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Abstract
Recent work has explored how complementary strengths of humans and arti-
ficial intelligence (AI) systems might be productively combined. However,
successful forms of human–AI partnership have rarely been demonstrated in
real-world settings. We present the iterative design and evaluation of Lumilo,
smart glasses that help teachers help their students in AI-supported classrooms
by presenting real-time analytics about students’ learning, metacognition, and
behavior. Results from a field study conducted in K-12 classrooms indicate that
students learnmore when teachers and AI tutors work together during class. We
discuss implications of this research for the design of human–AI partnerships.
We argue for more participatory approaches to research and design in this area,
in which practitioners and other stakeholders are deeply, meaningfully involved
throughout the process. Furthermore, we advocate for theory-building and for
principled approaches to the study of human–AI decision-making in real-world
contexts.

INTRODUCTION

Artificial intelligence (AI) systems are increasingly used
to support human work in deeply social contexts such as
education, healthcare, social work, and criminal justice. In
these contexts, AI can automate routine parts of practition-
ers’work,while freeing up their time for activities they find
more meaningful (Holstein, McLaren, and Aleven 2019a;
Patel et al. 2019; Yang, Steinfeld, and Zimmerman 2019). AI
can also help to scale up the delivery of social services and
help humansmakemore informed and equitable decisions
(du Boulay 2016; Holstein, McLaren, and Aleven 2018b;
Patel et al. 2019). Despite these benefits, modern AI sys-
tems are fallible and imperfect. If not carefully designed,
AI risks rigidly scaling practices without sensitivity to the
local context, propagating harmful inequities, or automat-
ing away valuable human–human interactions (Alkhatib
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and Bernstein 2019; De-Arteaga, Fogliato, and Choulde-
chova, 2020;Green andChen 2019;Holstein,McLaren, and
Aleven 2019b; Lubars and Tan 2019). To ensure that these
systems domore good than harm, it is critical that they are
designed to bring out the best of human ability while also
helping to overcome human limitations.
A rich line of research has explored the design of effec-

tive human–AI partnerships: configurations of humans
and AI systems that draw upon the strengths of each
(Engelbart 1962; Holstein, McLaren, and Aleven 2018b;
Horvitz and Paek 2007; Licklider 1960; Wilder, Horvitz,
and Kamar 2020). Such integrations of human and
machine intelligence have sometimes been shown to
be more effective than AI or humans working alone
(De-Arteaga, Fogliato, and Chouldechova 2020; Holstein,
McLaren, and Aleven 2018b; Kamar 2016; Patel et al.
2019). For example, successful partnerships have been
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demonstrated in radiology, where human radiologists and
AI systems working collaboratively exhibited higher diag-
nostic performance than either in isolation (Patel et al.
2019). By contrast, in many studies, human–AI collabo-
ration has failed to improve or even harmed task perfor-
mance (Green and Chen 2019; Poursabzi-Sangdeh et al.
2021; Tan et al. 2018). For instance, Poursabzi-Sangdeh
et al. (2021) found that increasing human visibility into
the way a machine learning model makes predictions had
the effect of decreasing rather than increasing humans’
ability to detect and correct for model errors, apparently
due to cognitive overload. Similarly, Green and Chen
(2019) found that including crowdworkers in the loop in
a criminal risk assessment task led to worse predictive
performance than a model operating alone.
So, why do somehuman–AI partnerships succeed, while

others fail? Oftentimes, partnerships fail due to a lack of
human-centered design—for example, where humans are
unable to usefully interpret what the AI system is telling
them or are overwhelmed by the manner in which the
information is presented (Poursabzi-Sangdeh et al. 2021;
Tan et al. 2018). In other cases, partnerships may fail
due to ineffective pairings, where there is simply no rea-
son to expect, upfront, that humans and AI systems will
have complementary strengths to build upon. For example,
many null or negative results have come from studies on
Amazon’sMechanical Turk,where crowdworkers assist an
AI on tasks that truly require expert-level domain knowl-
edge, which we cannot expect an average crowdworker to
have (De-Arteaga, Fogliato, and Chouldechova 2020; Lurie
and Mulligan 2020; Tan et al. 2018). Finally, as demon-
strated in recent work, human–AI partnershipsmay some-
times appear to fail due to inappropriate evaluations. For
example, Buçinca et al. (2020) observed that empirical
studies of human–AI partnerships rarely evaluate perfor-
mance on actual decision-making tasks. Yet commonly
used evaluation criteria, such as measuring humans’ abil-
ity to predict AI decisions in particular instances, provide
limited insight into human–AI performance on authentic
decision-making tasks.
This article presents a case study of an effective human–

AI partnership, achieved through human-centered and
participatory design, in a challenging context: K-12 educa-
tion. Successful human–AI partnerships have rarely been
demonstrated in real-world social settings. As an example
of a domain in which human care for other human beings
is central, education represents both a challenging domain
and fertile ground for human–AI synergy. Throughout
this case study, we illustrate three recommendations for
the design of effective human–AI partnerships, which we
expect will generalize to similar professional contexts such
as healthcare, social work, and criminal justice. These
include (1) taking a participatory approach to research

and design, deeply involving practitioners in framing the
problems to be addressed and in designing how a partner-
ship will function; (2) iteratively measuring and shaping
human–AI decision-making in real-world contexts; and (3)
working towards a theory of complementarity: an under-
standing ofwhat complementary strengths humans andAI
systems hold in a given context, which can be used to guide
the design of systems that combine these strengths.

CASE STUDY

Background

Our case study focuses on AI-supported K-12 classrooms,
a context in which human teachers and AI systems
already work side by side, although not typically in care-
fully designed partnerships. AI-based tutoring systems
have a long history in interdisciplinary research and are
increasingly being used in K-12 classrooms (du Boulay
2016). As students work on complex problem-solving
and other learning activities, these systems use AI plan
recognition algorithms to respond to individuals’ problem-
solving strategies, solution paths, and errors. They adapt
instruction to individual students’ needs, based on real-
time models (often machine-learned) that track students’
behavior, their knowledge growth, theirmetacognitive and
self-regulated learning abilities, and even their affective
states.
Several meta-analyses have shown that AI tutors can

help students learn more effectively than other forms of
instruction, across a wide range of domains (du Boulay
2016). However, the role teachers play in K-12 classrooms
using AI-based tutoring software remains under-studied
(Holstein, McLaren, and Aleven 2017a; Kessler, Boston,
and Stein 2019; Miller et al. 2015). Prior field studies have
found that as students work with the software, teachers,
circulating through the classroom, are freed up to provide
one-on-one guidance to students in need of additional
assistance, for example, (Holstein, McLaren, and Aleven
2017a, 2017b; Kessler, Boston, and Stein 2019; Miller et al.
2015; Schofield, Eurich-Fulcer, and Britt 1994). While
these studies give us reason to suspect that teachers play
important roles in mediating students’ learning with
AI-based tutoring software, our scientific understanding
of how this mediation plays out in practice is very incom-
plete. The same can be said for our understanding of
how AI systems might be designed to work with teachers
more effectively, to support even greater student learning
outcomes (Holstein, McLaren, and Aleven 2017b; Patel
et al. 2019; Yang et al. 2020).
The current case study describes the design and

field evaluation of a more effective form of human–AI
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partnership for K-12 classrooms that use AI tutors. While
prior research has explored the design of tools to sup-
port teachers during ongoing classroom instruction—such
as learning analytics dashboards and classroom manage-
ment software (An et al. 2020; Schofield, Eurich-Fulcer,
and Britt 1994)—this work has rarely targeted contexts in
which teachers work alongside AI-provided instruction.
Yet AI-supported classrooms raise unique challenges for
teachers, and in turn, for the design of teacher support.
For instance, AI tutoring software often personalizes the
content and pacing of educational activities based on auto-
mated inferences about individual students’ needs (Ritter
et al. 2016), which can in turn make it challenging for
teachers to keep track of individual students’ activities.
Furthermore, given that AI tutoring software does not typ-
ically coordinate with teachers about how to sequence and
pace students’ trajectories through the curriculum, con-
flicts can arise betweenAI decision-making and a teacher’s
plans and objectives for the class (Holstein, McLaren, and
Aleven 2017b; Holstein,McLaren, andAleven 2019b; Ritter
et al. 2016).
In line with the first of our recommendations for the

design of effective human–AI partnerships (take a partici-
patory approach to research and design), a key goal of the
current project was to actively involve teachers through-
out all phases of the design of a new real-time support tool
(Holstein, McLaren, and Aleven 2019a). Recent reviews of
the literature on teacher support tools have noted that the
design of these tools often appears to be guided more by
the availability of existing technical solutions (Martinez-
Maldonado et al. 2015; Rodriguez Triana et al. 2017) than
by an analysis of what would help teachers the most.
However, tools resulting from this approach often present
information that teachers find difficult to productively act
upon (Holstein, McLaren, and Aleven 2017b; Rodriguez
Triana et al. 2017; Schofield, Eurich-Fulcer, and Britt 1994).
Thus, we wanted to begin the current project with a thor-
ough exploration of teachers’ information needs, to guide
design.

Design and development of Lumilo

The initial, exploratory phases of the current project
spanned a wide range of human-centered and participa-
tory design activities, conducted with K-12 teachers who
had previously used AI tutors in their classrooms (Hol-
stein, McLaren, and Aleven 2019a, 2019b). These activities
included field observations in K-12 classrooms, directed
storytelling exercises to understand teachers’ past experi-
ences using AI in the classroom, generative card sorting
exercises to better understand challenges teachers face
during AI-supported class sessions, and speed dating stud-

ies to explore multiple potential futures for the role of
AI in education. As an example, to find out what infor-
mation teachers wanted to have about their students in
real-time during a class session, unconstrained by their
notions of what is technologically feasible, we asked them
what “superpowers” they would want (Holstein,McLaren,
and Aleven 2017b, 2019a). We found that in teachers’ cur-
rent practice, much of the rich information they take in
during AI-supported class sessions comes from “reading
the classroom:” actively looking at their students’ body lan-
guage and facial expressions. As such, they emphasized
that an effective tool would need to allow them to keep
their eyes and ears on the classroom, augmenting rather
than distracting from signals already used in their day-to-
day practice (An et al. 2020; Holstein et al. 2018; Holstein,
McLaren, and Aleven 2017b).
Building upon the rich findings from these forma-

tive research activities, we next conducted an iterative
series of design and prototyping studies with teachers. To
engage teachers in the co-design process as these proto-
types achieved greater technical fidelity and complexity
(e.g., using authentic data and machine learned models),
it became necessary to innovate on design and prototyp-
ingmethods (Holstein et al. 2020, 2018; Holstein,McLaren,
and Aleven 2018a, 2019a, 2019b). For example, we devel-
oped a new prototyping method called Replay Enactments
(REs). REs embed participants in immersive simulations
based on actual data collected from field contexts, to make
the consequences of algorithm design decisions more tan-
gible to stakeholders, even if they know very little about
AI. During a session, a member of the research team
makes live changes to algorithmic elements of a systems’
design based on stakeholder feedback (e.g., parameters of
a machine-learned model), so they experience the con-
sequences of their requested changes (Holstein et al.
2020, 2018; Holstein, McLaren, and Aleven 2019a, 2019b).
REs can reveal critical issues that conventional prototyp-
ing methods cannot surface (e.g., helping design teams
observe the interplay between human and AI systems’
dynamic decisions and errors). In our project, we ran sim-
ulations with teachers in classrooms or computer labs,
without students, but with student work replayed in real
time on the computer screens, while the teacher, informed
by the tool prototype, would act out what they would do
if this were a real classroom period. By doing so, we gave
teachers a space to iterate on Lumilo’s design, without
risking harm to actual students in the process.
The prototype that emerged from this iterative design

process was a pair of mixed reality smart glasses called
Lumilo, which augment teachers’ perceptions of stu-
dent learning, metacognition, and behavior during
AI-supported class sessions. When teachers glance across
the roomwhile wearing Lumilo, they can seemixed reality
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F IGURE 1 Design mock-ups based on findings from low- to
mid-fidelity prototyping sessions; from (Holstein et al. 2018). (A)
Teacher’s default view of the class. Each student has an indicator
display floating above their head, and class-level analytics displays
are positioned at the front of the class. (B) “Deep-dive” screens are
shown if a teacher “clicks” on an indicator. Note: student names
shown in this figure are fabricated.

icons floating above each individual student’s head (see
Figure 1A). These icons update throughout a class session
based on real-time AI models embedded in the tutoring
software, alerting teachers to situations in need of their
attention. For example, if a student appears unlikely to
master certain skills without additional help beyond the
software, a red question mark icon would appear over
the student’s head. With such situations prioritized for
teachers, they can make more informed decisions about
whom to help and when.
The use of a wearable, heads-up display—mixed

reality smartglasses, implemented using the Microsoft
HoloLens—allowed teachers to keep their heads up and
their attention focused on the classroom, rather than
buried in a screen (An et al. 2020; Holstein et al. 2018;
Holstein, McLaren, and Aleven 2017a). In addition to pro-
viding information at a glance, Lumilo can also display
more detailed information about individual students upon
a teacher’s request. For example, if the AI tutor diagnoses
that a student is struggling with particular skills at a given
moment during class, Lumilo would display these diag-
noses, together with concrete examples of recent errors

the student had made on each skill (see Figure 1B). Dis-
playing these concrete, “raw” examples alongside the AI
system’s diagnoses proved to be very important to teachers,
who would often use the examples to second guess the sys-
tem’s judgments and try to infer deeper underlying causes
of student difficulties—an example of one form of comple-
mentarity between the AI and the teacher (An et al. 2020;
Holstein, McLaren, and Aleven 2019a).

Iterative piloting: Measuring and shaping
human–AI decision-making

Prior to running a large-scale evaluation study with
Lumilo in K-12 classrooms, we wanted to ensure that this
form of human–AI partnership was likely to have a pos-
itive impact on students’ learning. As discussed above,
the initial designs of Lumilo were largely designed based
on teachers’ beliefs about the classroom situations that
most required their attention. However, it is possible that
teachers’ intuitions are limited in this regard (Holstein,
McLaren, and Aleven 2018a). Thus, to complement our co-
design process, we ran an iterative series of pilot studies in
both replayed classrooms (using REs) and live K-12 class-
rooms. In line with our second recommendation for the
design of effective human–AI partnerships (measure and
shape human–AI decision-making in context), wemeasured
the impacts of particular designs on teachers’ decision-
making, iteratively refining Lumilo’s design with the goal
of guiding teacher decision-making in positive directions.
We developed and used Causal Alignment Analysis

(CAA), a systematic approach to support the data-driven,
outcome-oriented design of teacher–AI systems (Holstein,
McLaren, and Aleven 2018a). The CAA approach asks
technology designers to begin by specifying the educa-
tional goals and outcomes they wish to achieve (e.g.,
improving on particular measures of student learning or
engagement), and then to work backwards by sketch-
ing out one or more hypothesized causal paths by which
those outcomes might be achieved. For example, for a
given outcome, a designer might specify (1) hypotheses
regarding possible changes in student behavior that could
support that outcome, followed by (2) possible changes
in teacher behavior that might support the correspond-
ing changes in student behavior, and finally (3) possible
ways a teacher-facing AI tool might foster these changes
in teacher behavior. These hypothesized causal paths may
initially be informed by existing theory and empirical data,
where available. When technology prototypes are tested
in real-world contexts, data collected from these studies
offer an opportunity not only to iterate on the design of
the technology itself, but also to question and iterate upon
the designer’s hypothesized causal paths. By applyingCAA
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over successive iterations, designers can iteratively refine
their designs towards achieving their outcomes of interest.
Applying CAA in the iterative design of Lumilo meant

first making our hypotheses, as researchers and design-
ers, about Lumilo’s mechanisms of action explicit, and
then iteratively prototyping Lumilo in K-12 classrooms.
During classroom pilots, we tracked teachers’ activities,
including how they allocated their time between different
students throughout each class session. Using this data,
we analyzed whether the tool was having desirable effects
with respect to our hypothesized mechanisms of action,
while simultaneously evaluating the plausibility of these
hypotheses; see Holstein, McLaren, and Aleven (2018a) for
details of this analysis. Using CAA, we iteratively refined
the design of Lumilo over a sequence of four pilot studies,
with a total of 14 teachers, 15 classrooms, and 304 students.
In the end, the resulting version of Lumilo appeared to
direct teachers’ attention where it was most needed in the
classroom, as judged by classroom observation and causal
modeling of how students learn with AI tutors (Holstein,
2019; Holstein, McLaren, and Aleven 2018a).
In line with our third recommendation for the design of

effective human–AI partnerships (work towards a theory
of complementarity), these pilot studies not only enabled
design refinement based on quantitativemetrics of teacher
behavior (Holstein, McLaren, and Aleven 2018a), but also
enabled rich qualitative observations that grew our under-
standing of how this human–AI partnership would play
out in the real world. In turn, these field observations
enabled us to better understand why the particular form of
teacher–AI partnership facilitated by Lumilo might have a
positive impact in the classroom (Holstein 2019).
Major themes that emerged from classroom observa-

tion were that the glasses helpfully alerted teachers to
situations where their attention could be beneficial, and
that teachers did indeed make in-the-moment decisions
based on complementary data sources. For example, one
teacher commented that, without the glasses, “I wouldn’t
have known this student was doing this at this time.” In
the moment, teachers would combine what they saw with
their owneyes and earswithwhat theAI systemwas telling
them about their students. As one teacher said, “I would
also use their body language to judge the situation, but the
initial [alert] would help, so I know to go over there.” This
use of complementary data often played out in interesting
ways. For example, in one particularly memorable case,
Lumilo alerted the teacher that a particular 7th grader
may be off task in the software. However, based on what
the teacher knew about this student, they perceived that
this behavior was out of character. Therefore, rather than
taking the alert at face value, the teacher initiated a con-
versation with the student, asking how the student was
feeling that day. The student revealed that their significant

other had broken up with them the weekend before. The
teacher, in turn, gave the student permission to “take the
day off” frommath, if theywished (Holstein 2019;Holstein,
McLaren, and Aleven 2019a).
These examples illustrate a form of human–AI comple-

mentarity. The AI diagnosed a particular student behavior
and alerted the teacher. Based on this information, the
teacher thenmade a rich inference about the latent, under-
lying cause of the behavior, and responded with support
and flexibility that an AI tutor could not provide (An
et al. 2020; Holstein, McLaren, and Aleven 2019a). More
broadly, we observed that teachers often appeared to be
very effective in helping students escape unproductive ruts
in the AI software, with very brief, minimal guidance.
As teachers circulated throughout their classrooms while
using Lumilo, they spent an average of about 24 s per
visit with each student, although teachers often visited
the same student multiple times during a class; see (Hol-
stein, McLaren, and Aleven 2018a, 2019a). In many of the
cases we observed, rather than providing coaching on the
math content itself, teachers complemented the AI tutors’
instruction by motivating them to reflect on their activi-
ties (e.g., “So what should you do next?” or “Why did you
subtract x from the right side?”), or by providing words of
encouragement (e.g., “I think you got this, you can do [the
rest] on your own”).

In-the-wild evaluation study

As the design iterations converged, we next conducted a
study to better understand Lumilo’s impacts on teacher
behavior and student learning inAI-supported classrooms.
We investigated the hypotheses that a teacher’s use of
Lumilo would enhance student learning in AI-supported
classrooms, compared to helping students (a) without a
teacher support tool (“business as usual”) and (b) with
mixed-reality glasses that provide only weak classroom
monitoring support, without analytics. The latter condi-
tion made it possible to gauge any motivational or novelty
effects that teacher monitoring might have on student
learning, as observed in prior empirical work (Holstein,
McLaren, and Aleven 2017a; Stang and Roll 2014), so as to
isolate the influence of Lumilo’s analytics.
Participants were 343 middle school students, across

18 classrooms, eight teachers, and four schools and
school districts; for participant demographics, see Hol-
stein, McLaren, and Aleven (2019). All participating teach-
ers had previous experience using AI tutors in their
classrooms and had at least 5 years of experience teaching
math at a middle school level. Classrooms were ran-
domly assigned to one of three conditions, stratifying
within-teacher. The No Glasses condition represented
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“business as usual” for an AI-supported classroom. Teach-
ers circulated throughout the classroom, peeking over
students’ shoulders without a teacher support tool. The
Glasses condition provided a minimal form of classroom
monitoring support: the teacher wore a stripped-down
version of Lumilo, which did not show any analytics. How-
ever, teachers were still able to select individual students
using their glasses to peek, at a distance, at what was
currently displayed on that student’s screen. Finally, in
the Glasses + Analytics condition, the teacher used the
full version of Lumilo. This version offered the remote
screen monitoring functionality, at-a-glance visual indi-
cators for each student based on real-time analytics, and
detail screens indicating where students are struggling, as
described above.
The study procedure was the same for all three con-

ditions. Students took a 15-min pretest on linear equa-
tion solving. Students then worked with Lynnette, an
AI tutor for linear equation solving, for two class ses-
sions, while their teacher monitored the class and helped
students. Finally, students took a 15-min post-test. In addi-
tion to students’ pre- and post-test scores, we tracked
process data from individual students’ interactions with
Lynnette. We also used Lumilo to record a teacher’s phys-
ical position in the classroom, relative to each student,
moment-by-moment via the HoloLens’ built-in sensors;
see Holstein, McLaren, and Aleven (2018a, 2018b), and
Holstein, McLaren, and Aleven (2019a). Fifty-seven stu-
dents were absent for one or more days of the study and
were excluded from further analyses. Data were analyzed
for the remaining 286 students, using hierarchical linear
modeling; see Holstein, McLaren, and Aleven (2018b) for
details.
Analysis of the pre- and post-tests supported both of

our hypotheses. First, a teacher’s use of Lumilo enhances
student learning, compared with business-as-usual for
AI-supported classrooms, a high-bar control condition
considering prior positive results regarding the effective-
ness of AI tutoring software (du Boulay 2016). Second, a
teacher’s use of real-time analytics had a positive effect
on student learning, above and beyond any effects of the
minimal classroom monitoring support provided in the
Glasses condition. Thus, part of Lumilo’s benefit was due
to its real-time analytics, and part of it was due to the
mere use of the glasses, even without any advanced ana-
lytics (see Figure 2). This was the first experimental study
in the literature to demonstrate that a teacher–AI partner-
ship, facilitated by real-time analytics from AI tutors, can
enhance student learning outcomes.
To better understand the mechanisms by which this

effect may have arisen, we examined how teachers’ allo-
cation of time, across students of varying incoming knowl-
edge, was influenced by experimental condition.We found

that, compared with the Glasses and No Glasses condi-
tions, teachers in the Glasses+ Analytics condition tended
to spend much more of their time working with students
coming in with lower initial knowledge (as measured by
the pretest); see Figure 3. In turn, students with lower
pretest scores enjoyed greater growth in the Lumilo condi-
tion than in the other conditions, whereas those with high
pretest scores were not affected. In both the Glasses and
No Glasses conditions, we observed the “rich get richer”
trends that are sometimes observed in AI-supported class-
rooms and in education more generally: students coming
in with higher initial knowledge tend to benefit more
from working with the tutor (Reich and Ito 2017). How-
ever, in the Glasses + Analytics condition, teachers’ use of
Lumilo attenuated these trends, reducing knowledge dif-
ferences between students at post-test (see Figure 4). The
notion that redirecting teachers’ attention during person-
alized class sessions might benefit students’ learning has
found correlational support in prior studies (e.g., Holstein,
McLaren, and Aleven 2017a, 2018a; Martinez-Maldonado
et al. 2013; Stang and Roll 2014), yet had not received exper-
imental support until the current study. Considering that
the overall time a teacher can spend per student during
these class sessions is still quite small, these results suggest
that a little can go a long way, in terms of individual-
ized teacher attention, especially when timely and targeted
with the help of AI. For a more detailed report on these
analyses, see Holstein, McLaren, and Aleven (2018b).

DISCUSSION

Our case study illustrates the design and evaluation of a
successful human–AI partnership in a challenging real-
world context: K-12 education. While AI has shown great
potential to enhance learning and teaching in K-12, the
work of human teachers has been recognized as unlikely
to be fully automated (Frey and Osborne 2013; Lurie and
Mulligan 2020). We concur: as in other care-based profes-
sions where relationship building is central, AI systems
appear to have the greatest potential for positive impact
where they are designed to augment and complement the
abilities of human practitioners. In the Lumilo project,
we took a participatory approach to research and design,
deeply engaging teachers both in framing the challenges
to be addressed through an improved partnership and in
shaping how this partnership would function. Through
iterative piloting in live K-12 classrooms, we observed
the interplay of human and AI decision-making under
real-world conditions, refining the design of Lumilo
based on our observations to shape human–AI decision-
making in more positive directions. Throughout this
process, we worked to develop our understanding of what
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F IGURE 2 Student pre/post learning
gains, by experimental conditions (“Glasses +
Analytics”: Teacher uses Lumilo; from
(Holstein, McLaren, and Aleven 2018b).
“Glasses”: Teacher wears reduced version of
Lumilo, without analytics; “noGlasses”:
Teacher does not wear glasses at all). Error
bars indicate standard error.

F IGURE 3 Teacher attention allocation
(in seconds) plotted by pretest scores, across
286 students. Lines indicate model mean
values for each experimental condition;
shaded regions indicate standard error;
overlapping shaded regions indicate
overlapping standard errors.

complementary strengths human teachers and AI tutors
hold in our context, and how Lumilo’s design might be
optimized to effectively combine these strengths.
We view these components—taking a participatory

approach to research and design, measuring and shaping
human–AI decision-making in context, and working
towards a theory of complementarity—as essential ingre-
dients in the design of effective human–AI partnerships,
both within and beyond the domain of education. Accord-
ingly, to advance scientific and design progress in this area,
we highlight three broad recommendations for future
research. First, to support the development of human–AI
partnerships that are aligned with real-world needs

and work practices, it is critical to engage practitioners
throughout the entire design and development lifecycle for
a new technology. However, deeply involving practitioners
becomes challenging when designing data-driven AI sys-
tems, given that practitioners may know very little about
AI. The current case study illustrates the value of devel-
oping new design and prototyping methods. However,
further research is urgently needed to develop new tech-
nical and design methods that can meaningfully engage
non-technical stakeholders in understanding and working
with AI as a design material, for example, see Holstein
et al. (2018), Yang et al., 2020. Second, to support more
reliable scientific and design insight into the behavior and
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F IGURE 4 Student post-test scores
plotted by pretest scores, across 286 students.
Lines indicate model mean values for each
experimental condition; shaded regions
indicate standard error; overlapping shaded
regions indicate overlapping standard errors.

dynamics of human–AI partnerships, future research
should strive to study these systems in real-world con-
texts, with authentic tasks and relevant human experts.
Although the use of artificial tasks and contexts may
appear convenient, recent work has demonstrated that
results from such studies often fail to translate to the
real-world settings for which partnerships are intended,
for example, see De-Arteaga, Fogliato, and Chouldechova
(2020), du Boulay (2016), and Martinez-Maldonado et al.
(2013). Third, to support cumulative scientific progress
and more systematic design exploration in this area,
future research should work to develop and build upon
both domain-general and domain-specific theories of
human–AI complementarity. While we have begun to
pursue this direction within the current case study, theory
formation remains a critical open direction for the field,
for example, see du Boulay (2016), Holstein, Aleven, and
Rummel (2020), Holstein, McLaren, and Aleven (2019a),
and Yacef (2002).
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