CNN, they propose using Q CLEs, where Q < L, to maxi-
mize to BRAM availability for each CLEs. With Q < L, some layers
are replicated in the design, thus making this architecture suit-
able for the pre-implemented flow. In the same line of work, a
streamed accelerator [26,10] consists on a sequential execution of
all the layers of a given CNN. In the same line of work, fpgaCon-
vNet [40,38] framework generates a specialized circuit to run a
convolutional neural network given its high-level description. The
framework then partitions the network’s graph and generates dis-
tinct bitstreams for each part of the graph to dynamically configure
the FPGA. The architecture analyzes inter-output and kernel paral-
lelism. Given the area constraints associated with the design, fpga-
ConvNet shares MAC units to reduce required resources, which cre-
ates a trade-off between area and performance. The main advan-
tage of this type of architecture is to minimize the latency caused
by communication with off-chip memory and thereby, maximize
on-chip memory communication, ensuring high throughput and
avoiding any latency [33]. On the downside, this accelerator archi-
tecture cannot scale to arbitrarily large CNNs and can difficulty be
applied for embedded devices. It is essentially restricted by avail-
able on-chip resources needed to implement compute units for
each CNN layer, and critically, the size of OCM required to store
the weights.

In this work, we propose a framework to generate an accel-
erator with a streaming architecture. Regarding such accelerators,
several semi-automated design flows have been proposed in the
literature. In the section below, we review some of them.

2.2. Component-based approaches

Previous research has shown that pre-implementing specific de-
sign components are a practical approach to reduce FPGA compi-
lation time. [19,45]. The placement and routing of complex FPGA
designs on large devices is generally time consuming. Therefore,
component-based design flow is leveraged to reduce implementa-
tion time in FPGA architectures. Just In Time (JIT) [22] compilation
supplies the users with Domain Specific Language (DSL) to develop
FPGAs, linking the design patterns with precompiled bitstreams at
runtime. On top of the FPGAs, the overlay connects all the re-
configurable tiles similar to the switch boxes, but it only routes
word-wide data. In the same line of work, [45] presents a block-
based compilation framework to reduce compilation time through
partial reconfiguration (PR). The FPGA capacity is divided into a
set of regions of predefined size. The physical PR regions are dedi-
cated to the user logic. Finally, a packet-switched overlay network
provides connectivity between the PR regions. In [44], the authors
propose a placement model of pre-implemented components us-
ing set theory. The module placer is implemented as a constraint
solver, which computes feasible placement positions for relocat-
able modules. Most of the works presented above use a Network
On Chip (NOC) to interconnect the different components/modules,
adding additional logic. Furthermore, the number and the size of
PR regions are predefined, limiting the flexibility and might lead
to the under-utilization of the PR regions by components.
125
2.3. Design flows

To improve the compute units resources and data movement,
several optimizations [36,30] are employed on each layer of a given
CNN. FlexCNN [36,30], uses a SW/HW co-design approach to com-
pose an architecture for different types of convolution layers using
techniques including dynamic tiling and data layout optimization
across different layers. With OpenPose as an application driver,
they drive up effective DSP utilization on 3 × 3 − 1 × 1 kernel
to reach a lowest latency. Nguyen et al. [30] focus on two layer-
specific optimizations: layer-specific mixed data flow and layer-
specific mixed precision. The mixed data flow aims to minimize
the off-chip access while demanding a minimal OCM resource.
The mixed precision quantization achieves both a lossless accuracy
and model compression to reduce the off-chip accesses. Finally, a
Bayesian optimization approach is used to select the best sparsity
for each layer, achieving the best trade-off between accuracy and
compression.

Numerous works [50,5,34] present a multi-layer processor ap-
proach, in which a dedicated hardware unit processes each layer
to maximize the utilization of computing resources. Sine the OCM
is not enough for multiple hardware units, the data must be stored
in off-chip memory. Therefore, these works require a considerable
amount of memory access for data. Even they work fine for shal-
low networks; it is challenging to scale up to deeper networks.

Streaming dataflow aims to tailor the accelerator in regard to
the model topology. In this line of work, Sharma et al. [34] pro-
posed DNNWEAVER, a framework that automatically generates a
synthesizable accelerator for a given (DNN,FPGA) pair from a high-
level specification in Caffe. To achieve large benefits while pre-
serving automation, DNNWEAVER generates accelerators by using
a virtual instruction set to describe a network. The model is then
translated into an instruction sequence. The sequence is mapped
as hardware FSM states. The design flow in [23] searches the op-
timized parameter for a handcrafted Verilog template with the
input network description and platform constraint, which leads to
a uniform mapping of PEs that reduces the accelerator architec-
ture complexity. The acceleration strategy is further generalized
for different CNN models with varying dimensions and topology.
Ahmad et al. [2] analyze Winograd minimal filtering or fast con-
volution algorithms to reduce the arithmetic complexity of con-
volutional layers of CNNs. They propose a pipelined and parallel
Winograd convolution engine that improves the throughput and
power-efficiency while reducing the computational complexity of
the overall system. The proposed techniques focus on automati-
cally generate the HDL design based on the network parameters.
The main contribution of this approach is the selection of an inter-
mediate level description of the network to cover the gap between
high-level network description and low-level hardware design.

3. Pre-implemented flow with Vivado and RapidWright

In this section, we present RapidWright and describe its inte-
gration in common design steps with Vivado. We also elaborate
on background concepts such as the “out-of-context” design flow
in Vivado. Finally, we provide necessary discussion on the pre-
implementation of design components.

3.1. RapidWright

RapidWright [18] is an open source Java framework from Xil-
inx Research Labs that provides a bridge to Vivado backend at
different compilation stages (synthesis, optimization, placement,
routing, etc) using design checkpoint (DCP) files as illustrated in
Fig. 2. Once a DCP is loaded within RapidWright, the logical/phys-

D. Tchuinkou Kwadjo, E. Nghonda Tchinda, J. Mandebi Mbongue et al. Journal of Parallel and Distributed Computing 167 (2022) 123–135
Fig. 2. Vivado and RapidWright interaction.

ical netlist data structures and functions provided in the Rapid-
Wright APIs enable custom netlist manipulations such as cell and
net instantiation, edition, and deletion. The hundreds of APIs in
RapidWright make it possible to directly access logic and routing
resources such as look-up tables (LUT), flip-flops (FF) and pro-
grammable interconnect points (PIPs) from a high-level program-
ming language like Java. They also provide means to run some
operations such as timing analysis, placement, and routing. Upon
completing the netlist manipulation, RapidWright enables storing
the changes in a netlist into a new DCP that can directly be loaded
into Vivado.

3.2. Out-of-context design flow

The “out-of-context” (OOC) Flow [46] is a netlist generation
mode ensuring that the placement of I/O buffers is disabled at
compile time to facilitate the design of internal components of
an architecture. It has several advantages among which: (1) it al-
lows to implement and analyze (resource analysis, timing analysis,
power analysis, etc) a module independently of the rest of the de-
sign. (2) It enables reusing and preserving the characteristics of
placed and routed modules within a top-level design.

3.3. Pre-implementing design components

Vendor CAD tools such as Vivado use heuristics for the phys-
ical implementation (placement and routing). They consider the
number of cells in a design, their connections, and the physical
architecture of the target FPGA device to generate a circuit accord-
ing to specified constraints. Consequently, vendor tools generally
achieve better QoR on smaller designs as the resource alloca-
tion problem addressed in the physical implementation is well-
known to be NP-hard [28]. Focusing the optimization on smaller
modules may therefore lead to overall QoR improvement in a
design. Furthermore, several works in the literature have shown
that pre-implementing components or macros can significantly de-
crease the overall FPGA compilation time with performance bene-
fits [22,20,25]. The pre-implemented flow therefore aims to gen-
erate high-performance implementations by reusing in multiple
contexts and chip locations, high-quality and customized pre-built
circuits. Using an iterative process, the top-level design can then
be constructed by assembling the pre-built circuits with minimal
QoR loss.

To fully exploit the benefits of the pre-implemented flow with
RapidWright, the design architect must first restructure the CNN
HDL codes hierarchically. The reorganization of the HDL sources
must consider three main design characteristics [18] that are:

1. Modularity: highlights the design structure so that it can be
strategically mapped to architectural models.
126
2. Module replication: when modules are replicated, it allows the
reuse of high-quality solutions in the design while increasing
productivity.

3. Latency tolerance: if the modules in a design tolerate addi-
tional latency, inserting pipeline elements between them im-
proves both synchronization performance and offshoring.

4. Proposed design flow

In this section, we present the design exploration steps imple-
mented to optimize CNN components to fully exploit the benefit of
our approach. The overview of the pre-implemented flow is pre-
sented in Fig. 3. The flow has two major steps that are: function
optimization and architecture optimization. The function optimization
essentially consists in performing a design space exploration of
the performances that can be achieved on sub-functions. It takes
into consideration some design constraints such as device, timing,
floor planning, and power. If the design space exploration results
in satisfiable performance, the produced netlists are saved into a
database in the form of DCPs. This step is semi-manual as the de-
signer must choose and pre-compile the sub-functions in a design
using vendor tools. It is however performed exactly once, and the
saved netlists may serve in multiple designs. The architecture op-
timization is a fully automated process that aims to combine the
pre-built components (the netlists saved in the function optimiza-
tion phase) into a CNN architecture as defined by the users.

4.1. Function optimization

This section describes the major steps involved in the design of
optimized sub-functions.

4.1.1. Granularity exploration
The design space exploration only supports CNNs. A typical

CNN is usually composed of:

(1) Convolution: The convolution layer convolves the input image
with a set of learnable filters, each producing one feature map
in the output image.

(2) Pooling: Max-pooling splits the input image into a set of non-
overlapping rectangles and, for each of these sub-regions, out-
puts the maximum value.

(3) Rectified-Linear: Given an input value x, the ReLU is a simple
calculation that returns the value provided as input directly x if
x > 0 and 0 otherwise. Several ReLU functions exist and might
be employed.

(4) Fully Connected (FC): Each activation of a FC layer is the result
of a scalar product composed of input values, weights, and a
bias.

By porting these 4 layers onto the FPGA, the vast majority of
forward processing networks can be implemented on the FPGA.
The modules implementations should resolve around this mini-
mum of granularity. Automated decomposition of user logic into
leaf components is complementary future work.

4.1.2. Performance exploration
We start by manually building the CNN components OOC. The

OOC flow ensures that I/O buffers and global clocks resources are
not inserted into the netlists as the pre-built components are still
to be inserted within the top-level module of the design. While
efficiently designing components OOC requires hardware expertise,
it is done exactly once, and the pre-built netlists may be reused in
several other applications.

Optimization and implementation of components: the archi-
tecture of a convolution engine is depicted in Fig. 4a. The input

D. Tchuinkou Kwadjo, E. Nghonda Tchinda, J. Mandebi Mbongue et al. Journal of Parallel and Distributed Computing 167 (2022) 123–135

Fig. 3. General overview of the proposed design flow.

Fig. 4. Pre-implemented Design Components.
samples are read in a streaming fashion from the local buffer. For
a convolution of size K, at least K-1 lines of data must be fetched
before the circuit can process the first sample. All the computa-
tions performed before this are simply discarded through the use
of conditionals. Each line buffer can store up to K+1 data. When
a new sample is read, another sample is pushed out of the line
buffer. Interestingly, the newest sample is used in the calculation,
and then the sample is stored into the line buffer, and the old sam-
ple is ejected out. Therefore, it ensures that only K+1 lines must
be cached rather than an unknown number of lines and minimize
local storage use. Fig. 4b illustrates the Compute unit (CU) data
path of a convolution engine. It starts by multiplying the input
feature map data and the corresponding weights via the multi-
ple parallel multiplication arrays; then, the final cumulative values
are determined by the adder tree in a pipeline. Several slices of
CUs constitute the convolution engine. The 27x18 multiplier in
127
the DSP48E2 slice carries two parallel 8-bit multiplications that
share one common operand. Precisely, the two INT8 operands are
packed into the 27-bit port and then multiplied in parallel by the
third, shared INT8 operand in the 18-bit port. The output of the
DSP48E2 slice can generate two parallel products in a particular
full-precision dual-product format, reducing by half the number of
DSP48E2.

The design of the pooling layer is similar to [11] and is depicted
in Fig. 5. The designs flow presents an implementation of the max-
pooling in a stride of 2 samples. The main components of the
architecture are a shift register with only L+2 stages, a comparator
core, and a controller. The comparator core consists of three com-
parators for finding the maximum pixel value in the 2×2 window.
This circuit is implemented independently from the convolution
engine to accommodate most CNNs topologies. I/O interfaces of
components implement a producer-consumer scheme with a glob-

D. Tchuinkou Kwadjo, E. Nghonda Tchinda, J. Mandebi Mbongue et al. Journal of Parallel and Distributed Computing 167 (2022) 123–135
Fig. 5. Max-pooling Computing Engine.

ally asynchronous locally synchronous approach for weight storage,
whereby memory resources operate faster than the compute logic.
It then allows adjacent layers to start operation before the pro-
ducer layers are completed. Each layer feeds its output to the next
layer using similar datatype layouts and allows it to overlap in
their operation once enough data has been accumulated in the
previous layer. There is no need to store each layer’s intermedi-
ate results in off-chip memory with a streaming architecture since
they are directly piped down the stream.

To achieve high QoR in the performance exploration phase, the
implementation of components follows the following design con-
siderations:

(a) Strategic floorplanning: utilizing pblock constraints allows
carefully selecting the FPGA resources that will be used by
each design component. It helps improving the module-level
performance and area. Hence, the designer has the possibil-
ity to only use necessary resources as opposed to letting the
CAD tool utilize as many chip tiles as it wants. Given that
Xilinx architectures generally replicate the resource structures
(CLBs, DSPs, BRAM, URAM, etc) over an entire column of clock
regions (see Fig. 8), the smaller the area of a pblock is, the
more RapidWright will be capable of relocating the design
components across the chip, which increases the reusability.
The automated definition of pblock range is out of the scope
of this work.

(b) Strategic port planning: the placement of the ports when pre-
implementing modules are one of the most important steps to
ensure high performance and productivity improvement. Fail-
ure to plan the location of the ports of the pre-implemented
modules may result in long compilation time, poor perfor-
mance, and high congestion in the design in which they are
inserted.

As example, let us consider a design in which we pre-
implement the two sub-modules Module1 and Module2. In
order to preserve the QoR of the sub-modules in the final de-
sign, we should foresee the length of the nets connecting the
cells at the interface of the sub-modules. In fact, the maxi-
mum frequency is proportional to the highest delay on the
timing paths. We must therefore reduce the length of the net
between the modules by ensuring that the cells at the inter-
face of the pre-built components are placed near the edge
of the pblocks of the modules. However, the modules are
pre-implemented independently. Hence, the CAD tool is not
aware of the context in which the modules will be inserted
into a design and connected to other components. A pre-
implemented component may then achieve a high maximum
frequency in standalone but perform poorly when inserted
into a design because of very long inter-module nets. We
therefore pre-implement the modules with partition pin con-
128
straints (PartPins) [46] to specify the interconnect tiles that
will route the nets connecting to the other modules of a de-
sign. Fig. 6a presents a possible outcome of pre-implementing
the two sub-modules without considering the port planning.
The distance between the two FFs that are identified by the
green and red marks may become a source high delay, re-
sulting in reduced maximum frequency. On the other hand,
Fig. 6b shows that partpins make it possible to shorten the
length of the net, which decreases the Fmax degradation when
connecting the components in a design.

(c) Clock routing: to accurately run the timing analysis on the
OOC modules, source clock buffers must be specified using the
constraint HD.CLK_SRC. Though the buffers are not inserted
in the OOC modules, clock signals are partially routed to the
interconnect tiles and the timing analysis tool can then run
timing estimations.

(d) Logic locking: the main goal of the performance exploration
is to achieve high QoR locally. Once a module attains a desir-
able performance (Fmax , area, power, etc), we lock the place-
ment and routing to prevent Vivado from altering the design
later and preserve design performance. The other advantage of
locking the design is that the final inter-module routing with
Vivado will only consider non-routed nets. This decreases
compilation times and improves the productivity.

(e) Checkpoint file generation: pre-implemented modules are
stored in the form of DCPs. The top-level design will then
implement synthesis black-boxes that will be filled by the op-
timized pre-built modules.

The implementation here is done using vendor tools and con-
siders several constraints such as timing and floor planning. The
pblock partitioning is performed for each component according to
its needs in terms of hardware resources and the physical structure
of the FPGA. However, when synthesizing components OOC, there
is not control on how the I/O ports are placed. With pblocks and
timing constraints, I/O ports might be contained anywhere in the
pblock resulting in routing congestion and timing issues around
I/O interfaces when generating the whole design as described in
Section 4.2.

4.2. Architecture optimization

In this section, we discuss the generation of a CNN accelerator
based on user definition. The architecture optimization follows four
major stages that are: component extraction, component match-
ing, architecture composition, and inter-component routing. The
following paragraphs will elaborate on each of these phases.

4.3. Hardware generation

In this section, we discuss the generation of a CNN accelerator
based on user definition. The architecture optimization follows four
major stages: component extraction, component matching, archi-
tecture composition, and inter-component routing. The following
paragraphs will elaborate on each of these phases.

4.3.1. Component extraction
From the library of pre-built components, users compose the

CNNs hardware accelerator’s resources on FPGA. This implies pro-
viding information about the topology and the type of layers that
compose the CNN in a form that we call: “CNN architecture defini-
tion.” In the following stage, a CNN hardware generator designed
with the RapidWright C API automatically produces the corre-
sponding CNN accelerator. The major function of the Component
Extraction is to parse the CNN architecture definition from the DFG
specification and identify the components. It then creates a data

D. Tchuinkou Kwadjo, E. Nghonda Tchinda, J. Mandebi Mbongue et al. Journal of Parallel and Distributed Computing 167 (2022) 123–135
Fig. 6. Illustration of the importance of port planning. (a) Without PartPins, the FFs
are placed randomly, resulting in a high distancing. (b) Defining PartPins provides
context to Vivado when pre-implementing the modules, which results in shorter
distance between the FFs.

flow graph (DFG) structure in which the nodes represent the com-
ponents, and the edges account for the connections between them.
Each node of the graph can be a component candidate. Neverthe-
less, consecutive nodes in the graph can be pre-implemented as
one component if the data movement between them does not re-
quire a memory controller. In that case, a simple handshake proto-
col is enough to provide node-to-node communication with simply
single-source, single-sink FIFO queues with unbounded length. For
instance, the first convolution of LeNet outputs 6@28 × 28 features
maps, and pooling outputs 6@14 × 14 feature maps from a 2 ×
2 sliding windows. This architecture requires a memory controller
to compose the addresses to read/store the data from/to the mem-
ory and feed the FIFOs, as shown in Fig. 7. That constraint is not
required for the following ReLu, and the operation can be directly
applied to intermediate results of the pooling layers.

4.3.2. Component matching
The RapidWright application first parses the DFG using a

breath-first search (BFS) approach (Algorithm 1 line 1-10). This
enables efficiently discovering the components to load into the
CNN architecture as well as their connectivity. We choose the BFS
traversal as the DFGs representing CNN architectures are generally
deeper than wider. Each node is described with a set of charac-
teristics. For instance, a convolution is identified with information
such as input width and height, the number of channels, the kernel
size, the padding, and the strike. The hardware generator that we
implement with the RapidWright API loads the DCPs correspond-
ing to the components defined in the CNN architecture definition
from the database of pre-built checkpoints to compose the final
architecture.

To achieve physical hardware re-usability, some requirements
must be fulfilled: each component must implement a specific in-
terface to communicate with the other design modules. As shown
in Fig. 7, components are pre-implemented with two interfaces.
The first interface called “source”, is a dedicated memory controller
that read data from a memory and feed their computing units. The
second interface called “sink” controls the writing of feature maps
in OCM. Finally, since all the components implement a well-known
interface, we use the RapidWright API to create interconnections.
129
Fig. 7. Communication Interface between Components.

It is done by inserting specific nets in the netlist of the design
to implement logic routing between the different components that
communicate in the design (Algorithm 1 line 11-18). After stitch-
ing, the blocks are placed, a DCP file is generated, then read into
Vivado to complete the inter-component routing.

4.3.3. Component placement
The placement algorithm is based on Xilinx Ultrascale architec-

ture, which is an array of programmable logic blocks consisting of
configurable logic blocks (CLB), Embedded Memory (BRAM), and
multiplier (DSP) blocks. CLB slices are organized in a regular ar-
ray. Each connects to a switch box to access general routing re-
sources, which run vertically and horizontally between rows and
columns. The device is surrounded by I/O Blocks allowing off-chip
connections. DSP blocks and BRAMs are arranged in columnar-wise
and spread across the device. We aim to find a congestion-aware
timing-driven placement for components of the input graph.

Problem formulation Given an Utrascale FPGA with logic ele-
ments, its architecture, and a graph G of components, we need
to map the component’s netlist to the logic elements of the FPGA
and determine their positions to minimize routed wirelength and
congestion. In summary, (1) each component must be assigned to
a valid position on the FPGA, and (2) the placement legalization
rules of each tile are satisfied.

The algorithm works as follows: we recursively parse the in-
put graph and place the first component. Since components are
pre-implemented within pblocks, the number of resources used
and allocated is reported. For each adjacent component, we as-
sign a location on the FPGA grid, with minimal interconnect wire
length, i.e., the estimated half-perimeter wire length (HPWL) from
the placed cells locations. To fulfill that requirement, we define
timing and congestion cost functions to evaluate the cost of the
assigned location.

The timing cost is defined by the wire length between two com-
ponents.

D. Tchuinkou Kwadjo, E. Nghonda Tchinda, J. Mandebi Mbongue et al. Journal of Parallel and Distributed Computing 167 (2022) 123–135
Algorithm 1: Hardware generation Algorithm.
Input : Design d, Graph G, Node root
Output : DCP file

1 let Q be a queue ;
2 let t be the max number of iterations ;
3 mark root as discovered ;
4 Q.enqueue(root) ;
5 while Q.size() != 0 do
6 Node v = Q.dequeue() if v is the goal then
7 return v ;
8 end
9 ParseGraph (v, G, Q, 0);

10 end

11 Function ParseGraph(G, v, Q , iter):
12 q = locate an optimal placement for v;
13 addNodeToDesign(q);
14 Nodes w = G.Next();
15 foreach edges from v to w do
16 if w is not marked then

17 p = locate an optimal placement for w;
18 addNodeToDesign(p);
19 Ports ports_v = selectPortOfInterest (v);
20 Ports ports_w = selectPortOfInterest (w);
21 nets = create_nets (ports_v, ports_w, v, w);
22 timing, cost = TimingEstimation (nets, v, w);
23 if (not (timing & cost) & (iter < t)) then

24 iter ++;
25 p = G.Previous();
26 ParseGraph (G, p, Q);
27 end
28 mark w as discovered ;
29 w.parent = v ;
30 Q.enqueue(w) ;
31 end
32 end
33 End Function

34 Function TimingEstimation(nets, v, w):
35 foreach net ∈ nets do
36 if size(net) > 1 then
37 timing = getTileSize();
38 else
39 timing = timing_cost(nets);
40 end
41 cost = cgtcost (v, w);
42 end
43 return (timing, cost)
44 End Function

timing_cost =
n−1∑

i=1,i< j

H PW L(Wi, j) (1)

Where Wi, j is the wire between component i and j (distance from
physical net’s source pin to sink pin). A fan-out greater than one
will in most cases, have some branching farther (reusing a path).
In this case, the unit of length is the dimension size of a tile.

Congestion estimation for optimal routing, a placement algorithm
must consider the number of resources used by each inter-
component nets and the interaction between them. For instance, if
all nets are limited to a relatively small portion of the chip area,
the routing path request will probably be very high. Furthermore,
the number of switch boxes to traverse factor into the total de-
lay [48]. The algorithm tries to build a solution incrementally, one
component at a time, removing those solutions that fail to satisfy
the problem’s constraints at any point in time. A placement is val-
idated if the costs are lower than a defined threshold. Otherwise,
for each previously placed component, we unplaced them, find an-
other location, until the costs are satisfied. After a certain number
of predefined iterations, if not placement satisfying the constraints
130
Fig. 8. Xilinx Ultrascale Architecture.

is found, we move to the next component. The proposed solution
works as follows: we recursively parse the input graph and place
the first component (Line 3-13). For each adjacent component, we
assign a valid location on the FPGA grid (Line 14-18). We evaluate
the cost of the current assignment (Line 22). If the placement sat-
isfies the constraints (timing and congestion cost), we move to the
next component (Line 28-30). Otherwise, we recursively unplace
previous components and try to find another location (Line 23-27).

cgtcoef =
∑

i

Ci

cgt_cost =
∑

Wi, j

ωi, j × cgtcoef k
#SwBox

(2)

Where Ci is the number of components overlapping within a
tilek , ωi, j is a weight proportional to the number of pins of wire
Wi, j , and #SwBox is the number of switch boxes traversed by the
nets.

Although RapidWright provides a lightweight timing model [24],
it works at the BEL level, which is more fine-grained than what is
required here.

4.3.4. Datapath regularization
To reduce overall latency and data management overhead, dat-

apaths must be regularized. Each component comes with its own
latency in number of clock cycles. We must therefore ensure that
operands arrive at the boundary of each component at the same
time to expect correct results. This task is done by inserting FFs
on the critical path. Inserting FFs do not increase overall latency as
the number of FFs is the cumulative latency of operations on the
datapath.

4.3.5. Inter-component routing
After the architecture composition, the design contains all the

necessary CNN modules. Each design module still has the logic and
the internal routing locked. However, the RapidWright hardware
generator only enables the logic routing between the components.
While recent updates in the RapidWright API provide some func-
tions to route the designs, the routing heuristics are still a work
in progress and are not as mature as Vivado. We, therefore, utilize
Vivado for the final routing, which essentially consists in finding
FPGA interconnects to implement the logic routes created within
RapidWright in a way that minimizes timing delays.

D. Tchuinkou Kwadjo, E. Nghonda Tchinda, J. Mandebi Mbongue et al. Journal of Parallel and Distributed Computing 167 (2022) 123–135

Table 1
FPGA Resource Utilization.

CLB LUTs CLB Registers BRAMs DSPs

Data Precision 8 bit

LeNet 17005 (7.90%) 7591 (1.61%) 109 (18.44%) 121 (5.22%)
Pre-implemented
LeNet

14533
(14.89%) ↓

6847
(9.57%) ↓ 104 (5.43%) ↓ 121.00 ⇔

VGG-16 100767 (41.35%) 151646 (38.80%) 462 (37.84%) 986 (50.83%)

Pre-implemented VGG-16
85204
(15.44%) ↓

121879
(11.25%)↓

437
(2.07%)↓

935
(1.12%) ↓
5. Experimental results

5.1. Evaluation platform and setup

For evaluation purposes, designs are implemented on a Xilinx
FPGA XCKU060. The hardware is generated using Vivado v2019.2
and RapidWright v2019.1, and the components are implemented
with vivado HLS. The hardware generation is conducted on a com-
puter equipped with an Intel Corei7-9700K CPU@3.60GHz×4 pro-
cessor and 32GB of RAM.

5.2. Benchmarks

We study two CNN architectures: LeNet [21] and VGG [37]. We
run applications individually with the purpose of assessing achiev-
able performances, in particular: (1) global latency, (2) Maximum
Frequency (Fmax) and productivity and (3) resource utilization,
when comparing pre-implemented to full implemented CNNs. For
both networks, we use a 8 bit data precision. Table 2 presents the
different the workload and the requirement in terms of memory
of the two networks. We compare the pre-implemented circuits
to the corresponding classic implementation. Here, a classic imple-
mentation refers to a circuit generated from a single top level file,
following the vivado design flow [13].

5.2.1. LeNet architecture
It’s built by replication of four main modules: (1) The convo-

lution: this module performs the convolution computing using a
systolic array architecture. The fully connecting layers are also im-
plemented as convolution, with the kernel size equal to input data
size. (2) The max pool layers, (3) The relu layers, (4) The mem-
ory_managment unit, jogging around the input data, and feed the
computing units. The weights and biases are hard coded in ROM.
This choice has been decided out of simplicity

5.2.2. VGG-16 architecture
VGG consists of 16 convolutional layers and is very appealing

for the pre-implemented flow because of its very uniform archi-
tecture. Input images are passed through a stack of convolutional
layers with the fixed filter size of 3×3 and the stride of 1. There
are five max pooling filters built-in between convolutional layers.
The stack of convolutional layers is followed by 3 fully connected
layers. Each convolution layer is made of 2 or 3 convolutions with
same parameters, followed by a pooling layer. The replicability of
layers within VGG suits the pre-implemented flow. With 124 M of
weights, there is not enough resources on-chip to store them. We
use off-chip memory to store the coefficient data and data layout
configuration files. The coefficient data files contain the parame-
ters of each layer and the data layout configuration files include
the size of the input feature map and the output feature map, as
well as the shape of the tensor coefficients. The off-chip memory
allocation is based on a Best-Fit with Coalescing algorithm. The
goal of this allocator is to support defragmentation via coalescing.
The principle behind this algorithm is to divide the memory into
131
Table 2
Computational hardware resources for
state-of-art DNNs.

LeNet-5 VGG-16

CONV Layer 2 16
weights 26 K 14.7 M
MACs 1.9 M 15.3 G
FC Layers 2 3
weights 406 K 124 M
MACs 405 K 124 M
Total Weights 431 K 138 M
Total MACs 2,3 M 15.5 G

a series of memory blocks, each of which is managed by a block
data structure. From the block structure, information such as the
base address of the memory block, the state of use of the memory
block, the size of the block, the pointer on the previous block and
the following can be obtained. All memory can be represented by
a block structure with a double-link list.

5.3. Resource utilization

Pre-implementing basic components have the potentiality of
reducing resource utilization as shown in Table 1. The classic im-
plementation LeNet and VGG use respectively 7.90% and 41.35% of
LUTs, 1.61% and 17.80% of registers. The pre-implemented version
of LeNet uses less than 14.89% of LUTs and 9.57% of registers (resp.
VGG uses less 9.09% of LUTs and 11.255% of registers) when com-
pared to the classic implementation. Overall, the pre-implement
networks use less resources than the baseline implementation.
When the design is small, vivado can provide a better optimiza-
tion of the resources. Furthermore, when pre-implementing com-
ponents, we define pblocks, which limit the amount of resources
that vivado can use and hence, forcing some area optimizations.
When the design is bigger, vivado tends to maximize the capacity
of adaptation and becomes difficult to capture all its specificities.
A snapshot of Lenet of the FPGA fabric is shown in Fig. 10.

LeNet uses 18.44% of the BRAM available on the chip. This is
simply because the weights and biases are hard coded in ROM
and uses more resources. The pre-implemented LeNet (resp pre-
implemented VGG) uses 5.43% less BRAM (resp. 37.84%). Vivado
can optimize individual component IR without BRAM insertion
while adding such resources when compiling bigger design, which
translates into a higher power consumption. The amount of DPS
is the same for LeNet implementation. However, we notice a slight
decrease of 1.12% the pre-implemented VGG. By defining pblock for
each component, we sometimes provide more DSPs than needed
to have enough resources to place the design. This is due to the
topology of Xilinx FPGA which are organized column-wise.

5.4. Productivity

With the continuous growth of CNNs parameters and depth,
improving the productivity is an important factor when it comes

D. Tchuinkou Kwadjo, E. Nghonda Tchinda, J. Mandebi Mbongue et al. Journal of Parallel and Distributed Computing 167 (2022) 123–135

Fig. 9. Performance Exploration of LeNet.

Table 3
Energy Efficiency Comparison.

CPU Cloud-DNN [6] Caffeine [51]
Biookaghazadeh
et al. [4]

Zhu et al. [52] Pang et al. [31] Ours

FPGA Device - XC7Z045 KU060 Arria 10 ZCU102 VC707 KU060
Data Precision float 16 16 8/16 16 16 8
Power (W) 140 49.25 26 23 23.6 8.152 25.2
Energy Efficiency
(GOPS/W)

1.36 37.13 28.85 39.1 13.05 23.1 42
Fig. 10. Lenet circuit on FPGA fabric.

to hardware design. In this section, we show how the proposed
flow can leverage component reuse to reduce both compile time
and implementation cycles. Table 4 presents the time in seconds to
generate the design checkpoint with both rapidwright and vivado.
This time measure the implementation and the generation of DCP.
For the Baseline LeNet and VGG, implementation time is the sum
of Vivado’s opt_design, place_design, phys_opt_design and route_de-
sign functions. For the networks that are pre-implemented, since
components have already implemented off-line, we only measure
DCP generation with rapidwright and inter-component routing
with vivado. With the pre-implemented flow, it takes 13.54 min
(resp. 41.94 min) to generate LeNet (resp. VGG). There is a pro-
ductivity improvement of 69% for LeNet and 61% for VGG when
using the pre-implemented flow. For LeNet (resp VGG), the stitch-
ing with RapiWright represents only 6.2% (resp. 8%) of the total
time. RapidWright has minimal impact on the productivity. The
biggest portion of the time is used to route the nets between com-
ponents.
132
Table 4
Design Generation Time for implementation of LeNet and VGG with vi-
vado and the pre-implemented flow in seconds.

LeNet
Pre-Implemented Flow

Classic LeNet

RapidWright
Inter-node
Routing

Placement Routing

Time (min) 0.84 12.7 18.32 25.67
Ratio 6.2% 96.54% 39.6% 60.4%
Total (min) 13.54 (69% ↑) 45

VGG Pre-Implemented
Flow

Classic VGG

RapidWright Routing Placement Routing

Time (min) 5.27 35.67 8.77 128.23
Ratio 8.00% 92.00% 6.40% 93.60%
Total (min) 41.94 (61% ↑) 137.00

5.5. Performance

This section presents a comparison with FPGA designs that uti-
lize a batch size of 1, and we report simultaneously latency and
Frequency. In Fig. 9, we present the performance of each compo-
nent as well as the pre-implemented LeNet. Overall, LeNet achieves
up to 1.2× higher frequency than the classic stream-like archi-
tecture. The first convolution reaches 562 MHz. However, with
a higher number of parameters (from 156 in conv1 to 2416 in
conv2), the number of multiplications increases from 117600 to
240000, and having a negative impact on the frequency. Further-
more, the frequency of the pre-built design is upper bounded by
the slowest component in the design. Fig. 9 also present the vari-
ation of the latency in micro seconds (μs) of each component. The
pre-implemented LeNet reaches a 16.3% lower latency.

The pre-implementing VGG has 1.17× higher frequency than
the baseline VGG implementation, with a 23.19% lower latency
(Figs. 11, 12). Hence, a given design reflecting the properties of
modularity, module replication, and latency tolerance, a circuit
generated with our approach will have better performance than
the classic implementation. In contrary to LeNet, VGG has more

D. Tchuinkou Kwadjo, E. Nghonda Tchinda, J. Mandebi Mbongue et al. Journal of Parallel and Distributed Computing 167 (2022) 123–135

Table 5
VGG-16 Performance Comparison with state-of-art approaches.

Biookaghazadeh
et al. [4]

Super-LIP
[14]

ELB-NN [41] Caffeine [51]
McDanel
et al. [26]

fpgaConvNet
[40]

Venieris
et al. [39]

Cloud-DNN
[6]

Ours

FPGA Device Arria 10 ZCU102 ZC706 KU060 VC707 Zynq-7045 XC7Z045 XC7Z045 KU060
Architecture
Topology

SIMD Dataflow Dataflow SIMD SIMD Dataflow Dataflow
SIMD -
Dataflow

Dataflow

Fmax (MHz) 212 200 200 200 170 125 125 214 263
Data Precision
(bit)

8 - 16 16 4 8 5 16 16 16 8

DSP - 57.87% 33% (298) 38% (1058) 4% (112) 95% 100% (900) 78% 48%
BRAM - 92.43% 93 % (509) 56% (782) 81% (834) - - 74.4% 36%
LUTs - - 52% (112992) 60% (200K) 78% (239K) - 89% (216.60 K) 58.5% 40%
Latency (ms) 26.52 - 30.3 71.46 5.84 25.3 2.28 249.50 249.50 16.92 8.51
Throughput
(GOPS)

990 - 3.3 TOPS 365 - 155.81 123.12 1828.61 1059

Fig. 11. Performance Exploration of VGG.
and dense layers to place and route on the chip. When several
design components must be spread around the chip, a rising is-
sue is how to deal with fabric discontinuities such as erratic tile
patterns and I/O columns. Those discontinuities increase the dat-
apath and have a negative effect on the performance. Hence, in-
serting pipeline elements such as FFs on the critical path improves
the timing performance, while increasing the overall latency. Even
with a projecting higher latency, the proposing flow succeed on
providing better performance.

To show the performance of our approach, we compare our
implementation of VGG-16 with state-of-the art accelerators in Ta-
ble 5. For each work, we report the architecture topology, data
precision, resource utilization and throughput in GOPS. Due to dif-
ferences in technology, hardware resources and system setup, it
is hard to make an apple to apple comparison between differ-
ent implementations. But we list some recent works for qualitative
reference. The latency here represents the time it takes for a sin-
gle frame inference. McDanel et al. [26] have the lowest latency.
They can achieve such performance because they use a Selector-
Accumulator (SAC) for Multiplication-free Systolic Array. It reduces
the number of operations by which 92× for VGG-16. We want
highly that the SAC implementation can also be used to pre-
implement the components to achieve competitive results. When
it comes to the throughput, ELB-NN [41] has the highest perfor-
mance of 3.3 TOPS with ultra-low data precision of 4 bit. Despite
impressive throughput, the accuracy of the proposed circuit drops
to 55.8%. Our work achieves a throughput of 1059 GOPS, which is
lower than Cloud-DNN and ELB-NN. Nevertheless, it uses less than
50% of the FPGA fabric, with 2× lower latency than Cloud-DNN.
Overall, our paper has the best ration performance/resources, with
the highest frequency.
133
Fig. 12. VGG architecture with labelled components.

We also compare the FPGA energy efficiency to the existing de-
signs on FPGAs and CPU (Table 3). For fair comparison, we use
GOP/WS as the standard metric. Our implementation using 8-bit
fixed-point has the highest energy efficient over a batch of 1. De-
spite having a higher frequency than most of the design, our im-

D. Tchuinkou Kwadjo, E. Nghonda Tchinda, J. Mandebi Mbongue et al. Journal of Parallel and Distributed Computing 167 (2022) 123–135
plementation has the smallest number of resources, which results
in lower power consumption.

6. Conclusion

This paper proposes a pre-implemented flow based on a divide
and conquers approach to accelerate model inference on FPGA.
The flow takes as input an abstract representation of the CNN
model inference to perform model mapping and design checkpoint
generating, by assembling pre-implemented CNN components with
RapidWright. With the pre-implemented flow, each component is
implemented to reach maximum performance. Experiments and
results show that our approach offers improvements in terms of
latency and maximum frequency, with little to no impact on the
number of resources used. Our workflow is designed in a modular
fashion, allowing easy integration for new layer types.

However, there are still several aspects that we plan to investi-
gate with the goal of improving the current work, such as support-
ing a more exhaustive range of DNNs. Particularly an optimized
and automated floor planning to achieve higher performance. Fur-
thermore, the maximum frequency of the pre-implemented net-
work is bounded by the slowest component of the design. We
are planning to investigate optimization approaches to improve
the performance of components during the function optimization
stage. Furthermore, the input to this framework is a “CNN architec-
ture definition” we are working on extending our current flow to
support other frameworks like ONNX and PyTorch. We also plan to
expand our approach to utilize multiple FPGAs with larger models
in the future.

CRediT authorship contribution statement

Danielle Tchuinkou Kwadjo: Conceptualization, Methodology,
Software. Erman Nghonda: Software, Writing – Reviewing. Joel
Mandebi Mbongue: Validation, Writing – Reviewing and Editing.
Christophe Bobda: Supervision, Resources.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgment

This work was funded by the National Science Foundation (NSF)
under Grant CNS 2007320.

References

[1] K. Abdelouahab, M. Pelcat, J. Serot, F. Berry, Accelerating cnn inference on fp-
gas: a survey, preprint, arXiv:1806 .01683, 2018.

[2] A. Ahmad, M.A. Pasha, Towards design space exploration and optimization of
fast algorithms for convolutional neural networks (cnns) on fpgas, in: 2019
Design, Automation & Test in Europe Conference & Exhibition (DATE), IEEE,
2019, pp. 1106–1111.

[3] P. Bhowmik, J.H. Pantho, J.M. Mbongue, C. Bobda, Esca: event-based split-cnn
architecture with data-level parallelism on ultrascale+ fpga, in: 2021 IEEE 29th
Annual International Symposium on Field-Programmable Custom Computing
Machines (FCCM), IEEE, 2021, pp. 176–180.

[4] S. Biookaghazadeh, P.K. Ravi, M. Zhao, Toward multi-fpga acceleration of the
neural networks, ACM J. Emerg. Technol. Comput. Syst. 17 (2) (2021) 1–23.

[5] M. Blott, T.B. Preußer, N.J. Fraser, G. Gambardella, K. O’brien, Y. Umuroglu, M.
Leeser, K. Vissers, Finn-r: an end-to-end deep-learning framework for fast ex-
ploration of quantized neural networks, ACM Trans. Reconfigurable Technol.
Syst. 11 (3) (2018) 1–23.

[6] Y. Chen, J. He, X. Zhang, C. Hao, D. Chen, Cloud-dnn: an open framework for
mapping dnn models to cloud fpgas, in: Proceedings of the 2019 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, 2019, pp. 73–82.
134
[7] Y. Chen, Y. Xie, L. Song, F. Chen, T. Tang, A survey of accelerator architectures
for deep neural networks, Engineering 6 (3) (2020) 264–274.

[8] J. Fowers, G. Brown, P. Cooke, G. Stitt, A performance and energy comparison of
fpgas, gpus, and multicores for sliding-window applications, in: Proceedings of
the ACM/SIGDA International Symposium on Field Programmable Gate Arrays,
2012, pp. 47–56.

[9] P. Haghi, T. Geng, A. Guo, T. Wang, M. Herbordt, Fp-amg: fpga-based accel-
eration framework for algebraic multigrid solvers, in: 2020 IEEE 28th Annual
International Symposium on Field-Programmable Custom Computing Machines
(FCCM), IEEE, 2020, pp. 148–156.

[10] S. Hussain, M. Javaheripi, P. Neekhara, R. Kastner, F. Koushanfar, Fastwave:
accelerating autoregressive convolutional neural networks on fpga, preprint,
arXiv:2002 .04971, 2020.

[11] W.-J. Hwang, Y.-J. Jhang, T.-M. Tai, An efficient fpga-based architecture for
convolutional neural networks, in: 2017 40th International Conference on
Telecommunications and Signal Processing (TSP), IEEE, 2017, pp. 582–588.

[12] Intel, Intel arria 10 product table, https://www.intel .com /content /dam /www /
programmable /us /en /pdfs /literature /pt /arria -10 -product -table .pdf, 2018.

[13] D.I.S.U. IP, Vivado design suite user guide, UG892 (v2020.2), 2021.
[14] W. Jiang, E.H.-M. Sha, X. Zhang, L. Yang, Q. Zhuge, Y. Shi, J. Hu, Achieving

super-linear speedup across multi-fpga for real-time dnn inference, ACM Trans.
Embed. Comput. Syst. 18 (5s) (2019) 1–23.

[15] H. Kung, B. McDanel, S.Q. Zhang, X. Dong, C.C. Chen, Maestro: a memory-on-
logic architecture for coordinated parallel use of many systolic arrays, in: 2019
IEEE 30th International Conference on Application-Specific Systems, Architec-
tures and Processors (ASAP), vol. 2160, IEEE, 2019, pp. 42–50.

[16] D.T. Kwadjo, J.M. Mbongue, C. Bobda, Performance exploration on pre-
implemented cnn hardware accelerator on fpga, in: 2020 International Con-
ference on Field-Programmable Technology (ICFPT), IEEE, 2020, pp. 298–299.

[17] D.T. Kwadjo, J.M. Mbongue, C. Bobda, Exploring a layer-based pre-implemented
flow for mapping cnn on fpga, in: 2021 IEEE International Parallel and Dis-
tributed Processing Symposium Workshops (IPDPSW), IEEE, 2021, pp. 116–123.

[18] C. Lavin, A. Kaviani, Rapidwright: enabling custom crafted implementations
for fpgas, in: 2018 IEEE 26th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), IEEE, 2018, pp. 133–140.

[19] C. Lavin, M. Padilla, S. Ghosh, B. Nelson, B. Hutchings, M. Wirthlin, Using hard
macros to reduce fpga compilation time, in: 2010 International Conference on
Field Programmable Logic and Applications, IEEE, 2010, pp. 438–441.

[20] C. Lavin, M. Padilla, J. Lamprecht, P. Lundrigan, B. Nelson, B. Hutchings, Hm-
flow: accelerating fpga compilation with hard macros for rapid prototyping, in:
2011 IEEE 19th Annual International Symposium on Field-Programmable Cus-
tom Computing Machines, IEEE, 2011, pp. 117–124.

[21] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to
document recognition, Proc. IEEE 86 (11) (1998) 2278–2324.

[22] S. Ma, Z. Aklah, D. Andrews, Just in time assembly of accelerators, in: Proceed-
ings of the 2016 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, 2016, pp. 173–178.

[23] Y. Ma, Y. Cao, S. Vrudhula, J.-s. Seo, An automatic rtl compiler for high-
throughput fpga implementation of diverse deep convolutional neural net-
works, in: 2017 27th International Conference on Field Programmable Logic
and Applications (FPL), IEEE, 2017, pp. 1–8.

[24] P. Maidee, C. Neely, A. Kaviani, C. Lavin, An open-source lightweight tim-
ing model for rapidwright, in: 2019 International Conference on Field-
Programmable Technology (ICFPT), IEEE, 2019, pp. 171–178.

[25] J.M. Mbongue, D.T. Kwadjo, C. Bobda, Automatic generation of application-
specific fpga overlays with rapidwright, in: 2019 International Conference on
Field-Programmable Technology (ICFPT), IEEE, 2019, pp. 303–306.

[26] B. McDanel, S.Q. Zhang, H. Kung, X. Dong, Full-stack optimization for accelerat-
ing cnns using powers-of-two weights with fpga validation, in: Proceedings of
the ACM International Conference on Supercomputing, 2020, pp. 449–460.

[27] Microsoft, Project catapult, https://www.microsoft .com /en -us /research /project /
project -catapult/, 2018.

[28] G. Miranda, H.P.L. Luna, G.R. Mateus, R.P.M. Ferreira, A performance guaran-
tee heuristic for electronic components placement problems including thermal
effects, Comput. Oper. Res. 32 (11) (2005) 2937–2957.

[29] S. Mittal, A survey of fpga-based accelerators for convolutional neural net-
works, Neural Comput. Appl. (2020) 1–31.

[30] D.T. Nguyen, H. Kim, H.-J. Lee, Layer-specific optimization for mixed data flow
with mixed precision in fpga design for cnn-based object detectors, IEEE Trans.
Circuits Syst. Video Technol. (2020).

[31] W. Pang, C. Wu, S. Lu, An energy-efficient implementation of group pruned
cnns on fpga, IEEE Access 8 (2020) 217033–217044.

[32] M.J.H. Pantho, P. Bhowmik, C. Bobda, Towards an efficient cnn inference archi-
tecture enabling in-sensor processing, Sensors 21 (6) (2021) 1955.

[33] L. Petrica, T. Alonso, M. Kroes, N. Fraser, S. Cotofana, M. Blott, Memory-efficient
dataflow inference for deep cnns on fpga, in: 2020 International Conference on
Field-Programmable Technology (ICFPT), IEEE, 2020, pp. 48–55.

[34] H. Sharma, J. Park, D. Mahajan, E. Amaro, J.K. Kim, C. Shao, A. Mishra, H. Es-
maeilzadeh, From high-level deep neural models to fpgas, in: The 49th Annual
IEEE/ACM International Symposium on Microarchitecture, IEEE Press, 2016,
p. 17.

http://refhub.elsevier.com/S0743-7315(22)00109-5/bib8B2A08ABB56C53C5C6F6348F2EEC96EDs1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib8B2A08ABB56C53C5C6F6348F2EEC96EDs1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib34B97EF6F86C218ECEC0E34E6D354E62s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib34B97EF6F86C218ECEC0E34E6D354E62s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib34B97EF6F86C218ECEC0E34E6D354E62s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib34B97EF6F86C218ECEC0E34E6D354E62s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bibE49125E512A649F3C6BA9D7EE6501D61s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bibE49125E512A649F3C6BA9D7EE6501D61s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bibE49125E512A649F3C6BA9D7EE6501D61s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bibE49125E512A649F3C6BA9D7EE6501D61s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bibFF478B0E62EA1C7444F61494E9DEB5E5s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bibFF478B0E62EA1C7444F61494E9DEB5E5s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib876BC5917A336F0F18888B8DBB407D00s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib876BC5917A336F0F18888B8DBB407D00s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib876BC5917A336F0F18888B8DBB407D00s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib876BC5917A336F0F18888B8DBB407D00s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib21E6FD76128B7481ABE757F1F50F763Cs1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib21E6FD76128B7481ABE757F1F50F763Cs1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib21E6FD76128B7481ABE757F1F50F763Cs1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bibE102DC054875B0160BECF379A10755FBs1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bibE102DC054875B0160BECF379A10755FBs1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib62E1B6393BDE326AAA06A7C1BE0A65EFs1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib62E1B6393BDE326AAA06A7C1BE0A65EFs1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib62E1B6393BDE326AAA06A7C1BE0A65EFs1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib62E1B6393BDE326AAA06A7C1BE0A65EFs1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib486F9D13527F10C48985342CCF01C537s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib486F9D13527F10C48985342CCF01C537s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib486F9D13527F10C48985342CCF01C537s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib486F9D13527F10C48985342CCF01C537s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib40D3BA30C9C3C7FD95B65A9C4AD5D210s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib40D3BA30C9C3C7FD95B65A9C4AD5D210s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib40D3BA30C9C3C7FD95B65A9C4AD5D210s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bibD9C6EB4965607DB80881B5E4647415B2s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bibD9C6EB4965607DB80881B5E4647415B2s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bibD9C6EB4965607DB80881B5E4647415B2s1
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/pt/arria-10-product-table.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/pt/arria-10-product-table.pdf
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib293BC5B8D14BB7B04D05D7E71EC4D9F8s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib293BC5B8D14BB7B04D05D7E71EC4D9F8s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib293BC5B8D14BB7B04D05D7E71EC4D9F8s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib079E1FFFBA5E938AE0AAECF3F679B5F7s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib079E1FFFBA5E938AE0AAECF3F679B5F7s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib079E1FFFBA5E938AE0AAECF3F679B5F7s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib079E1FFFBA5E938AE0AAECF3F679B5F7s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib4A216E0617067FAAC2C4A3E6719A6259s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib4A216E0617067FAAC2C4A3E6719A6259s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib4A216E0617067FAAC2C4A3E6719A6259s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib10C5C409CAA3AE4DF89B6C84578C8F7Ds1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib10C5C409CAA3AE4DF89B6C84578C8F7Ds1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib10C5C409CAA3AE4DF89B6C84578C8F7Ds1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib50837E91ECC1852C8CB9DF7DD6216187s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib50837E91ECC1852C8CB9DF7DD6216187s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib50837E91ECC1852C8CB9DF7DD6216187s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib3352F7386C135A94D7EC63CCF7B8F450s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib3352F7386C135A94D7EC63CCF7B8F450s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib3352F7386C135A94D7EC63CCF7B8F450s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bibF63AF834A0872AD9CAEF32860721D3C2s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bibF63AF834A0872AD9CAEF32860721D3C2s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bibF63AF834A0872AD9CAEF32860721D3C2s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bibF63AF834A0872AD9CAEF32860721D3C2s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib7B42ED56A34BFDA82DAF0C91BCFA6FA7s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib7B42ED56A34BFDA82DAF0C91BCFA6FA7s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bibC24CCB7D6164C933A7A38309BD51DC9Ds1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bibC24CCB7D6164C933A7A38309BD51DC9Ds1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bibC24CCB7D6164C933A7A38309BD51DC9Ds1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib3F4DF034BF4EA8C9882BEA35A6BC2DFFs1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib3F4DF034BF4EA8C9882BEA35A6BC2DFFs1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib3F4DF034BF4EA8C9882BEA35A6BC2DFFs1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib3F4DF034BF4EA8C9882BEA35A6BC2DFFs1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bibFEC0E1D7634C0BA5CE183F8E42273192s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bibFEC0E1D7634C0BA5CE183F8E42273192s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bibFEC0E1D7634C0BA5CE183F8E42273192s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib28A56191DD65E883CD3BC7B8B72A607Ds1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib28A56191DD65E883CD3BC7B8B72A607Ds1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib28A56191DD65E883CD3BC7B8B72A607Ds1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib996E33A7F72DF848AB91200AE7355FCDs1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib996E33A7F72DF848AB91200AE7355FCDs1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib996E33A7F72DF848AB91200AE7355FCDs1
https://www.microsoft.com/en-us/research/project/project-catapult/
https://www.microsoft.com/en-us/research/project/project-catapult/
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib9500074D97DA44FFB754252EE29A9BEFs1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib9500074D97DA44FFB754252EE29A9BEFs1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib9500074D97DA44FFB754252EE29A9BEFs1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bibDBDFD3FC3657588183FE6BDBD911B863s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bibDBDFD3FC3657588183FE6BDBD911B863s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bibB725B606959EE10DB216977E279A802As1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bibB725B606959EE10DB216977E279A802As1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bibB725B606959EE10DB216977E279A802As1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bibCEA674B6D31FBF65C1D30CDB34E95597s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bibCEA674B6D31FBF65C1D30CDB34E95597s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib9D4A6AA6557AB9EEB2035A79B059E0F7s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib9D4A6AA6557AB9EEB2035A79B059E0F7s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib18D9852D5C8051ACB64602116AD09C06s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib18D9852D5C8051ACB64602116AD09C06s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib18D9852D5C8051ACB64602116AD09C06s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bibB4808BF5B7EE87C71398A4D785FE2D3Cs1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bibB4808BF5B7EE87C71398A4D785FE2D3Cs1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bibB4808BF5B7EE87C71398A4D785FE2D3Cs1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bibB4808BF5B7EE87C71398A4D785FE2D3Cs1

D. Tchuinkou Kwadjo, E. Nghonda Tchinda, J. Mandebi Mbongue et al. Journal of Parallel and Distributed Computing 167 (2022) 123–135
[35] Y. Shen, M. Ferdman, P. Milder, Maximizing cnn accelerator efficiency through
resource partitioning, in: 2017 ACM/IEEE 44th Annual International Symposium
on Computer Architecture (ISCA), IEEE, 2017, pp. 535–547.

[36] A. Sohrabizadeh, J. Wang, J. Cong, End-to-end optimization of deep learning
applications, in: Proceedings of the 2020 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, 2020, pp. 133–139.

[37] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, A. Rabinovich, Going deeper with convolutions, in: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 1–9.

[38] S.I. Venieris, C.-S. Bouganis, fpgaConvNet: a framework for mapping convolu-
tional neural networks on FPGAs, in: 2016 IEEE 24th Annual International Sym-
posium on Field-Programmable Custom Computing Machines (FCCM), 2016,
pp. 40–47.

[39] S.I. Venieris, C.-S. Bouganis, Latency-driven design for fpga-based convolu-
tional neural networks, in: 2017 27th International Conference on Field Pro-
grammable Logic and Applications (FPL), IEEE, 2017, pp. 1–8.

[40] S.I. Venieris, C.S. Bouganis, fpgaConvNet: mapping regular and irregular convo-
lutional neural networks on FPGAs, IEEE Trans. Neural Netw. Learn. Syst. (2018)
1–17.

[41] J. Wang, Q. Lou, X. Zhang, C. Zhu, Y. Lin, D. Chen, Design flow of accelerating
hybrid extremely low bit-width neural network in embedded fpga, in: 2018
28th International Conference on Field Programmable Logic and Applications
(FPL), IEEE, 2018, pp. 163–1636.

[42] X. Wei, C.H. Yu, P. Zhang, Y. Chen, Y. Wang, H. Hu, Y. Liang, J. Cong, Automated
systolic array architecture synthesis for high throughput cnn inference on fp-
gas, in: Proceedings of the 54th Annual Design Automation Conference 2017,
ACM, 2017, p. 29.

[43] X. Wei, Y. Liang, J. Cong, Overcoming data transfer bottlenecks in fpga-based
dnn accelerators via layer conscious memory management, in: 2019 56th
ACM/IEEE Design Automation Conference (DAC), IEEE, 2019, pp. 1–6.

[44] A. Wold, D. Koch, J. Torresen, Component based design using constraint pro-
gramming for module placement on fpgas, in: 2013 8th International Work-
shop on Reconfigurable and Communication-Centric Systems-on-Chip (Re-
CoSoC), IEEE, 2013, pp. 1–8.

[45] Y. Xiao, D. Park, A. Butt, H. Giesen, Z. Han, R. Ding, N. Magnezi, R. Rubin, A. De-
Hon, Reducing fpga compile time with separate compilation for fpga building
blocks, in: 2019 International Conference on Field-Programmable Technology
(ICFPT), IEEE, 2019, pp. 153–161.

[46] Xilinx, Hierarchical design, https://www.xilinx .com /support /documentation /
sw _manuals /xilinx2017 _1 /ug905 -vivado -hierarchical -design .pdf, 2017.

[47] Xilinx, Alveo u250 data center accelerator card, https://www.xilinx .com /u250,
2019.

[48] Xilinx, Ultrascale architecture configurable logic block, https://www.xilinx .com /
support /documentation /user _guides /ug574 -ultrascale -clb .pdf, 2018.

[49] Y. Xing, S. Liang, L. Sui, X. Jia, J. Qiu, X. Liu, Y. Wang, Y. Shan, Y. Wang,
Dnnvm: end-to-end compiler leveraging heterogeneous optimizations on fpga-
based cnn accelerators, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.
(2019).

[50] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, J. Cong, Optimizing fpga-based accel-
erator design for deep convolutional neural networks, in: Proceedings of the
2015 ACM/SIGDA International Symposium on Field-Programmable Gate Ar-
rays, 2015, pp. 161–170.

[51] C. Zhang, G. Sun, Z. Fang, P. Zhou, P. Pan, J. Cong, Caffeine: towards uniformed
representation and acceleration for deep convolutional neural networks, IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst. (2018).

[52] C. Zhu, K. Huang, S. Yang, Z. Zhu, H. Zhang, H. Shen, An efficient hardware
accelerator for structured sparse convolutional neural networks on fpgas, IEEE
Trans. Very Large Scale Integr. (VLSI) Syst. 28 (9) (2020) 1953–1965.

Danielle Tchuinkou Kwadjo obtained a bachelor’s
and master’s in Computer Science at respectively the
University of Douala and the University of Yaoundé
1 in Cameroon. She started her Ph.D. at the Univer-
sity of Arkansas and transferred in summer 2019 to
the University of Florida. Research Interest: Machine
Learning, Computer Architecture, Reconfigurable Com-
puting, Embedded system.

Erman Nghonda Tchinda is pursuing a Ph.D. in
the Department of Electrical and Computer Engineer-
ing at the University of Florida, under the supervision
of Dr. Christophe Bobda. I obtained a bachelor’s in
computer science at the University of Douala, and a
master’s at the University of Yaoundé 1 in Cameroon.
I started a Ph.D. in Computer Engineering at the Uni-
versity of Arkansas before transferring to University
Florida. I am currently working on developing a non-

invasive Distributed Embedded Smart Camera system for immersion tech-
nologies.

Joel Mandebi is pursuing a Ph.D. in the Depart-
ment of Electrical and Computer Engineering under
the supervision of Dr. Christophe Bobda. I obtained
a bachelor and master’s in computer science at the
University of Yaoundé 1 in Cameroon and started
a Ph.D. in Computing Engineering at the University
of Arkansas before transferring to Florida in 2019.
Research Interest: Cloud Computing, Reconfigurable
Computing, Computer Architecture, System-on-Chip,

Embedded Systems, Hardware Security, High-performance Computing.

Professor Christophe Bobda received the bache-
lor’s in mathematics from the University of Yaoundé,
Cameroon, in 1992, the diploma of computer science
and the Ph.D. degree (with honors) in computer sci-
ence from the University of Paderborn in Germany in
1999 and 2003, followed by a post-doc at the Univer-
sity of Erlangen-Nuremberg. From 2010-2019 he was
with the University of Arkansas in 2010 where he was
appointed Professor. Since 2019 he is working at the

University of Florida. Research interest are: Embedded Vision, Embedded
Systems, Reconfigurable Computing, Computer Architecture, Cybersecurity,
System-Level Design.
135

http://refhub.elsevier.com/S0743-7315(22)00109-5/bib78DA2836B9E0FB4F698622BF9C963FF4s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib78DA2836B9E0FB4F698622BF9C963FF4s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib78DA2836B9E0FB4F698622BF9C963FF4s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bibF35690CC12CCA007022947ED5D6A8C00s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bibF35690CC12CCA007022947ED5D6A8C00s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bibF35690CC12CCA007022947ED5D6A8C00s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bibD2E88E8DB4AEBA47B3B5A02B1F4FF111s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bibD2E88E8DB4AEBA47B3B5A02B1F4FF111s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bibD2E88E8DB4AEBA47B3B5A02B1F4FF111s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bibF632EBF11095080BEEBDD22BEB88B9C4s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bibF632EBF11095080BEEBDD22BEB88B9C4s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bibF632EBF11095080BEEBDD22BEB88B9C4s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bibF632EBF11095080BEEBDD22BEB88B9C4s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bibA8E156C232C416D90153308E19CCC474s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bibA8E156C232C416D90153308E19CCC474s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bibA8E156C232C416D90153308E19CCC474s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bibC9AFA804045C25793BC889DC732419CEs1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bibC9AFA804045C25793BC889DC732419CEs1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bibC9AFA804045C25793BC889DC732419CEs1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib9ABDB3B1FB87765041D0EB70E07C0055s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib9ABDB3B1FB87765041D0EB70E07C0055s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib9ABDB3B1FB87765041D0EB70E07C0055s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib9ABDB3B1FB87765041D0EB70E07C0055s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib7EB90B40E6EE46BE976B7D8886B38611s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib7EB90B40E6EE46BE976B7D8886B38611s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib7EB90B40E6EE46BE976B7D8886B38611s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib7EB90B40E6EE46BE976B7D8886B38611s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bibB6B0259334C31951778238E30829F77Ds1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bibB6B0259334C31951778238E30829F77Ds1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bibB6B0259334C31951778238E30829F77Ds1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib1EAF3EA2CC16B9CF9A8E3ECDF5005551s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib1EAF3EA2CC16B9CF9A8E3ECDF5005551s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib1EAF3EA2CC16B9CF9A8E3ECDF5005551s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib1EAF3EA2CC16B9CF9A8E3ECDF5005551s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib5A374F1E6C9ACD8F3AAF75A287475034s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib5A374F1E6C9ACD8F3AAF75A287475034s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib5A374F1E6C9ACD8F3AAF75A287475034s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib5A374F1E6C9ACD8F3AAF75A287475034s1
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_1/ug905-vivado-hierarchical-design.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_1/ug905-vivado-hierarchical-design.pdf
https://www.xilinx.com/u250
https://www.xilinx.com/support/documentation/user_guides/ug574-ultrascale-clb.pdf
https://www.xilinx.com/support/documentation/user_guides/ug574-ultrascale-clb.pdf
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib481C0FC22FD6AFF14514684566B40696s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib481C0FC22FD6AFF14514684566B40696s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib481C0FC22FD6AFF14514684566B40696s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib481C0FC22FD6AFF14514684566B40696s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib89DD4B0CA9F60410D350FDE9642C88A4s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib89DD4B0CA9F60410D350FDE9642C88A4s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib89DD4B0CA9F60410D350FDE9642C88A4s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib89DD4B0CA9F60410D350FDE9642C88A4s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bibAEC8EE7A2640F8061E5E60E637C96FA0s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bibAEC8EE7A2640F8061E5E60E637C96FA0s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bibAEC8EE7A2640F8061E5E60E637C96FA0s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib23666B98F14A63CC1A2FCFA3AFFE58A0s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib23666B98F14A63CC1A2FCFA3AFFE58A0s1
http://refhub.elsevier.com/S0743-7315(22)00109-5/bib23666B98F14A63CC1A2FCFA3AFFE58A0s1

	Towards a component-based acceleration of convolutional neural networks on FPGAs
	1 Introduction
	2 Overview on CNN FPGA architectures
	2.1 Architecture topology
	2.2 Component-based approaches
	2.3 Design flows

	3 Pre-implemented flow with Vivado and RapidWright
	3.1 RapidWright
	3.2 Out-of-context design flow
	3.3 Pre-implementing design components

	4 Proposed design flow
	4.1 Function optimization
	4.1.1 Granularity exploration
	4.1.2 Performance exploration

	4.2 Architecture optimization
	4.3 Hardware generation
	4.3.1 Component extraction
	4.3.2 Component matching
	4.3.3 Component placement
	Problem formulation
	The timing cost
	Congestion estimation

	4.3.4 Datapath regularization
	4.3.5 Inter-component routing

	5 Experimental results
	5.1 Evaluation platform and setup
	5.2 Benchmarks
	5.2.1 LeNet architecture
	5.2.2 VGG-16 architecture

	5.3 Resource utilization
	5.4 Productivity
	5.5 Performance

	6 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	References

