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Due to the recent announcement of the Frontier supercomputer, many scientific application developers are

working to make their applications compatible with AMD (CPU-GPU) architectures, which means moving

away from the traditional CPU and NVIDIA-GPU systems. Due to the current limitations of profiling tools for

AMD GPUs, this shift leaves a void in how to measure application performance on AMDGPUs. In this article,

we design an instruction roofline model for AMD GPUs using AMD’s ROCProfiler and a benchmarking tool,

BabelStream (the HIP implementation), as a way to measure an application’s performance in instructions

and memory transactions on new AMD hardware. Specifically, we create instruction roofline models for

a case study scientific application, PIConGPU, an open source particle-in-cell simulations application used

for plasma and laser-plasma physics on the NVIDIA V100, AMD Radeon Instinct MI60, and AMD Instinct

MI100 GPUs. When looking at the performance of multiple kernels of interest in PIConGPU we find that

although the AMD MI100 GPU achieves a similar, or better, execution time compared to the NVIDIA V100

GPU, profiling tool differences make comparing performance of these two architectures hard. When looking

at execution time, GIPS, and instruction intensity, the AMD MI60 achieves the worst performance out of the

three GPUs used in this work.
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1 INTRODUCTION

One of the most invaluable resources for performance and analytical modeling of high perfor-

mance computing (HPC) codes is the roofline model developed by Williams et al. in 2009 [22].
The roofline model offers a simple way to visually understand an application’s performance (in
FLOPS) and its bottlenecks. Understanding performance and bottlenecks helps in optimizing codes.
Thus, the roofline model has proved itself as an invaluable resource for performance and analyti-
cal modeling of HPC codes. Using the roofline model, application developers easily know what to
optimize within a code, although it might be challenging to implement those optimizations. How-
ever, the traditional roofline model only gives specific optimization insights into a code. Thus, re-
searchers have developed several extensions, with perhaps themost useful being the cache-aware

rooflinemodel (CARM) [16] and the hierarchical roofline model [23, 24]. Both the CARM and hi-
erachical roofline model extend the traditional roofline model beyond the traditional DRAM/HBM
measurement to include the cache memories. Typically, only the L1 and L2 caches are included. To
distinguish the CARM and hierarchical roofline model from other types of roofline models, in this
work, we refer to them as the roofline performance model (RPM).

Another extension to the traditional roofline model, the instruction roofline model (IRM),
was developed in 2019 [15]. This model offers additional performance insights for an application
beyond the RPM such as access patterns and instruction throughput. Creating an IRM is very
similar to constructing an RPM. Instead of calculating maximum achieved GFLOPs for the com-
pute ceiling, the maximum achieved billions of instructions per second (GIPS) is calculated. For
the memory bandwidth ceiling, instead of using the measured bandwidth in GB/s, the GB/s band-
width is divided by the size of a transaction (32 bytes) to use billions of transactions per second
(GTXN/s). For clarity, GIPS is preferred over GFLOPs because instruction-level performance is
important for the IRM. Similarly, GTXN/s is favored over GB/s because, as Ding and Williams de-
scribe, an execution-level load, such as a warp-load, can create up to 32 transactions on NVIDIA
GPUs depending on the memory patterns used. Therefore, making the transaction the preferred
memory unit for analyzing memory access.
Given that most of the leading supercomputers in the world currently contain NVIDIAGPUs [2],

porting an application to work with AMD GPUs is an important open challenge. Due to the archi-
tecture and terminology differences between NVIDIA and AMD GPUs, the metrics traditionally
gathered by hardware profilers are not applicable to use to create roofline models for AMD GPUs.
In this work, we design an IRM for AMD GPUs using metrics from the ROCProfiler [9], AMD’s
hardware profiler, translate equations meant for NVIDIA GPUs to AMDGPU components, and cre-
ate formulas specifically for AMD GPUs. PIConGPU, the application we look at in this work, was
selected as one of the eight teams to take part in the Department of Energy’s (DOE) Frontier
Center for Accelerated Application Readiness (CAAR) effort [1]. Frontier, the Oak Ridge

Leadership Computing Facility’s (OLCF) newest supercomputer, will reach completion and
start running programs in early 2022, and will contain AMD CPUs and AMD GPUs in each node.
This article makes the following contributions:

— Defines metrics and formulas needed to create an instruction roofline for state-of-the-art
AMD GPUs. These metrics and formulas can provide a significant contribution to the design
of AMD’s profiling tool
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— Provides a framework to model instruction-level performance of an HPC application on
AMD GPUs

— Compares the performance of a plasma physics code, PIConGPU, using IRMs. Finding out
which architecture PIConGPU performs better on is unclear due to profiling tool limitations
for AMD GPUs

2 RELATEDWORK

Of the existing research on IRMs, the most similar to our work comes from Ding et al. [15]. They
defined the formulas necessary to create an IRM and to plot achieved performance. The most sig-
nificant difference from our work is that Ding et al.’s model focuses on creating IRMs for NVIDIA
GPUs. Specifically, some of the formulas are tied to NVIDIA’s basic level of execution, the warp
(32 threads). Since AMD’s basic level of execution is the wavefront, all of the formulas defined in
their work that use warps are unusable for AMD GPUs. It is worth noting that a wavefront can
constitute 32 threads in some consumer GPUs (AMD RDNA2 GPUs), but this article focuses on
AMD’s HPC GPUs, where the size of a wavefront is 64 threads. Additionally, the metrics they gath-
ered to create the roofline model come from NVIDIA’s legacy profiler, nvprof. This profiling tool is
compatible only with NVIDIA GPUs, thus leaving a gap on which metrics to use for AMD GPUs.
Recently, there have been a few efforts to create an IRM for AMD GPUs. Richards et al. [21] and

Mehta et al. [20] created IRMs for the AMD Radeon Instinct MI60 GPU using proxy applications.
Unfortunately, both papers lack sufficient details on how the roofline models were created. While
some of the metrics used are explicitly mentioned, we do not know exactly how they were used
to measure theoretical and achieved instruction-level performance. We build on these works by
clearly defining which metrics are used to create an IRM and how they are used to plot achieved
performance. Additionally, our work leverages AMD’s state-of-the-art GPU, the AMD Instinct
MI100. To the best of our knowledge, no other research uses the MI100 GPU (released in November
2020), or details formulas to create an IRM for AMD GPUs.

3 EXPERIMENTAL SETUP

In this section, we go over the specifications of the machines we ran the PIConGPU simulations
on, Summit and an early access Frontier Center of Excellence machine. We also discuss the speci-
fications of the next-generation supercomputer, Frontier, that will run PIConGPU once built.

3.1 Summit

The Summit supercomputer, built from IBM AC922 nodes, currently sits in the OLCF at Oak Ridge
National Laboratory in Oak Ridge, Tennessee, USA. Summit, at the time of writing, is the world’s
second fastest supercomputer [2]. The machine features 4,608 nodes. Each node consists of two
IBM Power9 CPUs (9,216 in total) and 6 NVIDIA Tesla V100 GPUs (27,648 in total). Each CPU
contains 512 GB DDR4 RAM. In total, each node has 96 GB of High BandwidthMemory (HBM)
and uses NVIDIA’s high-speed NVLink to communicate. A total of 256 cabinets are used to contain
the machine. The machine can achieve 200 peta-floating-point operations per second (PFLOPs), or
200 × 1015 floating-point operations per second. The NVIDIA V100 GPUs use CUDA, which is
a parallel computing platform and a programming model used exclusively for GPU computing
on NVIDIA devices. On Summit we utilize Alpaka 0.6.0, CUDA 10.1.243, cupla 0.3.0-dev, Nsight
Compute 2020.1, and Nsight Systems 2020.5.1.85.

3.2 Early Access Frontier COE Machine

The Early Access Frontier COE Machine (EAFCOEM) features eight nodes. Each node con-
tains one HPC and artificial intelligence optimized AMD EPYC CPU. In addition to the CPU, two
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nodes contain four NVIDIA Tesla V100 GPUs and the other six nodes contain four purpose built
AMD Radeon Instinct GPUs. Of these six nodes, some contain Radeon Instinct MI60 GPUs while
others hold AMD Instinct MI100 GPUs. As the release of Frontier nears, the nodes on this sys-
tem will change to reflect the CPU and GPU devices the production Frontier machine will contain.
Currently, the EAFCOEM supports both CUDA and HIP due to having both NVIDIA and AMD
GPU devices. On the EAFCOEM, we utilize up to AMD ROCm 4.1.1 and HIP, Alpaka 0.6.0, and the
latest stable commits of rocProf (up to and including commit 759f081) and BabelStream (up to and
including commit 5182342).

3.3 Frontier (2021–2022)

Similar to the EAFCOEM, Frontier will hold one HPC and artificial intelligence optimized AMD
EPYC CPU and four purpose built AMD Radeon Instinct GPUs per node. At the time of writing, we
know Frontier will have over 100 cabinets to fit the nodes and use AMD Infinity Fabric to commu-
nicate. Frontier will use HIP, which is an open-source parallel computing model (an extension of
C++) that can be used across multiple devices regardless of vendor. The peak performance is sup-
posed to reach greater than 1.5 exa-FLOPs (EFLOPs), which is 1.5 × 1018 floating point operations
per second.

4 CONSTRUCTING IRMS FOR AMD GPUS

In this section, we introduce AMD’s ROCProfiler and explain which metrics are needed from it
to measure an application’s performance using an IRM. We then introduce the formulas used to
create the IRM and show how the metrics gathered from the ROCProfiler can be applied to the
IRM.

4.1 Gathering Metrics Using the ROCProfiler

The AMD ROCProfiler (rocProf) is a command line profiling analysis tool. This tool allows the
user to get performance counters—and derived metrics from those counters—for an application.
The tool works solely for applications using the ROCm accelerator backend. The metrics used
for deriving IRMs on the NVIDIA V100 cannot be used on the AMD Radeon Instinct MI60 or
AMD Instinct MI100 GPUs. The reason for this is because there is no way to extract the number of
transactions from the L1 cache, L2 cache, or the DRAM/HBMusing rocProf. Instead, we use rocProf
to get the FETCH_SIZE, WRITE_SIZE, SQ_INSTS_SALU, and SQ_INSTS_VALU metrics, and the
kernel runtimes to construct a roofline model. The FETCH_SIZE metric returns the total number
of kilobytes (KBs) fetched from the GPU memory. Similarly, the WRITE_SIZE metric returns the
total number of KBs written to the GPU memory. Before using these metrics, we convert each
value from KBs to bytes. The SQ_INSTS_SALU metric tells how many scalar-ALU instructions are
issued to the GPU. Similarly, the SQ_INSTS_VALU metric tells how many vector-ALU instructions
are issued to the GPU.

4.2 Using Metrics to Create an IRM

The IRMs presented here for the AMD MI60 and MI100 GPUs are built off of the work of Richards
et al. [21] from 2020. Instead of re-scaling the memory bandwidth to billions of transactions per
second (GTXN/s), we leave the memory bandwidth in GB/s. Additionally, since there is no way to
extract the number of transactions from rocProf, we use instructions per byte as the measurement
unit on the horizontal axis, instead of instructions per transaction.
To calculate the achieved GIPS and instruction intensity performance, we need to find the num-

ber of instructions issued. We show how to get the number of instructions in Equation (1). We
multiply the SQ_INSTS_VALU metric by four because this metric gives the number of instructions
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Fig. 1. The compute unit for all AMD GCN GPUs, which includes the MI60. The AMD CDNA GPUs (MI100)
Compute Units are based off of the compute unit shown here. This image comes from the AMD GCN white
paper [14].

issued per SIMD. For the AMD MI60 and MI100 GPUs, there are four SIMD vector units per com-

pute unit (CU). Figure 1, which comes from the original AMDGraphics Core Next (GCN) GPU
white paper [14], shows the four vector ALU units per SIMD. Similarly, we do not multiply the
SQ_INSTS_SALU metric by anything because there is only one scalar unit per CU.

instructions = (SQ_INSTS_VALU × 4) + SQ_INSTS_SALU . (1)

To calculate the instruction intensity performance, measured in instructions per byte, the
FETCH_SIZE and WRITE_SIZE metrics from rocProf are used. The sum of those metrics is then
multiplied by the kernel runtime and that quantity divides the number of wavefront scaled instruc-
tions. This is shown in Equation (2). It is worth noting that because we normalize the instructions
to the wavefront-level, we are actually calculating wavefront-level instruction intensity perfor-
mance rather than a universal instruction intensity performance. Additionally, we calculate the
instruction intensity performance rather than the instruction intensity because of the limited met-
rics available to use with rocProf. Instruction intensity performance can be easily determined by
calculating the throughput of GPU HBM reads and writes.

Instruction Intensity Per f ormance =
instructions

64

(bytes read + bytes written) × runtime
. (2)

To calculate the peak theoretical GIPS, we modify the peak GIPS equation from [15] to work
with AMD architecture. AMD uses the term CUs instead of streaming multiprocessors. The MI60
and MI100 contain 64 and 120 CUs, respectively. Additionally, AMD GPUs use wavefronts instead
of warps. The MI60 and MI100 GPUs each contain one wavefront scheduler per compute unit
(WFS/CU). The theoretical instructions per cycle (IPC) variable is 1 (1 IPC) as stated in [10].
This is in unison with [15] despite focusing on a different GPU vendor. The frequency is measured
in gigahertz as shown in the following equation:

GIPSpeak = CU ×WFS/CU × IPC × f requency. (3)
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Fig. 2. The software stack of PIConGPU. Due to the abstraction Alpaka brings, only a few top level changes
were made to get PIConGPU running on AMD GPUs via HIP.

The achieved instruction performance (GIPSachieved ) in GIPS is calculated by the formula shown
in Equation (4). We divide by 64 because 64 threads constitute a wavefront in the AMD GPUs we
target. The number of instructions is calculated as shown in Equation (1).

GIPSachieved =
instructions

64

1 × 109 × runtime
. (4)

The IRMs for AMD GPUs could easily re-scale the bandwidth into GTXN/s as shown for the
V100 IRMs, and this might seem like a more equal comparison, but since we cannot get the number
of transactions to use for the instruction intensity/instruction intensity performance, we did not
want to offer a misleading comparison.

5 PICONGPU, A PLASMA PHYSICS APPLICATION

PIConGPU [11] is an open source particle-in-cell (PIC) simulations application that runs on
general purpose GPUs for plasma and laser-plasma physics used to develop advanced particle ac-
celerators for radiation therapy of cancer, high-energy physics, and photon science. PIConGPU
utilizes the Alpaka [19] backend and the PIC algorithm for its science case simulations. Alpaka is
an open-source abstraction library written in C++14 that aims at providing performance portabil-
ity across accelerators through the abstraction of underlying levels of parallelism. It is platform
independent and also supports concurrent and cooperative use between the host device and any
attached accelerators. Alpaka is used on top of HIP and therefore, most of the porting is done in
Alpaka rather than PIConGPU. Due to the software stack PIConGPU uses, only a few top level
changes are made to support running on AMD GPUs via HIP. Figure 2 shows the entire PICon-
GPU software stack. More information about porting PIConGPU can be found in the 2016 ICHPC
paper [25] and the Alpaka code repository [3]. As part of the ongoing CAAR for Frontier effort,
we analyze the performance of PIConGPU on OLCF’s Summit supercomputer, the second fastest
in the world [2] as of the time of writing, and on an early access Frontier Center of Excellence
machine.
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In this work, we run PIConGPU’s Traveling Wave Electron Acceleration (TWEAC) and
Laser Wakefield Acceleration (LWFA) simulations. A deeper dive into the science of the
TWEAC and LWFA simulations is explained by Debus et al. [13]. We profile the simulations using
various state-of-the-art profiling tools and micro-kernel benchmarking suites. Using the metrics
gathered from profiling, we construct roofline models for PIConGPU’s MoveAndMark and Com-
puteCurrent kernels. These kernels are measured as the most computationally intensive [18] and
are called in every PIConGPU simulation run. Therefore, optimizing these kernels will improve
every simulation in PIConGPU. By constructing roofline models, we determine the future opti-
mizations needed to exploit the best performance of PIConGPU.

6 PROFILING TOOLS USED

To profile the TWEAC and LWFA simulations on the NVIDIA V100 GPU, we use NVIDIA’s legacy
profiling tool, NVProf [8], and its state-of-the-art profiling tools, Nsight Compute [6] and Nsight
Systems [7]. These profiling tools can only target NVIDIA GPUs. Hence we cannot use these tools
to profile simulations on AMD GPUs.
To profile PIConGPU on the AMD devices, we initially used rocProf. However, we quickly found

that rocProf did not suffice for acquiring all the metrics needed to construct IRMs and thus we
pivoted to use various benchmarking suites. These benchmarking suites filled in most of the gaps
needed to create roofline models for the AMD devices. As AMD architecture continues to grow
in use, we hope to see new profiling tools with broader capabilities released in the future. The
following subsections narrate findings using NVIDIA’s tools and the micro-kernel benchmarking
suites we used.
Inmaking the roofline plots shown later in this report, we utilize themetrics theNERSCRoofline-

on-NVIDIA-GPUs code repository uses [5]. The data gathered using rocProf, Nsight Compute,
nvprof, and the HIP implementation of BabelStream can be found in a repository we created on
GitHub [4]. Additionally, modifications we made to the NERSC code repository can be found in
the same repository.

6.1 Nsight Compute and Nsight Systems

Nsight Compute is NVIDIA’s latest application profiling tool. It boasts similar functionality to
NVProf, but does not map the application runtime by kernel calls (as NVProf did). One of the
biggest enhancements, the Roofline Analysis feature, came to Nsight Compute in version 2020.1.
The Roofline Analysis feature automatically generates a roofline plot within the profiling report
that is output. This work utilizes the Roofline Analysis feature and expands upon its initial use by
utilizing Nsight Compute to create custom roofline plots.
Nsight Systems visually maps an application from execution to termination. The visualization,

that is in the form of a timeline, is useful for deducing which kernels take up the most execution
time, which bottlenecks exist in the code, and which kernels under-perform. This work utilized
Nsight Systems to verify the developers’ rationale about PIConGPU’s most computationally
intensive kernels and to find out the percentage of runtime those kernels took up. Figure 3 shows
a visualization of the timeline from Nsight Systems to focus on our kernels of interest.

6.2 Micro-Kernel Benchmark Tools

To gather the memory bandwidth for the AMDMI60 and MI100 devices, we use a variety of micro-
kernel benchmarking tools. First, we use the gpumembench [17] Benchmark Suite as a way to
assess on-chip GPU memory bandwidth. Using the programs in the suite, we measure the instruc-
tion throughput, shared memory operations, and constant memory operations on the MI60 and
MI100 GPUs. The other benchmark tool we use is BabelStream [12]. Formerly called GPU-Stream,
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Fig. 3. Execution time (%) for different kernels within PIConGPU’s TWEAC science case. TheMoveAndMark
and ComputeCurrent kernels take up over 75% of the overall runtime.

Fig. 4. The IRM for the ComputeCurrent kernel in the LWFA simulation on the NVIDIA V100 GPU on
OLCF’s Summit. Looking at the plotted points, one can see this kernel’s instruction-level performance can
be greatly improved.

BabelStream measures memory transfer rates to and from the global device memory on GPUs.
BabelStream differs from other GPU memory bandwidth benchmarks and benchmarking suites in
that it does not include PCIe transfer time in its results. BabelStream provides memory bandwidth
results that are attainable. The output for the copy functions (808,975.476 MB/s for the MI60 GPU
and 933,355.781MB/s for theMI100 GPU) from BabelStream is used to represent the memory band-
width for the AMD MI60 and MI100 GPU IRMs. It is worth noting that the measured bandwidth
can vary when using an implementation of BabelStream other than the HIP implementation (for
example the AOMP implementation). On the roofline plots, we convert each measurement to GB/s.

7 ROOFLINE MODEL COMPARISONS

In this section, we show IRMs generated on the NVIDIA V100, AMD MI60, and AMD MI100 for
the PIConGPU LWFA science case, as seen in Figures 4–6, and compare the results in Table 1.
Additionally, we show an IRM for theAMDMI60 andAMDMI100 for PIConGPU’s TWEAC science
case (Figure 7). Table 2 shows the same metrics that Table 1 did but for the TWEAC simulation.
The IRM plots were created by modifying the scripts from the NERSC Roofline-On-NVIDIA-GPUs
code repository. Finally, we dedicate a subsection to discussing the differences between AMD and
NVIDIA GPU hardware and profiling tools to explain some of the differences outlined in this
section.
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Fig. 5. The IRM for the ComputeCurrent kernel in the LWFA simulation on the NVIDIA V100 GPU

on OLCF’s Summit. Here, the instruction intensity is measured in instructions/byte rather than instruc-
tions/transaction. This plot shows that there is much room for improvement.

7.1 NVIDIA GPU IRMs

To construct the roofline models on the NVIDIA V100, we collected the same metrics from NVProf
as mentioned in [15]. The roofline model shown in Figure 4 represents the IRM for an instance
of the ComputeCurrent kernel ran during an LWFA science case simulation of PIConGPU. The
plot shows the compute ceiling measured in GIPS and the memory bandwidth ceiling in GTXN/s,
along with the achieved warp GIPS and instruction intensity for the HBM, and the L1 and L2
caches. We observe in [15] that L1 points appearing on the left side of the plot (i.e. L1 points that
have low instruction intensity) are more likely to show that the kernel has strided memory access
patterns. We confirmed this is true for Figure 4 by following the method outlined in [15] under
“Global MemoryWalls”. Similarly, L2 points appearing more left on the plot represent 32-way bank
conflicts. Using Nsight Compute, we confirm this kernel experiences many bank conflicts. We also
see that it is HBM-bound and its computational performance cannot increase without addressing
the memory issues present. A difference between the plot in Figure 4 and the IRMs shown in [15]
is that the V100 GPU utilized to run the PIConGPU LWFA simulation achieved a greater memory
bandwidth than the one Ding et al. used thus leading to higher GTXN/s for the L1 cache, L2 cache,
and HBM. Additionally, we also created an IRM for this kernel measuring instruction intensity
in instructions/byte to give a better comparison between NVIDIA and AMD. Figure 5 shows the
instruction intensity measured in instructions/byte. We avoid including the L1 and L2 caches so
that it is more similar to its AMD counterparts.

7.2 AMD GPU IRMs

We follow the process of constructing IRMs outlined in Section 4 and find that the AMDMI60 GPU
has a theoretical peak GIPS of 115.2 while the MI100 boasts a theoretical peak GIPS of 180.24. The
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Fig. 6. The IRM for the ComputeCurrent kernel in the LWFA simulation on the AMD MI60 and MI100

GPUs. This simulation was run on an AMD/Cray early-access system at OLCF. The HBM point in this
roofline plot appears in a much better position than than the HBM point for the V100’s roofline plot.

Table 1. Execution Time, Achieved GIPS, and Instruction Intensity for the LWFA Simulation’s
ComputeCurrent Kernel on the NVIDIA V100 & AMD MI60 and MI100 GPUs

PIConGPU LWFA Simulation ComputeCurrent

GPU V100 MI60 MI100

Execution Time (s) 0.0040 0.0127 0.0025

{Compute Units, Streaming Multiprocessors} 80 64 120

Instructions/Cycle 1 1 1

Frequency (GHz) 1.530 1.800 1.502

{Wavefront, Warp} Schedulers 4 1 1

Peak GIPS 489.60 115.20 180.24

Achieved GIPS 2.178 0.620 2.856

Instructions 279,498,240 502,440,960 449,796,480

Bytes Read 267,280,000,000 1,125,436,000 1,124,711,000

Bytes Written 97,329,000,000 432,711,000 408,483,000

{Wavefront, Warp}-Level Instruction Intensity (inst/byte) 0.006 0.398 1.863

The values in this table are rounded to three decimal points and therefore manually calculating Achieved GIPS and

Instruction Intensity may vary slightly from the numbers shown here. For execution time, a lower number is better.

For GIPS and Instruction Intensity, a higher number is better.

memory bandwidth was measured using BabelStream. Due to AMD profiling tool limitations, we
are unable to measure performance for the L1 and L2 caches on any AMDGPU. Figure 6 shows the
IRMs for both the AMDMI60 andMI100 on the LWFA science case’s ComputeCurrent kernel. Even
though we can only measure the HBM performance, we can assume that the L1 and L2 cache per-
formance points would appear to the left of the HBM performance points. Following this assump-
tion will give us synonymous information as the V100’s IRM: the kernel has many bank conflicts
and strided memory access. We want to stress the fact that we are assuming the AMD IRMs are
showing bank conflicts and strided memory access. We are not able to confirm these assumptions
because of the limited amount of performance counter metrics available in AMD profiling tools.
Table 1 shows the achieved GIPS performance, Instruction Intensity, and the runtime of the

ComputeCurrent kernel on the NVIDIA V100, AMDMI60, and MI100 GPUs for the LWFA science
case. The table shows the kernel executed significantly faster on the V100 andMI100 than theMI60,
with the MI100 having the best execution time overall. The instruction intensities in the table are
measured in instructions/bytes . According to [15], the instruction intensity should be measured
in instructions/transactions . Due to performance counter limitations on rocProf, we could not

ACM Transactions on Parallel Computing, Vol. 9, No. 1, Article 1. Publication date: January 2022.



Metrics and Design of an Instruction Roofline Model for AMD GPUs 1:11

Fig. 7. The IRM for the ComputeCurrent kernel in the TWEAC simulation on the AMD MI60 and MI100

GPUs. This simulation was run on an AMD/Cray early-access system at OLCF. Unlike its NVIDIA V100 coun-
terpart, this roofline plot offers no insight into the L1 and L2 cache performance due to a lack of performance
counters on the AMD GPUs.

Table 2. Execution Time, Achieved GIPS, and Instruction Intensity for the TWEAC Simulation’s
ComputeCurrent kernel on the NVIDIA V100 & AMD MI60 and MI100 GPUs

PIConGPU TWEAC Simulation ComputeCurrent

GPU V100 MI60 MI100

Execution Time (s) 0.283 0.394 0.246

{Compute Units, Streaming Multiprocessors} 80 64 120

Instructions/Cycle 1 1 1

Frequency (GHz) 1.530 1.800 1.502

{Wavefront, Warp} Schedulers 4 1 1

Peak GIPS 489.60 115.20 180.24

Achieved GIPS 6.634 3.586 4.993

Instructions 60,149,000,000 90,319,028,127 78,488,570,820

Bytes Read 40,931,000,000 11,451,009,000 11,460,394,000

Bytes Written 1,810,100,000 785,101,000 792,172,000

{Wavefront, Warp}-Level Instruction Intensity (inst/byte) 0.155 0.293 0.408

The values in this table are rounded to three decimal points and therefore manually calculating Achieved GIPS and

Instruction Intensity may vary slightly from the numbers shown here. For execution time, a lower number is better.

For GIPS and Instruction Intensity, a higher number is better.

extract the amount of transactions. On the NVIDIA V100, the instruction intensity was measured
as 0.178 instructions per transactions (as shown in Figure 4). To make an equal comparison the
V100’s instruction intensity is measured in instructions per byte in Table 1.

Looking at the ComputeCurrent kernel for PIConGPU’s TWEAC simulation, we see similar
results to its LWFA simulation for the same kernel. Table 2 shows that the MI100 still has the
fastest execution time of the kernel, but its achieved GIPS is much lower than the V100. Tomeasure
instructions on AMD GPUs, we use the vector-ALU and scalar-ALU instructions stated by rocProf.
The V100 uses an nvprof metric (inst_executed) that measures all the different types of instructions
the profiled kernel uses. Just as in the table above, the instruction intensity for the V100 in Table 2
is reported in instructions per byte to make an equal comparison with AMDGPUs. The instruction
intensity on the V100 in instructions per transaction is 4.931. In Tables 1 and 2, the NVIDIA V100
processes a much lesser number of instructions and reads and writes a significantly higher number
of bytes to the DRAM than the AMD GPUs. At the time of writing, we are unsure of why this
behavior is occurring and continue to look into it. Figure 7 shows the IRM for PIConGPU’s TWEAC
simulation ComputeCurrent kernel.
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7.3 Discussion of Rooflines, Profiling Tools, and GPU Hardwares

As we alluded to earlier, there are many differences between AMD and NVIDIA GPUs. The first
main difference is the size of a warp and a wavefront. One possible explanation for the difference
between achieved GIPS on NVIDIA GPUs and AMD GPUs could be the size of a wavefront
(64 threads) vs. the size of a warp (32 threads). Since a wavefront is twice as big as a warp,
achieved GIPS on AMD GPUs are at a significant disadvantage when compared head to head
with NVIDIA GPUs due to how instructions are scaled. If each GPU issued 100,000 compute
instructions, the achieved GIPS for an NVIDIA GPU would be twice as high as the AMD GPU’s
solely due to the idea of scaling instructions to the warp-/wavefront-level. However, this is
necessary in order to figure out the instruction-level performance of the GPU. Additionally,
nvprof’s inst_executed metric measures all types of instructions issued by the NVIDIA GPU
whereas the vector-ALU and scalar-ALU instructions comprise only the compute instructions for
AMD GPUs. We decided to utilize the inst_executed metric for the experiments conducted in this
work because both nvprof and Nsight Compute do not offer a single metric to extract only the
compute instructions issued to an NVIDIA GPU like rocProf does. This means that the NVIDIA
GPU might contain instructions that have nothing to do with the compute instructions of the
kernel being measured as opposed to the instructions metrics we collect for AMD GPUs, which
only contain compute instructions. However, Nsight Compute does allow users to obtain detailed
per-instruction-type metrics which can then be aggregated across all compute instructions.
Looking beyond what constitutes the achieved points and instead focusing on the base rooflines

themselves, we also see a few differences. The first noted difference is the memory bandwidth
for each GPU. Using Nsight Compute, we see the achieved bandwidth of the NVIDIA V100 GPU
(shown in Figure 5) is over 99% of its theoretical bandwidth (900 GB/s). With rocProf, we cannot
measure the achieved bandwidth for AMDGPUs sowe use theHIP implementation of BabelStream
to do so. Using BabelStream, the AMD MI60 achieves 81% of its theoretical bandwidth and the
MI100 achieves 78%. The compute ceilings also show different stories. The theoretical GIPS ceiling
for the V100 is about 2.7x higher than the MI100’s and 4.25x higher than the MI60’s. As Ding
and Williams described in [15], the theoretical GIPS ceiling is calculated using a GPU’s hardware
components. The biggest differences that lead to the lower theoretical GIPS ceiling for the AMD
MI60 are the number of CUs (64 vs. the V100’s 80 and MI100’s 120) and the 1 wavefront scheduler
per CU (vs. the V100’s 4 warp schedulers per streamingmultiprocessor). Despite having the highest
frequency out of all three GPUs used, these two differences lead the MI60 to have the lowest
theoretical GIPS ceiling. Similar to the MI60, the MI100’s GIPS ceiling is low compared to the
V100’s because the MI100 only has 1 wavefront scheduler per CU. The warp/wavefront schedulers
per CU/streaming multiprocessor are what drive the theoretical GIPS up. For example, if the V100
only had 1 warp scheduler per streaming multiprocessor, its theoretical GIPS ceiling would be only
122.4, a quarter of what it is now. Due to these fundamental differences betweenGPU hardware and
their profiling tools, it is hard to create an instruction-level performance model that will equally
relate GPUs made by different vendors.
Finally, the last point we want to make is that while roofline models offer many insights into a

kernel’s performance, they do not explicitly show the performance limiters of that kernel. While
showing memory bandwidth, instruction throughput or FLOPS under-utilization is helpful, the
real performance limiters (memory stalls, instruction dependencies, etc.) must be analyzed sep-
arately. Adding on to the difficulty of optimizing kernels is that some performance limiters can
be architecture dependent. In this article, all three of the GPUs used have many similarities and
therefore improvements and refactoring to reduce and/or avoid performance limiters have posi-
tive effects for all devices. Alpaka provides the infrastructure necessary to write unified code, but
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how memory is mapped to workers/threads depends on the architecture and how it is abstracted
for PIConGPU using PMacc (see Figure 2).

8 CONCLUSIONS AND FUTURE WORK

In this article, we showed how to construct IRMs for AMD GPUs using metrics from rocProf
and micro-kernel benchmarking suites. We also highlighted the existing limitations that make
measuring performance on AMD GPUs a challenge. Finally, we built and compared IRMs for
PIConGPU’s TWEAC and LWFA simulations. Specifically, we looked at the LWFA’s Compute-
Current kernel on different hardware (NVIDIA vs. AMD) and compared the performances of
the hardware used. We find that the result of which hardware PIConGPU performs better on
is unclear because of the profiling tool limitations for AMD GPUs. Additionally, comparing
the achieved instruction-level performance between AMD and NVIDIA is difficult due to the
limitations of each vendor’s profiling tool(s).
In the future, we hope to expand upon this work by designing and constructing roofline models,

along with analyzing the performance of PIConGPU, on future AMD GPUs found in the Frontier
supercomputer. We will continue to look into why the AMDMI100 is processing more instructions
than the NVIDIA V100, and why the V100 is reading and writing more bytes to the DRAM than
the AMD GPUs. Similarly, we wish to identify how many additional instructions are added due
to the intrusion of profiling tools. Finally, we will investigate how to extract the achieved FLOPs
and the number of L1 and L2 cache, and HBM/DRAM read and write transactions fromAMDGPUs
to allow for more equal comparisons between NVIDIA and AMD GPUs.
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