
Many body localization transition with correlated disorder

Zhengyan Darius Shi,1 Vedika Khemani,2 Romain Vasseur,3 and Sarang Gopalakrishnan4

1Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
2Department of Physics, Stanford University, Stanford, CA 94305, USA

3Department of Physics, University of Massachusetts, Amherst, MA 01003, USA
4Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA

We address the critical properties of the many-body localization (MBL) phase transition in one-
dimensional systems subject to spatially correlated disorder. We consider a general family of disorder
models, parameterized by how strong the fluctuations of the disordered couplings are when coarse-
grained over a region of size `. For uncorrelated randomness, the characteristic scale for these
fluctuations is

p
`; more generally they scale as `� . We discuss both positively correlated disorder

(1/2 < � < 1) and anticorrelated, or “hyperuniform,” disorder (� < 1/2). We argue that anticorre-
lations in the disorder are generally irrelevant at the MBL transition. Moreover, assuming the MBL
transition is described by the recently developed renormalization-group scheme of Morningstar et
al. [Phys. Rev. B 102, 125134, (2020)], we argue that even positively correlated disorder leaves the
critical theory unchanged, although it modifies certain properties of the many-body localized phase.

I. INTRODUCTION

In generic quantum many-body systems, interactions
scramble local quantum information and bring subsys-
tems towards thermal equilibrium [1–3]. This “thermal-
ization” process fails for systems in the many body lo-
calized (MBL) phase [4, 5]. The MBL phase is best un-
derstood for systems subject to strong spatial random-
ness, but is also believed to occur for quasiperiodic poten-
tials [6, 7]. Systems deep in the MBL phase possess an ex-
tensive set of emergent local integrals of motion, “l-bits”,
which leads to area law entanglement in all eigenstates

as well as Poisson statistics in the nearest-neighbor en-
ergy spacing distribution [8–12]. This is to be contrasted
with the thermal phase that features volume-law entan-
glement and local energy level repulsion conforming to
random matrix theory.

While the physical picture deep inside each phase is
relatively well-understood, the transition between them
remains mysterious. Analytically, since the transition in-
volves singular changes in the structure of highly excited
eigenstates, critical properties cannot be extracted from a
conventional low energy e↵ective field theory approach1.
Furthermore, the lack of exactly solvable models makes it
di�cult to pin down key ingredients that would go into a
general conceptual framework. Numerically, state-of-the-
art exact-diagonalization is limited to small system sizes
L . 25 (see e.g. Refs. 15–19) and produces a correlation
length exponent ⌫ that appears to violate the rigorous
Harris bound ⌫ � 2 in one dimension [20–22], making
any attempt to extrapolate the critical scaling di�cult

1
The MBL-thermal transition is accompanied by a transition be-

tween Poisson and Wigner-Dyson local spectral statistics. As-

pects of this spectral transition can be understood from a novel

e↵ective field theory discussed for example in Refs. 13 and 14.

Whether or not these e↵ective field theories can describe all the

critical singularities near the transition remains an open ques-

tion.

in the near future.
Recently, significant progress has been made by

means of approximate or phenomenological real-space
renormalization-group (RG) approaches [23–29]. In
strongly disordered systems, one should in general con-
sider how entire probability distributions of couplings
flow as the system is coarse-grained. This kind of flow
fits into the general framework of strong disorder renor-

malization group (SDRG) invented by Dasgupta-Hu-Ma
in Ref. 30, rigorously developed by Fisher in Refs. 31
and 32 and subsequently applied to numerous examples
(see the review articles Refs. 33 and 34 for details). On
the analytic side, the main appeal of SDRG is that the
flow equations sometimes admit exact solutions, giving
solvable models that are unavailable at the microscopic
level; on the numerical side, the computational complex-
ity of SDRGs is exponentially lower than that of exact
diagonalization, allowing simulations with O(107) initial
degrees of freedom and thus providing a better chance of
accessing the critical scaling.

Note that these RGs only attempt to describe the
asymptotic MBL transition at the largest length and
timescales, while the finite-size or finite-time MBL
crossover observed in numerics (see Ref. 35 for recent
results with correlated disorder) and experiments is be-
lieved to be described by “many-body resonances” in-
volving rare superpositions of localized states that dif-
fer substantially in extensively many local regions [36–
38]. We will also assume the existence of the MBL
phase [8, 39], see e.g. Refs. 18, 40–42 for recent dis-
cussions.

Roughly, the existing RG schemes fall into two types.
The first type starts with microscopic l-bits in the MBL
phase which can delocalize due to rare resonances me-
diated by interactions [24, 26, 27]. At strong disorder,
resonant clusters are isolated and localization is robust.
But as the disorder is reduced, resonances proliferate and
tend to span the entire system, leading to thermalization.

Unfortunately, due to the complexity of the cluster
formation rules, no analytic solution has been possible
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within the first type of RGs, thus preventing a complete
understanding of the critical scaling. For this reason, we
focus instead on the second type of RG scheme which
aims for analytic tractability at the expense of further
coarse-graining . The basic strategy is to forget about
individual spins and regard the system as composed of
alternating thermal (T) and insulating (I) blocks ini-
tially decoupled from each other [23]. Disorder in the
microscopic couplings then translates to disorder in a few
important parameters that characterize each block—the
physical length, the localization length of any putative
l-bits it contains, the rate of entanglement growth within
each block etc. [23]. When interactions between blocks
are turned on, individual blocks merge into larger and
larger composite blocks whose phase (T or I) and pa-
rameters are determined iteratively in terms of the pa-
rameters of their constituents. In the simplest block RG
of this kind, there is a chain of blocks indexed by i, where
even/odd i’s correspond to T/I-blocks respectively. Each

block is characterized only by its physical length lT/I

i
and

at each RG step, the shortest block gets absorbed into
the surrounding blocks following a “symmetric” RG rule

lT/I

new = lT/I

i�1 + lI/T
i

+ lT/I

i+1 [25]. While completely solvable,
this RG missed the important asymmetry between T and
I-blocks implied by the avalanche mechanism (a detailed
review of avalanche will be given in Sec. III B)[43]. A fol-
lowup Ref. 28 incorporated this asymmetry and obtained

a family of RGs, lT/I

new = lT/I

i�1 + ↵I/T lI/T
i

+ lT/I

i+1 , con-
trolled by the parameter ↵I/T . In the maximally asym-
metric limit where ↵I ! 1 and ↵T ! 0 (henceforth
referred to as GVS), the important RG directions form a
two-dimensional subspace in which a critical curve sepa-
rates the thermal and insulating phases. The correlation
length ⇠ is related to the distance � from the fixed line via

⇠ ⇠ e
1p
� , putting GVS in the Kosterlitz-Thouless (KT)

universality class. Some recent numerical studies also
seem consistent with KT scaling [44–47]. (Some previous
attempts to numerically extract the correlation length
⇠ ⇠ ��⌫ from the RGs had found ⌫ ⇡ 3.3 as opposed
to the KT value ⌫ = 1, but these numerical values of ⌫
exhibited considerable finite-size drifts.)

A modification of the GVS rules was proposed, and
motivated on semi-microscopic grounds, in a paper by
Morningstar and Huse [29]. In e↵ect, this RG scheme
promoted the parameter ↵I in GVS to a dynamical vari-
able that has its own RG flow. The flow of the anisotropy
is motivated by the following physical picture, which we
will explore in more depth in Sec. III B. Slightly on the
insulating side of the MBL transition, a single small ther-
mal block can thermalize a large insulating region (of size
set by the decay length of l-bit-flip interactions) before its
thermalization is eventually blocked by the discreteness
of energy levels in the insulator. (At the critical point,
this avalanche instead spreads throughout the system.)
Thus, a typical large insulating block contains large ther-
mal regions, through which correlations can spread with-
out exponential suppression (i.e., that act as local short-

circuits for information). These short-circuits renormal-
ize the e↵ective decay length, making it possible for a
single thermal block to thermalize an even larger insulat-
ing region, and so on. Thus the anisotropy parameter ↵I

diverges in a specific way at the transition. The critical
behavior predicted by this RG scheme was subsequently
solved by Morningstar, Huse, and Imbrie [48], and we
will refer to it as the MHI scheme in what follows. The
critical exponent ⌫ = 1 of MHI agrees with that of GVS,
but the precise correlation length scaling ⇠ ⇠ �� log log �

�1

di↵ers from KT scaling. This can be traced to the non-
analytic scale-dependence of the coe�cients in the two-
parameter MHI flow. From a general RG perspective this
scale-dependence seems unnatural, but it has a natural
physical origin in terms of the flowing anisotropy param-
eter. Moreover, the MHI solution lacks certain peculiar
features of the GVS solution: for example, the MHI solu-
tion predicts that thermal regions in the insulating phase
have a finite fractal dimension that vanishes at the tran-
sition (consistent with rare-region counting arguments),
whereas the GVS solution predicts fractal dimension zero
in the MBL phase.

Since the physics of the MBL transition, within the
MHI scheme, is dominated by rare regions, it is natural
to ask how sensitive its unusual critical properties are to
assumptions about the statistics of these rare regions. A
drastic way to modify these statistics is to replace the
random couplings with quasiperiodically modulated cou-
plings. In quasiperiodic systems, rare regions (to the
extent that they exist) are strongly spatially correlated,
apparently invalidating many of the assumptions of MHI.
Indeed, some numerical studies [6, 7, 49–56] and an ap-
plication of the GVS RG scheme suggest that the MBL
transition has a very di↵erent character from the random
transition [57] (see also Ref. 58 for a di↵erent prediction
using RG approaches). If in fact there are two di↵erent
universality classes of the MBL transition [7], it is nat-
ural to ask whether there might be many more, corre-
sponding to modulations that are neither conventionally
random nor quasiperiodic.

In the rest of this paper we study the e↵ects of a fam-
ily of long-range (i.e., power-law) correlated disorder on
the critical properties of the MBL transition2. In Sec. II,
we review existing results and conjectures about the in-
terplay between long-range correlated disorder and crit-
ical singularities at random fixed points, focusing on ex-
tensions of the conventional Harris bound in the pres-
ence of correlated disorder. In Sec. III B we specialize
to the MHI RG rule in Ref. 48 and review the quantum
avalanche mechanism that motivates it. In Sec. III D, we
state the three main results of the MHI analysis for un-
correlated disorder and preview our new results on the
e↵ects of long-range correlated disorder. The key find-
ing is that correlations do not change the characteristics

2
see e.g. Refs. [59–63] for previous works on the interplay between

correlated disorder and single-particle localization.
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of fractal thermal inclusions driving the transition and
hence leave the correlation length scaling near criticality
invariant. In Sec. IV, we give general arguments for the
irrelevance of hyperuniform correlations in a wide class
of asymptotically additive RGs (which includes all exist-
ing phenomonological RGs for the MBL transition). For
positive correlations discussed in Sec. V, no such gen-
eral argument applies. Nevertheless, using properties of
the avalanche mechanism, we can still show that critical
singularities of the MHI RG are stable against positive
correlations, first via an intuitive physical argument in
Sec. V A, VB, and then through a more rigorous anal-
ysis of the functional RG equations in Sec. VC (with
some technical details relegated to the appendices). Fi-
nally, in Sec. VI we discuss the robustness of our result to
changes in the phenomenological RG rule and comment
on the existence of possibly relevant perturbations (for
example the quasiperiodic initial conditions considered
in Refs. 57 and 64).

II. LONG RANGE CORRELATIONS AND
CRITICAL EXPONENTS: A BRIEF HISTORY

The interplay between correlations and criticality has
a long history. The earliest works focused on perturba-
tions around a clean critical point, where a simple scal-
ing argument gives a definitive stability criterion that
generalizes the Harris bound [20, 21, 65]. Suppose the
correlation length scales as ⇠ ⇠ ��⌫ where � is the devi-
ation of the order parameter from its critical value. In
the presence of disorder, � is no longer well-defined glob-
ally. Any region of linear size L can be described by the

average order parameter �̄ = 1
Ld

P
L

d

i=1 �i and the stan-
dard deviation �(�̄). In order for the correlation length
scaling of the clean critical point to be stable, the fluc-
tuation �(�̄) over a correlation volume ⇠d must be much
smaller than the mean �. For uncorrelated/short-range
correlated disorder, �(�̄) ⇠ L�d/2 by the central limit
theorem. Long-range correlations generally modify this
scaling to �(�̄) ⇠ Ld(w�1) (w 2 [0, 1] is defined as the
wandering exponent), implying a simple stability crite-
rion ⇠d(w�1) = ��d(w�1)⌫ < � or equivalently ⌫ > 1

d(1�w) .

This is the correlated Harris bound [66] which reduces to
the usual Harris bound once we take w = 1/2.

However, the above bound is inadequate for inherently
disordered fixed points (the MHI fixed point being an
example to keep in mind). Historically, two approaches
have been taken to cure this deficiency. The first ap-
proach is perturbative and only covers stability around
weak uncorrelated random fixed points. The basic strat-
egy is to perturb a clean fixed point by weak uncorre-
lated disorder within a replica path integral description
and run the Wilsonian RG. When the disorder is weakly
relevant, the theory flows to a weak uncorrelated random
fixed point. After that, one adds weak correlated disor-
der to the uncorrelated fixed point and run the Wilsonian
RG again (see Refs. 67 and 68 for a detailed derivation

that goes through all the diagrammatics). The stabil-
ity criterion thus found agrees with the correlated Har-

ris bound. The second approach seeks to derive gen-
eral bounds on ⌫ for intrinsically disordered fixed points
(that may or may not arise as perturbations of uncor-
related fixed points) [21, 22]. The first rigorous result
along this line of thinking is the Chayes-Chayes-Fisher-
Spencer (CCFS) bound ⌫ �

2
d

proven in Ref. 21 for ar-
bitrary uncorrelated/short-range correlated disorder (in-
cluding infinite randomness fixed points). For correlated
disorder, the authors of Ref. 21 conjecture a correlated

CCFS bound ⌫ �
1

d(1�w) . If true, this bound would pro-
vide a necessary but not su�cient condition for stability
which is weaker than the correlated Harris bound (for
example, if the uncorrelated fixed point has exponent ⌫,
then it is unstable against correlations with wandering
exponent w when ⌫ < 1

d(1�w) . But the bound gives no

information on stability otherwise). The stability crite-
rion ⌫ �

1
d(1�w) has been checked in all SDRGs known

to date (see Refs. 33 and 34 for comprehensive reviews).
Therefore, it is conceivable that ⌫ �

1
d(1�w) is in fact a

necessary and su�cient stability criterion for arbitrary
fixed points, a conjecture that we will refer to as the gen-

eralized Harris bound. We emphasize that to our knowl-
edge there is no convincing argument for the validity of
the generalized Harris bound at strong-randomness fixed
points.

With this historical background in mind, let us re-
turn to the MHI RG. Since the uncorrelated fixed point
has ⌫ = 1, the generalized Harris bound would suggest
that long-range correlations with arbitrary w 6= 1 can-
not change ⌫ unless w flows to 1 in the IR limit. In a
large class of RGs including MHI, we will explicitly cal-
culate the flow of w and show that it does not approach
1 in the IR (see Sec. IV). Therefore, if we believe in the
generalized Harris bound, the correlated fixed point still
has ⌫ = 1. This discussion leaves open the possibility
that the fixed point might flow to a di↵erent universal-
ity class within the ⌫ = 1 family. As the scaling the-
ory of Ref. 69 shows, any microscopic RG rule with the
avalanche mechanism built in must lead to KT-scaling,
so long as all �-functions are analytic. MHI evades this
argument by generating logarithmic singularities in its
�-functions. But since there are infinitely many types of
non-analyticities, it is natural to expect that correlations
can induce a di↵erent type of singularity and give rise to
a new universality class. Surprisingly, under some weak
assumptions, we will show that this does not happen for
any initial correlation with w < 1 (w = 1 corresponds
to the unphysical case of perfect positive correlations),
implying that the MHI universality class is stable. The
e↵ect of more general perturbations to the RG initial con-
ditions (e.g. quasiperiodicity) remains an open question
that we hope will be addressed in future works.



4

III. MODEL SETUP AND SUMMARY OF
RESULTS

A. Models of Correlated Disorder

Before introducing the RG rules, we give a heuristic
motivation for how spatially correlated disorder in a mi-
croscopic model can a↵ect the initial conditions of the
RG. For concreteness, one can have in mind the paradig-
matic XYZ model

H =
X

i,�=x,y,z

J���

i
��

i+1 +
X

i

hi�
z

i
, (1)

where hi is a set of spatially correlated random fields with
variance W . Given a particular choice of correlation,
we assume that there exists a critical disorder strength
W = Wc separating the thermal phase at weak disorder
and the MBL phase at strong disorder. For every random
realization of {hi}, there are contiguous regions where ev-
ery |hi| is smaller than Wc. We refer to these contiguous
regions as T-blocks (T for thermal) and the regions in-
tervening the T-blocks as I-blocks (I for insulating). In
general, the coarse-grained physical properties of each T
and I-block will inherit some spatial correlations from the
microscopic statistics of {hi}. Since we will be interested
only in the long-distance physics near the MBL-thermal
phase transition, we will directly inject spatial correla-
tions into the coarse-grained block parameters, assuming
that they arise from some more complicated unspecified
correlations in {hi}. The philosophy here is to demon-
strate that critical singularities of the MHI fixed point are
preserved by the most drastic long-range spatial correla-
tions. In realistic models, the disorder correlations might
be weaker and our results would continue to apply.

We now state more explicitly the forms of correlated
disorder that will be used in this paper. Consider a space
dependent field lx with hlxi = 0, hlxlyi ⇠ W 2C(|x � y|)
with C(·) the position space correlation function normal-
ized so that C(0) = 1. It is convenient to also introduce
the Fourier transform of C(x) which we refer to as the
correlation spectrum S(k) =

R
eikxC(x)dx. Throughout

the analysis, we will be interested in a family of corre-
lations with S(k) ⇠k!0 |k|

1�2w where w 2 (0, 1) labels
the wandering exponent. When w > 1/2, the spatial
profile C(x) ⇠ |x|

2w�2 is a long-range positive correla-
tion and coherent fluctuations are enhanced. This is in
contrast to hyperuniform correlation with w < 1/2,
where the spatial profile C(x) ⇠ �|x|

2w�2 for all x 6= 0
indicates long-range anti-correlation3. By varying the
structure of S(k) near k = 0, we can therefore access the

3
Numerically, one can sample from these correlated distribu-

tions by the following recipe: first draw a vector of indepen-

dent Gaussians ⇠x and then consider lx = WF�1
[

p
S(k) ·

F [~⇠]] where F denotes a discrete Fourier transform. If

we let qk = F(lx), then it is easy to check
⌦
qkq�k0

↵
=

full range w 2 (0, 1) relevant for the generalized Harris
bound ⌫ �

1
d(1�w) . Some typical samples with di↵er-

ent wandering exponents are shown in Fig. 1. In ac-
cordance with our expectations, positive/hyperuniform
correlations lead to local alignment/anti-alignment and
hence a higher/lower probability for the appearance of
long sequences on one side of the average. When positive
correlations are too strong, coherent fluctuations of con-
tiguous spatial clusters are heavily enhanced, leading to
a smaller e↵ective system size. As a result, we will only
be able to generate reliable samples up to w ⇡ 0.85 for
O(107) spatial sites.

B. Motivating the MHI RG from Quantum
Avalanche

To motivate the MHI RG rules, we give a brief re-
view of the quantum avalanche mechanism introduced in
Ref. 43. The basic idea is to approximate each I-block
as a chain of conserved l-bits and each T-block as a fully
scrambled thermal bath satisfying the eigenstate ther-
malization hypothesis (ETH). For exponentially local in-
teractions, the norm of operators coupling the bath to
l-bits a distance x away decays as 2�x/⇣ for some decay
length ⇣. Now take a T-block that contains n0 micro-
scopic spins. Upon coupling the T-block to nearby I-
blocks, interactions have a tendency to thermalize l-bits
near the boundary. But if the decay length ⇣ is su�-
ciently small, the T-block may remain trapped in a sea
of l-bits. This heuristic reasoning suggests the existence
of a critical ⇣c past which thermalization continues indef-
initely. To derive ⇣c, suppose the T-block has absorbed
n/2 l-bits from each of the two nearby I-blocks. Then the
new bath has size n0 + n. In order for the l-bits further
away to remain insulating, we must demand the matrix
element of interactions between faraway l-bits and the
original thermal bath to be much smaller than the av-
erage level spacing of the bath. By the eigenstate ther-
malization hypothesis (ETH), the matrix element cou-
pling the bath and the nearest surviving l-bit is given

by � ⇠
2�n/(2⇣)
p

2n0+n
4 [1, 2, 43]. Comparing � with the level

spacing of the thermal bath � ⇠ 2�(n0+n), we see that
the T-block remains trapped i↵

2�n/(2⇣)

p
2n0+n

< 2�(n0+n)
! �

n

⇣
+ n0 + n < 0 . (2)

W 2 P
x,y eikx

p
S(k)e�ik0y

p
S(�k0) h⇠x⇠yi = W 2S(k). There-

fore, the output of the algorithm ~l has the correct spatial corre-

lation hlxlyi = W 2C(|x� y|).
4
Technically what appears in the denominator should be

p
eS(E)

where S(E) is the entropy density associated with a typical infi-

nite temperature state. But for an order of magnitude estimate,

it is su�cient to approximate the denominator as 2
Deff where

De↵ is the dimension of the full Hilbert space
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w = 0.75

w = 0.5
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FIG. 1. Correlated disorder. From top to bottom, the three panels show three long-range correlated random sequences with
wandering exponents w = 0.75, 0.5, 0 respectively. The vertical axis � measures deviation from the mean and the horizontal
axis is a spatial index for sequence elements. The positively correlated sample features many long stretches of consecutive
blocks on one side of the mean. The uncorrelated sample has fewer stretches, while the hyperuniform sample has strong local
anti-correlation and hence no coherent fluctuation. In the RG, we impose these long-range disorder correlations directly on the
block parameters. The translation between microscopic disorder and disorder in the block parameters is a complicated problem
that is worth exploring in the future.

For ⇣ > 1, the above condition can never be satisfied and
the T-block absorbs more and more spins like snowballs
in an avalanche. Therefore the critical value is precisely
⇣c = 1. We choose our length units so that n corresponds
to the physical length lI of an I-block. Then by the crite-
rion above, the shortest T-block that can thermalize an
I-block of length lI is given by d = lI(⇣�1

�1). Following
the convention of MHI, we refer to d as the “deficit” (see
Fig. 2 for a cartoon of the avalanche mechanism). Deep
in the MBL phase, we expect that d

lI
! const > 0. As

the transition is approached from the MBL side, d

lI
! 0

as T-blocks eat up larger and larger I-blocks, eventually
taking over the entire spatial chain.

C. The Recipe for MHI RG

The intuitive picture in Sec. III B immediately moti-
vates the following RG procedure:

1. Consider a chain labeled by an integer index i 2

{1, . . . , L} where odd/even i corresponds to T/I-
blocks. For each T-block, there is a single parame-
ter lT

i
denoting the length of the T-block. For each

I-block, there are two parameters lI
i
, di denoting

the physical length and the deficit length. The ini-

tial sequences {lT
i
}, {di} are two independent cor-

related sequences with wandering exponent w gen-
erated by the recipe in Sec. IIIA. The initial decay
length ⇣0 < 1 is chosen to be spatially uniform so
that di = lI

i
(⇣�1

0 � 1) for all i. The value of ⇣0 can
be used to tune across the phase transition.

2. At each RG step, we find the cuto↵ ⇤ =
mini{di, lTi }. If the shortest block is insulating,
then the nearby T-blocks absorb it and acquire a
total physical length lTnew = lT

i�1 + lI
i
(= ⇤

xi
) + lT

i+1

where xi = ⇣�1
i

� 1. If the shortest block is ther-
mal, it is too short to destabilize the nearby I-
blocks and therefore gets stuck in the middle (re-
member that di is the shortest T-block that can
thermalize the i-th I-block and di, di+1 > ⇤). This
means we get a new I-block with physical length
lInew = lI

i�1 + lT
i
(= ⇤) + lI

i+1. The new deficit in-
volves more thought. The T-block that gets stuck
in the middle is a seed for danger: an additional T-
block of length di�1�⇤+di+1 could cooperate with
the T-block already nested inside the new I-block to
destabilize all of the l-bits in between. Thus, con-
trary to naive expectations, dnew = di�1 �⇤+di+1

(see Fig. 3 for a pictorial representation).
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Rare thermal block
RMT spectrum

I
Insulating block
Conserved l-bits

Decay length !
T I

FIG. 2. Avalanche picture. The T-blocks are treated as thermal baths satisfying ETH (the yellow clouds represent a
swarm of scrambled microscopic degrees of freedom). The I-blocks are a chain of exponentially localized l-bits. The red curves
represent the exponentially decaying interactions (with decay length ⇣ represented by the striped regions) between bath degrees
of freedom and l-bits in I-blocks. When ⇣ is too large, the bath degrees of freedom thermalize the l-bits closest to boundary,
thus growing the T-block length until the entire I-block is absorbed. When ⇣ is small, the T-block cannot reach far beyond
the boundary and the surrounding I-blocks remains insulating. This is the basic physical picture for the quantum avalanche
introduced in Ref. 43.

3. After each RG step, di/lI
i

and hence xi will not
remain uniform. So we perform an additional av-
erage over all I-blocks to obtain a single value
x = 1

N⇤

P
i
xi where N⇤ is the number of blocks

remaining when the cuto↵ is ⇤. Following this, we
update the deficit length to di = xlI

i
.

4. Steps 2 and 3 are repeated until ⇤ reaches the
length scale of interest.

At first sight, the averaging procedure in step 3 has the
potential to alter critical properties. But we show that
this is not the case for weak inhomogeneities in xi at
some late stage in the RG: within the MBL phase, the
average deficit hdi is much larger than ⇤, and the average⌦
lI
↵

is much larger than
⌦
lT
↵
. Therefore, the RG rule for

ITI ! I move (which is the only move that can change
xi, can be approximated as dnew = di�1 + di+1, lInew =
lI
i�1 + lI

i+1. This means that if xi�1, xi+1 are initially
close, then min{xi, xi+1} < xnew = (di�1 + di+1)/(lI

i�1 +
lI
i+1) < max{xi�1, xi+1}. Therefore, inhomogeneities are
irrelevant under the RG flow.

Before analyzing the MHI RG in detail, we remark on
some important similarities and di↵erences between the
MHI RG and the two-parameter GVS RG defined by the
update rule

lTnew = lT
i�1+↵I l

I

i
+lT

i+1 , lInew = lI
i�1+↵T lT

i
+lI

i+1 . (3)

In GVS, there are two ad hoc parameters ↵T , ↵I whose
ratio ↵I/↵T encodes the asymmetric power of T and I-
blocks to absorb their neighbors. The avalanche mecha-
nism is crudely realized as the limit where ↵I/↵T ! 1.
In MHI, the ratio ↵I/↵T is replaced by a much more
physical parameter x�1 which directly relates to the av-
erage decay length of I-blocks. Furthermore, instead of
imposing a diverging x�1 from the beginning, the MHI
RG rules allow x to flow according to the avalanche mech-
anism. Therefore, although GVS and MHI are both moti-
vated by the avalanche, MHI should be viewed as a signif-
icant improvement over GVS where interactions between
nearby blocks are more faithfully represented.

!!" = Λ

!#$%& = !!'(& + Λ + !!)(&

%#$% = %!'( − Λ + %!)(

!!'(& 	
%!'( = (!!'(&!!'(" !!)("

T

T

!#$%" = !!'(" + !!& + !!)("

!!& = Λ/(	
%! = Λ

I

!!)(& 	
%!)( = (!!)(&

T

I

I IT

FIG. 3. RG rules. A pictorial representation of MHI RG
rules. Each I-block is characterized by a deficit di (represented
by the striped region) and a physical length lIi (striped plus
gray region), while each T-block is characterized by a single
physical length lTi (the orange region). On the LHS, the T-
blocks are longer than the striped region and a TIT ! T
follows. On the RHS, the T-block in the middle is shorter
than the striped region and a ITI ! I ensues.

D. Recap of MHI Analysis and Summary of new
Results

Now we turn to the analysis of the RG. The complete
data at each cuto↵ ⇤ consist of a probability distribu-
tion P⇤({di}, {lT

i
}) for all remaining block parameters.

When the initial condition is spatially uncorrelated, the
RG procedure does not generate spatial correlations and
P⇤ factorizes as

P⇤({di}, {lT
i
}) =

Y

i

⇢T⇤(lT
i
)µI

⇤(di) (4)

where ⇢T⇤(lT
i
), µI

⇤(di) are the single-block marginal dis-
tributions obtained from integrating over all but one of
the block parameters in P⇤. In the continuum limit, the
RG can then be formulated as PDEs for ⇢T⇤ , µI

⇤ rather
than the full P⇤. This simplifying feature is essential to
the RG solution in Ref. 48. The main findings of their
analysis can be summarized as follows:

(1) Eventually at infinite ⇤ and within the MBL phase,
x converges to some value on the fixed line {x > 0}.
The value of x determines the fractal dimension of ther-
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mal inclusions df and the stretching exponent of T-block
lengths ✏ via ✏ = df = log 2

log(x�1) . Physically, df is de-

fined so that a composite T-block with length lT late in
the RG is made up of microscopic T-blocks with total
length scaling as (lT )df . Relatedly, ✏ is defined so that
⇢T⇤(l) ⇠ e�#l

✏

for large l. Both df and ✏ measure the di�-
culty of generating large T-blocks in the MBL phase and
hence control dynamical properties whose leading con-
tribution comes from rare T-block inclusions (e.g. the
conductivity).

(2) The functional RG of T-block and I-block distri-
butions can be projected to a two-dimensional subspace
spanned by the excess decay rate x = ⇣�1

� ⇣�1
c

and

the thermal fraction f =
hl

T
i

hlT i+hlIi . For technical reasons,

it is more convenient to replace f with y = x⇤2

hdi ⇢T⇤(⇤),
which we later demonstrate to be approximately equal
to f near criticality. The MBL and thermal phases meet
at a critical separatrix y(x) and the correlation length
exponent ⌫ = 1.

(3) The RG flow equations valid near the separatrix
are given by

dx

d⇤
= �

(1 + x)y

⇤
, y⇤/x⇤

=

✓
y⇤

x⇤

◆2

hdi µI

⇤(⇤) . (5)

where hdi the expectation value of the deficit length
and µI

⇤(⇤) is the probability density of having a deficit
length precisely at cuto↵. In the absence of correlations,
hdi µI

⇤(⇤) ⇡ 1 at large ⇤ and the second equation simpli-
fies. One can then infer the form of the separatrix y = x2.
For an infinitesimal perturbation �0 away from the sep-

aratrix, the correlation length scales as ⇠ ⇠ �
� log log �

�1
0

0
which puts uncorrelated MHI in a universality class dis-
tinct from the more familiar Kosterlitz-Thouless transi-
tion (which also satisfies ⌫ = 1).

In the presence of correlations, technical challenges im-
mediately arise because the full RG flow can no longer
be captured by the single block marginal distributions.
For hyperuniform correlations, we will give a general ar-
gument that shows their irrelevance in a class of asymp-
totically additive RGs (with the MHI RG as a specific
example). For positive correlations, irrelevance is a spe-
cial property of the MHI RG (and likely all asymptoti-
cally additive RGs based on the avalanche mechanism).
Via a combination of analytic and numerical arguments,
we will arrive at the following stability results parallel to
the main findings of MHI:

(1) At infinite ⇤, the fractal dimension of thermal in-
clusions in an I-block is df ⇠

log 2
log x�1 while the stretching

exponent for T-blocks is ✏ ⇠
log(2�⌘)
log x�1 where 0  ⌘ < 1

is a constant that cannot be determined precisely. This
shows that ✏, df can behave di↵erently, although they
match in the absence of correlations.

(2) The correlation length critical exponent ⌫ = 1 is
preserved.

(3) With some additional technical assumptions, the

flow equations along and below the separatrix will con-
tinue to take the MHI form. However, positive corre-
lations may potentially change the value of hdi µI

⇤(⇤)
but do not modify the correlation length scaling, up to
nonuniversal constant coe�cients that are independent
of ⇤, �0.

IV. STABILITY AGAINST HYPERUNIFORM
CORRELATIONS

In this section, we define a general class of asymptot-

ically additive RGs (including the MHI RG as a special
case) for which hyperuniform correlations in the initial
block configurations do not modify the critical behavior
in the vicinity of the fixed point. To arrive at this conclu-
sion, we will argue that any initial wandering exponent
w < 1/2 always flows back to the uncorrelated value
w = 1/2. This fragility of hyperuniform correlations is
to be contrasted with the robustness of positive correla-
tions, whose wandering exponents generally do not flow
under the same class of RGs.

We first explain the basic setup. Start with N0 spa-
tial sites labeled by an index i, such that microscopic
blocks at site i are characterized by p positive parame-
ters Li,↵=1,...,p bounded from below by some initial RG
cuto↵ ⇤0. In each step of the RG, these microscopic
blocks combine to form larger composite blocks whose
parameters are determined by a set of RG rules. The
minimum of the updated block parameters sets the new
cuto↵ ⇤. We call the RG rules asymptotically addi-
tive if parameters of the new block can be written as
a linear combination of parameters of the constituent
blocks up to corrections subleading in ⇤�1. In other
words, the updated block parameters approximately sat-
isfy Lnew

i,↵
=
P

j,�
r↵�Lj,� for some set of fixed constants

r↵� independent of the spatial location. To give a con-
crete example, consider the symmetric RG of Ref. 25.
If we take a perspective slightly di↵erent from Sec. I
and view each neighboring pair of thermal and insulating
blocks as living on a single spatial site, then initially we
have a correlated sequence Li,1 = lT

i
, Li,2 = lI

i
. When

the shortest block is lI
i
, the spatial site i is eliminated

and the spatial site i + 1 has an updated thermal length
Lnew
i+1,1 = Li,1 + Li,2 + Li+1,1 = lT

i
+ lI

i
+ lT

i+1; when the

shortest block is lT
i
, the spatial site i is eliminated and

the spatial site i � 1 has an updated insulating length
Lnew
i�1,2 = Li�1,2 + Li,1 + Li,2 = lI

i�1 + lT
i

+ lI
i
. All non-

vanishing components of r↵� are equal to one in this ex-
ample and we have asymptotic additivity. One can easily
verify that the GVS RG of Ref. 28 and the MHI RG of
Ref. 48 are also asymptotically additive with p = 2, p = 3
respectively.

We now run a general asymptotically additive RG on
a spatial chain of length N0. The initial block param-
eters are drawn from a translation-invariant probability
distribution where for every ↵, {Li,↵} is a set of N0 spa-
tially correlated parameters with mean hLii = L (L is
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a constant p-component vector) and wandering exponent
0 < w < 1. As the RG progresses to some larger cuto↵ ⇤,
the N0 microscopic blocks are replaced by N⇤ composite
blocks with parameters {LA,↵} where A = 1, . . . , N⇤. It
is useful to introduce a set of integers c(A) monotonically
increasing with A such that the composite block A con-
tains all microscopic blocks with initial spatial index i 2

{c(A), c(A)+1, . . . , c(A+1)�1}. In an asymptotically ad-
ditive RG, the composite block parameters are approxi-
mately equal to a linear combination of parameters of mi-
croscopic blocks with i 2 {c(A), c(A)+1, . . . , c(A+1)�1}

LA,↵ ⇡

X

c(A)i<c(A+1)

X

�

r̃↵�Li,� =
X

c(A)i<c(A+1)

L̃i,↵ ,

(6)
where L̃i,↵ =

P
�

r̃↵�Li,� and r̃↵� is a set of coe�cients
that depend on r↵� and the initial configuration {Li,↵}

in some complicated way that will not be essential to the
argument.

Now we think about the consequence of this additive
structure for the wandering exponent w⇤ at scale ⇤. Re-
call that w⇤ is defined such that �[L↵(K)] ⇠ Kw⇤ where

�[. . .] is the standard deviation and L↵(K) =
P

K

A=1 LA,↵

is a sum over K consecutive composite blocks. Since the
initial disorder distribution is translation-invariant, the
average composite block size hc(A + 1) � c(A)i = S is

independent of A and
DP

�
r̃↵�Li,�

E
= L̃↵ is indepen-

dent of i. We thus have the following decomposition

�[L↵(K)]2 =

* 
KX

A=1

LA,↵ � KSL̃↵

!2+

=

*2

4c(K)L̃↵ � KSL̃↵ +

c(K)X

i=1

⇣
L̃i,↵ � L̃↵

⌘
3

5
2+

=
D
[c(K) � KS]2

E
L̃↵ +

c(K)X

i=1

⌧h
L̃i,↵ � L̃↵

i2�

+ 2L̃↵

D
[c(K) � KS]

h
L̃i,↵ � L̃↵

iE
.

(7)

In the last line, the first term captures fluctuations in the
number of microscopic blocks contained in the K com-
posite blocks. The second term captures fluctuations in
the block parameters holding the number of microscopic
blocks fixed. The third term encodes correlations be-
tween these two types of fluctuations. We examine the
cases L̃↵ = 0 and L̃↵ 6= 0 separately.

1. If L̃↵ = 0, then only the second term of (7) sur-
vives. Since fluctuations in block parameters start
out hyperuniform, there is a chance that {L̃i,↵}

remains hyperuniform at all stages (we will see
an example of this later). If that is the case,
�[L↵(K)]2 ⇠ c(K)2w ⇠ K2w and the wandering
exponent w⇤ does not flow.

2. If L̃↵ 6= 0 (which is the generic case), all three terms
in (7) compete. Initially, there is no hyperunifor-

mity in the number fluctuations because there is
no fluctuation at all. After n ⌧ N0 RG moves,
there are N0 � 2n blocks of size 1 and n composite
blocks of size 2. The number fluctuations are now
directly associated with the fluctuations of spatial
locations for the n smallest numbers in a hyperuni-
form sequence of length N0. We checked numeri-
cally that the distribution of these locations do not
inherit any hyperuniformity and the number fluc-
tuations have wandering exponent w = 1/2 early
in the RG. What does this mean in terms of the
correlation spectrum S(k)? The signature of hype-
runiformity is a correlation hole S(k) ⇠ |k|

1�2w as
k ! 0. Our argument above shows that a dilute
set of block combinations already fill the correla-
tion hole so that w = 1/2 and S(k) 6= 0 as k ! 0.
To remove this constant term and restore the corre-
lation hole requires an unphysical fine-tuning later
on in the RG. Hence, even if the second term in
(7) retains hyperuniformity, the first term always
wins since K1/2

� Kw for w < 1/2. As a result,
w⇤ ! 1/2 late in the RG.

In contrast, positive correlations are signaled by a
singularity of S(k) near k = 0. Numerically we
find that the singularity is inherited by the number
fluctuations and all three terms in (7) scale as K2w

with w > 1/2. Hence, w⇤ does not flow for positive
correlations.

The above casework implies that the only way to preserve
hyperuniform correlations in L↵(K) is to have L̃↵ = 0
and L̃i,↵ hyperuniform at all RG stages. In fact, a simple
generalization of the above argument shows that hyper-
uniformity can also be preserved if a linear combination
�i =

P
↵

t↵Li,↵ satisfies the same properties. For general
RG rules with p > 1 and generic r↵� coe�cients, no such
special parameter can exist. We therefore conclude that
hyperuniformity is irrelevant in a generic asymptotically
additive RG. Since nonlinear RG rules are even more de-
structive to the wandering exponents, we expect the same
conclusion to hold for nonlinear RGs.

To get a concrete feel for the argument, let us consider
a few examples. In the symmetric RG of Ref. 25, the
basic block parameters are just the lengths lT , lI of T/I-
blocks. The RG rule is strictly additive and satisfies the
assumptions in the claim:

lTnew = lT
i

+ lI
i

+ lT
i+1 , lInew = lI

i�1 + lT
i

+ lI
i
. (8)

At criticality,
⌦
lT
↵

=
⌦
lI
↵

= O(⇤) 6= 0 where ⇤ is the
moving cuto↵. Therefore, hyperuniform correlations in
lT
A
, lI

A
get washed out by the number fluctuations. The

only order parameter that has zero mean is �A = lT
A

� lI
A
.

But in general �A cannot be written as a linear combi-
nation of microscopic �i (this is easy to prove by contra-
diction). Therefore hyperuniform correlations are always
irrelevant and ⌫(w < 1/2) = ⌫(w = 1/2) ⇡ 2.5 for ev-
ery w < 1/2. This conclusion has been checked through
finite-size scaling numerics in Appendix. C.
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For the random transverse field Ising model (RT-
FIM) with microscopic Hamiltonian H =

P
i
JiZiZi+1 +P

i
hiXi, the RG parameters for each block are �i =

� log Ji and ⇣i = � log hi with cuto↵ � = log ⌦0 � log ⌦
where ⌦ = max Ji, hi. Late in the RG, � flows to in-
finity and �i, ⇣i � � � 0. The RG rules are still linear
combinations of �i, ⇣i:

�new = �i � ⇣i+1 + �i+1 , ⇣new = ⇣i � �i+1 + ⇣i+1 . (9)

These RG rules are identical to the symmetric RG ex-
cept for the minus signs. By our general arguments, the
composite block parameters h�Ai , h⇣Ai will not remain
hyperuniform at large ⇤. However, the special structure
of the RG rules force �A = �A � ⇣A =

P
i2A

P
i
�i � ⇣i.

Since �A has zero mean at criticality, we must conclude
that number fluctuations do not contribute and the fluc-
tuations of �A remain hyperuniform at all RG scales ! In
fact, an exact solution shows that the hyperuniform RT-
FIM saturates the generalized Harris bound for all values
of 0 < w < 1/2 (see Ref. 70 for a complete analysis of
this problem).

Finally we come to the MHI RG. Clearly, the TIT ! T
and the ITI ! I moves are both asymptotically additive.
But within the MBL phase and along the critical separa-
trix, the average deficit hdAi ,

⌦
lT
A

↵
6= 0 and hyperunifor-

mity in lT
A
, dA is killed by the RG flow. Moreover, since

the flow along the critical separatrix ends in the localized
phase, there is an asymmetry between T and I-blocks
such that hdAi

hlTAi
! 1. This means that there cannot be a

zero-mean order parameter written as a finite linear com-
bination of dA, lT

A
. As a result, hyperuniform correlations

are always irrelevant in the MHI RG. For positive corre-
lations, the wandering exponent remains di↵erent from
the uncorrelated value for arbitrarily large ⇤, potentially
giving rise to a new universality class within the ⌫ = 1

family. Whether or not this occurs will be explored in
the next section.

V. STABILITY AGAINST POSITIVE
CORRELATIONS

Positive correlations are generally relevant for asymp-
totically additive RG schemes. Nevertheless, for the MHI
scheme (and likely other asymptotically additive RGs
based on the avalanche mechanism with infinite ⌫ at the
uncorrelated random fixed point) we will find that they
are irrelevant. The essential feature of avalanche-driven
transitions that leads to this conclusion is that the ex-
cess interaction decay rate x ! 0 at the critical point.
In what follows, we will specialize to the MHI scheme
and argue for each of the three properties we previewed
in Sec. III D: (1) that the scaling of the fractal dimen-
sion df is unmodified from MHI; (2) that the correlation
length exponent ⌫ = 1 for positive correlations; and
(3) that (under some technical assumptions) the scaling
of the correlation length is also unmodified from MHI.

A. Fractal dimension scaling survives correlations

We will use physical arguments to show that the struc-
ture of typical T/I-blocks near criticality is not a↵ected
by positive correlations. This analysis will not provide
a concrete understanding of the flow equations, but will
be su�cient to establish the more qualitative notions of
stability captured by properties (1) and (2).

The essential feature of the MHI RG that we will
use is the asymmetric thermalizing powers of T and I-
blocks: while small T-blocks can easily thermalize I-
blocks with large physical lengths, I-blocks must start
out much larger than their neighbors to remain insulat-
ing. Deep in the MBL phase, the deficit lengths di of
the I-blocks are an appreciable fraction of their physi-
cal lengths lI

i
(i.e. x is not too small). As a result,

a rare T-block that absorbs a neighboring I-block does
not grow appreciably in size and has weak thermalizing
power. In order to cause an instability, we would thus

need to increase the thermal fraction f =
hl

T
i

hlIi+hlT i by
seeding a critical mass of T-blocks. This implies the ex-
istence of a transition point f⇤ corresponding to every
x⇤ > 0. Now suppose we decrease the value of x⇤, then
each T-block has a higher thermalizing power and the
threshold f⇤ should decrease. As x⇤ ! 0, f⇤ must also
approach 0, because when x = 0, a single T-block au-
tomatically thermalizes the whole system and no MBL
phase can exist. Hence the critical point is pinned at
(x, f) = (0, 0) even in the presence of positive correla-
tions. This argument is self-consistent as long as the
fluctuations in xi = di/lI

i
are always much smaller than

the mean, so that all the I-blocks late in the RG can be
characterized by the average x. This self-averaging prop-
erty turns out to be true everywhere outside the thermal
phase: due to the asymmetric thermalizing capacities,
the MBL phase (including the critical separatrix) must
satisfy

⌦
LI
↵

> hdi �
⌦
lT
↵
. Recapitulating an argument

in Sec. IIID, the RG rule for ITI ! I move (which is the
only move that can change xi), can be approximated as
dnew = di�1 + di+1, lInew = lI

i�1 + lI
i+1. This means that

if xi�1, xi+1 are initially close, then min{xi�1, xi+1} <
xnew = (di�1 + di+1)/(lI

i�1 + lI
i+1) < max{xi�1, xi+1},

implying the irrelevance of inhomogeneities in {xi}. The
existence of a well-defined separatrix even in the presence
of positive correlations has an immediate implication: if
we initialize the system su�ciently close to the separa-
trix, we will always end up in the regime where typical I-
blocks have uniformly small x and large physical lengths.

As for the T-blocks, living in between these gigantic
I-blocks is a huge challenge, and they have to fight for
every opportunity to grow. Below the separatrix and
within the x, f ⌧ 1 limit, the most e�cient way to form
large T-blocks is through successive TIT ! T moves
where lT

i�1 = lT
i+1 = ⇤ and lI

i
= ⇤

x
at every stage.

The resulting fractal structure has a fractal dimension
df ⇡

log 2
log(2+x�1) which slowly approaches zero near the

critical point. Now we would like to argue that typical T-
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blocks late in the RG have precisely this structure. If the
T-block lengths lT

i
were independently distributed, then

the probability of growing a fractal T-block of length l

scales as exp
�
�ldf

 
⇠ exp

n
�l

log 2

log x�1

o
. This is to be

contrasted with the probability of having a non-fractal
T-block of length l which scales as exp{�l}. As x ! 0,
exp

�
�ldf

 
� exp{�l} and hence fractal regions domi-

nate late in the RG, precisely as shown in the uncorre-
lated MHI analysis [48]. In the correlated case, to estab-
lish a similar dominance, we need two crucial ingredients:
(a) The probability of having a pair of neighboring T-
block at cuto↵ CTT

⇤ (⇤, ⇤) should approximately factor-
ize into ⇢T⇤(⇤)2 where ⇢T⇤(l) is the marginal distribution
of single T-block lengths. (b) The presence of a T-block
at cuto↵ should not be strongly correlated with the pres-
ence of a neighboring I-block at cuto↵. This avoids the
appearance of a long chain TITI . . . T where all I-blocks
are at cuto↵ and the whole chain merges into a single
T-block with O(1) fractal dimension.

To argue for these “factorization”-type results, we
again take advantage of the asymmetric thermalizing
powers of T and I-blocks. Let us consider two composite
T-blocks with length LT

A
, LT

A+1, each containing O(⇤) mi-
croscopic blocks. Then as x ! 0, the composite I-block
sandwiched by the T-blocks contains at least O(⇤

x
) mi-

croscopic blocks, reflecting the asymmetry. If we denote
the microscopic block lengths by li, then by the general
arguments of Sec. IV, block length correlations dominate
over number fluctuations and the covariance of LT

A
, LT

A+1
can be approximated by

⌦
LT

A
LT

A+1

↵
conn

⇡

* 
⇤X

i=1

li

!0

@
⇤X

j=1

l
O(⇤

x )+j

1

A
+

conn

⇠

⇤X

i,j=1

1��O(⇤
x
) + j � i

��c . ⇤2(
⇤

x
)�c .

(10)
On the other hand, the variance of an individual com-
posite block LT

A
is

⌦
LT

A
LT

A

↵
conn

=

* 
⇤X

i=1

li

!0

@
⇤X

j=1

l⇤+j

1

A
+

conn

⇠ ⇤2�c .

(11)
Comparing the two estimates above, we see

⌦
LT

A
LT

A+1

↵
conn

⇠ xc
⌦
LT

A
LT

A

↵
conn

, (12)

implying that for every 0 < c < 1, the correlations be-
tween nearby T-blocks are asymptotically suppressed in
the limit x ! 0. This argument easily generalizes to
multi-point correlations between distant composite T-

blocks, giving the estimate
h(L

T
A)n(LT

A+B)ni
conn

h(LT
A)2ni

conn

⇠ xc/Bc.

Hence, we have a robust conclusion that the wander-
ing exponent of T-blocks wT ! 1/2 as x ! 0, and
the joint distributions of multiple consecutive T-blocks

should factorize into products of marginals, giving an
even stronger version of ingredient (a). In contrast, the
fluctuations of I-block lengths retain the wandering ex-
ponent wI > 1/2 of UV correlations. This is because the
T-block in between nearby I-blocks is negligibly short and
the asymptotic RG move is just successive I-block addi-
tions LI

new = LI

A
+ LI

A+1 which preserve the wandering
exponent, as we have shown in Sec. IV.

For ingredient (b), consider now nearby T and I-blocks
containing ⇤ and ⇤/x microscopic blocks respectively.
Imitating the calculation before, we have

⌦
(LT

A
)n(LI

A+1)
n
↵

�
⌦
(LT

A
)n
↵ ⌦

(LI

A+1)
n
↵
. [⇤(

⇤

x
)1�c]n .

(13)
Rewriting these correlators in terms of joint and marginal
distributions and dividing by a uniform factor x = d

LI ,
we have
Z

lndnCTI

⇤,c
(l, d) ⇠

⇣ x

⇤

⌘cn

[

Z
ln⇢T⇤(l)] · [

Z
dnµI

⇤(d)] .

(14)
The above moment estimates show that nearby T and I-
blocks become weakly correlated late in the RG, thereby
establishing a quantitative formulation of ingredient (b).
Moreover, they motivate a stronger pointwise bound
CTI

⇤,c
(l, d) ⌧ ⇢T⇤(l)µI

⇤(d) although no rigorous proof can
be given in the absence of additional regularity assump-
tions. For concreteness, we provide in Fig. 4 some nu-
merical evidence for this pointwise estimate evaluated at
the cuto↵ d = ⇤. Due to the nature of ⌫ = 1 RGs, the
critical window is extremely narrow and we cannot truly
approach the x ⌧ 1 regime even for very large system
sizes (⇠ 4 · 106). But the trend of decaying correlations
in our numerics is consistent with all the analytic argu-
ments. We will use these facts again in the analysis of
Sec. V C.

With ingredients (a) and (b) in hand, we return to
the argument about fractal dimensions. In the presence
of UV positive correlations with decay exponent c, the
probability of growing a non-fractal T-block with large
length l scales as exp{�lc} where c is the decay exponent
of the correlations. By the factorization argument above,
the rare T-blocks in the IR are asymptotically indepen-
dent and the probability of growing a fractal inclusion of

length l retains its uncorrelated scaling exp
n

�l
log 2

log x�1

o
.

Comparing exp
n

�l
log 2

log x�1

o
with exp{�lc}, we see that

for all 0 < c < 1, taking x ⌧ 1 always guarantees that
the fractal inclusions eventually dominate over the non-
fractal rare regions, thereby establishing property (1). At
first sight, one may guess that df is equal to the stretch-
ing exponent ✏ for the T-block distribution because the
number of independent rare events needed to form a rare
T-block with length l scales as ldf . But the rarity of those
events changes with scale (as pointed out by Ref. 29)
and with the flow of correlations. Hence, no precise rela-
tionship between ✏ and df can be inferred, although the
singular scaling with x should be the same. With addi-
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FIG. 4. Suppression of the TI correlations. In the top
figure we provide some numerical evidence for (14) by plot-
ting CTI

⇤,c(l,⇤)/⇢
T
⇤(l)µ

I
⇤(⇤) against the physical separation l.

We initiated the RG with 4 · 106 blocks and the top, middle,
bottom panels are snapshots taken when 2 ·106, 8 ·105, 1.4 ·105
blocks remain. Recall that correlations are suppressed when
the joint distribution CTI

⇤ (l,⇤) is close to the product of
marginals ⇢T⇤(l)µ

I
⇤(⇤) (or equivalently, when the connected

joint distribution
��CTI

⇤,c(l,⇤)
�� is smaller than the product of

marginals).

In the bottom figure, we provide an alternative visualization
by fixing l = d = ⇤ and tracking the evolution of CTI

⇤,c(⇤,⇤)
as a function of ⇤. One can clearly see that

��CTI
⇤,c(⇤,⇤)

��
remains smaller than the product of marginals as the RG
progresses, consistent with (14). The results for CTT

⇤,c and
CII

⇤,c are qualitatively similar.

tional technical assumptions, we will verify in Sec. V C
that this is indeed the case. In summary, the most dan-
gerous thermalizers that prevent the rapid decay of f
near the critical separatrix consist of typical T-blocks in
the x, f ⌧ 1 regime that are fractals with small fractal
dimension. Positive correlations might a↵ect the statis-
tics of rare dense T-blocks with larger fractal dimensions,
but they play no role when we are su�ciently close to the

critical point.

B. Correlation-length exponent ⌫ = 1 survives
correlations

The structure of typical T and I-blocks described above
also helps us understand the correlation length exponent
⌫. Let us define the RG time t = log ⇤ which keeps track
of the exponentially large physical time elapsed during
the block combination RG moves. At t = 0, we initial-
ize the RG very close to the critical separatrix and with
x, f ⌧ 1. In the two dimensional space (x, f), the sep-
aratrix near the fixed point (0, 0) can be approximated
by a curve f(x) = x� where � is an undetermined coe�-
cient. To define the correlation length scaling, we slightly
perturb away from the separatrix so that f(x0) = x�+�0

0
for some small �0 > 0 and ask at what RG length scale
⇤ does �(t) grow to an O(1) number. Within this frame-
work, ⌫ = 1 indicates the failure of a standard scal-
ing ansatz ⇤(�0) = ��⌫

0 . For example, the Kosterlitz-

Thouless transition obeys ⇤(�0) ⇠ eb�
�1/2
0 and the un-

correlated MHI transition obeys ⇤(�0) ⇠ �
� log log �

�1
0

0 . In
both cases, ⇤(�0) grows faster than any power law in �0,
invaliding the hypothesis of finite ⌫.

Now suppose we start on the separatrix of the corre-
lated MHI RG and slightly increase the value of x to
stay in the x ⌧ 1 limit while moving below the critical
separatrix. The new starting point can be regarded as
a small perturbation to the correlated RG f0 = x�+�0

0
where �0 depends smoothly on the shift of x. Note that
this shift does not change the structure of fluctuations
in the T/I-blocks and the separatrix itself does not shift.
But since positive correlations enhance coherent fluctu-
ations, it should be more di�cult for the RG flow to
bring the system o↵ criticality and the correlation length
should diverge faster with �0. Writing the correlation
length exponent ⌫(w) as a function of the wandering ex-
ponent w, we then expect ⌫(w > 1/2) � ⌫(w = 1/2).
In the x, f ⌧ 1 regime, the uncorrelated MHI RG al-
ready has ⌫ = 1. Hence we expect ⌫ = 1 for positive
correlations as well.

To illustrate this general picture, we can analyze the
fractal inclusions that drive the critical fluctuations more
carefully. Each time a rare I-block at cuto↵ gets absorbed
by the nearest T-blocks, the new T-block that forms has
length O(⇤

x
). Slightly o↵ criticality and in the MBL side

of the separatrix, these are the dominant processes that
prevent T-blocks from completely vanishing. Hence we
can basically run the RG in discrete steps, where the
cuto↵ gets moved from ⇤ !

⇤
x

in each step. If we denote
the number of such discrete RG steps by n, then �t

�n
=

log x�1. Along the separatrix, due to critical slowing
down, x(t) is an inverse power law in t and log x�1

⇠

log t. Therefore, upon integration, the total RG time
T is related to the total number of discrete RG steps
by T ⇠ N log N up to subleading corrections. Now we



12

start with a small deviation �0 from the separatrix and
suppose that �(t) becomes O(1) when t = T (�0). Using
the definition of ⌫, we then conclude that

⇤(�0) ⇠ eT (�0) ⇠ eN(�0) logN(�0) ⇠ ��⌫

0 = e⌫ log �
�1
0 . (15)

If ⌫ < 1, the above equation implies �(n) ⇠ en logn,
which is faster than the exponential growth �(n) ⇠ en

seen in the uncorrelated MHI RG. In order to have such a
super-exponential growth, the fractal thermal inclusions
controlling the transition would have to be easier to sup-
press in the system with positive correlation than in an
uncorrelated system. This is opposite from the physical
intuition that positive correlations enhance coherent fluc-
tuations (i.e. in this case the coherent fluctuations are
just the random production of larger and larger fractal
T-blocks). As a result, ⌫ = 1 continues to hold for pos-
itive correlations and property (2) is established. One
caveat of the above reasoning is that positive correla-
tions modify the location of the separatrix and a direct
comparison of the scaling ansatzes for uncorrelated and
correlated RGs is not strictly justified because �0’s are
defined with di↵erent reference points. We will address
these and other subtle issues in the next section.

C. Precise argument for correlation-length scaling
based on the hierarchy of flow equations

The preceding intuitive discussion explains why pos-
itive correlations are irrelevant on the level of typical
fractal block structures and correlation length exponent
⌫. However, even if these results are true, there is no
reason to expect that the universality class of the tran-
sition also remains unmodified. As we have seen, the
correlation length scaling is determined by the rate at
which a small perturbation �0 away from the critical
separatrix increases with the number of fractal steps n.
Since positive correlations are expected to suppress the
growth of �0 with n, it is in principle possible that they
modify the uncorrelated MHI scaling �(n) ⇠ en to the
KT scaling �(n) ⇠ log n observed in earlier RG stud-
ies [28, 69]. In fact, as we will see, when connected corre-
lators CTI

⇤,c
(l, d) and their higher-order analogues are suf-

ficiently large, the asymptotic flow equations projected
to the two-parameter space will indeed have a di↵erent
structure. Nevertheless, under suitable assumptions that
are supported by analytics and numerics, the change in
flow equations leaves the exponential scaling of �(n) in-
variant, thereby confirming property (3).

To prepare for this technical analysis, we begin by
introducing some notations. As explained already in
Sec. IIID, the RG equations form an infinite hierarchy
where the flow of joint probability distributions for n-
nearest neighbor blocks is controlled by a functional in-
volving n + 2 nearest neighbor blocks. While this in-
finite hierarchy of equations is di�cult to solve, a lot
of progress can be made by concentrating on the few-
body correlations. Following the convention of Ref. 48,

we first consider the marginal distributions ⇢T⇤(l), µI

⇤(d)
of single-block lengths obtained from integrating out all
but one of the blocks in the full joint probability distri-
bution P (~d), P (~LT ) (by translation invariance the choice
of blocks to integrate over does not matter). By counting
the di↵erent kinds of decimations that can occur at every
RG step, we have the following flow equations

@⇤⇢T⇤(l) = ⇢T⇤(l)[µI

⇤(⇤) + ⇢T⇤(⇤)] � 2CTI

⇤ (l, ⇤)

+

Z
l�⇤

x �⇤

⇤
CTIT

⇤ (l1, ⇤, l �
⇤

x
� l1)dl1 , (16)

@⇤µI

⇤(d) = µI

⇤(d)[µI

⇤(⇤) + ⇢T⇤(⇤)] � 2CTI

⇤ (⇤, d)

+

Z
d

⇤
CITI

⇤ (s, ⇤, d + ⇤ � s)ds . (17)

These equations di↵er from MHI due to the appearance
of two-block and three-block joint distributions on the
RHS. In the absence of correlations, all joint distribu-
tions factorize into products of marginals and we recover
a closed set of PDEs for ⇢T⇤(l), µI

⇤(d) as in MHI. Once we
turn on correlations, the equations no longer close, and
we need to do more work. Fortunately, from Sec. V A,
we know that the phase transition is controlled by a com-
petition between the tendency of T-blocks to proliferate
and the presence of an excess decay rate x > 0 that pro-
tects l-bits in the I-block. This competition can be un-
derstood by projecting the infinite-dimensional flow to
a two-dimensional subspace (x, f) as long as there is no
additional relevant RG direction. We verify this numeri-
cally by plotting the numerical RG flow lines for di↵erent
initial conditions and showing that they have no crossing
down to the largest length scales. An example of this nu-
merical check is shown in Fig. 5 for w = 0.75 and initial
system size L = 4 · 106.

Since the thermal fraction f is awkward to work with
for technical reasons, we introduce a rescaled variable y
defined as follows:

x =
hdi

hlIi
, y = ⇤2r⇤(⇤) , r⇤(l) =

x

hdi
⇢T⇤(l) . (18)

In the insulating phase,

f =

⌦
lT
↵

hlIi + hlT i
⇡

⌦
lT
↵

hlIi
=

x

hdi

Z 1

⇤
l⇢T⇤(l)dl . (19)

Along the separatrix, we will later show that ⇤2⇢T⇤(⇤) ⇡⌦
lT
↵
, implying the asymptotic equivalence between f

and y at large ⇤. Below the separatrix, hdi grows as
a stretched exponential in ⇤ and y, f both tend to zero.
Therefore, one can loosely think about y as a proxy for
the thermal fraction. These and other notations are
summarized in Table I for convenient reference.

Some qualitative features of this projected RG flow
are now transparent. In the insulating phase, f ! 0 and
y ! 0 as I-blocks dominate over T-blocks. A finite excess
decay rate x persists to infinite ⇤ and we land somewhere
on the MBL fixed line x > 0, y = 0; in the thermal phase,
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f

⇣�1

FIG. 5. Numerical RG flow. Flow lines of the MHI RG
with w = 0.75 and initial system size N = 4 · 106. The
horizontal axis ⇣�1 is the average inverse decay length and
the vertical axis f is the thermal fraction

⌦
lT
↵
/
�⌦
lT
↵
+

⌦
lI
↵�
.

The di↵erent flows correspond to initial values of ⇣ between
0.245 ⇠ 0.305 in steps of 0.01. The yellow critical flow sepa-
rates the orange/grey flows which land in the T/I phase re-
spectively. The ultra-thermal shaded region is inaccessible
given the finite density of l-bits to start with.

f ! 1 and y ! 1 as
⌦
lT
↵

�
⌦
LI
↵
. Therefore, we expect

a critical separatrix in (x, y) marking a phase transi-
tion. To study this separatrix and the critical scaling
close to it, we need to derive flow equations for x and y.
The flow equation for x requires only a single lemma:

Lemma V.1. The form of the flow equations for

marginal expectation values
⌦
lT
↵
,
⌦
LI
↵
, hdi are unmod-

ified by correlations.

The proof of this lemma involves a tedious calculation
which we include in Appendix. A. Here, we will merely
quote the results:

d
⌦
LI
↵

d⇤
= µI

⇤(⇤)[
⌦
LI
↵

�
⇤

x
] + ⇢T⇤(⇤)[

⌦
LI
↵

+ ⇤] , (20)

d
⌦
lT
↵

d⇤
= ⇢T⇤(⇤)[

⌦
lT
↵

� ⇤] + µI

⇤(⇤)[
⌦
lT
↵

+
⇤

x
] , (21)

d hdi

d⇤
= [µI

⇤(⇤) + ⇢T⇤(⇤)](hdi � ⇤) . (22)

It is important to remark that this is a not a closed
set of equations for the averages

⌦
LI
↵
,
⌦
lT
↵
, hdi because

the RHS involves the marginal distributions. Therefore,
although these equations are formally equivalent to those
in MHI, they are sensitive to correlations through the
flow of single-block marginals on the RHS.

TABLE I: Notation for important variables

T-block
length

I-block length,
deficit length

Excess interaction
decay rate

Proxy for
thermal fraction

Marginal
distribution

Joint
distribution

Fractal
dimension

lT /l lI , d x = hdi
hlIi = ⇣�1 � 1 y = ⇤2r⇤(⇤) ⇢T⇤(l), µ

I
⇤(d) CTI...T

⇤ (l1, . . .) df

With this di↵erence in mind, we proceed to work out
the flow equations for x and y. The flow equation for
x follows easily from the flow equations for expectation
values derived above:

dx

d⇤
=

1

hlIi

d hdi

d⇤
�

hdi

hlIi2
d
⌦
lI
↵

d⇤

=
1

hlIi
[µI

⇤(⇤) + ⇢T⇤(⇤)](hdi � ⇤)

�
hdi

hlIi2
�
[
⌦
lI
↵

�
⇤

x
]µI

⇤(⇤) + (
⌦
lI
↵

+ ⇤)⇢T⇤(⇤)
�

=
�⇤(1 + x)x⇢T⇤(⇤)

hdi
= �

(1 + x)y

⇤
.

(23)

The flow of y = ⇤2r⇤(⇤) will follow from the flow of r⇤(l),
which is simple to derive using the flow of ⇢T⇤(l), hdi in

(16), (22) (see Appendix. B for details):

@⇤r⇤(l) =

✓
�

y

⇤
+

⇤µI

⇤(⇤)

hdi
�

2CTI

⇤ (l, ⇤)

⇢T⇤(l)

◆
r⇤(l)

+
x

hdi

Z
l�⇤(1+x

�1)

⇤
CTIT

⇤

�
l1, ⇤, l � ⇤/x � l1

�
dl1 .

(24)
In the absence of correlations, MHI was able to integrate
this flow and obtain a recursion relation that estimates
r⇤(⇤/x) based on knowledge of r⇤(⇤). This recursion,
combined with the flow of x, then gives a complete un-
derstanding of the critical separatrix and small perturba-
tions around it. Crucially, this recursion relies again on
the fact that CTIT

⇤ factorizes into a product of marginals
so that the LHS and RHS can be related to the marginals
evaluated at di↵erent RG scales. In the presence of corre-
lations, factorization is no longer possible and a recursion
of r⇤ requires a di↵erent argument which we now sum-
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marize.
First we make the general decomposition C⇤ =

C⇤,disc + C⇤,c where C⇤,disc is a product of marginal dis-
tributions and C⇤,c is the connected part which vanishes
in the absence of correlations. Under three fundamen-
tal assumptions, we will show that the first term on the
RHS of (24) is negligible when we integrate from ⇤ = x2l
and ⇤ = xl, even when the connected correlators C⇤,c

are larger than Cdisc. Within the same integration range
and using the same assumptions on C⇤,c, we then ar-
gue that for positive correlations, although the integrand
cannot be factorized, the full integral nonetheless reduces
to the factorized answer (an intuitive justification of this
fact will be provided along the way). These arguments
would produce a recursion in r⇤ that di↵ers from the
MHI answer. In the final step we show that the modi-
fied recursion can lead to a shifted stretching exponent ✏
inside the MBL phase but cannot change the fractal di-
mension df or the correlation length scaling, providing a
precise extension of the results in Sec. VA. Throughout
the argument, we will state various technical lemmas and
provide some intuition. But the proofs for these lemmas
are relegated to Appendix. B.

The first assumption we make is a generic property of
systems driven to criticality:

Assumption 1: Critical slowing down holds along

the separatrix so that x ⇠ t�↵
for some positive exponent

↵ where t = log ⇤ is the RG time. In the uncorrelated

MHI RG, ↵ = 1. Here we only assume that ↵ is finite.

This is physically very reasonable because fluctuations
become more and more macroscopic near the critical
point at (x, y) = (0, 0) and relaxation of these macro-
scopic regions to equilibrium takes longer and longer. In
the language of renormalization group, the fastest term
in the �-function (which gives rise to exponentially fast
growth/decay) vanishes along the critical separatrix and
the subleading terms take over to give a power law be-
havior. Surprisingly, critical slowing down alone already
provides a powerful constraint:

Lemma V.2. Under assumption 1, hdi ⇠ ⇤ log ⇤ � ⇤,
µI

⇤(⇤) < x⇢T⇤(⇤), ⇢T⇤(⇤) ⇡
1
⇤+O( 1

⇤Poly(log ⇤) ) in the large

⇤ limit along the critical separatrix. Below the critical

separatrix (in the MBL phase), hdi � ⇤ and µI

⇤(⇤) <
x⇢T⇤(⇤) still hold.

A direct implication of this lemma is the slow decay
of x with ⇤ near the critical separatrix. To see this, we
recall the general flow equation (23) for x

dx

d⇤
= �⇤(1 + x)x

⇢T⇤(⇤)

hdi
⇡ �

⇤⇢T⇤(⇤)

hdi
x . (25)

Along the separatrix, Lemma. V.2 implies hdi ⇠ ⇤ log ⇤
and ⇢T⇤(⇤), consistent with the logarithmically slow
growth rate of x. Below the separatrix, ⇢T⇤(⇤) becomes
larger than ⇢T⇤,crit(⇤) as T-blocks are more likely to

be decimated. But hdi
�1 decays exponentially fast inR ⇤

⇢T⇤0(⇤0)d⇤0. Therefore, the decay of hdi
�1 overwhelms

the growth of ⇢T⇤(⇤) and dx

d⇤ also becomes much smaller.
As a result, the assumption of slow change in x can be
justified everywhere outside the thermal phase, a prop-
erty that we will use repeatedly later.

Despite its power, this lemma only gives information
about the marginal distributions precisely evaluated at
the cuto↵ and strictly along the separatrix. A more quan-
titative understanding of the RG flow requires two addi-
tional assumptions:
Assumption 2: Along and below the critical separatrix,

as the I-blocks become much longer than the T-blocks,

the distribution of deficit lengths µI

⇤(d) for I-blocks tends

to become wider and flatter. Concretely, we will assume

that µI

⇤(⇤) decreases with ⇤ and the derivative @dµI

⇤(d)
evaluated at the cuto↵ d = ⇤ goes to zero su�ciently

rapidly as ⇤ ! 1:

� @d log µI

⇤(d), �@d log CTIT

⇤ (l1, d, l2)
��
d=⇤

⌧ ⇢T⇤,crit(⇤)
(26)

What appears on the RHS is the probability of having
T-blocks at cuto↵ along the critical separatrix. In the un-
correlated RG, µI

⇤(d) is an exponential distribution and
one can easily show that

� @d log µI

⇤(d)
��
d=⇤

⇠ µI

⇤(⇤) . (27)

When we turn on correlations, we allow the distribution
to change in form, but we relax the right hand side to
⇢T⇤,crit(⇤). This should be regarded as a weak assumption
because T-block decimation always dominates along the
separatrix, implying µI

⇤,crit(⇤) ⌧ ⇢T⇤,crit(⇤). Below the
separatrix, I-blocks at cuto↵ become even rarer and the
inequality becomes more strongly satisfied.
Assumption 3: The connected distributions of nearest

neighbor T and I-blocks are upper-bounded by a function

that is much larger than the product of marginal distri-

butions for l 2 [⇤, ⇤/x]:

�����
CTI

⇤,c
(l, ⇤)

⇢T⇤(l)µI

⇤(⇤)

����� ,

�����
CTITI

⇤,c
(l1, ⇤, l2, ⇤)

CTIT

⇤ (l1, ⇤, l2)µI

⇤(⇤)

����� ⌧
⇢T⇤,crit(⇤)

µI

⇤(⇤)
.

(28)
As we have argued in Sec. VA, correlations between
nearby T and I-blocks should be washed out in the sense
that joint moments approximately factorize

⌦
ln
i
dm
j

↵
⇡

hln
i
i
⌦
dm
j

↵
. However, convergence of moments do not

really imply pointwise convergence of probability dis-
tributions. This is the key di�culty that necessitates
the introduction of additional assumptions that impose
pointwise bounds on the connected correlators. To max-
imize the robustness of our arguments, we allow the con-
nected correlators to be much larger than the product
of marginals pointwise but much smaller than the prod-

uct of marginals multiplied by
⇢
T
⇤,crit(⇤)

µI
⇤(⇤)

. Along the crit-

ical separatrix, this additional multiplicative factor di-
verges as a power law in t ⌘ log ⇤. Below the separatrix,
it diverges even faster since I-blocks at cuto↵ become
stretched-exponentially rare.
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With these weakened assumptions, the asymptotic pro-
jected flow equations for x, y could be significantly mod-
ified. Nevertheless, the correlation length scaling does
not change. To show this, we continue the analysis of
r⇤(l) in (24). Recall that r⇤(l) = x

hdi⇢
T

⇤(l). Since the

flow of x is slow, the flow of r⇤(l) for ⇤ 2 [xl, l] is con-
trolled by the competition between the growth of ⇢T⇤(l)
and hdi with ⇤. Clearly, the growth of both quantities
is due to a monotonic decrease in the total number of
blocks N⇤. But for ⇢T⇤(l), there is an additional mech-
anism that reduces ⇢T⇤(l). This comes from decimations
of T-blocks with length l when a rare I-block is at cuto↵.
The rate of these processes is CTI

⇤ (l, ⇤)/⇢T⇤(l). Thus as
long as CTI

⇤ (l, ⇤)/⇢T⇤(l) ⌧ ⇢T⇤(⇤), which is the content of
assumption 3, this decreasing contribution will be neg-
ligible and r⇤(l) will remain approximately constant for
⇤ 2 [xl, l]. A more precise version of this argument in
Appendix. B then leads to the key lemma:

Lemma V.3. Under assumptions 1 and 3, along the sep-

aratrix we have r⇤(l) ⇡ rl(l) up to errors of O(log x�1xc)
for all ⇤ 2 (xl, l) where c > 0 and x = x⇤. Below

the separatrix, the error is strictly smaller, approaching

O
⇣

1
Superpoly(⇤)

⌘
in the large ⇤ limit.

The constancy of r⇤(l) for ⇤ 2 (xl, l), combined with
the estimates in Lemma. V.1, allows us to compute the
precise functional form of ⇢T⇤(l) along the critical sepa-
ratrix. Importantly, ⇢T⇤(l) decays faster than 1/l2 every-
where below the separatrix, a property that will be used
in the main argument.

Lemma V.4. ⇢T⇤(l) ⇡
x
�1
⇤ ⇤ log ⇤

x
�1
l l2 log l

for l 2 [⇤, 2⇤+ ⇤
x
]. This

in turn implies that hli ⇡ ⇤ log x�1
.

With these technical lemmas in place, we can under-
stand the flow equation for r⇤(l) (24) outside the regime
⇤ 2 [xl, l] where the dominant growth mechanism of
⇢T⇤(l) is the production of new T-blocks with length l
from a TIT ! T move. Following Ref. 48, the strategy
is to avoid solving the full integro-di↵erential equation
but instead derive an approximate recursion relation for
r⇤(⇤

x
) in terms of r⇤(⇤). For that purpose, we fix l = ⇤

x

and integrate (24) from ⇤0 = x⇤ to ⇤0 = ⇤. Keeping all
terms on the RHS for the moment, we find

r⇤0(l)
��⇤
x⇤

⇡

Z ⇤

x⇤

⇢✓
�

y

⇤0 +
⇤0µI

⇤0(⇤0)

hdi⇤0
�

2CTI

⇤0 (l, ⇤0)

⇢T⇤0(l)

◆

r⇤0(l) +
x

hdi⇤0

Z
l�⇤0 1+x

x

⇤0
dl1C

TIT

⇤0 (l1, ⇤
0, l � l1 �

⇤0

x
)

�
.

(29)
For notational convenience, we will refer to the first line
on the RHS as F⇤,depl and the second line as F⇤,prod, in
accordance with the general decomposition of flow equa-
tions into depletion and production terms. As a sanity
check, note that this reduces to the analogous flow equa-
tion (15) in Ref. 48 after we plug in the exact solution

µI

⇤(d) = µI

⇤(⇤)e�µ
I
⇤(⇤)(d�⇤) valid for uncorrelated dis-

order and factorize joint distributions into product of
marginals. Now we make a change of variables from
⇤0

! l2 = l�l1�
⇤0

x
to elucidate the physical picture. Us-

ing the slow decay of x, the production term F⇤,prod could
be reduced to x2

R
D

dl1dl2
1

hdi⇤0
CTIT

⇤0 (l1, ⇤0, l2) where D

is an isosceles triangular integration domain as shown in
Fig. 6 and ⇤0 = ⇤+2x(⇤� l1 � l2) depends implicitly on
l1, l2. Roughly, this term counts all possible ways to form
a T-block with length l at scale ⇤ by combining smaller
blocks at an earlier stage with cuto↵ ⇤0

2 [x⇤, ⇤]. When
l = ⇤

x
, in order for the fractal structure of T-blocks to

be dominant, this term should receive its dominant con-
tributions from ⇤0 = ⇤. Using the fundamental assump-
tions and Lemma. V.3 we can show that this is indeed
the case. Moreover, the integral over domain D can be
replaced by an integral over an infinite region [⇤, 1]2 up
to errors that are suppressed at large ⇤ if the decay of
CTIT

⇤ (l1, ⇤, l2) with l1, l2 is su�ciently fast. This is guar-
anteed by assumption 3 and the estimate in Lemma. V.4.
Finally, since the integral over the infinite region [⇤, 1]2

simply gives µI

⇤(⇤), we immediately conclude

F⇤,prod =
x2

hdi
µI

⇤(⇤) . (30)

Using the decay properties of ⇢T⇤(l), we can also show
that F⇤,depl is suppressed relative to F⇤,prod, thereby es-
tablishing a recursion relation for r⇤(l)

r⇤/x(⇤/x) ⇡ r⇤(⇤/x) ⇡
x2

hdi
µI

⇤(⇤) . (31)

Using Lemma. V.3, we complete the derivation of the
projected flow equations in property (3)

y⇤/x =
⇤2

x2
r⇤/x(⇤/x) ⇡

⇤2

hdi
µI

⇤(⇤) =
⇣y⇤

x

⌘2
hdi µI

⇤(⇤) .

(32)
A byproduct of the precise argument in Appendix. B is
that hdi µI

⇤(⇤) ⇠ x log ⇤ at large ⇤ and along the sep-
aratrix. As x ! 0, by the assumption of critical slow-
ing down, x scales as a negative power of log ⇤. Thus
hdi µI

⇤(⇤) ⇠ xc for some c < 1. From this we can sim-
plify the recursion relation as

y⇤/x ⇠

⇣y⇤

x

⌘2
xc

⇡
y2

x2�c
. (33)

This recursion is solved by y ⇠ x� with ↵ = 2 � c. Plug-
ging this back into the exact flow equation (23) for x
and introducing the RG time t = log ⇤, we can get the
parametric form of the critical separatrix:

dx

dt
⇡ �x�

! x(t) ⇠ t
1

c�1 y(t) ⇠ t
2�c
c�1 . (34)

When hdi µI

⇤(⇤) ⇡ 1 as in the uncorrelated RG, c = 0 and
we recover the uncorrelated separatrix x(t) ⇠ t�1, y ⇠
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t�2. In the correlated case, it is possible to have c 6= 0 so
that x, y have di↵erent scalings with t. Now let us con-
sider deviations from the critical separatrix y ⇡ x2�c+�0 .
For �0 su�ciently small, hdi µI

⇤(⇤) ⇠ xc continues to ap-
proximately hold. Thus for every recursion step, t !

t + log x�1,

y⇤/x ⇡

✓
x2�c+�0

x

◆2

xc
⇡ x2�c+2�0 . (35)

The number of RG steps it takes for �0 to reach an O(1)
value is log2 ��1

0 . The elapsed RG time per RG step is
dt

dn
= log x�1

⇡ log(log ⇤)
1

1�c = 1
1�c

log t. This implies
that the total RG time T is related to the number of RG
steps N as:

N ⇡

Z
T dt

dt

dn

⇡
(1 � c)T

log T
! T ⇡

N

1 � c
log

N

1 � c
.

(36)
Hence in the limit �0 ! 0, the correlation length scales
as

⇠ = eT ⇡ �
�(1�c)�1 log(log2 �

�1
0 (1�c)�1)

0 . (37)

As anticipated by the qualitative argument in Sec. VB,
the above scaling satisfies ⌫ = 1. The origin of the
double logarithm is an extreme asymmetry between the
logarithmic slowdown along the separatrix and the ex-
ponential speedup orthogonal to the separatrix. For any
finite value of c, the double logarithmic scaling is robust
up to �0-independent constants. We have thus estab-
lished property (3) in Sec. III D.

Finally, to estimate the stretching exponent ✏(x) deep
in the MBL phase and obtain a more quantitative version
of property (1), we have to study the scaling of hdi µI

⇤(⇤).
Using the flow equations for hdi and µI

⇤(⇤),

d[hdi µI

⇤(⇤)]

d⇤
⇡ �2CTI

⇤,c
(⇤, ⇤) hdi + hdi @dµ

I

⇤(d)
��
d=⇤

.

(38)
By the positivity of CTI

⇤ and the numerical observation
that CTI

⇤,c
(⇤, ⇤) < 0, 0 < �CTI

⇤,c
(⇤, ⇤) < ⇢T⇤(⇤)µI

⇤(⇤).
Thus we generally have a scaling

� 2CTI

⇤,c
(⇤, ⇤) ⇠ ⌘⇢T⇤(⇤)µI

⇤(⇤) , (39)

where ⌘ < 1 (if ⌘ � 1, then µI

⇤(⇤) would flow to 1 as
⇤ ! 1, which is impossible). This means that

d[hdi µI

⇤(⇤)]

d⇤
⇡ ⌘⇢T⇤(⇤)[hdi µI

⇤(⇤)] , (40)

which gives log[hdi µI

⇤(⇤)] ⇡ ⌘
R ⇤

⇢T⇤0(⇤0)d⇤0 upon in-
tegration. On the other hand, close to the MBL fixed

line, ⇢T⇤(⇤) �
1
⇤ , and log hdi ⇡

R ⇤
⇢T⇤0(⇤0)d⇤0. By

definition of y, we therefore conclude that log y ⇡

�
R ⇤

⇢T⇤0(⇤0)d⇤0+subleading. Combining these estimates
with the recursion relation, we find

�

Z ⇤/x

⇢T⇤0(⇤0)d⇤0 = (�2 + ⌘)

Z ⇤

⇢T⇤0(⇤0)d⇤0
� 2 log x .

(41)

Since x freezes to a constant on the MBL fixed line, we
can drop 2 log x as ⇤ ! 1 in the above equation. The
remaining equation is solved by the ansatz

⇢T⇤(⇤) ⇠
1

⇤1�✏
, �

✓
⇤

x

◆✏

= (�2 + ⌘)⇤✏ . (42)

We now recognize ✏ as the stretching exponent, which
must satisfy

✏ =
log(2 � ⌘)

log x�1
, 0  ⌘ < 1 . (43)

Though this result holds for general ⌘, the moment
bounds in (14) strongly suggest that ⌘ ! 0 as ⇤ ! 1.
Therefore, the expectation is that ✏ = log 2

log x�1 , which is
exactly the uncorrelated value. At this point all three
features promised in Sec. III D have been established.

VI. DISCUSSION

In this work, we have argued via an analytic renor-
malization group approach that the Morningstar-Huse-
Imbrie critical scaling for the MBL transition is not af-
fected by the introduction of spatial correlations in the
distribution of initial block parameters. Since our argu-
ments cover correlations with arbitrary wandering expo-
nents, they provide strong evidence that the MHI critical
scaling is in fact a robust universality class. Furthermore,
many of our arguments continue to apply beyond the
MHI context. For hyperuniform correlations, stability
holds for asymptotically additive RGs, a broad class that
includes all existing phenomenological RGs for the MBL
transition. For positive correlations, while the most pre-
cise analytic arguments in Sec. V C rely on details of the
MHI RG, the more physical arguments in Sec. V A and
Sec. V B mostly involve general properties of asymptoti-
cally additive avalanche-based RGs. The “factorization”
of higher moments in Sec. VA only requires asymptotic
additiveness and the vanishing of excess interaction de-
cay rate x at the transition, which is a defining feature
of the avalanche mechanism. Likewise, the key ingredi-
ents in Sec. V B are that the MBL transition is driven by
rare fractal thermal inclusions and the correlation length
exponent ⌫ diverges. As pointed out in Ref. 69, both
of these features are likely generic for avalanche-based
RG schemes including MHI and GVS. Therefore, our ar-
guments suggest that any avalanche-based description of
the MBL transition is stable against arbitrary long-range
disorder correlations.

Moving forward, there remains a few open questions
that need to be addressed. The most important chal-
lenge is to go beyond specific RG schemes and develop a
scaling theory of the MBL transition from which all crit-
ical singularities follow. A first attempt in that direction
appeared in Ref. 69, where the avalanche mechanism,
combined with an assumption on the analyticity of the
� functions, led to the KT universality class on general
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grounds without invoking specific RG rules. But this con-
clusion was called into question by the MHI RG, which,
despite its simple and well-motivated microscopic rules,
featured a non-analytic �-function in the (x, y) plane.
Whether such non-analyticities should be expected in
general is a question that can hopefully be settled by im-
proving the arguments of Ref. 69. An alternative possibil-
ity is that analyticity only holds in a higher dimensional
parameter space and fails when we project onto the two
dimensional subspace spanned by (x, y). The challenge
would then be to identify the minimal set of parameters
needed for analyticity and constrain the form of the �-
function in this bigger space using some general physical
principles (with quantum avalanche probably playing a
key role). Such a framework will obviate the need for
more microscopic RG models and provide a much more
robust picture of the MBL transition. The e↵ects of long-
range disorder correlations on this transition could then
be analyzed by adapting the techniques developed in this
work.

Even without a complete scaling theory, it is fruitful
to ask within a specific phenomenological RG scheme
whether there exists a class of initial disorder correla-
tion that would modify the critical scaling of the uncor-
related random fixed point. One interesting example is
quasiperiodic correlation [7, 57]. For the symmetric RG
of Ref. 25, quasiperiodic initial conditions give rise to a
critical exponent ⌫ = 1 [57], which is distinct from the
value of ⌫ for the two families of correlations that we
have considered (see Appendix. C for a more detailed
discussion of the symmetric RG), and distinct from the
uncorrelated random case. In the MHI RG, the ana-
lytic framework that we have developed for hyperuniform
and positive correlations does not apply to quasiperiodic
correlations which are described by a fixed set of ini-
tial block lengths rather than an ensemble. Therefore,
although the wandering exponent of quasiperiodic corre-
lation w = 0 coincides with that of hyperuniform cor-
relation with ↵ = 1, we cannot conclude that ⌫ = 1

for the quasiperiodic case. Understanding the fate of the
quasiperiodic MBL transition will likely require new an-
alytic insights.

Finally, we should remark that the moment bounds of
joint distributions CTI...T

⇤ in block RGs and the BBGKY
hierarchy of correlated flows developed in this paper
may have applications to more general functional RGs.
One topic where the formalism might be helpful is the
generalized Harris bound/correlated CCFS bound that
we discussed in the introduction.
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Appendix A: Derivation of correlated flow equations

Spatial correlations in the initial T/I-block lengths force us to consider a functional RG of the joint probability

distribution P⇤(~lI ,~lT ) instead of the single block marginals ⇢T⇤(lT ), µI

⇤(d) studied in Ref. 48. However, to understand
the behavior of the order parameters x⇤, y⇤ which depend only on single block marginals and their integrals, we
do not need to keep track of the fine-grained renormalization of P⇤(~lT ,~lI). Instead, we will develop a hierarchy of
equations (analogous to the BBGKY hierarchy is classical statistical mechanics), where the marginal distribution of
n nearest neighbors depends on the distribution of n+2 nearest neighbors (see Refs. [71–75] for original works on the
BBGKY hierarchy). This set of equations do not close at any finite order but will be su�cient for a precise analysis
of the near-critical regime.

The general structure of the flow equations can be understood via the following schematic equation:

@⇤C(n)
⇤ (l1, d1, . . .) = Fdepl[C

(n+2)
⇤ ] + Fprod[C(n+2)

⇤ ] . (A1)

Here, C(n)
⇤ (l1, d1, . . .) is the probability that a contiguous chain of n blocks have lengths (l1, d1, . . .) when the length

cuto↵ is ⇤. The flow of C(n)
⇤ has two contributions: Fdepl is a depletion term that accounts for RG moves where a

chain of n blocks with length (l1, d1, . . .) at cuto↵ ⇤ are destroyed when we move the cuto↵ ⇤+ d⇤; in contrast, Fprod

is a production term that encodes RG moves that create a new chain of n blocks with lengths (l1, d1, . . .) which was
not present at cuto↵ ⇤. To be concrete, we consider the case where n = 1, so that the LHS is just a single-block
marginal. For T and I-blocks we have

@⇤⇢T⇤(l) = ⇢T⇤(l)[µI

⇤(⇤) + ⇢T⇤(⇤)] � 2CTI

⇤ (l, ⇤) +

Z
l�⇤

x �⇤

⇤
CTIT

⇤,c

✓
l1, ⇤, l �

⇤

x
� l1

◆
dl1 , (A2)

@⇤µI

⇤(d) = µI

⇤(d)[µI

⇤(⇤) + ⇢T⇤(⇤)] � 2CTI

⇤ (⇤, d) +

Z
d

⇤
CITI

⇤ (s, ⇤, d + ⇤ � s) ds . (A3)

In each of the flow equations above, the first and second lines are depletion and production terms respectively.
In the uncorrelated limit, the multI-block correlations factorize as products of single-block marginals CTI(l, d) =
⇢T⇤(l)µI

⇤(d), CTIT (l1, d, l2) = ⇢T (l1)µI(d)⇢T (l2) etc. and the resulting flow equations agree with those obtained in
Ref. 48. Following the same procedure, it is conceptually simple to derive the full hierarchy of equations. For clarity,
we will only present the next simplest equation in the hierarchy (which turns out to be all we need near criticality).
This flow equation will involve two types of contributions: one coming from the depletion of thermal blocks with
length l1, l2 that have already been produced in earlier stages in the RG (i.e. at cuto↵ smaller than ⇤) and the other
coming from the production of thermal blocks with length l1, l2 due to decimation of I-blocks with d = ⇤. Taking
both contributions into account, the number density flows as

nTIT

⇤+d⇤(l1, ⇤ + d⇤, l2) = nTIT

⇤ (l1, ⇤, l2)

+ d⇤


� CITIT

⇤ (⇤, l1, d, l2) � CTITI

⇤ (l1, d, l2, ⇤) +

Z 1

⇤
dl̃1C

TITIT

⇤

✓
l̃1, ⇤, l1 �

⇤

x
� l̃1, d, l2

◆

+

Z 1

⇤
dl̃1C

TITIT

⇤

✓
l1, d, l̃2, ⇤, l2 �

⇤

x
� l̃2

◆
] +

Z 1

⇤
dsCTITIT

⇤ (l1, s, ⇤, d + ⇤ � s, l2)

�
.

(A4)
Let the total number of I-blocks be N⇤ (which is equal to the number of T-blocks) with flow equation N⇤+d⇤ =
N⇤[1 � d⇤(⇢T⇤(⇤) + µI

⇤(⇤)]. Dividing both sides of the previous equation by N⇤+d⇤ and recalling the definition
nTIT

⇤ /N⇤ = CTIT

⇤ , we get

@⇤CTIT

⇤ (l1, d, l2) = Fdepl + Fprod , (A5)

where the depletion and production terms are given by

Fdepl = CTIT

⇤ (l1, d, l2)[⇢
T

⇤(⇤) + µI

⇤(⇤)] � CITIT

⇤ (⇤, l1, d, l2) � CTITI

⇤ (l1, d, l2, ⇤) , (A6)

Fprod =

Z 1

⇤
ds
⇥
CTITIT

⇤

✓
s, ⇤, l1 �

⇤

x
� s, d, l2

◆
+ CTITIT

⇤

✓
l1, d, s, ⇤, l2 �

⇤

x
� s

◆
+ CTITIT

⇤ (l1, s, ⇤, d + ⇤ � s, l2)
⇤
.

(A7)
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The two-parameter RG flows that we are interested in depend not on the full distribution but rather on the moments
of these distributions. It is easy to derive flow equations for the moments from the full PDEs above. We enumerate
a full set of these equations here:

d
⌦
lI
↵

d⇤
= µI

⇤(⇤)[
⌦
lI
↵

�
⇤

x
] + ⇢T⇤(⇤)[

⌦
lI
↵

+ ⇤] , (A8)

d
⌦
lT
↵

d⇤
= ⇢T⇤(⇤)[

⌦
lT
↵

� ⇤] + µI

⇤(⇤)[
⌦
lT
↵

+
⇤

x
] , (A9)

d hdi

d⇤
= [µI

⇤(⇤) + ⇢T⇤(⇤)](hdi � ⇤) . (A10)

Note that these equations are equivalent in form to their uncorrelated analogues in Ref. 29. However, since
⇢T⇤(⇤), µI

⇤(⇤) are shifted by correlations, the functional dependence of hdi ,
⌦
lI
↵
,
⌦
lT
↵

on ⇤ may also be di↵erent
from the uncorrelated RG.

The proof of these three formulae are structurally identical and rather tedious, so we will only give the simplest
version of the calculation. Consider hdi =

R1
⇤ ddµI

⇤(d) · d. A few simple algebraic manipulations lead to

d

d⇤
hdi = �µI

⇤(⇤)⇤ +

Z 1

⇤
@⇤µI

⇤(d) · d

= �µI

⇤(⇤)⇤ +

Z 1

⇤
µI

⇤(d)[µI

⇤(⇤) + ⇢T⇤(⇤)]d � 2

Z 1
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⇤ (⇤, d)d +
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Z
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dxCITI

⇤ (d � x + ⇤, ⇤, x)d

= �µI

⇤(⇤)⇤ + hdi [µI

⇤(⇤) + ⇢T⇤(⇤)] � 2
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di|l

T

i
= ⇤

↵
+

Z 1

⇤
dx

Z 1

⇤
dy

Z
dd�(d � x + ⇤ � y)CITI

⇤ (y, ⇤, x)d

= �µI

⇤(⇤)⇤ + hdi [µI

⇤(⇤) + ⇢T⇤(⇤)] � 2
⌦
di|l

T

i
= ⇤

↵
+ 2

⌦
di|l

T

i
= ⇤

↵
� ⇤⇢T⇤(⇤)

= [µI

⇤(⇤) + ⇢T⇤(⇤)](hdi � ⇤) .
(A11)

where in the third line we introduced the conditional expectation value h·|·i and in the fourth line we used the following
facts that follow from definition:

Z
CITI

⇤ (x, l, y)dy = CTI

⇤ (l, x)

Z
CITI

⇤ (x, l, y)dx = CTI

⇤ (l, y)

Z
CITI

⇤ (x, l, y)dxdy = ⇢T⇤(l) . (A12)

This completes the proof of Lemma. V.1.

Appendix B: Derivation of recursion relation for correlated MHI RG

In the main text, we outlined an argument for the stability of MBL criticality in the MHI RG. In this appendix,
we will fill in some of the technical details. Recall the fundamental variables in our RG:

x⇤ =
hdi

hlIi
, r⇤(l) =

x

hdi
⇢T⇤(l) , y = r⇤(⇤)⇤2 . (B1)

In Sec. VC, we already derived the exact flow equation dx

d⇤ = �
(1+x)y

⇤ for x⇤. Here we will derive the flow equation
for r⇤(l) which will facilitate our analysis of y later. Di↵erentiating the definition directly and using the exact flow
equation for x, we get three terms which partially cancel each other:
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Integrating the above equation from x⇤ to ⇤ gives equation (29) in the main text, which we rewrite below

r⇤0(l)|⇤
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⇢T⇤0(l)

◆
r⇤0(l) +

x

hdi

Z
l�⇤0(1+x

�1)

⇤0
CTIT

⇤0

✓
l1, ⇤

0, l �
⇤0

x
� l1

◆
dl1

�
.

(B3)
As explained in the main text, our goal is to show that the second term dominates over the other two terms. To do
that, we first recall the fundamental assumptions that go into our analysis:

Assumption 1: Critical slowing down holds along the separatrix so that x ⇠ t�↵
for some positive exponent ↵

where t = log ⇤ is the RG time. In the uncorrelated MHI RG, ↵ = 1. Here we only assume that ↵ is finite.

Assumption 2: Along and below the critical separatrix, as the I-blocks become much longer than the T-blocks, the

distribution of deficit lengths µI

⇤(d) for I-blocks tends to become wider and flatter. Concretely, we will assume that

µI

⇤(⇤) decreases with ⇤ and the derivative @dµI

⇤(d) evaluated at the cuto↵ d = ⇤ goes to zero su�ciently rapidly as

⇤ ! 1:

� @d log µI

⇤(d), �@d log CTIT

⇤ (l1, d, l2)
��
d=⇤

⌧ ⇢T⇤,crit(⇤) (B4)

Assumption 3: The connected distributions of nearest neighbor T and I-blocks are upper-bounded by a function that

is much larger than the product of marginal distributions for l 2 [⇤, ⇤/x]:
�����

CTI

⇤,c
(l, ⇤)

⇢T⇤(l)µI

⇤(⇤)

����� ,

�����
CTITI

⇤,c
(l1, ⇤, l2, ⇤)

CTIT

⇤ (l1, ⇤, l2)µI

⇤(⇤)

����� ⌧
⇢T⇤,crit(⇤)

µI

⇤(⇤)
. (B5)

where ⌧ means a multiplicative factor that is
1

Poly(t) and hence only logarithmically small in log ⇤.
The motivation and numerical tests for these assumptions are discussed in the main text and will not be repeated

here. With these assumptions in mind, we continue the analysis of (B3). We denote the first term on the RHS of
(B3) by F⇤,depl since it captures the depletion of T-blocks that have been produced at an earlier RG time. The second
term which captures the production of new T-blocks will be denoted by F⇤,prod. As a general observation, note that
the various terms in F⇤,depl, F⇤,prod correspond to various levels of the hierarchy: from the lowest level moments h. . .i
to the highest level three-block joint distributions. The flow equations are a bridge between low and high levels in
the hierarchy. The general structure of the two-parameter phase diagram gives us important information about low
levels in the hierarchy, for example the relationship between various moments

⌦
lT
↵
,
⌦
lI
↵
, hdi. So our general strategy

is to bootstrap the higher level distributions from the low level information via the flow equations.

Lemma B.1. Under assumption 1, hdi ⇠ ⇤ log ⇤ � ⇤, µI

⇤(⇤) < x⇢T⇤(⇤), ⇢T⇤ ⇡
1
⇤ + O( 1

⇤Poly(log ⇤) ) in the large ⇤

limit along the critical separatrix. Below the critical separatrix (in the MBL phase), hdi � ⇤ and µI

⇤(⇤) < x⇢T⇤(⇤)
still hold.

Proof. We begin by showing that hdi � ⇤ without fixing its precise scaling. Suppose that hdi � ⇤ does not hold,
then since hdi > ⇤, there must be a finite k � 1 such that hdi ⇠ k⇤ + subleading at large ⇤. The flow equation for
hdi thus reduces to

k =
d hdi

d⇤
= [⇢T⇤(⇤) + µI

⇤(⇤)](hdi � ⇤) = [⇢T⇤(⇤) + µI

⇤(⇤)][(k � 1)⇤ + o(⇤)] (B6)

If k > 1, then to leading order in ⇤, µI

⇤(⇤) + ⇢T⇤(⇤) ⇡
k

k�1
1
⇤ . By combining the flow equation for

⌦
lI
↵

and
⌦
lT
↵
, we

immediately see that
⌦
lI
↵

+
⌦
lT
↵

⇠ ⇤1+ 1
k�1 . As argued in the main text (and suggested by numerics) the thermal

fraction flows to zero along the critical separatrix, implying that
⌦
lI
↵

>
⌦
lT
↵
. This forces the scaling

⌦
lI
↵

⇠ ⇤1+ 1
k�1 and

hence x ⇠ ⇤� 1
k�1 . For any k > 1, this is an exponentially fast decay in the RG time t = log ⇤, violating assumption

1. If k = 1, then µI

⇤(⇤) + ⇢T⇤(⇤) ⇡
1

o(⇤) , which implies that
⌦
lI
↵

+
⌦
lT
↵

grows faster than any power law in ⇤ and x
decays faster than any power law in ⇤. This leads to an even stronger violation of assumption 1. Hence, we conclude
that hdi � ⇤.

To learn something about µI

⇤(⇤), ⇢T⇤(⇤), we go back to the flow equation for
⌦
lI
↵
,
⌦
lT
↵
. Since

⌦
lT
↵
/
⌦
lI
↵

! 0 along

and below the critical separatrix, we must demand that d log f

d⇤ be a monotonically decreasing function at large ⇤
where f is the thermal fraction. Using the flow equation for

⌦
lT
↵
,
⌦
lI
↵
, it is easy to see that

d log f

d⇤
=

⇤

hlT i
[
µI

⇤(⇤)

x
� ⇢T⇤(⇤)] . (B7)
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In order for the RHS to be negative, we must have µI

⇤(⇤) < x⇢T⇤(⇤) as claimed in the lemma.
To further fix the precise scaling of ⇢T⇤(⇤) and hdi, we go back to the flow equation for x:

dx

d⇤
= �

⇤2x

⇤ hdi
⇢T⇤(⇤) = �

⇤x⇢T⇤(⇤)

hdi
!

d log x

d log ⇤
= �

⇤2⇢T⇤(⇤)

hdi
. (B8)

In the large ⇤ limit, we have already shown that ⇢T⇤(⇤) � µI

⇤(⇤) and hdi � ⇤. Therefore, the flow equation for

hdi reduces to dhdi
d⇤ = [⇢T⇤(⇤) + subleading](hdi � ⇤). We now do a simple case work. If lim⇤!1 ⇤⇢T⇤(⇤) > 1, then

hdi grows at least as fast as ⇤1+✏ for some ✏ > 0. This would mean d log x

d log ⇤ ⇠ �
1
⇤✏ which implies that x ⇠

1
Poly(⇤) ,

leading to a contradiction. On the other hand, if lim⇤!1 ⇤⇢T⇤(⇤) < 1
⇤ , then hdi = o(⇤), violating the constraint that

hdi > ⇤. Hence, we conclude that ⇢T⇤(⇤) ⇡
1
⇤ + subleading. To get the scaling of the subleading terms, we return

again to the flow equation for x. By assumption, x decays as a polynomial in the RG time log ⇤. This implies that
dx

d⇤ ⇠ �
x

⇤ log ⇤ , which, together with the leading order scaling of ⇢T⇤(⇤), forces hdi ⇠ ⇤ log ⇤. In order for this scaling

to be consistent with ⇢T⇤(⇤) ⇡
1
⇤ , µI

⇤(⇤) < x⇢T⇤ and the exact flow equation dhdi
d⇤ = [⇢T⇤(⇤)+µI

⇤(⇤)](hdi�⇤), we must
demand ⇢T⇤(⇤) + µI

⇤(⇤) ⇡
1
⇤ + o( 1

⇤ log ⇤ ). Independent of the precise scaling of x with ⇤, we therefore conclude that

⇢T⇤(⇤) ⇡
1
⇤ + O( 1

⇤Poly(log ⇤) ). This concludes the proof of estimates along the separatrix.

Below the separatrix, ⇢T⇤(⇤) > 1
⇤ because T-blocks become even likely to be decimated. This means that hdi ⇠

e
R ⇤

⇢
T
⇤0 (⇤

0)d⇤0
grows faster than along the separatrix and hence faster than ⇤. This concludes the second part of the

Lemma.

Lemma B.2. Under assumptions 1 and 3, along the separatrix we have r⇤(l) ⇡ rl(l) up to errors of O(log x�1xc) for

all ⇤ 2 (xl, l) where c > 0 and x = x⇤. Below the separatrix, the error is strictly smaller, approaching O
⇣

1
Superpoly(⇤)

⌘

in the large ⇤ limit.

Proof. In the flow equation (24), production terms give zero contribution whenever ⇤ 2 (xl, l) because the shortest
T-block created from a TIT ! T move at cuto↵ ⇤ has length greater than or equal to ⇤

x
. Hence we may focus only

on the depletion term

@⇤r⇤(l) =

✓
�

y

⇤
+

⇤µI

⇤(⇤)

hdi
�

2CTI

⇤ (l, ⇤)

⇢T⇤(l)

◆
r⇤(l) ! r⇤2(l) = e

R ⇤2
⇤1

✓
� y

⇤+
⇤µI

⇤(⇤)

hdi � 2CTI
⇤ (l,⇤)

⇢T⇤ (l)

◆
d⇤

r⇤1(l) . (B9)

We first work along the separatrix. At large ⇤, y = x

hdi⇢
T

⇤(⇤)⇤2
⇠

x⇤
hdi . Since x ⌧ 1, y

⇤ = x

hdi ⇠
x

⇤ log ⇤ . Similarly, as

µI

⇤(⇤) ⇡
x

⇤ , the second term ⇤µ
I
⇤(⇤)
hdi ⇡

x

hdi ⇡
x

⇤ log ⇤ . Finally, by assumption 3, CTI

⇤ (l, ⇤)/⇢T⇤(l) ⌧ ⇢T⇤(⇤) ⇠
1
⇤ . Here

⌧ means a multiplicative factor that is a negative power of the RG time t = log ⇤. By the assumption of critical
slowing down, this can also be formulated as a factor xc for some c > 0.

Z
l

xl

✓
�

y

⇤
+

⇤µI

⇤(⇤)

hdi
�

2CTI

⇤ (l, ⇤)

⇢T⇤(l)

◆
d⇤ .

Z log l

log(xl)
d(log ⇤)xc

⇡ log x�1xc . (B10)

Along the separatrix, x ! 0 at large ⇤. Therefore, for su�ciently large ⇤, we have

rl(l) ⇡ e� log x
�1

x
c

r⇤(l) ⇡ (1 � log x�1xc)r⇤(l) . (B11)

implying that rl(l), rxl(l) are equal up to small corrections. Since r⇤(l) decreases monotonically from ⇤ = xl to l, it
must in fact be true that rl(l) ⇡ r⇤(l) for all ⇤ 2 (xl, l) which is what we set out to prove.

Below the separatrix, we can reexamine the scaling of all three terms. As the flow deviates from the separatrix and
tends towards the MBL fixed line, y and µI

⇤(⇤) decay to 0 faster, while hdi grows to 1 faster as ⇤ increases, since the
decimation rate of T-blocks increases monotonically. This trend makes all three terms decay faster towards 0. Hence
we still have rl(l) ⇡ r⇤(l) for all ⇤ 2 (xl, l). For very large ⇤, ⇢T⇤(⇤) will settle into some asymptotic scaling with ⇤

such that ⇢T⇤(⇤) � O( 1
⇤ ). This implies that hdi , y ⇠ e

R ⇤
⇢
T
⇤0 (⇤

0)
⇠ Superpoly(⇤). Hence, the asymptotic error rate is

rl(l) ⇡ r⇤(l) + O

✓
1

Superpoly(⇤)

◆
, (B12)

as we set out to show.
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Lemma B.3. The following more concrete estimates about the distribution of T-block lengths hold along the separatrix:

⇢T⇤(l) ⇡
x
�1
⇤ ⇤ log ⇤

x
�1
l l2 log l

for l 2 [⇤, 2⇤ + ⇤
x
]. This in turn implies that hli ⇡ ⇤ log x�1

.

Proof. From Lemma. B.2, we know that for l 2 [⇤, ⇤
x

+ 2⇤],

rl(l) ⇡ r⇤(l) r⇤(l) =
x⇤

hdi (⇤)
⇢T⇤(l) . (B13)

Using the scaling estimates for hdi (⇤), ⇢T⇤(⇤) and assumption 1, we can immediate prove the estimate for ⇢T⇤(l):

xl

l log l

1

l
⇡

x⇤

⇤ log ⇤
⇢T⇤(l) ! ⇢T⇤(l) ⇡

x�1
⇤ ⇤ log ⇤

x�1
l

l2 log l
. (B14)

Using this formula, we can estimate the average T-block length:

hli ⇡

Z ⇤/x

⇤

x�1
⇤ ⇤ log ⇤

x�1
l

l2 log l
ldl ⇡ x�1

⇤ ⇤ log ⇤

Z log ⇤+log x
�1

log ⇤

1

x�1
l

log l
d(log l) . (B15)

By assumption 1 again, x�1
⇤ = Poly(log ⇤). This immediately implies that

hli ⇡
⇤ log ⇤x�1

⇤

x�1
⇤ log ⇤

log x�1
⇡ ⇤ log x�1 , (B16)

which is what we set out to show.

Using the estimates for ⇢T⇤(⇤), we can obtain some more precise control over µI

⇤(⇤) and x:

Corollary B.4. Under assumptions 1 and 3 and along the separatrix, µI

⇤(⇤)/x ⇡ ⇢T⇤(⇤) + O( 1
⇤ log ⇤ ).

Proof. By assumptions 1 and 3, the previous two lemmas hold and we have µI

⇤(⇤) < x⇢T⇤(⇤). Here, we want to show
that they are in fact equal to leading order in ⇤. For that we return to the flow equation for the thermal fraction

f =
hl

T
i

hlIi+hlT i (for notational clarity we use
⌦
lT
↵

instead of hli to denote the average T-block length in this proof).

Along the critical separatrix, we have
⌦
lT
↵

= ⇤fT (⇤),
⌦
lI
↵

= ⇤fI(⇤) where fT (⇤) ⇠ log x�1 and fI(⇤) ⇠
log ⇤
x

as we
flow towards the fixed point at f = 0. Now the flow equation for f dictates that

d log f

d log ⇤
⇡ �

⇤2

hlT i
[�µI

⇤(⇤)/x + ⇢T⇤(⇤)] . (B17)

Now let us evaluate the LHS approximately:

d log f

d log ⇤
=

d log fT (⇤)

d log ⇤
�

d log[fT (⇤) + fI(⇤)]

d log ⇤
⇡ �

d log fI(⇤)

d log ⇤
+ subleading , (B18)

where in the last step we used the fact that fI(⇤) grows much faster than fT (⇤) at large ⇤. This estimate implies
that:

d log fI(⇤)

d log ⇤
⇡ O

✓
⇤[�µI

⇤(⇤)/x + ⇢T⇤(⇤)]

log x�1

◆
. (B19)

But if fI(⇤) ⇠ log ⇤/x, d log fI(⇤)
d log ⇤ = O( 1

log ⇤ ). Since log x�1 is smaller than any polynomial in log ⇤, the equation

above is inconsistent unless µI

⇤(⇤)/x � ⇢T⇤(⇤) = O( 1
⇤ log ⇤ ).

These lemmas already allow us to study the relationship between x, y strictly along the separatrix. But since we are
interested in the entire region below the separatrix, we need to give a more precise argument for how the RHS of (B3)
scales. In step (1), we obtain a compact formula for F⇤,prod valid in the large ⇤ limit. In step (2) we argue that F⇤,depl

is suppressed relative to F⇤,prod, thereby establishing the recursion relation for r⇤(l) and hence for y = r⇤(⇤)⇤2.
As a preface to the remaining arguments, we emphasize that the logic above is a direct generalization of the logic

for uncorrelated MHI explained in Ref. 48. In the uncorrelated case, step (1) requires a careful analysis of the decay
properties of the integrand ⇢T⇤0(l1)µI

⇤0(⇤0)⇢T⇤0(l � ⇤0/x � l1) in the integration domain Fig. 6. For the correlated case,
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FIG. 6. In this plot we show the exact and approximate integration domains relevant for the production term . The opening
angle of the isosceles triangle (exact domain) approaches ⇡/2 as x ! 0.

the integration domain does not change, but the integrand no longer factorizes. Thus the main challenge is to use
the lemmas and fundamental assumptions to argue for similar decay properties. Step (2) in the uncorrelated case is
a direct application of Lemma. B.2. With correlations, the argument essentially goes through unscathed given the
estimates already proven in the lemmas. The recursion relation can then be plugged into the main text to derive
critical properties.

Finally, for readers who are already familiar with the MHI argument in Ref. 48, we will make some occasional
comments emphasizing essential ingredients here that are di↵erent from those in MHI. Our argument should be
comprehensible without reading these comments.

1. Compact formula for F⇤,prod

We start by writing down the production term without splitting it into disconnected and connected parts:

F⇤,prod(l) =

Z ⇤

x⇤
d⇤0 x⇤0

hdi⇤0

Z
l�⇤0(1+x

�1)

⇤0
CTIT

⇤0

✓
l1, ⇤

0, l �
⇤0

x
� l1

◆
dl1 . (B20)

Following Ref. 48, we make a change of variables from ⇤0
! l2 = l �

⇤0

x
� l1. Since x varies slowly with ⇤, we can

disregard the dependence of x on ⇤ and pull it out of the integrals. This allows us to simplify the production term:

F⇤,prod(l) ⇡ x2

Z

D

dl2dl1
1

hdi⇤0
CTIT

⇤0 (l1, ⇤
0, l2) . (B21)

where the integration domain D is the blue isosceles triangle shown in Fig. 6. The integrand now involves a three-block
correlation. We use the flow equation (A5) derived before to bound its growth in the region x max(l1, l2)  ⇤0



min(l1, l2) (this range is chosen so that we can drop the production term in (A5) involving integrals over five-block
distributions):

@⇤0(
CTIT

⇤0 (l1, ⇤0, l2)

hdi⇤0
) ⇡ �

1

hdi
2
⇤0

[⇢T⇤0(⇤0) + µI

⇤0(⇤0)] hdi⇤0 CTIT

⇤0 (l1, ⇤
0, l2)

+
1

hdi⇤0

⇢
CTIT

⇤0 (l1, ⇤
0, l2)[⇢

T

⇤0(⇤0) + µI

⇤0(⇤0)] � CTITI

⇤0 (l1, ⇤
0, l2, ⇤

0)

� CITIT

⇤0 (⇤0, l1, ⇤
0, l2) + @dC

TIT

⇤0 (l1, d, l2)|d=⇤0

�
.

(B22)
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The first line cancels nicely with the first term on the second line. The remaining terms are:

@⇤0(
CTIT

⇤0 (l1, ⇤0, l2)

hdi⇤0
) ⇡

1

hdi⇤0

⇢
� CTITI

⇤0 (l1, ⇤
0, l2, ⇤

0) � CITIT

⇤0 (⇤0, l1, ⇤
0, l2) + @dC

TIT

⇤0 (l1, d, l2)|d=⇤0

�
. (B23)

Using assumptions 2 and 3, all three terms can be bounded by 1
hdi⇤0

CTIT

⇤0 (l1, ⇤0, l2)⇢T⇤0(⇤0)xc. By an easy adaptation

of the argument in Lemma. B.2, we have the uniform estimate:

CTIT

⇤0 (l1, ⇤0, l2)

hdi⇤0
⇡ const 8 max(l1, l2)x  ⇤0

 min(l1, l2) . (B24)

Now we are ready to tackle the double integral over D (the blue + orange region in Fig. 6). The subset of the domain
where l1, l2 � ⇤ is an isosceles right triangle with leg length ⇤

x
�x⇤. Denote this right triangle by T and the remaining

narrow wedges D \ T . Since the two narrow wedges are symmetric about the line l1 = l2, we need only demonstrate
that the integral over one of the wedges is suppressed relative to the integral over the right triangular domain. This
can be accomplished in two steps:

1. Let us consider first the right triangular domain T . The di�culty in estimating this integral is that the cuto↵
⇤0 of the integrand depends implicitly on l1, l2. We would like to make a series of approximations until we can
evaluate the integral at a fixed cuto↵.

To do that, we first consider the orange square [⇤, ⇤
2x ] ⇥ [⇤, ⇤

2x ] contained in T . Outside of this square, l1 �
⇤
2x

or l2 �
⇤
2x , implying that ⇤0 = ⇤ + x(2⇤ � l1 � l2) 

⇤
2 . As a result, ⇤0

l1
 x or ⇤0

l2
 x. But since the least

unlikely way to produce a large T-block with l1 �
⇤0

x
is to combine two positively correlated T-blocks at cuto↵,

CTIT

⇤0 (l1, ⇤0, l2) must be exponentially decaying in l1, l2 for all (l1, l2) /2 [⇤, ⇤
2x ] ⇥ [⇤, ⇤

2x ] with a decay length on

the order of ⇤0

x
. These exponential tails will give small corrections and for a leading order approximation we

can restrict the integral to the orange square from now on.

For readers familiar with MHI, note that our argument is subtly di↵erent from the original MHI argument
that replaced the cuto↵ ⇤0 with ⇤ everywhere in the orange square. This replacement is puzzling because
x max(l1, l2)  ⇤0

 min(l1, l2) is not true everywhere in D and the analogue of Lemma. B.2 for uncorrelated
RG cannot be applied. We circumvent this possible loophole by restricting to an even smaller square S0 =
[⇤, ⇤

x1/2 ]⇥ [⇤, ⇤
x1/2 ]. In this smaller domain, x max(l1, l2) = x1/2⇤, min(l1, l2) = ⇤ and ⇤0 = ⇤+2x(⇤� l1 � l2) 

⇤ + 2x⇤ � 2x1/2⇤. When x ⌧ 1, x max(l1, l2)  ⇤0
 min(l1, l2) indeed holds and

CTIT

⇤0 (l1, ⇤0, l2)

hdi⇤0
⇡

CTIT

⇤ (l1, ⇤, l2)

hdi⇤

8(l1, l2) 2 S0 . (B25)

Within S0, we can also estimate the decay of the integrand with l1, l2. Without loss of generality, let l1  l2.
By monotonicity of the probability distributions,

CTIT

⇤0 (l1, ⇤0, l2)

hdi⇤0
⇡

CTIT

⇤ (l1, ⇤, l2)

hdi⇤

8l1, l2 2 [⇤,
⇤

x1/2
] . (B26)

For positive correlations, at cuto↵ l1, hdi , hli � l1, l2 and CTIT

⇤ (l1, ⇤, l2) should be enhanced relative to
⇢T⇤(l1)⇢T⇤(l2)µI

⇤(⇤). However, the enhancement does not change the power law scaling in l1, l2 according to
assumption 3. Therefore, by Lemma. B.3, we have that along the separatrix,

CTIT

⇤0 (l1, ⇤0, l2)

hdi⇤0
⇠ O

✓
1

l21l
2
2

◆
. (B27)

When (l1, l2) 2 S \ S0, we necessarily have
C

TIT
⇤0 (l1,⇤

0
,l2)

hdi⇤0


C
TIT
⇤ (l1,⇤,l2)

hdi⇤
since ⇤0 < ⇤. The 1

l21l
2
2

decay therefore

guarantees that the contributions from the region S\S0 is suppressed by a factor of x relative to the contributions
from S0 and can be thus neglected. Below the separatrix, the decay of CTIT

⇤ (l1, ⇤, l2) with l1, l2 has to be faster
because flowing towards the MBL fixed line implies a clustering of T-blocks close to the cuto↵. Therefore, the
suppression factor is much smaller than x and there is no additional complication.

After restricting to S, we can shift the cuto↵ uniformly to ⇤ so that

x2

Z

S0

CTIT

⇤0 (l1, ⇤0, l2)

hdi⇤0
⇡ x2

Z

S

CTIT

⇤ (l1, ⇤, l2)

hdi⇤

. (B28)
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Now up to errors that are suppressed by positive powers of x, we can extend the integration domain to [⇤, 1]2.
Therefore, to leading order,

x2

Z

S

CTIT

⇤ (l1, ⇤, l2)

hdi⇤

= x2

Z

[⇤,1]2

1

hdi⇤

CTIT

⇤ (l1, ⇤, l2) =
x2µI

⇤(⇤)

hdi⇤

. (B29)

where the last identity follows from the definition of CTIT

⇤ .

2. The integral over the narrow wedges is much easier to analyze. As explained above, the value of CTIT

⇤0 (l1, ⇤0, l2)
is only appreciable near (l1, l2) = (⇤, ⇤) and exponentially suppressed for l1, l2 �

⇤
2x . But the area of the wedges

restricted to l1, l2 
⇤
2x is only O(x). Hence relative to the integral in the square region, the wedge integral

must be suppressed at least by an additional factor of x. We thus arrive at equation (30) in the main text:

F⇤,prod ⇡
x2µI

⇤(⇤)

hdi⇤

. (B30)

2. Bounding F⇤,depl relative to F⇤,prod

At this point, it is easy to see that F⇤,depl is suppressed relative to F⇤,prod. Recall that since the least unlikely
way to create a T-block late in the RG is by combining two T-blocks of length lT ⇡ ⇤ with an insulating block with
lI = ⇤

x
, we expect ⇢T

x⇤(l) to decay exponentially for l > O(⇤) (in fact we do not need it to be an exponential. A fast
power law is enough). This means that:

r⇤(l)

rx⇤(l)
⇡

hdi⇤ ⇢T⇤(l)

hdi
x⇤ ⇢T

x⇤(l)
⇡ O(x�1e1/x) � 1 . (B31)

since x ⌧ 1, this immediately shows that F⇤,prod should dominate over F⇤,depl. Hence we obtain the recursion
relation:

r⇤(l) = r⇤(⇤/x) ⇡
x2µI

⇤(⇤)

hdi
. (B32)

Now using Lemma. B.2, we can turn the above equation into a recursion relation for y:

y⇤/x =
⇤2

x2
r⇤/x(⇤/x) ⇡

⇤2

x2
r⇤(⇤/x) ⇡

⇤2

x2

x2µI

⇤

hdi
⇡

⇤2

hdi
2 hdi µI

⇤(⇤) =
⇣y⇤

x

⌘2
hdi µI

⇤(⇤) . (B33)

This recursion is the same as the uncorrelated recursion up to a factor hdi µI

⇤(⇤).

Appendix C: E↵ects of long-range correlated disorder on the symmetric RG

In this appendix, we expand upon a comment in Sec. VI about the e↵ect of spatial correlations on earlier iterations
of MBL RGs [25, 28]. The RG rules in these models can be summarized as

lInew = lI
i�1 + ↵T lT

i
(= ⇤) + lI

i+1, (C1)

lTnew = lT
i�1 + ↵I l

I

i
(= ⇤) + lT

i+1, (C2)

where ↵I , ↵T are tunable parameters satisfying ↵ = ↵I = ↵�1
T

. In the case of ↵ = 1 we recover the symmetric RG of
Ref. 25.

Now we choose the initial block length distributions so that
⌦
lT
↵

= W and
⌦
lI
↵

= 1. For a particular ↵ and spatial
correlation, there is a critical Wc(↵) where the production of T/I-blocks exchange dominance. The critical exponent
⌫(↵) of the phase transition at W = Wc(↵) can be extracted from a finite size scaling analysis. From here on we focus
on the symmetric RG with ↵I = ↵T = Wc = 1.

When correlations are turned on, we expect a shift to the critical exponent of the uncorrelated fixed point ⌫ = 2.5.
When we turn on positive correlations, numerics show a clear upward drift in ⌫ as c ! 0 (remember that c is the decay
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FIG. 7. The left/right panels show numerical estimates of ⌫ for positive and hyperuniform correlations as a function of
correlation strength as measured by c and maximum system size Lmax used in the scaling collapse. For positive correlations,
the critical exponent ⌫ drifts down as Lmax increases. In the accessible range of Lmax, we are not able to confirm whether the
generalized Harris bound is saturated. For hyperuniform correlations, the finite size e↵ects are weaker since coherent fluctuations
of large regions are suppressed. For 0.7 . ↵, we confirm that hyperuniform correlations do not change the uncorrelated value
of ⌫, consistent with the general arguments in Sec. IV. For ↵ < 0.7, the numerical ⌫ slightly exceeds the uncorrelated ⌫ = 2.5.
This deviation is at the 10% level and much smaller than the deviation for positive correlations at any value of c. Thus we
tentatively attribute it to finite size e↵ects.

exponent of the initial correlations and small c corresponds to strong correlations). The numerical values for ⌫ satisfy
the generalized Harris bound, although a precise extrapolation of ⌫(Lmax ! 1) is not possible due to finite size e↵ects
(for concreteness, note the drifts shown in Fig. 7). For hyperuniform correlations, the numerically extracted values
of ⌫ stay close to ⌫ = 2.5 for all ↵, consistent with the general argument in Sec. IV that hyperuniform correlations
should be irrelevant for asymptotically additive RG flows. At the special point at ↵ = 1, the wandering exponent
w = 0 coincides with the wandering exponent of quasi-periodic correlations. Interestingly, the symmetric RG with
quasi-periodic correlations have been shown to have ⌫ = 1 rather than ⌫ = 2.5 (see Ref. 57). This means that as far
as the symmetric RG is concerned, random disorder with w = 0 is qualitatively di↵erent from quasi-periodic disorder.
Whether or not this qualitative di↵erence exists for the MHI RG is an interesting question to address in the future.
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