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ABSTRACT

Regression testing—rerunning tests on each code version to detect
newly-broken functionality—is important and widely practiced. But,
regression testing is costly due to the large number of tests and the
high frequency of code changes. Regression test selection (RTS) opti-
mizes regression testing by only rerunning a subset of tests that can
be affected by changes. Researchers showed that RTS based on pro-
gram analysis can save substantial testing time for (medium-sized)
open-source projects. Practitioners also showed that RTS based on
machine learning (ML) works well on very large code repositories,
e.g., in Facebook’s monorepository. We combine analysis-based
RTS and ML-based RTS by using the latter to choose a subset of
tests selected by the former. We first train several novel ML models
to learn the impact of code changes on test outcomes using a train-
ing dataset that we obtain via mutation analysis. Then, we evaluate
the benefits of combining ML models with analysis-based RTS on
10 projects, compared with using each technique alone. Combining
ML-based RTS with two analysis-based RTS techniques—Ekstazi
and STARTS-selects 25.34% and 21.44% fewer tests, respectively.
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1 INTRODUCTION

Regression testing [34, 44, 82] is the primary means by which most
developers carry out software quality assurance. In regression test-
ing, tests are rerun on each code version to check that the changes
did not introduce new faults. The term, RetestAll, is often used to
describe rerunning all tests in a project after every code change.
RetestAll often incurs high costs in terms of the time that develop-
ers have to wait for test results and in terms of compute resources
needed. These costs have been growing quadratically because of
continued rapid growth in the number of tests that developers write
and in the rate at which code is changed [29, 83].

To combat the rising costs of regression testing, researchers and
practitioners proposed regression test selection (RTS) [10, 22, 31, 56,
59, 82]. The goal in RTS is to reduce the cost of RetestAll by only
rerunning affected tests, i.e., those tests whose pass/fail behavior
can be altered by code changes. The quality of an RTS technique is
evaluated in terms of its safety, precision, and performance. An RTS
technique is safe if it selects all affected tests, precise if it selects
only affected tests, and performant if the time to select and rerun
affected tests is (on average) less than the time for RetestAll.

Analysis-based RTS techniques use static and/or dynamic pro-
gram analysis to find code elements (like statements, control-flow
edges, methods, or classes) that each test depends on. Then, on a
new code version, the techniques select tests that depend on mod-
ified elements. The insight is that affected tests must depend on
changed code for their pass/fail outcomes to be altered. So, analysis-
based RTS techniques compute affected tests as those that depend
on changed code elements. Recent work showed analysis-based
RTS techniques to be safe (for code changes), imprecise (i.e., they
select many unnecessary tests), and performant [25, 42].

Large software companies, like Facebook, Google, and Microsoft,
did not yet adopt analysis-based RTS due to analysis costs and these
companies’ frequent use of multiple programming languages in a
repository [14, 50]. Facebook proposed and evaluated an RTS tech-
nique based on machine learning (ML) [50]; it learns from features
like historical test failure rates, distance between tests and changed
files, and files’ change history to predict tests that are likely to fail
after new code changes. ML-based RTS techniques may not select
all affected tests, but they can substantially reduce testing costs [50].
Unfortunately, Facebook’s ML-based RTS does not directly apply
to (medium-sized) open-source projects because the approach is
specific to the structure of the Facebook monorepository.
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Recent work evaluated an ML-based RTS technique, inspired by
Facebook’s ML-based RTS, on one open-source project [48]. But
that ML-based RTS technique relies on features of a dependency
graph that are only available after leveraging an analysis-based
RTS technique. So, the quality of that ML-based RTS technique
depends on internals of the analysis-based RTS technique that it
leverages. Our goals are to train ML-based RTS models independently
of analysis-based RTS internals, and to study the viability of using
such models together with analysis-based RTS to select fewer tests.

In this paper, we present novel design and implementation of
several lightweight ML-based RTS techniques that can be combined
with analysis-based RTS and used to improve the precision of the
latter on open-source projects. Specifically, we apply ML-based RTS
to further reduce the number of non-failing tests that are selected
by analysis-based RTS. Our envisioned usage scenario is that a
developer adopts analysis-based RTS but wishes to further improve
it (because the analysis-based RTS technique is imprecise) by only
rerunning the subset of selected tests that are more likely to fail. In
other words, our goal is to preserve safety and improve precision.

We obtain a training dataset for our ML-based RTS models via
mutation analysis. We use mutation analysis [3, 36] to seed mutants
that represent artificial faults into a program. We then train two
types of ML models: one that learns based on tests that fail when run
on mutants, and another that learns based on tests that get selected
by an analysis-based RTS technique after analyzing the change
between the mutant and the original code, thereby mimicking the
selection result of the analysis-based RTS technique. We use 10
projects from prior regression testing research in our evaluation.

We make two main findings from our experiments. First, when
combining ML-based RTS models with analysis-based RTS tech-
niques, our best ML-based RTS model reduces the average selec-
tion rate of two analysis-based RTS techniques, Ekstazi [25] and
STARTS [42], by 25.34% and 21.44%, respectively, while still select-
ing all failing tests. Second, combining ML-based RTS models with
an analysis-based RTS technique results in reduced end-to-end test-
ing time, suggesting that (1) the overhead of the ML-based RTS
models are small compared with the analysis-based RTS techniques,
and (2) substantial time savings result from running fewer tests
than what the analysis-based RTS technique selects.

The main contributions of this paper include:

* Design and implementation. We design and implement novel
ML-based RTS models, based on mutation analysis and analysis-
based RTS, that can work on medium-sized projects.

* Synergy. We combine ML-based RTS with analysis-based RTS
(Ekstazi and STARTS) to improve the precision of the latter.

* Comparison. We perform an empirical evaluation using 10 open-
source projects to compare our approaches with prior work on
analysis-based RTS.

* Data. Our evaluation dataset is publicly available.!

2 BACKGROUND

In this section, we briefly describe several aspects of analysis-based
RTS and ML-based RTS that are used in later sections.

Thttps://github.com/JiyangZhang/predictiverts
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Figure 1: An example dependency graph: diamonds are code
entities (e.g., modules/classes/methods) and squares are tests.
An edge A — B means that A directly depends on B. In this
figure, entities 1 and 2 changed (colored red). Tests T1, T2,
and T5 transitively depend on entities 1 and 2 (also colored
red), so they are selected.

2.1 Analysis-based RTS

An analysis-based RTS technique takes as input the old and new
program versions along with the tests in those versions. The out-
puts are affected tests—the subset of tests that should be run on
the new version. Affected tests are those whose pass/fail behavior
can differ between running on the old and new program versions.
Affected tests must therefore depend on changed code for their
behavior to differ. An analysis-based RTS technique collects depen-
dencies (parts of the program that each test depends on) and selects,
as affected tests, those whose dependencies changed. Figure 1 illus-
trates a dependency graph of entities that tests depend on, where
tests that transitively depend on changed entities are selected. An
analysis-based RTS technique may collect dependencies at different
granularity, such as method-level dependencies [55] or class-level
dependencies [24, 43, 84].

As representative analysis-based RTS techniques, we use Ek-
stazi [25] and STARTS [42] that support Java projects. These two
techniques share similarities in the granularity-level at which they
track dependencies and in how they track changes. Both techniques
track class-level dependencies, namely how test classes (and there-
fore all test methods in a test class) may depend on other classes in
the program. In Java, each class is compiled into its own separate
class file on disk, and both Ekstazi and STARTS check which classes
change between versions by relying on the same algorithm for
comparing checksums of these class files. A checksum represents
the contents of each compiled class file, so a class file with a dif-
ferent checksum between versions means that the class changed
between those versions. Ekstazi and STARTS differ in how they
collect dependencies and how they compute affected tests?.

2.1.1 Computing affected tests in Ekstazi. When running tests in
the old program version, Ekstazi dynamically (i.e., at runtime) col-
lects, as dependencies, all other classes that each test uses. This
mapping between tests and other classes is persisted to disk. On

In this paper, we also track tests at the granularity of test class. So, unless otherwise
stated, when we say “test” we are referring to a test class.
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the new program version, Ekstazi computes affected tests as those
for which at least one dependency changed, plus any newly-added
tests; Ekstazi then reruns these affected tests (test dependencies are
collected again during this run).

2.1.2  Computing affected tests in STARTS. In the old program ver-
sion, STARTS statically builds a class dependency graph of all
classes in the program and persists to disk a file that maps each
class to the set of all tests that transitively and reflexively reach that
class in the dependency graph. Then, in the new program version,
STARTS computes affected tests as all tests that are mapped to a
class that changed along with any newly-added tests. Note that
STARTS computes affected tests without running any tests.

2.2 MlL-based RTS

An ML-based RTS technique involves training a model that learns
from (past) data on what tests that were selected or had a different
test outcome due to some change, and it aims to predict which tests
to select after future changes. Note that an ML-based RTS model
does not directly analyze the code changes and their relationship
with the tests. Rather, ML-based RTS aims to extract features from
the change that the model can use to classify a test as one that
should be selected or not. Instead of selecting the tests that could
be affected by a change, ML-based RTS aims to select only the
tests that it predicts can fail after the change. As such, ML-based
RTS potentially selects fewer tests than an analysis-based RTS
technique (i.e., it ignores tests whose outcomes do not change
despite depending on changed code). Also, a model that is trained on
test outcomes bypasses the need to engineer sophisticated program
analyses, which can be difficult to use on large projects and projects
that use multiple programming languages [14].

As arepresentative ML-based RTS technique, consider the predic-
tive RTS approach proposed by Machalica et al. [50]. They trained
a model using a large dataset of historical code changes and test
outcomes internal to Facebook. The goal of this model is to select
only tests that fail when run after the change (but which passed on
the old program version). Simply put, the goal of the Machalica et
al. approach is to speed up regression testing and to not miss tests
that would fail after code changes.

Machalica et al. trained a gradient-boosted decision-tree model
with multiple features: code change-dependent and test target-
dependent features, as well as cross features between them. Then,
by extracting a feature-based abstraction of a new code change, the
model estimates the probability that each test will fail when run
on that change. Their ML-based RTS technique then selects the top
N9% of tests with the highest probability for failure, where the value
of N can be adjusted by the user.

3 TECHNIQUE

We combine two analysis-based RTS techniques with ML-based
RTS models to select fewer tests. We train two different types of
ML-based RTS models: (1) a model that predicts whether a test
would fail due to a change, and (2) a model that predicts whether
a test could be affected by a change, i.e., the second model aims
to learn the behavior of an analysis-based RTS technique. Given a
change and a test suite, the ML-based RTS model extracts semantic
features from the change and the tests. The model then assigns to
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each test a score that represents the relevance of that test to the
change: the likelihood of the test failing after the change or the
likelihood that an analysis-based RTS technique would select the
test after that change. Users can tune the threshold score, so that
only tests with scores above the threshold are selected.

Section 3.1 describes how we automatically construct the train-
ing datasets for the different models, Section 3.2 describes the fea-
tures that we extract from changes to train the model, Section 3.3
describes how we create the ML-based RTS models using the fea-
tures and labels from the training dataset, Section 3.4 describes the
baseline models we compared to, and Section 3.5 describes how we
combine ML-based RTS and analysis-based RTS.

3.1 Training Dataset from Mutants

Machine learning models require training data to learn a classifica-
tion task, requiring a large amount of training data to achieve better
performance. Machalica et al. constructed their training dataset
using internal company logs, such as past continuous integration
build logs that contain the changes and the test outcomes [50].
Unfortunately, a single open-source project usually does not have
enough of such data on changes and test outcomes, even when us-
ing continuous integration services such as Travis CI [2, 6]. There
generally are not enough build logs representing changes with true
(non-flaky [5, 49, 66]) test failures to help with constructing a train-
ing dataset. Further, given our goal to compile and run tests in a
project when using analysis-based RTS techniques, we cannot use
data from very old historical versions that no longer compile.

Inspired by prior work [48], we utilize mutation testing [3, 36, 37]
to create the training dataset automatically. Mutation testing lever-
ages a number of mutation operators that describe rules for chang-
ing code under test, creating variants of the code called mutants.
After creating mutants, tests are run on each mutant, and tests
that fail when run on a mutant (but pass on the original code) are
considered to have killed the mutant.

We construct a large, labeled training dataset by providing pos-
itive and negative labels to each mutant-test pair. We label the
mutant-test pairs differently based on the type of ML-based RTS
model we are training. (A) For the ML-based RTS model that pre-
dicts test failure after a change, we assign a positive label to a
mutant-test pair if the test kills the mutant; otherwise, we assign a
negative label. (B) For the ML-based RTS model that predicts what
an analysis-based RTS technique would select after a change, we
assign a positive label to a mutant-test pair if the corresponding
analysis-based RTS technique would select that test after analyzing
the change represented by that mutant; otherwise, we assign a
negative label. The process is illustrated in the Figure 2 (left side),
where we label based on whether the test fails on the mutant and
whether Ekstazi selects the test after the program mutation. Plus
(+) means that the test fails or is selected by Ekstazi while minus (-)
has the opposite meaning.

Unfortunately, our initial training dataset is very imbalanced,
because only a small percentage of tests would have a positive
label (either fail or be selected by an analysis-based RTS technique).
Following prior work on code search [28, 76], we address this issue
by building a training dataset where the instances are triples of the
form {c, t*, t7): for each code diff ¢ (representing a change between
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Training SHA SHA1 SHA2 git logs
PIT git diff
[mutant 1] [mutant 2] [mutant n] Ch:?mged Chelxnged Chfanged
filel file2 file n

Fail Ekstazi Fail Ekstazi Fail Ekstazi
Testl — — ==
Test2
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mutated file 1.1
mutated file 1.2

mutated file 1.3
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[ universalmutator ]
P

mutated file 2.1 mutated file n.1

mutated file 2.2 mutated file n.2

mutated file 2.3 mutated file n.3

Training : Evaluation

Figure 2: Overview of labeling the dataset.

original code and a mutant), there are positive-labeled tests t* and
negative-labeled tests t~. For every positively labeled t* per code
diff ¢, we randomly select 20 negatively labeled tests ¢~ for that c
from the test suite. We then use this dataset of triples to train the
models, thereby minimizing ranking loss (Section 3.3).

3.2 Pre-processing and Feature Extraction

We take two steps to pre-process every instance in our training
dataset before using it to train a model. First, for all test classes
(e.g., StrTokenizerTest), we split the test class name into to-
kens via camelCase and snake_case and convert to lower case (e.g.,
str tokenizer test). The resulting sequence of tokens represents
a test class to be used as a feature. Next, for a code diff ¢, we
pre-process and extract features from the change. We use three ap-
proaches for feature extraction: Basic, Code, and ABS (which stands
for abstract). We explain these approaches next.

3.2.1 Feature Extraction Approach 1: Basic. We use the class name
(i.e., file name) of the changed class file as a feature. Our intuition is
that class names often give some indication of the class functionality
and the relationship between tests and code under test. We tokenize
changed class names in the same way as the test class name (e.g.,
StrTokenizer would be tokenized into str tokenizer).

3.2.2  Feature Extraction Approach 2: Code. We consider a file-level
code diff that consists of added and modified lines in the commit
(we do not consider deleted lines, because they are not in the next
version). We assume that the size and contents of the code diff
will help the model to select positively-labeled tests. Specifically,
for each changed file, we extract the sequence of tokens on added
and modified lines. We tokenize lines by space and punctuation,
and then we tokenize further in the same manner as the test class
names (e.g., final StrTokenizer tok = getCSVClone(); would be
tokenized into final str tokenizer tok = get csv clone () ;).
We concatenate the tokenized version of the changed class name
with the tokens obtained from the added and modified lines.

Table 1: Rules to Abstract the Code Diff.

Mutation operator Matching pattern

BooleanReturnValsMutator “return true" “return false"
NullReturnValsMutator

ConditionalBoundaryMutator

« »
return

© _» o« » 3«

<7 k=" 057 5=
NegateConditionalMutator == ="
MathMutator

IncrementsMutator S
EmptyObjectReturnValsMutator

VoidMethodCallMutator

+7 7% “&” €|

«/.»
/#” or natural language comments

otherwise

<<”“>>7

3.2.3 Feature Extraction Approach 3: ABS. The actual code diff
and changed lines may not generalize to unseen (or future) code
changes, which can conceptually represent the same kind of change.
To mitigate this issue, we define rules that map parts of the changed
lines of code to general operators, namely the mutation opera-
tors that we used to create the training dataset. Table 1 shows the
rules we use. Specifically, given a code diff, we go through each
line and check if it matches the defined patterns. For example, if
return true; is among the added lines for StrTokenizer.java,
then we will use BooleanReturnValsMutator as the feature for the
code diff. After matching, we abstract the code diff as a sequence of
mutation operators. We concatenate the tokenized version of the
changed class name with the sequence of mapped operators (e.g.,
str tokenizer BooleanReturnValsMutator).

3.3 Models

We train an ML-based RTS model that, given extracted features from
a code change, gives a score to each test based on the likelihood
of that test being selected. More specifically, given a pair (c, t)
consisting of code diff ¢ and test ¢, the ML-based RTS model gives
a score between 0 and 1 that measures the probability that test ¢
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should be selected based on c. Tests with scores that are greater
than a user-defined threshold N are selected.

Figure 3 shows an architectural overview of our ML-based RTS
modeling. We first embed the extracted features (@) described
in Section 3.2 into sequences of vectors through an embedding
layer ((®) and then use two machine learning based encoders to
encode the embedded code diff features ((5)) and test features (@)
separately. The code diff and test encodings are then combined
using multi-head attention ((§)) to learn a deep representation that
captures the relation between them. Finally, we apply a vanilla mul-
tilayer perceptron (MLP) model [35] ((?) with sigmoid activation
function ((B)) [46, 47] to predict the likelihood of the test being
positively related to the diff ((9)). We next describe each part of the
model in more detail.

Encoders. We use two encoders. The first encoder, diffEncoder,

encodes features from the code diff. The other encoder, testEncoder,
encodes features from the tests. Both encoders are instances of a

bidirectional Gated Recurrent Unit (GRU) network [18], a variant of

a recurrent neural network [7]. Specifically, considering a sequence

(of length k) of vectors representing the embedded code diff fea-
tures, ¢ = {cy, ¢2, ..., ¢ }, the diffEncoder encodes that sequence

and outputs the sequence of encoded vector representations, h°:

K¢ = GRU(c)

h® = {h{, h3, ... b}
Similarly, the testEncoder outputs the sequence of encoded vector
representations, h’, for test features (of length q):

h' = GRU(¢)
h' = {h{, b5, . B}

Multi-head attention mechanism. To capture the relation be-
tween code diff and a test, we apply an attention mechanism [75].
An attention is a function to map a query (Q) and key-value (K-
V) pairs to an output, which is computed as a weighted sum of
the values (V), where the weight is calculated by applying some
compatible function like softmax [12] on key (K) and query (Q). In
our ML-based RTS model, the query and value are the projected
code diff representation vector and the key is the projected test
representation vector:

head = Attention(h¢, h?, h®)
(hCVVihc)(htVViht) e
—Lt -1 ) h¢ Wz

Vi
where, Wl.hc, Wiht are trainable parameters that project code diff
vectors (h°) and test vectors (h?), and d; is the scaling factor that is

= softmax(

equal to the dimension of vector h? Wl.ht. Instead of single attention
head, we use multi-head attention [75]. The output representations
from different attention heads are concatenated together, and we
do another projection to get the final vector that represents the
code diff, h@¢t:
h%* = MultiHead(h®, h*, h°)
= concat(heady, ..., head|H‘)Wo

where WO represents trainable parameters for projections.
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Table 2: Names of our ML-based RTS Models.

Basic Code ABS

Failing Tests Fail-Basic Fail-Code Fail-ABS
Ekstazi-Selected Tests Ekstazi-Basic Ekstazi-Code Ekstazi-ABS

Predicting likelihood of positive relation. Finally, we feed the
learned representation h%t into an MLP network, which is a neural
network with two linear layers and a ReLU activation function [52],
with sigmoid function to output a score between 0 and 1:

s = sigmoid (MLP (h#"))

For a code change, if there are multiple changed files, the ML-
based RTS model computes a separate score for the changes in each
of the changed files, taking a maximum score across all changed
files as the final score for the overall code change. We take the
maximum to reduce the effect of potential very low scores due to
minor changes in many files.

Recall that the training instances from our dataset are triples of
{c,t*,t7). We train the ML-based RTS model to predict the scores
st and s~ for {c,t") and {c,t~) pairs, respectively, and then we
minimize the ranking loss [65, 78]:

Loss = Z

{c,t*,t")eD

max(0,m — (st —s7))

where D is the training dataset, and m is the user-defined margin.
Intuitively, the ranking loss encourages the score between code
changes and positively labeled test to go up and the score between
code change and negatively labeled test to go down.

ML-based RTS models. From a combination of what the ML-
based RTS model is trained to learn and the type of features that are
extracted from code changes, we train a total of six models, shown
in Table 2. We use Ekstazi as the analysis-based RTS technique for
labeling tests selected after a change during training, because, in
some cases, STARTS selects all tests and thus we are unable to have
negative examples (i.e., the trained model would select all tests).

3.4 Other ML-based RTS Models

3.4.1 IR-based RTS. Information retrieval (IR) can be used to rank
documents based on their relevance to a given query. Recent work
in test-case prioritization proposed using IR to rank tests based
on their relevance to code changes by treating each test file as a
document and the code changes as a query [58, 64]. The ranking is
based on assigned scores to each test, which is similar to our ML-
based RTS models. We build IR-based RTS based on BM25, which
Peng et al. found to work best for test-case prioritization [58]°. We
set a threshold to allow for selecting the top, most related tests (the
exact ordering of tests is irrelevant for our purpose).

3.4.2 EALRTS. Lundsten et al. presented an ML-based RTS tool
called EALRTS [48], which was trained using Random Forest or
XGBoost to select tests, using features from a dependency graph
extracted by STARTS and the project’s Git commit history. Further,
they used the mutation testing tool, PIT [1], to create mutants for

3Following Peng et al’s work [58], we specifically configure to use Low;oken pre-
processing rule and whole-file context.
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Figure 3: Architecture overview of our ML-based RTS models.

use as their training dataset. By inserting 1-15 randomly selected
mutants into project for multiple iterations, they simulated multiple
times code change. Since EALRTS is not designed to be applied to
commits that were not used for training, we adapt some of their
features. Specifically, the failure rate feature that they used for each
test is calculated by running PIT and computing killed mutants
per test, but running PIT on each commit is too costly. Instead, we
use the failure rate computed through running PIT on the training
commit in our evaluation. We re-implement EALRTS using the
suggested Random Forest algorithm and its features.

3.5 Combining Analysis-based RTS and
ML-based RTS

Finally, we combine analysis-based RTS and ML-based RTS by
using our proposed ML-based RTS models on top of an existing
analysis-based RTS technique. After a developer makes a change,
an analysis-based RTS technique can first analyze those changes
to do an initial selection of tests. Then, ML-based RTS can use a
previously trained model to rank the tests selected by analysis-
based RTS by assigning a score to each test based on its relevance
to the change. Note that ML-based RTS would only rank tests that
are selected by analysis-based RTS and would not rank unselected
tests. That is, ML-based RTS selects a subset of tests that analysis-
based RTS selects based on the likelihood of failure after a code
change. Finally, only tests with scores that are above a user-defined
threshold N would be rerun (Section 3.3). As such, this combination
of analysis-based RTS and ML-based RTS always selects at most
the number of tests selected by the analysis-based RTS technique.

The combination with ML-based RTS only filters tests that analysis-
based RTS selects, meaning that it incurs the same cost as analysis-
based RTS analysis for finding tests that are affected by the change.
It also incurs an additional cost of running the ML-based RTS model
to rank the affected tests and to select only the most relevant tests.
The cost of using an ML-based RTS model is usually quite small,
expected to be less than the cost of analysis-based RTS analysis [48].
We expect that the combination of analysis-based RTS with ML-
based RTS would rerun fewer tests than analysis-based RTS at a
similar overall cost, leading to lower end-to-end testing time than
analysis-based RTS alone.

Note that combining analysis-based RTS and ML-based RTS may
not rerun some tests that analysis-based RTS finds to be affected
by the changes if the ML-based RTS model predicts that the final
pass/fail outcome of such tests will remain the same. Recall that
analysis-based RTS techniques rely on updating the proper test
dependencies after a change to ensure the correct selection across
multiple changes. While a static analysis-based RTS technique like
STARTS can statically re-analyze the code after a change to update

Table 3: Projects and statistics of dataset.

Projects Train Evaluation
SHA # Mutants | # SHAs # Mutants
Asterisk a630a125 7,801 4 21
Bukkit 8aldbc38 7,263 5 12
Configuration | 801f4f4b 6,117 8 48
Csv 2210c0b0 536 18 90
Lang ba8c6f6d 10,937 36 218
Net dfd5f19d 5,783 17 125
Validator 97bb5737 2,008 15 78
Gedcomdj fcf39a01 8,618 21 156
Vectorz 1e6769ef 26,025 20 165
ZtExec acfe9d41 246 14 34

those dependencies, a dynamic analysis-based RTS technique like
Ekstazi needs to rerun the test and collect coverage to update test
dependencies. So, when combining with a dynamic technique like
Ekstazi, all affected tests found by the analysis-based RTS technique
should be run in a separate offline phase [25] after developers have
seen the results from running the tests that ML-based RTS selects.

4 DATASET

We perform our evaluation on 10 open-source Java projects that
were previously used in prior work on regression testing [42, 53].
These projects use Maven and JUnit 4, as required by Ekstazi [25]
and STARTS [42]. Table 3 shows the list of projects (the first column).
For each project, we select an early commit where we could build
the project with no test failures and run analysis-based RTS tools
while still having sufficient commits for use in our evaluation. We
then use this commit, shown in Table 3, for training.

We collect commiits for evaluation going forward from this ini-
tial training commit. Commits that we collect satisfy three require-
ments: (1) the project must compile successfully on the commit,
(2) there must be a bytecode change to a compiled Java class file
between the commit and the previous collected commit, (3) there
must be some added or modified (not only deleted) Java source
code. Requirement (2) ensures there is a change to Java code for
Ekstazi or STARTS to analyze, and requirement (3) ensures that
commits contain changes that are feasible for the ML-based RTS
models. We skip commits that do not satisfy these requirements.
We aim to collect 50 commits per project for our evaluation. In total,
we filter out 15 commits with compilation failures, 836 commits
with no bytecode change, and 16 commits that only delete lines.
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On the initial training commit, we construct the training dataset
by running PIT [1], a mutation testing tool for Java. We apply all of
PIT’s default mutation operators to generate mutants (see Table 1).
These mutants constitute the set of code changes that we use for
constructing a training dataset (Section 3.1). We show the total
number of mutants generated by PIT in Table 3.

Mutation evaluation dataset. Unlike prior work [48], we do not
train the models using some mutants and then evaluate on the
remaining mutants. Instead, we build an evaluation dataset for each
project by leveraging its real code evolution. Figure 2 (right side)
illustrates the approach that we use to construct the evaluation
dataset. Of the commits we collected that come after the initial
commit, we run their tests to see if they all pass on those commits.
On each of these commits, we introduce failing tests by mutating
the code at that commit. We compute the Java source file lines that
differ between the commit and the previous valid commit. We then
apply a different mutation testing tool, universalmutator [27],
to create mutants that modify only the changed lines. To avoid the
problem that most mutants modify the same file, we limit the num-
ber of mutants per file to 3, namely randomly selecting 3 generated
mutants per file. The number of evaluation commits per project
(shown in Table 3) is fewer than 50, because we exclude commits
where no mutant is killed or all mutants introduce infinite loops or
compilation errors.

We run all tests on each pair of mutant and commit to collect tests
that can fail for each combination of change and mutant. We use
the resulting set of code changes and test failures as our evaluation
dataset. In other words, we run an ML-based RTS model on a code
change (combination of real changes and mutation) to compute the
tests that would be selected, comparing against the tests that fail on
that pair of mutant and commit. We run Ekstazi and STARTS as our
representative analysis-based RTS techniques across all commits.

5 EVALUATION

We answer the following research questions:

RQ1: How much can ML-based RTS improve analysis-based RTS
techniques when they are combined?

RQ2: How do ML model configurations impact the effectiveness of
the combined techniques?

RQ3: How do the overheads of combining ML-based RTS and
analysis-based RTS compare with only using analysis-based RTS
techniques?

5.1 Evaluation Setup

We ran all experiments on a GeForce GTX 1080 GPU, 3.20 GHz
Intel(R) Core(TM) i7-8700 machine with 64GB of RAM, with Ubuntu
Linux 18.04.4 LTS and Oracle Java 64-Bit Server version 1.8.0_241.
We used Pytorch 1.7.1 to implement our ML-based RTS models.

We run each analysis-based RTS technique on each commit,
analyzing the diff between a commit and the previous commit to
obtain the percentage of all tests that is selected. The lower the
selection rate, the better.

We run our ML-based RTS models on each pair of mutant and
commit, as collected in our evaluation dataset (Section 4). We mea-
sure for each pair of mutant and commit the percentage of tests
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(out of all tests in the test suite) that the model would need to select
to run all failing tests, i.e., to achieve 100% recall. Conceptually, the
largest such selection rate across all pairs of mutants and commits
in our evaluation set represents the selection rate that would ensure
the model selects all failing tests across all pairs of mutants and
commits. Again, lower selection rates are better.

Finally, we measure the overhead of using each analysis-based
RTS technique and combining it with ML-based RTS models. For
each commit, we measure the time for each analysis-based RTS
technique to select tests and to run those selected tests. For each
pair of mutant and commit, we measure the time each ML-based
RTS model takes to select a subset of the tests that are initially
selected by an analysis-based RTS tests.

5.2 RQ1: Combining analysis-based RTS and
ML-based RTS

Tables 4 and 5 show the results of our experiments in which we
applied our ML-based RTS models on the affected tests that are
selected by Ekstazi and STARTS, respectively. The evaluated models
are those presented in Table 2 as well as the BM25-model as another
baseline. We report the best safe selection rate, which is the largest
selection rate needed to select all failing tests across all pairs of
mutants and commits in each project (ensuring safe selection). Users
may configure the optimal threshold scores different per model, so
we report the best safe selection rate as a means to compare the
different models. The selection rates for Ekstazi or STARTS are also
included in the table.

The “# Best” and “# Worst” rows show the number of projects in
which each model or technique had the best and worst selection
rates, respectively (multiple models may have the best/worst se-
lection rate for the same project). The rates in bold fonts signify
the model(s) or technique(s) that perform best across all models
for each project. The numbers with gray background signify the
model(s) or technique(s) that perform the worst for each project.

In Table 5, we additionally report the results from running EAL-
RTS, because EALRTS also builds upon STARTS. We only report
EALRTS results on 9 projects, excluding Csv due to insufficient
training data. PIT generates mutants on Csv, but after randomly in-
serting 1-15 selected mutants for multiple iterations, each iteration
results in compilation errors or 0 test selected by STARTS.

We highlight three main findings based on results in Tables 4 and 5:

(1) There is no single ML-based RTS model that consistently out-
performs or underperforms the rest. Fail-Basic is the model with
the highest “# Best”, followed by Fail-ABS. We find that ML-
based RTS models trained to learn when a test fails (Fail-*) are
uniformly better than ML-based RTS models trained to replace
an analysis-based RTS tool. Using only the class name of the
changed class file as the code diff feature (Basic) is better than
including raw code changes (Code) or their abstraction (ABS).
We provide detailed analysis in RQ2.

(2) In most cases, ML-based RTS outperforms the BM25-model base-
line and EALRTS. When selecting from Ekstazi subset, our best
ML-based RTS Fail-Basic is better than the BM25-model for all
the projects. When selecting from STARTS, Fail-Basic is bet-
ter than BM25-model for 8 projects out of 10 projects, and it is
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Table 4: Comparison of best safe selection rate of models that select from subset of Ekstazi.

Projects Fail+ Ekstazi+ Baseline Ekstazi
Basic Code ABS | Basic Code ABS BM25
Asterisk 0.13 0.22 0.15 0.15 0.15 0.15 0.15 0.22
Bukkit 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17
Configuration 0.29 0.55 0.30 0.57 0.59 0.56 0.52 0.59
Csv 0.58 0.71  0.71 0.71 0.62 0.60 0.73 0.79
Lang 0.12 0.14 0.11 0.23 0.19  0.26 0.26 0.28
Net 0.05 0.05 0.05 0.12 0.12 0.12 0.09 0.12
Validator 0.09 0.23  0.19 0.24 0.31 0.14 0.23 0.33
Gedcom4j 0.80 0.90 0.81 0.79 0.90 0.86 1.00 1.00
Vectorz 0.91 0.99 0.83 0.93 0.99 0.93 0.99 0.99
ZtExec 0.90 0.90 0.90 0.92 0.90 0.90 0.92 0.93
# Best 7 3 5 2 2 2 1 N/A
# Worst 1 3 1 3 5 3 6 N/A

Table 5: Comparison of best safe selection rate of models that select from subset of STARTS.

Projects Fail+ Ekstazi+ Baseline EALRTS | STARTS
Basic Code ABS | Basic Code ABS BM25
Asterisk 0.33 0.43  0.30 0.24 0.39  0.46 0.20 0.35 0.54
Bukkit 0.56 0.64 047 0.58 0.64 0.63 0.61 0.45 0.64
Configuration 0.35 0.55 0.36 0.57 0.69 0.56 0.62 0.40 0.69
Csv 0.60 0.73  0.73 0.73 0.67  0.67 0.80 N/A 0.80
Lang 0.82 0.83 0.83 0.73 0.83 0.83 0.79 0.80 0.83
Net 0.05 0.05 0.05 0.12 0.12  0.12 0.09 0.05 0.12
Validator 0.09 0.23 0.19 0.24 0.31 0.14 0.24 0.27 0.34
Gedcom4j 0.80 0.90 0.81 0.79 0.90 0.86 1.00 1.00 1.00
Vectorz 0.91 0.99 0.83 0.93 0.99 0.94 0.99 0.99 0.99
ZtExec 0.90 0.90 0.90 0.92 0.90 0.90 0.92 0.92 0.93
# Best 5 2 3 2 1 1 2 N/A
# Worst 0 3 1 2 6 3 4 3 N/A

at least as good as EALRTS (which is designed for improving
STARTS) on 7 out of 9 projects.

(3) Combining ML-based RTS with analysis-based RTS improves
the precision of Ekstazi and STARTS. In 47 of the 60 project/ML-
based RTS model combinations (Fail-* and Ekstazi-*), the models
selected fewer tests than Ekstazi. For STARTS, that ratio is 48 out
of 60. While selecting from Ekstazi, Fail-Basic on average has a
selection rate of 40.39% and reduces Ekstazi’s average selection
rate by 25.34%. For STARTS, Fail-Basic on average has a selection
rate of 54.03% and reduces STARTS’s average selection rate by
21.44%. This finding lends credence to Lundsten’s findings about
the high potential of ML-based RTS to help improve the precision
of imprecise RTS techniques like STARTS [48].

5.3 RQ2: Impact of Model Configurations

We design two ML-based RTS models; one is trained to select failing
tests (Fail-*), and the other one is trained to select affected tests

(Ekstazi-*). Both models have three variants using different features:
Basic, Code and ABS described in 3.2

Fail-* ML-based RTS are uniformly better than Ekstazi-* ML-
based RTS when combined with analysis-based RTS. For example,
the average best safe selection rate for Fail-Basic across 10 projects
is 40.39% compared to Ekstazi-Basic’s 48.31% when combined with
Ekstazi (Table 4). As such, models that mimic analysis-based RTS
seems to weaken the overall effectiveness when combined with
analysis-based RTS.

Using the changed file’s class name as the feature (Basic) per-
forms the best followed by using both class name and the abstract
code changes (ABS). Using test class name together with raw code
changes (Code) turns out to be the worst. The reason is likely be-
cause the actual code diff and changed lines cannot generalize well
to unseen code changes, introducing extra noise into the models’
classification. This problem can be mitigated by using abstract code
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changes as shown by comparing *-ABS and *-Code models. How-
ever, it is impossible to precisely categorize all the code changes into
the mutation operators in Table 1, suggesting that better abstraction
rules may be necessary.

5.4 RQ3: ML-based RTS vs. Analysis-based RTS
Overheads

Table 6 and Table 7 show the end-to-end testing time for the combi-
nation of ML-based RTS models with Ekstazi and STARTS compared
against that time for Ekstazi and STARTS alone. End-to-end testing
time is defined as the summation of the time to select tests and the
time for running the selected tests such that all the failing tests
are included in the selected test set. Note that the selection time
for models includes the time to process the files, extract features
and give scores to the tests. For ML-based RTS and BM25-model,
we use the selection rate reported in Table 4 and Table 5 for each
project on all pairs of mutants and commits. The times per project
are averaged across all pairs of mutants and commits.

Tables 6 and 7 show that the overall end-to-end testing time
for our ML-based RTS models combined with an analysis-based
RTS technique for the most part outperform the corresponding
analysis-based RTS technique. Among the 60 model-project com-
binations (Fail-* and Ekstazi-*), 46 of them took less time when
combined with Ekstazi than running just Ekstazi. When combined
with STARTS, 47 of them took less time than running just STARTS.
BM25-model usually takes more time because computing the BM25
scores requires parsing the changed source files. EALRTS takes
more time because of parsing the dependency graph and collecting
historic data as features from git histories. Overall, our results high-
light how ML-based RTS models can help improve testing time by
selecting fewer tests without adding too much overhead.

6 THREATS TO VALIDITY

The projects that we used to evaluate RTS may not be representative
of all projects. We used projects from prior work on regression
testing, which represented a variety of applications and domains.
Our project selection was also constrained by the analysis-based
RTS tools that we used: Ekstazi and STARTS.

We relied on mutation testing to obtain failing tests for both
training and evaluation. But, we note that we used different muta-
tion testing approaches in these two phases. While mutants are not
real faults, prior work found them to be representative [3, 37].

We studied analysis-based RTS techniques that use coarse-grained
dependencies, i.e., classes. Using analysis-based RTS with method-
level dependencies could lead to very different conclusions. Prior
work showed that Ekstazi and STARTS can substantially reduce
regression testing cost, and they can outperform fine-grained RTS
techniques in terms of end-to-end testing time due to their light-
weight analysis. Future work should combine finer-grained analysis-
based RTS (e.g., method or statement level) with ML-based RTS.

7 RELATED WORK

ML in RTS. Our work is similar to Lundsten’s EALRTS [48], a
ML-based RTS technique that selects tests that are likely to fail and
combines ML-based RTS with STARTS. EALRTS also trained an
ensemble model (Random Forest) based on mutation analysis, and
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it uses some of the same features as Machalica et al.’s work [50],
plus additional features based on STARTS’s dependency graph.
On a single medium-sized open-source project, EALRTS selected
2x fewer tests than STARTS with a recall rate of 95%. However,
EALRTS requires running STARTS to collect necessary features,
whereas our models are more lightweight by relying on just source
code changes. We compare and combine analysis-based RTS and
ML-based RTS on a larger set of models and open-source software,
using both Ekstazi and STARTS.

Chen et al. [17] used a semi-supervised K-means algorithm to
improve cluster-based RTS. Cluster-based RTS [20, 81] clusters tests,
e.g., based on behavioral profiles, and uses sampling techniques to
select representative tests from each cluster. We do not perform
clustering, and our models are trained on static information about
tests and code. We label tests based on their pass/fail outcomes.

Mayo and Spacey [51] trained ML classifiers on partially executed
regression tests for predicting whether the remaining regression
test will fail. Their features are dynamically-collected performance
metrics, and they use support vector machines, Random Forest, and
Naive Bayes as classifiers. In contrast, we do not use any dynamic
features. and aim to select all failing tests that should be rerun after
a code change.

ML in other regression testing techniques. Prior work proposed
utilizing ML, Natural Language Processing, and Information Re-
trieval for test-case prioritization (TCP) [8, 13, 15, 16, 19, 39, 41, 71,
73]. TCP ranks tests, ordering first the “better” tests in terms of
specified testing goals, e.g., code coverage. We also rank tests, but
we select a percentage of the “best” tests, without regard to order.

Elsner et al. [21] empirically evaluated the use of only metadata
available from the version control system and continuous integra-
tion system to perform TCP and RTS by leveraging ML models.
Their evaluation found that relatively simple models are seemingly
more effective than the more complicated ones proposed in prior
work. In contrast, we aim to improve analysis-based RTS by com-
bining with ML-based RTS, which requires compiling and running
tests on past commits along with running the analysis-based RTS
tools, extra information that is unavailable from just the version
control system and continuous integration system metadata.

Kim et al. [38] proposed a predictive mutation analysis tech-
nique, Seshat, to learn the relationship between a mutant and a test
case. Compared with generating mutants and executing tests on
them, Seshat makes use of Natural Language Processing to learn
the relationship between the syntactic and semantic concepts of
each test and the mutant it can kill. Similarly, instead of using just
analysis-based RTS, which relies on test dependencies, we propose
enhancing it with a predictive test selection technique that learns
the relationship between the syntactic and semantic concepts of
code change and failed tests.

Analysis-based RTS. Analysis-based RTS has been studied for over

three decades [4, 9-11, 22, 23, 26, 31-33, 40, 44, 45, 54, 56, 57, 59—

63, 69, 70, 72, 79, 80, 85]; Yoo and Harman presented a survey [82].

Recent results on RTS include those that

(1) evaluate and compare RTS at different levels of program granu-
larity, such as file-level plus method-level RTS, file-level vs.
module-level RTS, or file-level RTS at ultra-large software
ecosystem scale [30, 68, 74, 84];
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Table 6: Average end-to-end testing time (seconds) combining models with Ekstazi.

Projects Fail+ Ekstazi+ Baseline Ekstazi
Basic Code ABS | Basic Code ABS BM25
Asterisk 15.75 20.85 17.74 17.14 17.74 17.74 17.35 20.22
Bukkit 6.71 6.93 6.93 6.71 6.93 6.93 6.93 6.69
Configuration | 110.90 153.77 115.03 | 153.63 159.38 155.70 149.12 156.55
Csv 23.17 27.37 27.38 27.05 24.49 23.68 28.75 29.70
Lang 29.96 33.06 30.19 41.04 37.84 45.35 45.22 47.13
Net 9.62 10.03 10.24 12.05 12.46 12.46 11.88 12.03
Validator 9.30 10.33 10.09 10.16 10.78 9.85 10.26 10.59
Gedcomdj 64.06 69.57 66.09 | 63.47 69.54 67.98 70.89 69.80
Vectorz 51.28 52.92 48.58 51.48 52.92 51.79 53.94 52.59
ZtExec 26.44 26.77 26.77 26.78 26.77 26.77 27.41 27.05

Table 7: Average end-to-end testing time (seconds) combining models with STARTS.

Projects Fail+ Ekstazi+ Baseline EALRTS | STARTS
Basic Code ABS Basic Code ABS BM25
Asterisk 35.33 42.70 34.42 28.69 39.97 44.12 26.49 49.67 47.93
Bukkit 27.71 31.24 24.28 28.97 31.24 30.71 31.19 36.02 31.00
Configuration | 169.18 212.78 173.86 | 213.20 234.61 215.09 223.80 193.64 232.74
Csv 26.31 31.58 31.58 31.26 29.74 29.70 35.02 N/A 34.43
Lang 185.97 186.44 186.44 | 169.11 186.44 186.45 184.32 193.58 186.04
Net 10.86 11.28 11.50 14.33 14.73 14.74 13.68 16.64 14.31
Validator 11.58 13.28 13.05 13.11 13.73 12.80 13.32 14.41 13.61
Gedcom4j 72.77 78.49 74.91 72.17 78.46 76.91 79.88 81.90 78.62
Vectorz 121.14 131.25 109.21 121.74 131.24 125.73 133.67 145.25 130.89
ZtExec 26.78  27.10 27.10 2756 2710 @ 27.11 28.20 28.14 27.83

(2) handle specific programming language constructs, such as
how to deal with reflection when performing static file-level
analysis-based RTS [67] or how to leverage the semantics-
preserving nature of refactoring to improve the precision of
dynamic RTS [77];

(3) apply RTS to other programming languages apart from Java
such as .NET [74] or even applications that use multiple pro-
gramming languages [14];

(4) perform static analysis-based RTS as a Java compiler pass [55];n

(5) find safety, precision, and performance bugs in RTS tools [86].
Our goal is to evaluate the use of ML for improving the precision
of static and dynamic analysis-based RTS. It would be interesting
future work to see whether ML can also be used to improve some
of the aforementioned recent work on analysis-based RTS.

8 CONCLUSION

We evaluate the use of ML-based RTS for improving analysis-based
RTS on medium-sized open-source software. Prior work evaluated
ML-based RTS on large-scale software (e.g., the monorepository
at Facebook), or performed preliminary evaluation of ML-based
RTS on one medium-sized project. We use mutation analysis to
obtain many failing tests for creating our training dataset. We also
compare the effectiveness of ML-based RTS and analysis-based RTS
for selecting failing tests after real code changes. ML-based RTS and
analysis-based RTS are often complementary, and we evaluate the
combination of both. Results show that combining the approaches
improves the precision of analysis-based RTS. The synergy be-
tween analysis-based RTS and ML-based RTS is a step forward in
reducing regression testing cost. Future work should study further
combination of ML and finer-grained analyses techniques.
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