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ABSTRACT
Data physicalization enables people to represent and interact with
data physically rather than digitally. Physical representations afford
visual analysis in comparable ways to traditional, desktop-based
visualization by introducing new capabilities, such as facilitating
tactile manipulation, accessible interactions, and immersion, that
are beyond traditional 2D visualizations. However, physicalization
has historically been a niche aspect of visualization research due
to its unique challenges. In this paper, I discuss the current chal-
lenges of data physicalization and address three areas where data
physicalization can aid other research thrusts: broadening partic-
ipation, supporting analytics, and promoting creative expression.
This paper exemplifies each approach through the lens of my work.

CCS CONCEPTS
• Human-centered computing → Visualization theory, con-
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1 INTRODUCTION
Data is now woven into the fabrics of our everyday life: science,
business, medicine, social media, and everyday human activity. Data
has been traditionally visualized through the desktop model, but
current and anticipated advancements in material science and digi-
tal fabrication are radically changing howwe can possibly represent
and interact with data.

Data physicalization—the practice of mapping data to physical
form—is an emerging research field that sits at the crossroads of
various domains, including data visualization, tangible user inter-
action, and design [17]. Through my doctoral research, I focus not
only on creating physical artifacts that can aid in analytical insight
but also on how we can use data as a material to design for the
myriad of life (e.g., the clothes we wear, the objects we use, the
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environments we inhabit). This focus is demonstrated in three re-
search thrusts: broadening participation, supporting analytics, and
promoting creative expression.

2 BACKGROUND
Data plays a critical role in problem-solving and decision-making
in various domain applications [5, 13, 22]. For example, operators
use sensor readouts to supervise multi-robot systems for space
exploration [6, 27]; doctors use CT and MRI scans for presurgi-
cal planning and intraoperative procedures [23, 29]. All of these
scenarios rely on users interacting with data to gather additional
information, such as zooming into critical details, filtering for im-
portant information, or panning around models to view otherwise
hidden surfaces. However, many analytical tasks can no longer be
completed using static images alone [8, 18].

Many data-driven systems use a WIMP (Windows, Icons, Menus,
and a Pointer) paradigm and rely on the graphical user interface
(GUI). These constraints introduce challenges when users (1) work
with multi-dimensional data with an inherent structure and would
benefit from physical models (e.g., high-fidelity, material-realistic
surgical models) compared to 2D graphical renditions or (2) work in
contexts where the traditional GUI is infeasible (e.g., robotic opera-
tors supervising in an outdoor field test, doctors operating during
surgeries). While past work has explored ways of interacting with
data beyond WIMP (e.g., direct manipulation [24], instrumental
model [3, 4], reality-based [16]), these techniques are still digital.
We lack a concrete means of evaluating and creating interaction
techniques when data is physicalized.

Knowing how and what physicalization will add to the visualiza-
tion toolkit requires a deep understanding of how physicality fits
within existing visualization tools. Analogous to the microwaves
in the 50’s, “[physicality] is useful for some things, but they [will
not] replace the rest of your kitchen” [10]. This understanding calls
for careful considerations that are beyond conventional data visu-
alizations. For example, while all visualizations must consider the
expressivity of their designs (e.g., data encoding and data interac-
tions), physicalization designers must also be mindful of structural
considerations and the context where the physicalization exists [2].
These considerations reflect how data physicalization sits at the
crossroads of various domains but currently lacks a cohesive lens.
As a consequence, designers and researchers may be unaware of
the knowledge and practices emerging in other communities. For
example, data visualization (i.e., how to effectively encode data),
tangible user interface (TUI) (i.e., how to amplify the capabilities
of the human body and physical world for interaction design), or
design (i.e., how to identify and leverage a material’s potential).

To provide a cohesive lens of each intellectual community, I con-
ducted a literature survey on data physicalization and proposed a
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I. Technologically-Driven
Shape Changing Display

TRANS-DOCK [72] PHEB [88]

LINEFORM [71] LOOP [92]

LAINA [66] VITAL + MORPH [6]

CAIRNFORM [14] EMERGE [102]

POLYSURFACE [24]

Swarm Robots Fluidic Display Voxel Printing Light Display TUI Edibilization Embedded Tags

ZOOIDS [57]

ROBOGRAPHICS [30]

FLUXMARKER [100]

REACTILE [99]

SHAPEBOTS [101]

VENOUS MATERIALS [68]

WATT-I-SEE [85]

TORRENT [83]

MAKING DATA MATTER [3]

SLICE AND DICE [87]

OPENING THE BLACK BOX [27]

GRAFEET [118]

ECONUMDRUM [91]

PUBLIC VISUALIZATION [13]

CODA [108]

PRINTED PAPER MARKERS [74]

AIRTOUCH [103]

EDIPULSE [51] DOCUMENTED [23]
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II. Contextually-Driven
Environment

DAYCLO [58] MOTIIS [81]

ADIO [59] BOOKLY [46]

TANGIBLE MAP [111] SEA O’CLOCK [110]

CHEMICALS IN THE CREEK [82] PHYSIKIT [35]

CAIRN [28]

Activity Person

SUBTLETEE [118]

PIHEARTS [2]

DATA-THINGS [74]

FANTIBLES [52]

ENTANGLING ROLE [26] LISTENINGCUPS [15]

SKINTILLATES [60] SELF-REFLECTION  [104]

RIPPLE [36] ITERATIVE PERSONALIZATION
[70]

Figure 1: Eleven examples of physicalization’s embodiment [2]. The physical embodiment is categorized as either technologically- or contextually driven. All images are copyright to their
respective owners.

design space that considers the interdisciplinary design considera-
tion organized by three facets: context, structure, interaction [2].
This project presents a systematic review and meta-analysis of 47
data physicalizations. The project contributes a quantitative congre-
gation of the findings by offering high-level design considerations
into creating physicalizations and bridge languages and practice
across the visualization, design, and TUI communities (Figure 1),
while suggesting future directions and identifying challenges in
the field.

2.1 Challenges of Physicalization
After conducting the literature review, I identified three challenges.

C1: Fabrication: Constructing data physicalizations involves a
large design space [2], which includes but is not limited to: material
choice, scale [19], interactions, and data encoding. This introduces
combinatorial possibilities that a user has to consider when design-
ing physicalizations. In addition, despite material and fabrication
advancements, visualization lacks fundamental guidance on how to
employ these techniques to efficiently represent and interact with
data and how to leverage the analytical affordances of physical
representations. This also highlights a technical challenge in under-
standing how to accurately map data to the given material. Users
will need to consider the tradeoffs between material properties (e.g.,
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fluid-based systems [20] and smart materials over electromechani-
cal and magnetic actuators [25]).

C2: Interpretation: Currently, there is no formal design lan-
guage (analogous to Grammar of Graphics [31]) that helps users
interpret data physicalizations. Many data physicalizations either
use conventional 2D data visualization representations or are id-
iosyncratic where each encoding is unique to the creator. This
starkly contrasts with the field of information visualization where
there is an existing design language to help communicate data
findings.

C3: Application of data physicalization: Due to its infancy,
data physicalization, as a field, still lacks a concrete role for analyti-
cal purposes. Researchers have hinted towards using physicaliza-
tions for analytical purposes [17], but we have yet to see the full
potential of data physicalization for analytical purposes as outlined
by Jansen et al. By looking at other disciplines, we see possibilities
in how physicalization may aid in pre-surgical planning [14] and
star formation [15].

But beyond analytical purposes, data physicalization also carries
the potential of introducing casual information visualization [21].
With the internet of things (IoT), data is ubiquitous where data lit-
eracy is now a crucial life skill. Physicalization has the potential to
help introduce and engage laymen with data visualizations. Various
researchers have explored the potential of using data physicaliza-
tion for educational or reflective purposes.

3 RESEARCH GOALS & METHODS
My doctoral research on data physicalization specifically looks at
the relationship between physicality and data—how do tangible
interactions enable people to better understand and engage with
data? How should data be represented physically? How can data
physicalizations incorporate data interactions (e.g., zooming into
critical details, filtering for important information) to better support
accurate analysis? The proposed research seeks to make contribu-
tions across three thrust areas while keeping in mind of the research
challenges (Section 2.1). Thrust 1 will focus on understanding how
physical representations can enable broader participation when
working with data. Thrust 2 will focus on how to employ fabrication
techniques to efficiently represent and interact with data and how
to leverage the analytical affordances of physical representations.
Thrust 3 will explore how data acts as a material to create new
designs.

b ca

Figure 2: Toolkit made from everyday materials to foster children’s data visualization lit-
eracy.

Thrust 1: Broadening Participation. Thrust 1 explores how
physicality can broaden participation when interacting with data.
Exclusively digital solutions present challenges and limitations to
certain populations (e.g., people with low-vision or visual impaire-
ments [11, 26], children). These challenges present the need to

further investigate how to expand the ways we can interact with
data and visualizations.

As one form of exploration, I created a toolkit made out of ev-
eryday materials (e.g., paper, cardboard) that explores how con-
structionist practices can help introduce children to data visual-
izations concepts, and in turn, cultivate their data visualization
literacy (DVL) [1] (Fig. 2). Past work on children’s DVL has often
relied on exclusively digital solutions, where they may come off
as “black boxes” to young children and limit their embodied ex-
periences. Physical representations enable children to engage in
embodied learning that would not be possible with a 2D screen. Our
workshops with children showed that the toolkit helped children
creatively engage and interact with visualizations. Children with
prior knowledge of data visualization reported the toolkit serving
as more of an authoring tool that they envision using in their daily
lives, while children with little to no experience with visualizations
found the toolkit as an engaging introduction to data visualization
concepts. The novelty of physicalizing data offers an unprecedented
method for children to engage with and better understand data in
their respective contexts.

Figure 3: Physical artifacts intended for analytical insight: multimaterial 3D print [14],
EMERGE [28], Touching the Stars [15].

Thrust 2: Supporting Analytics. Thrust 2 explores how phys-
icalizations add to the visualization toolkit from an analytical lens.
As mentioned in Section 2, the field currently lacks a deeper under-
standing of when interacting with data physically versus digitally. I
contend the act of physicalizing data, especially through an analyt-
ical lens, should be intentional and meaningful. For example, this
requires understanding which datasets would be the most meaning-
ful to analyze (Fig. 3) and knowing how to analyze them physically.

Visualization shows the importance of dynamic interactions,
where analysts engage in a series of interactions when exploring a
dataset [5]. This reflects findings from my literature review where
the number of data interactions a system can support affects the
richness of the data exploration [2]. I plan to investigate other
datasets from other fields (e.g., medicine, biology) to understand
how physicalization utilizing state-of-the-art fabrication techniques
can support analytics and decision-making processes.

Figure 4: Physical artifacts that use data as a material source: biomimetic neck collar [12],
guilded tapestry [30], personal ceramic cups [7].

Thrust 3: Providing Creative Expression. Thrust 3 explores
how data acts as a material to create new designs (Fig. 4).
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Rooted in visualization, Jansen et al. [17] have formally defined
physicalization as a research field that focuses on “how computer-
supported, physical representations of data (i.e., physicalizations)
can support cognition, communication, learning, problem solving,
and decision making”. There are examples of physical artifacts
encoded with data within my conducted survey but do not meet
what Jansen et al. have defined. Collectively, these are examples
where data is used as a material source when making.

Engineers, scientists, and artists are also building physical ar-
tifacts guided by data [7, 9]. Like a craftsman working with their
surrounding materials, data is now another material source and is
part of the artisanal spirit when making. As data continues to be
embedded in our world, in future work, I aim to collaborate with
different researchers from different practices (e.g., biology, textiles)
to explore the new and unexpected meetings of the digital and
materials worlds.

4 EXPECTED CONTRIBUTIONS AND
POTENTIAL IMPACT

Data is ubiquitous where it is now woven into the fabrics of our
everyday life. However, we are currently limited in how we interact
with data. This workmakes fundamental contributions to bridge dis-
ciplines spanning data visualization, human-computer interactions,
and digital fabrication. In doing so, this paper contributes:

(1) A cohesive lens of data physicalization design space:
context, structure, interactions

(2) Challenges of data physicalization: fabrication, interpre-
tation, application

(3) A preliminary exploration of the design space: broad-
ening participation, supporting analytics, and promoting
creative expressions

For future work, I will continue to explore the physicality of data
with respect to the three thrusts, complete the current work-in-
progress projects, and discuss the benefits and limitations of each
project to identify future research opportunities.
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