2022 22nd International Symposium on Cluster, Cloud and Internet Computing (CCGrid) | 978-1-6654-9956-9/22/$31.00 ©2022 IEEE | DOI: 10.1109/CCGRID54584.2022.00077

2022 22nd International Symposium on Cluster, Cloud and Internet Computing (CCGrid)

First Experiences in Performance Benchmarking
with the New SPEChpc 2021 Suites

Holger Brunsti, Sunita Chandrasekaran®, Florina M. CiorbaT, Nick Hagerty“, Robert Henschel”, Guido Juckeland¥,
Junjie Li**, Verénica G. Melesse Vergara“, Sandra Wienke$, and Miguel Zavala*,
* University of Delaware, Newark, DE, USA. TUniversity of Basel, Basel, Switzerland
Technische Universitit Dresden, Dresden, Germany. SRWTH Aachen University, Aachen, Germany
YHelmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany. loak Ridge National Laboratory, Oak Ridge, TN, USA
** Texas Advanced Computing Center, The University of Texas at Austin, Austin, TX, USA.
1 Indiana University, Bloomington, IN, USA

Abstract—Modern High Performance Computing (HPC) sys-
tems are built with innovative system architectures and novel
programming models to further push the speed limit of comput-
ing. The increased complexity poses challenges for performance
portability and performance evaluation. The Standard Perfor-
mance Evaluation Corporation (SPEC) has a long history of
producing industry-standard benchmarks for modern computer
systems. SPEC’s newly released SPEChpc 2021 benchmark suites,
developed by the High Performance Group, are a bold attempt to
provide a fair and objective benchmarking tool designed for state-
of-the-art HPC systems. With the support of multiple host and
accelerator programming models, the suites are portable across
both homogeneous and heterogeneous architectures. Different
workloads are developed to fit system sizes ranging from a few
compute nodes to a few hundred compute nodes. In this work we
present our first experiences in performance benchmarking the
new SPEChpc2021 suites and evaluate their portability and basic
performance characteristics on various popular and emerging
HPC architectures, including x86 CPU, NVIDIA GPU, and AMD
GPU. This study provides a first-hand experience of executing
the SPEChpc 2021 suites at scale on production HPC systems,
discusses real-world use cases, and serves as an initial guideline
for using the benchmark suites.

Index Terms—HPC, SPEC, HPG, SPEChpc 2021, benchmarks,
performance benchmarking and analysis, heterogeneity, offload-
ing, MPI, MPI+X, OpenMP, OpenACC

I. INTRODUCTION

Evaluating the performance of computing systems using
carefully designed benchmarks supports comparisons between
different systems. Performance benchmarks have contributed
to improvements in successive generations of systems, which
are important for pushing the speed limit of computing,
purchasing investments, development of research software and
performance analysis tools, system maintenance, and others.

Authors listed in alphabetical order. Following [I] to list contributions:
H. Brunst (Investigation, Writing - Review & Editing), S. Chandrasekaran
(Conceptualization, Investigation, Supervision, Project administration, Writing
- Original Draft), F. M. Ciorba (Methodology, Writing - Review & Editing),
N. Hagerty (Software, Writing - Review & Editing), R. Henschel (Writing
- Review & Editing), G. Juckeland (Data Curation, Writing - Review &
Editing), J. Li (Software, Investigation, Writing - Original Draft), V. Vergara
(Software, Investigation, Writing - Review & Editing), S. Wienke (Investiga-
tion, Writing - Original Draft), M. Zavala (Software)

The SPEC High Performance Group (HPG) [2] has been
designing benchmarks for the last three decades, releasing
the first benchmark suite, SPEC HPC96, in 1996. Over the
years, SPEC HPG released various benchmark suites that
target all parallel execution layers of modern HPC sys-
tems. Nevertheless, each suite focused on individual par-
allelism layers: SPEC MPI2007 on inter-node communica-
tion, SPEC OMP2012 on intra-node CPU parallelism, and
SPEC ACCEL 2017 on the performance of accelerator devices.

Motivation. The design and release of SPEC ACCEL raised
the question as to how to measure performance of a system
with multiple accelerator devices. To answer this question,
contributors of SPEC HPG discussed how to better reflect
overall system performance, specifically considering the in-
creasing heterogeneity in system architectures and diversity
in programming models. The outcome materialized as the
launch of a new application search program [3] in late 2017 to
gather input from the HPC community on potential benchmark
applications that are, among others, characterized by more
than one form of parallelism (cross-node, node-level, with/out
accelerator offloading). The SPEChpc 2021 benchmark suites
are comprised of those applications that fulfill the selection
criteria (see Section III).

Most of the existing benchmarks either focus on low-level
hardware performance features and provide microbenchmarks
and small application kernels, or on higher level code features
and provide mini- or proxy apps selected to prepare the
hardware and software stacks of upcoming large systems.
In contrast, SPEChpc 2021 comprises real-world applications
solicited from the broader HPC community, provides a set
of execution and reporting rules, and adopts a peer-review
process before publishing benchmarking results online.

To the best of our knowledge, SPEChpc 2021 is a one of
a kind benchmark suite that offers a harness to handle the
process from installation to ensuring the correctness of the
results and providing a performance score (called the SPEC
score) to enable ranking, that explores hybrid programming
models as well as MPI-only, and facilitates benchmarking on
university clusters and large HPC center systems.

Contributions. This work brings forward the following

978-1-6654-9956-9/22/$31.00 ©2022 IEEE 675
DOI 10.1109/CCGrid54584.2022.00077

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on October 09,2022 at 01:43:04 UTC from IEEE Xplore. Restrictions apply.

contributions: (1) Presents the new SPEChpc 2021 benchmark
suites, including code statistics, instruction mix, MPI call
percentages, and roofline models. (2) Provides a first study of
how well the suites meet the search requirements by evaluating
the performance results on a variety of hardware systems
as well as exploring different system configurations. To the
best of our knowledge, this work is among the first few,
with respect to evaluating scientific applications on a pre-
exascale system, namely Spock, equipped with AMD MI100
GPUs. (3) Compares the performance of employing MPI+X
programming models with various X, namely OpenMP host,
OpenACC and OpenMP target offloading.

Impact. The significance and impact of this performance
benchmarking study are multi-fold: (i) Added value through
extensive testing on a wide range of platforms, going beyond
classical building and compilation or error testing. (ii) The
performance numbers obtained across devices allow identify-
ing unsuspected system configuration bugs. (iii) Engaged the
HPC community by enlisting the help of testers for the beta
release candidate of the suites.

II. MOTIVATION

HPC application benchmarks are of value for researchers
and system managers who have used previous SPEC HPG
benchmark suites, such as SPEC MPI, SPEC OMP, or
SPEC ACCEL, in various scenarios. The new SPEChpc 2021
benchmark suites also encourage similar uses.

Procurement: HPC system procurement is an important
flagship. During the preparation of the tendering documents,
managers compare SPEC scores across different hardware
and software setups, available as submitted results online [4].
This helps define limits and thresholds in the tendering
documents. Given SPEC’s application benchmark character-
istics, the benchmark suites are highly valuable to extrapolate
performance of complex scientific applications for various
and especially future hardware architectures. To this end, it
has been beneficial to further integrate SPEC scores into
acceptance tests for HPC system procurement. vendors need
to demonstrate that their products deliver high performance
with scientific applications and not just on highly-optimized
microbenchmarks. In the past, numerous organizations have
extensively used SPEC HPG benchmarks for procurement
purposes.

Research Software: Academic HPC systems provide users
with a varied HPC-based software stack, including research
compilers and runtime systems. Academic researchers use
the SPEC benchmarks to analyze whether the software stack
is mature enough to compile and correctly execute these
applications (using the verification feature of the SPEC
harness), and whether the research compilers deliver high
performance [5]-[10]. The SPEC HPG benchmarks have also
been used during the prototype implementation of OMPT
in LLVM’s OpenMP runtime as part of the OpenMP tools
committee work before the final specification of OMPT [11].

Performance Analysis of Tools: Development of software
tools, such as performance analysis tools for parallel pro-

676

grams, is another HPC-related activity with high relevance for
academic HPC systems. The SPEC HPG benchmark suites
are often used to measure the overhead of such tools, i.e.,
executing the SPEC benchmarks with and without the HPC
software tool under development. For example, the MUST
tool [12] provides runtime correctness and deadlock anal-
ysis of parallel programs. MUST has been evaluated with
SPEC MPI L2007 v2 to assess its overhead and the influence
of specific changes in the tool infrastructure. Similarly, specific
parts of tools can be assessed using SPEC benchmarks, such
as the OpenMP measurement adapters of Score-P [13], an
instrumentation and measurement infrastructure for profiling
and event tracing. The SPEC OMP benchmark suite has also
been used to evaluate the existing Opari2 adapter against a
prototype measurement adapter based on OMPT [14].

System Regression Testing: HPC centers perform regular
systems maintenance. This includes security and software
updates as well as performance optimizations. In the past,
RWTH Aachen and TU Dresden observed that performance-
relevant changes and errors arise unintentionally during this
process. Regression tests following maintenance intervals with
well-defined SPEC benchmarks make it possible to detect
such unintentional changes in the system. The exact same
application scenario is executed regularly, and the results
are automatically compared against results from previous
measurements. The development and testing of the SPEChpc
2021 benchmark suites help identify non-performing HPC
nodes among other issues. To elaborate further, we present
two motivational scenarios at sitts RWTH Aachen and TU
Dresden.

Case Study 1: At RWTH Aachen University, tests with
the new SPEChpc 2021 benchmark suites (medium suite) on
50 compute nodes of the system showed significant negative
performance differences for some of the benchmarks compared
to other HPC systems with a very similar setup, e.g., available
as SPEC results [4]. Via a deep dive into the performance data,
the execution times were found to differ mostly in the amount
of MPI time, specifically, in MPI_Allreduce collective oper-
ations. This cross-node execution time imbalance is caused
by: (1) dropping memory bandwidth and (2) noise (which
leads to desynchronization [15]). While the memory DIMMs
did not completely malfunction and were not detected in the
system’s health check, some of them delivered roughly 20 %
less bandwidth than expected. Hence, additional job-based
bandwidth checks have been implemented and are regularly
reported to the vendor responsible for replacing those DIMM:s.
Although (system and network) noise is a known issue, its high
impact for the worst-case scenarios as triggered by the SPEC
benchmarks was surprising, underscoring the usefulness of the
new benchmark suites. To improve and achieve comparable
performance for such bulk-synchronous parallel programs
using MPI collectives, users at RWTH Aachen University
will now be advised to leave one core empty per NUMA
domain per compute node instead of fully occupying the
nodes with MPI processes. Given these important findings,
the performance of other applications will also be investigated

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on October 09,2022 at 01:43:04 UTC from IEEE Xplore. Restrictions apply.

and, if necessary, improved.

Case Study 2: At TU Dresden, several undetected sys-
tem problems were discovered on the TU Dresden system,
even though system health checks were implemented. The
SPEChpc 2021 benchmarks revealed significant performance
variations when executed multiple times across a changing
subset of equal nodes of the system. For example the tealeaf
benchmark is very sensitive to process scheduling due to its
intensive use of collective MPI operations. We observed a
performance degradation of a factor of 2. The reasonable
cases had an MPI_Allreduce time contribution of 7% and the
bad cases had a time contribution of 52%. These cases led
to the kernel bug (referring to (2) below) that stole 50% of
cycles of a small group of pinned MPI processess thereby
slowing down all the others. The suites have shown its high
suitability to detect system problems (by means of comparison
with reference data) that did not lead to a partial or complete
failure of the system, but slowed down a subset of nodes
significantly. Once the partial slow downs were recognized
as such, their causes were found quickly to be: (1) a faulty
BIOS configuration of a number of computing nodes, (2) a
kernel bug [16] occurring infrequently, and (3) an unfavor-
able configuration of the SLURM daemon. The commonality
between all these issues is that no crashes occurred and the
entire system was 100% available at all times. Nevertheless,
benchmarks from the SPEChpc 2021 suites showed perfor-
mance degradation of up to 50% in the BIOS setup and kernel
bug cases. While the degradation must have occurred due to
one or two application, it still shows how the SPEChpc2021
suites were able to highlight those. It is pertinent to have a
good/right mix of applications in a suite that can highlight such
issues in the system. The above-mentioned kernel bug, was
discovered due to the fact that the execution time of the Tealeaf
benchmark (see Section III) occasionally doubled inexplicably,
even though the CPU resource configuration was unaltered.
Increasing the number of compute nodes also increased the
frequency of observation of this phenomenon.

A profiler-assisted [13] analysis of the core cycle counters
over time revealed that a very small random fraction of MPI
ranks were only processed at half speed because they received
only half of the theoretically possible processor cycles. This in
turn led to the load imbalance at execution time of the actually
very well statically balanced solver. Deploying an additional
system profiler [17] revealed that errant kernel threads on
the affected nodes were responsible for the absence of CPU
cycles. The root cause was determined to be a missing kernel
patch [18], now installed.

III. OVERVIEW OF SPECHPC 2021 BENCHMARK SUITES

The search program [3] for SPEChpc 2021 benchmarks

from 2017 gathered applications from the HPC community
with the following characteristics:

« Support for MPI+X parallelism, where X takes one of
three values: OpenMP host (denoted as OMP), OpenMP
target (denoted as TGT), and/or OpenACC (denoted as
ACC). They offer hybrid execution using all potentially

677

available parallelism within and across compute nodes.
An MPI-only version of the application is needed for
baseline comparisons.

Origin in various science domains to reflect the diver-
sity of typical and real HPC workloads.

Fortran or C/C++ programming language.

Support for strong scaling of work distribution for
multiple data set sizes, as one SPEC suite will always
distribute the same workload of a benchmark regardless
of the actual number of process/threads used.
Predictable code paths with no algorithmic differences
depending on the computing platform

Limited time spent in I/O as this not an I/O benchmark.
Numerically verifiable output to check for correctness
within a definable margin of error.

A. SPEChpc 2021 Benchmark Composition

The first official release (version 1.0.3) of the
SPEChpc 2021 suites consists of nine applications [4].
The applications and their basic properties are summarized
in Table 1. Not all application benchmarks are included in all
the suites. This is the case when the maximum problem size
that represents a realistic problem has already been reached
in a smaller suite or when the problem does not naturally
scale to all suites (see Section III-B). Other applications did
not support all three levels of intra-node parallelism, namely
‘X’ in MPI+X, before submission in response to the search
program. During the benchmark preparation phase, those
have been refactored accordingly to support the three ‘Xs’.

B. SPEChpc 2021 Suites and Metrics

The SPEChpc 2021 benchmark suites support strong scal-
ing workloads by offering four suites: finy, small, medium,
and large, which represent common workload sizes for all
benchmarks in one suite. Thus, the SPEC performance mea-
surement harness (Section IV) can be used to execute and
verify the results where everyone solves the same problem(s).

The SPEC score is the ratio of the execution time of the
benchmarks on the reference system (RS) to the execution
time on the system under test (SUT) that is also reported in
the public SPEC results repository [4].

The maximum memory requirements for each workload size
is defined to reflect typical HPC system sizes. The benchmarks
have also been tested with MPI rank counts typical of these
system sizes. Due to communication buffers, the maximum
memory requirements can easily be exceeded for very large
MPI rank counts. All these design limits are shown in Table II.
Each suite is assigned a prefix number (Table II) and each
benchmark a postfix number (Table I). For example, 505
denotes the LBM benchmark in the finy suite.

IV. SPEC HARNESS

The SPEChpc 2021 suites reside within the SPEC harness
which has been maintained by SPEC for more than 15 years.
Users of the popular SPEC CPU benchmarks [19], [20] will
be able to readily use SPEChpc 2021 benchmarks as well,

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on October 09,2022 at 01:43:04 UTC from IEEE Xplore. Restrictions apply.

TABLE I: SPEChpc 2021 benchmark application properties

Name Application Area L g Suite approx. # LOC | # MPI calls | # OMP dir. | # ACC dir.
LBM D2Q37 (x05) | Computational Fluid Dynamics C T/S/M/L 9,000 118 50 66
SOMA (x13) Physics / Polymeric Systems C T/S/-1- 9,500 90 192 185
Tealeaf (x18) Physics, High Energy Physics C T/S/IM/L 5,400 22 86 40
Cloverleaf (x19) Physics, High Energy Physics Fortran T/S/IM/L 12,500 23 827 886
Minisweep (x21) Nuclear Engineering, Radiation Transport | C T/S/-1- 17,500 41 39 43
POT3D (x28) Solar Physics Fortran T/S/M/L | (incl. HDF5) 495,000 88 124 77
SPH-EXA (x32) Astrophysics and Cosmology C++14 T/S/-1- 3,400 82 36 18
HPGMG-FV (x34) Cosmology, Astrophysics, Combustion C T/S/M/L 16,700 53 206 127
miniWeather (x35) Weather Fortran T/S/M/L 1,100 11 36 20
TABLE II: Design limits for the SPEChpc 2021 suites TABLE III: Overview of the experimental setup
Suites max memory | min ranks | max ranks System D t chips Paralleli Suite | min|max ranks
tiny (T) (5xx) 64 GB 1 256 Frontera Intel Xeon Plat- | MPI-only, T, S, | 56]57,344
small (S) (6xx) 480 GB 64 1,024 inum 8280 MPI+OMP | M, L
medium (M) (7xx) 4 TB 256 4,096 JUWELS | NVIDIA A100 MPI+ACC, | M, L | 100 | 1,400
large (L) (8xx) 14.5 TB 2,048 32,768 Booster MPI+TGT
Spock AMD MI100 MPI+TGT S 16 | 32
Summit NVIDIA V100 MPI+ACC, | M, L 1,050 | 16,800
MPI+TGT

as the harness used with both is the same and its usage
very similar. The SPEC harness is involved in all aspects
of running the benchmark, from installation, correctness to
submission and publication of results [4]. It can be tuned to
all usage scenarios, supports different compilers and compiler
environments, as well as batch systems, code verification and
ensures code source integrity. The harness supports publishing
of benchmark results that include all the information required
to reproduce the benchmark results. Therefore, the harness
promotes performance reproducibility, which is of increasing
importance to the HPC community.

V. RESULTS

We present here the results of executing the SPEChpc 2021
suites on four HPC systems: (a) Frontera at Texas Ad-
vanced Computing Center (TACC) [21], (b) Summit [22] at
ORNL, (c) JUWELS Booster module at Forschungszentrum
Jilich [23], and (d) Spock [24], a pre-exscale system also
at ORNL. We have chosen these systems to show results
and findings on a range of homogeneous (Frontera Intel Cas-
cade Lake Xeon) and heterogeneous (Summit NVIDIA V100,
JUWELS NVIDIA A100 and Spock AMD MI100) systems
utilizing MPI-only and MPI+X programming paradigms. All
experiments used 1 MPI rank/GPU.

We present strong scaling results. The SPEC benchmark
suites are traditionally evaluated using a SPEC score (defined
in Section IV) which facilitates comparison between systems.
Given that performance comparisons of systems falls outside
the scope of this work, we will report the traditional execution
time in seconds. Table III describes the experimental setup.
We have also populated Zenodo [25] (a general purpose open-
access repository to share and maintain data) with performance
data that was generated to build the plots and tables in this
manuscript. The plots in Zenodo ishow that the comparisons
may be interpreted in different ways drawing ambiguous
conclusions, hence we do not focus on them in this paper
but leave the interpretation of the comparisons to the different
stakeholders including the procurement managers, HPC sys-
tem operators, tools developers and application developers.

678

TABLE IV: Execution Time of the Large Suite on Frontera™
(in seconds)

Benchmark 140 nodes | 256 nodes | 384 nodes | 512 nodes | 1024 nodes
805.1bm_l 998.6 517.1 391.2 265.9 149.6
818.tealeaf I 828.1 448.2 298.6 223.7 123.6
819.clvleaf_1 1113.2 612.9 405.8 304.8 172.2
828.pot3d_1 2593.0 1497.2 984.7 716.1 3824
834.hpgmgfv_l 1045.4 596.9 423.8 305.6 183.9
835.weather_l 1207.5 644.2 408.9 271.3 122.1

*Results collected on Frontera for MPI+OpenMP executions.

A. Performance Results on Frontera

Experimental setup. Frontera consists of 8,368 Cascade
Lake based Dell PowerEdge C6420 compute nodes with dual
socket Intel Xeon Platinum 8280 28-core CPU and 192 GB
DDR4 memory. The system’s interconnection network is a fat
tree topology with a blocking factor of 22:18. The interconnect
is Infiniband HDR technology with full HDR connectivity
between switches and HDR100 connectivity to the compute
nodes. Since this is a CPU-only platform, MPI and MPI+OMP
are the programming models used. For MPI-only executions,
56 MPI ranks per node were used. For MPI+OMP executions,
2 MPI ranks with 28 OpenMP threads per node were used,
each of the MPI ranks being placed on separate NUMA
domains to minimize cross-NUMA OpenMP memory traffic.
For timing data collection, median is taken from 3 iterations of
Tiny and Small, while Medium and Large were run for only
1 iteration. For all cases, the Intel Fortran/C/C++ compilers
and Intel MPI from Intel Parallel Studio 2020 Update 4
were used. Codes are compiled with the -O3 -no-prec-div
-fp-model fast=2 -xCORE-AVX512 -ipo flags. All profiles

TABLE V: SPEChpc 2021 Instruction Mix*

Benchmark FP32 FP64 Non-FP Vectorization of FP
(% of uOps) | (% of uOps) | (% of uOps) (% of uOps)
605.1bm_s 0.00 51.98 48.02 86.80
613.soma_s 0.20 23.43 76.17 1.18
618.tealeaf_s 0.00 4220 57.80 2.67
619.clvleaf_s 0.00 21.93 78.08 86.65
621.miniswp_s 0.00 8.92 91.07 57.90
628.pot3d_s 0.00 17.70 82.30 97.90
632.sph_exa_s 0.00 36.27 63.70 49.75
634.hpgmgfv_s 0.00 2230 71.70 81.22
635.weather_s 0.00 26.32 73.67 3.45

*Results collected on Frontera for MPI-only executions using 4 nodes and
56 MPI ranks/node. Only results for the small suite are shown; the codes
in other suites exhibit nearly identical characteristics.

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on October 09,2022 at 01:43:04 UTC from IEEE Xplore. Restrictions apply.

T T T T T
—8— 505.lbm_t —=— 605.lbm_s
—8— 513.s0ma-t 24| 5 613.50mas I
= bHl8.tealeaf t) = 618.tealeaf_s
12 || —8— 519.clvleaft B —8— 619.clvleaf_s
° —&— 521L.miniswp-t —=— 621.miniswp_s é’
= o —8— 528.pot3d_t / —=— 628.pot3d_s a
5 g 532.sph_ezat £ 16 632.sph_eza_s
7] 5 g P! ~
= g 3 = 534.hpgmg fo_t g = 634.hpgmg fv_s i 4 N
= wfl —&— 535.weather_t (% 12 ||~ 635.weather_s iy 7 A s
= - &= LinearScaling - - LinearScaling = ~ A
—~ - —~
< < °
~ sl i =
4 _
= 4 .
£ _ |
1 - 13 I
2 4 8 4 8 16 32 64
number of nodes (56 cores/node) number of nodes (56 cores/node)
12 T T T 10 T T T
—=— 705.lbm-m —=— 805.1bm
= T18.tealeaf -m = 818.tealeafl
o 10 || —— 719.clvleaf-m N sl —8— 819.clvleafl N
= —8— T728.pot3d-m —8— 828.pot3d_l ©
a = 734.hpgmg fo_m A = 834.hpgmg fv_l P 4 R—1
£ - 81| —=— 735.weather-m N —&— 835.weather_l P 2
= = - e- LinearScaling = 6| |-v- LinearScaling s - Y
2 5 ° .c So
-s 8 6 3 -7 % ~
I a, g
= & ®n I S
[-7 i) =
O | 4 e)
41 - E - — %
Z P —
2 N P i 2 |- L= |
e | | | 1k I I I
32 64 128 192 256 140 256 384 512 1,024
number of nodes (56 cores/node) number of nodes (56 cores/node)
Fig. 1: Speedup for MPI-only. Tiny, Small, Medium, and Large suites on Frontera
T T T T T
—8— 505.lbm_t —=— 605.lbm_s
—&— 513.somat 24| 5 613.50mas i
= bHl8.tealeaf t = 618.tealeaf_s
12 || —8— 519.clvleaf_t —8— 619.clvleaf_s
° —&— 521.miniswp-t —=— 621.miniswp-s é’
= —8— 528.pot3d_t —8— 628.pot3d_s >
= A a 7]
] =] 532.sph_exat = 16 |- 632.sph_exa_s
@ 3 S| P =
> g g |- = 534.hpgmg fu_t g = 634.hpgmg fv_s S
= C% —&— 535.weather-t (jl]- 12 || —=— 635.weather_s s
& - &= LinearScaling - - LinearScaling “
~~ - S
< °
= sl =
4l
4l
13 - - 103 1 I
1 2 4 8 8 16 32 64
number of nodes (56 cores/node) number of nodes (56 cores/node)
12 T T T 10 T T T gL
—&— 705.bmom y —5— 805.0bm.l
= T18.tealeaf-m = 818.tealeaf-l 4
o 10 | —a— 719.clvleaf-m / N sl —8— 819.clvleafl // N
= —8— 728.pot3d-m / —5— 828.pot3d.l °
a = 734.hpgmg fo_m / N = 834.hpgmg fv_l yd - 4 R
g o 8[| = 35weatherm =4 i . —&— 835.weather | L M 2
3 = -©- LinearSecaling y = 6||-w- LinearScaling 245 B N
&S g F L < L il 0
] 2 61 7 g g 3
= @ 52 ﬂ/ > N
@ B 4+ // - @
4 = /
2| 8 2 |
112 1 1 1 1= L L L
32 64 128 192 256 140 256 384 512 1,024

number of nodes (56 cores/node)

number of nodes (56 cores/node)

Fig. 2: Speedup for MPI+OMP. Tiny, Small, Medium, and Large suites on Frontera. 621.miniswp_s unable to run on 64 nodes due to a
potential OpenMP compiler bug.

679

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on October 09,2022 at 01:43:04 UTC from |IEEE Xplore. Restrictions apply.

MPI_Alireduce
MPI_Barrier
MPI_Init]
MPI_Isend 56.56

—~ MPI_Waitall
X
> 17.24
3
£
T 151 14.40 |
2
=
S 10F 7.84 8.44 1
s 541
4.79
o gl 43 4.10 1
]
€
@
8
3 605 1, 61355, 678,46, 619,01, 627.m; 628,p,-6325,, 634y 635
[lom g% Somg | &ealeay”:Clviear S‘rnm,%-l;otad\\f-sph\e)(a hspgmg!v' "eathe,

Benchmark

(a) Small suite

MPI_Init_thread MPI_Allreduce
MPT_Isend MPI_Barrier

= 3 MPT_Wait s MPI_Finalize 9
= MPI_Waitall MPI_Init 2070
© 30| - d
£
§ 25 1
T 20.74 21.36
L 20 1
S 15.57 16.90
S 151 4
£
c
g 10 8.44 —
]
o gl i

80; 87, 81, 82 8; 83,
5/[,,,7\, 8"55/eaf, Q'CMEaf\ , avpozad\l 34-’wg,ng,‘/ 15.weat/,e”

Benchmark
(b) Large suite

Fig. 3: MPI functions distribution for small and large suites. Data
collected on Frontera for MPI-only versions using 4 nodes and
56 MPI ranks/node for the small suite, and 140 nodes and 56
MPI ranks/node for the large suite. Plot shows MPI functions that
contribute more than 0.5% of total execution time.

900 T T T T T T

800 - DRAM 212GB/s

RPeak SSE
700 - l
100 hy 7
634 hpgmgfv_s
600 |- /]
635.weather_s
@
% 500]
8- 50 6138:soma_s 7
g L clvleaf s g
o 400 6(% A(ea\iea;s 605.Ibm_s
§28.pot3d_s
300 - 4 L]
0.5

632:sph_exa_s

621.miniswp_s 7

% 1 2 s 4 5 o
Arithmetic Intensity (Flops/Byte)
Fig. 4: Roofline plot for the small suite. Data collected for MPI-only
versions using 4 nodes (224 ranks on Frontera). The roofline plots
for the tiny, medium, and large suites are similar. Arithmetic intensity
and memory bandwidth are collected for the entire duration of each
program.

7

were collected using Intel Application Performance Snapshot
representing basic tuning. Fine tuning of MPI parameters, such
as rank/thread distribution, can certainly further improve the
performance. Results on scalability and performance statistics
from the experiments on Frontera are next discussed.
Results- Scalability: To understand the parallel perfor-
mance of the benchmark, a set of strong scaling tests
were performed for all four suites with both MPI-only and

680

MPI+OMP programming models. Fig. 1 shows MPI-only
scalability, and Fig. 2 demonstrates the MPI+OMP scalability.
The execution times of the large suite with MPI+OpenMP are
presented in Table I'V. For additional information on execution
times of other suites, please refer to performance data collected
via Zenodo available at [?].

For the MPI-only runs, all suites scale well within their
design limit, and have their appropriate applicable ranges.
From the tiny suite, Minisweep and SOMA scale relatively
poorly and scaling efficiency drops below 50% when more
than 4 nodes are used. For SOMA, this is due to a high volume
of all-to-all communication which is the nature of the code.
Regarding Minisweep, the poor scaling beyond certain node
count is due to a combination of inherently high amount of
MPI communication and relatively small data set being used
to fit the designed memory limit of the benchmark. As soon as
the tiny suite no longer scales well, the small suite should be
considered unless benchmarking MPI and interconnect is the
main goal. From the small suite, Minisweep and SOMA also
scale relatively poorly compared to other codes for the same
reasons outlined above. Another code, SPH-EXA, joins the
list of non-ideal scaling at 32 nodes also due to high volume
of MPI traffic and reduced compute work per rank. Beyond
32 nodes on Frontera, the medium suite works best on up to
192 nodes, beyond which the /arge suite should be favored.

In the hybrid MPI+OMP case, performance is significantly
better for several codes due to reduced MPI all-to-all com-
munication and/or reduced memory traffic given the shared
memory model. It is also worth mentioning that two codes,
Tealeaf and miniWeather, will often achieve super-linear scal-
ing. These two codes have the smallest memory footprint in the
suites, yet are highly memory-bound. As more nodes are used
to solve the same problem, the problem size per node reduces,
resulting in decreased memory traffic and fewer memory stalls.

For example, miniWeather in the small suite
(635.weahter_s) used 220.03 GB/s as peak memory
bandwidth and 202.05 GB/s as average bandwidth when
4 nodes are used; this is close to the upper limit of the
achievable memory bandwidth, while at 16 nodes, the
memory bandwidth utilization was reduced to 197.52 GB/s
as peak and 146.44 GB/s as average. On 32 nodes, the
metrics further reduced to 155.29 GB/s and 118.11 GB/s,
respectively. The resulting DRAM stall was 33.43%, 11.27%,
7.31% at 4, 16, and 32 nodes, respectively. Such a change in
performance characteristics alleviates performance bottleneck
and yields the super-linear scaling behavior. Demonstrated by
all the scalability results, with the four different suites, the
SPEChpc 2021 benchmark covers the entire spectrum from a
few nodes to few hundreds. The tiny suite is suitable for a
single node or a few nodes, the small suite is bigger and will
be best suited to test a handful of nodes with a few hundred
cores. The medium suite works well on a small cluster with a
few thousand cores, while the /arge suite is large enough to
test a medium-sized cluster with tens of thousands cores.

Performance statistics: MPI profiles were collected for all
the codes in all four suites. In this manuscript, profiles of

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on October 09,2022 at 01:43:04 UTC from IEEE Xplore. Restrictions apply.

the small suite executed on 4 nodes (224 ranks), representing
the performance characteristics at small scale, and of the
large suite executed on 140 nodes (7840 ranks), illustrating
the performance characteristics at large scale, are shown. For
additional information please refer to performance data col-
lected via Zenodo [?]. The MPI functions that consume more
than 0.5% of total execution time are shown in Fig. 3(a) and
Fig. 3(b) for the small and large suites, respectively. Clearly,
MPI_Allreduce plays a big role in many codes, such as SOMA,
Tealeaf, Cloverleaf, POT3D, and SPH-EXA. Point-to-point
communications are a key component for Minisweep, SPH-
EXA, HPGMG-FV, and miniWeather. The purple bar denotes
MPI_Waitall and indicates codes that rely on large amount of
non-blocking communication. In addition, the floating point
metrics were inspected. The instruction mix of single precision
floating point (FP32) operations, double precision floating
point (FP64) operations, and non-floating point (non-FP) op-
erations, along with the SIMD vectorization rate are shown in
Table V. The statistics are identical for different workloads;
thereby, only the data for the small suite are presented here.
With the -xCORE-AVX512 flag, the compilers will choose
to the most efficient level of vectorization up to 512 bit,
and in this particular case, it is mostly the 256-bit AVX2
instruction being used. Since the amount of AVX512 or AVX2
vectorization depends on the compiler switches and hardware,
we only show the total percentage of FP operations being
vectorized and do not distinguish the underlying instruction
set in the table. These codes have a healthy mix of FP and
non-FP operations, and most codes have their FP operations
very well vectorized. The codes are FP64-heavy, with only
SOMA having a tiny percentage of FP32 operations. Memory
bandwidth is the limiting factor for many HPC codes. Most
SPEChpc 2021 codes are also memory-bound. The roofline
analysis in Fig. 4 reveals that five out of the nine codes land
on the DRAM bandwidth boundary. This is for the small suite
executed on 4 nodes (224 ranks); other workloads executed
at the lower range of the design limits (Table II) show very
similar characteristics. As more resources are added, codes
like Tealeaf and miniWeather become less memory-bound as
mentioned in the above super-linear scaling discussion. All
floating point operations of the the most compute-intensive
code, LBM, in the suite can be vectorized; this code will
benefit most from a long SIMD instruction set.

B. Performance Results on Summit

Experimental setup. These results use ORNL’s Summit
supercomputer which consists of over 4,600 nodes each with
two 22-core IBM POWER9 CPU and six NVIDIA V100
GPUs. On Summit, the MPI+ACC and MPI+TGT models
were executed using NVHPC 21.7 and IBM XL 16.1.1-10,
respectively. For MPI+ACC, the benchmarks were compiled
using -O3 -acc=gpu. For MPI+TGT, the benchmarks were
compiled using -O3 -garch=pwr9 -qtune=pwr9 -gsmp=omp -
qoffload -qtgtarch=auto. For the experiments using MPI+ACC
at-scale, two iterations were used. For MPI+TGT, however,

681

Fig.

Fig.

—=— 805.lbm_l -
818.tealeaf_1 L
—=— 819.clvleafl
—=— 828.pot3d_l .
834.hpgmg fv_l .
=— 835.weather_l
-2~ LinearScaling

Speedup

4(?2()() 8,400

Ranks (1 V100 GPU per Rank)
5: Speedup for MPI+ACC, Large Suite on Summit

16,800

—a— 819.clvleafl
—5— 828.pot3d_l

= 835.weather_l
| |- =- LinearScaling

10

4(?20() 8,400

Ranks (1 V100 GPU per Rank)
6: Speedup for MPI+TGT, Large Suite on Summit

16,800

719.lbm_m
718

Speedup

2,100
Ranks (1 V100 GPU per Rank)

4,200

Fig. 7: Speedup with MPI+ACC, Medium Suite on Summit

— &~ LincarSealing

Speedup

2,100
Ranks (1 V100 GPU per Rank)

4,200

Fig. 8: Speedup with MPI+TGT, Medium Suite on Summit

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on October 09,2022 at 01:43:04 UTC from IEEE Xplore. Restrictions apply.

TABLE VI: Execution Time of the Medium and Large
Suites on Summit (in seconds)

Medium Suite

Benchmark 1050 Ranks 2100 Ranks 4200 Ranks
ACC | TGT | ACC | TGT | ACC | TGT

705.1bm_m 20.4 CE 16.3 CE 17.3 CE
718.tealeaf_m 71.3 RE 56.4 RE 49.3 RE
719.clvleaf_m 32.0 | 4154 224 | 2072 203 | 1028
728.pot3d_m 95.7 | 3159 81.2 | 1645 742 | 1470
734.hpgmgfv_m 187 RE 123 RE 105 RE
735.weather_m 27.1 | 5416 203 | 2792 203 | 1497

Large Suite

Benchmark 4200 Ranks 8400 Ranks 16800 Ranks
ACC | TGT | ACC | TGT | ACC | TGT

805.1bm_1 31.8 CE 38.6 CE | 66.6 CE
818.tealeaf_l 60.1 RE 68.3 RE | 909 RE
819.clvleaf_l 294 | 3415 374 | 1253 66.2 670
828.pot3d_Ll 140 | 3618 156 | 2996 175 | 1516
834.hpgmgfv_l 128 RE 151 RE 116 RE
835.weather_l 26.3 | 4887 39.3 | 2461 59.2 | 1264

due to the long execution time, a single iteration was used.
All experiments on Summit used 1 MPI rank per V100 GPU.
Results. The experiments on Summit use both MPI+ACC
and MPI+TGT programming models. Fig. 5 shows that run-
ning the large suite with more than 4,200 MPI ranks, each
offloading to a single V100 GPU, results in poor scalability.
The problem sizes in the large suite likely need to be increased
to accommodate systems of Summit’s scale. Only three of the
six benchmarks successfully compiled with IBM XL 16.1.1-10
compiler. As shown in Fig. 6, although performance improves
as the number of MPI ranks increases, overall, the execution
time is over 200x slower than that obtained with MPI+ACC
using the same number of GPUs (see Table VI). An important
point to take away is that performance largely depends on the
implementations. In addition, performance of the medium suite
was investigated using 1,050 to 4,200 ranks, each offloading
to a single V100 GPU. Both programming models at this scale
show increasing speedup. However, as shown in Table VI, the
execution time in these cases is 30-200X slower. CE and RE
in Table VI refer to Compiler and Runtime errors. Additional
studies are necessary to understand this degradation. Fig. 7
and Fig. 8 show strong scaling results for the medium suite.

C. Performance Results on JUWELS Booster

TABLE VII: Execution time of the Large Suite on JUWELS
Booster (in seconds)

Benchmark 400 Ranks 800 Ranks 1400 Ranks
ACC | TGT | ACC | TGT | ACC | TGT

805.1bm_I 56.7 [709 325 40 | 2221 266
818.tealeaf_1 154 | 70.7 106 | 535 | 734 38.8
819.clvleaf_l 61.9 236 33.6 128 20.4 842
828.pot3d_l 200 280 150 205 95 136
834.hpgmgfv_l 209 539 141 332 133 229
835.weather_| 599 | 734 374 | 483 | 237 | 341

Experimental setup. The JUWELS Booster module con-
sists of NVIDIA’s A100 GPUs and AMD EPYC Rome CPUs.
For both MPI+TGT and MPI+ACC runs, the GCC 10.3.0 and
NVHPC 21.5 compilers are used, respectively, while ParaSta-
tion MPI/5.2.9-1 is used for MPI. Each of the booster module
consists of 4 NVIDIA A100 GPUs. For both MPI+ACC and
MPI+TGT versions, we use -w -Mfprelaxed -Mnouniform -
Mstack_arrays -fast. For all the experiments, due to long
execution time, one iteration was used.

Results. The strong scaling results on JUWELS for the
large suite using both MPI+ACC and MPI+TGT versions

682

—8— 805.lbm.
818.tealeaf_l
—— 819.clvleaf_l
—=— 828.pot3d_l
834.hpgmyg fv_l
—=— 835.weather_l
-2~ LinearScaling

Speedup

9100 800
Ranks (1 A100 GPU per Rank)

Fig. 9: Speedup for MPI+ACC, Large Suite on JUWELS Booster

1,400

—=— 805.0bm.
3.5+ e
818.tealeaf 1 P
—=— 819.clvleafl Pt
—=— 828.pot3d_l 7
=~ 834.hpgmgful |-~
?3 9l |5 835.weather_l g |
g -v- LinearScaling
n ~ 5
1 B
0
400 800 1,400

Ranks (1 A100 GPU per Rank)
Fig. 10: Speedup for MPI+TGT, Large Suite on JUWELS Booster

are shown in Figures 9 and 10. These show that almost all
six benchmarks achieve close to linear scaling with room
for improvement. For both MPI+ACC and MPI+TGT ver-
sions, Cloverleaf shows the best scaling behavior followed by
LBM and the rest. Table VII presents the execution time in
seconds for the large suite for both versions spanning 400
to 1,400 MPI ranks. We observe that for LBM, Cloverleaf,
POT3D, HPGMG-FV and miniWeather, the MPI+ACC ver-
sion performs better than the MPI+TGT version. Cloverleaf
is evidently over 3.9x faster on an average across ranks and
HPGMG-FV over 2.2x faster on an average across ranks.
However for Tealeaf, the MPI+TGT version is about 2x
better than the MPI+ACC version. The observations above
were similar for the medium suite as well. Future work will
include investigation of these discrepancies in more detail.
For additional information on any of these experiments along
with data on the medium suite, please refer to performance
data collected in Zenodo [?]. While comparing the parallel
efficiency of the large suite with that of the medium suite, we
observe that the efficiency of medium workload drops below
75% with 400 ranks for almost all the benchmarks, indicating
that for ranks above 400, it is better to use larger workload to
achieve the best parallel efficiency especially on large clusters
such as JUWELS. The trend seems to hold for both MPI+ACC
and MPI+TGT versions.

D. Performance Results on Spock

Experimental setup. The Spock pre-production AMD [24]
system at ORNL is used to collect scalability and profiling data

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on October 09,2022 at 01:43:04 UTC from IEEE Xplore. Restrictions apply.

TABLE VIII: Execution Time of the Small Suite on
Spock (in seconds)

Benchmark 16 Ranks | 24 Ranks | 32 Ranks
605.1bm_s 234.2 169.4 142.3
618.tealeaf_s 624.2 507.6 461.8
621.miniswp_s 1319.6 967.9 828.1
628.pot3d_s 1426.1 968.7 897.4
632.sph_exa_s 1065.5 747.2 631.6
635.weather_s 5154.7 3305.4 2226.4
3
—8— 605.lbm_s
618.tealeaf_s
—8— 621.miniswp_s
—=— 628.pot3d_s
9l 632.sph_exa_s &
”g: = 635.weather_s e
g - - LinearScaling I b
& i

24
Ranks (1 MI100 GPU per Rank)
Fig. 11: Speedup for MPI+TGT, Small Suite on Spock

32

using the SPEChpc 2021 benchmark suites. Spock consists of
36 compute nodes, each with one AMD EPYC 7662 64-Core
processor, 256 GB DDR4 memory, and four AMD Instinct
MI100 GPUs. These experiments used 16, 24, and 32 MPI
ranks with 4 ranks per node corresponding to 4, 6 and 8
nodes. Two iterations were used for the 4- and 8-node runs
and 3 iterations were used for the 6-node run. The reported
time is the average over all iterations. The benchmark suites
were compiled with the LLVM Clang v12.0.0 compiler suite
packaged with ROCm v4.2.0, acceleration libraries for the
MI100 architecture, and Cray MPICH v8.1.8. The bench-
marks were compiled using -O3 -fopenmp -target x86_64-pc-
linux-gnu -fopenmp-targets=amdgcn-amd-amdhsa -Xopenmp-
target=amdgcn-amd-amdhsa -march=gfx908.

Results. We ran SPEChpc 2021 small suite on Spock.
SOMA could not compile because of an internal compiler error
while processing the TGT directives. HPGMG-FV did not run
to completion within the time allowed for jobs on Spock; this
is potentially caused by the TGT or MPI implementations.
The exact cause is unknown and investigation is ongoing. We
present strong scalability plots for the small suite on Spock
in Fig. 11. The execution times for these codes (shown in
Table VIII) decreased for all codes as more nodes were added.

VI. RELATED WORK

Numerous benchmarks focus on hardware performance fea-
tures. For instance, SHOC [26] that includes both the OpenCL
and CUDA implementations provides microbenchmarks and
small application kernels. The classic NASA parallel bench-
marks (NPB) [27] are a popular multi-zone, hybrid (MPI+X)
benchmark suite [28], [29] that are used for evaluating proto-
types of programming features, runtime or compiler imple-
mentations. A benchmark suite [30] consisting of a set of
low-level operations to test raw performances compilers and
hardware is developed by EPCC. The HPC community also

683

widely uses HPL [31] for floating-point focused operations,
HPMG [32] for multigrid methods, and HPCG [33] for
bandwidth-focused operations. The benchmarking landscape
has also been influenced by so-called mini or proxy applica-
tions that abstract a specific (performance) behaviour from the
real-world application they mimic. Examples are Mantevo [34]
and Exascale Computing Project’s (ECP) Mini-apps [35]-[37].

The SPEChpc 2021 suites differ from the above benchmark-
ing effort in a way that the suites are incorporated into the
SPEC harness (detailed in Section 1V) adding benefits such
as reproducibility, results publication, and ranking of systems
utilizing the SPEC scores. Other SPEC related benchmarking
efforts include the release of the following suites for the HPC
community: SPEC HPC96 [38] benchmark suites, improved
and replaced by SPEC HPC2002 [39], SPEC OMP2001 [40],
superseded by SPEC OMP2012 [41] for shared-memory paral-
lel systems using CPUs, SPEC MPI2007 [42] for distributed-
memory parallel systems using CPUs, and SPEC ACCEL [43]
with applications using OpenACC and OpenMP 4.5 in a
performance portable manner, thus, targeting different (single)
accelerator devices. SPEChpc 2021 suites complement the
above SPEC suites by enabling scalability and efficiency stud-
ies at large scale, using large homogeneous and heterogeneous
HPC clusters that are recently increasingly being built with
multiple-GPUs per node.

VII. CONCLUSIONS AND FUTURE WORK

This work illustrates first experiences in performance bench-
marking with the new SPEChpc 2021 suites on 4 HPC
systems: Frontera, Summit, JUWELS Booster, and Spock, that
have diverse hardware architectures: Intel Cascade Lake CPUs,
NVIDIA V100/A100 GPUs, and AMD Instinct MI100 GPUs.
The SPEChpc 2021 suites (tiny, small, medium, and large)
employ MPI-only, MPI+OMP, MPI+ACC, and MPI+TGT as
parallel programming APIs. Analysis of SPEChpc’s applica-
tion properties on Frontera reveals that (1) most codes are
memory-bound, (2) they utilize mainly FP64 as in traditional
HPC applications, and (3) 8-30% of the total execution
time of the large suite corresponds to MPI, in particular
MPI_Allreduce. We presented strong-scaling results for all
suites on all systems with up to 16,800 MPI ranks. Select-
ing an appropriate suite for performance benchmarking is
critical for trading off poor scalability with superlinearity.
The best and the worst parallel efficiencies were obtained
on the state-of-the-art NVIDIA’s A100 GPUs. On the same
accelerator-based systems, the performance of MPI+TGT im-
plementations lags behind that of MPI+ACC implementations.
These performance differences are due to the OpenMP offload-
ing features’ implementations in compilers (e.g., NVHPC vs
IBM XL vs LLVM) which require further in-depth investi-
gation. These results have been motivating compiler vendors
to invest efforts towards closing the performance gaps. All
performance measurements presented here will be published
on the SPEC website [4] upon the official release of the
SPEChpc 2021 suites by SPEC HPG. Due to the growing im-
portance of application scaling and of scalable benchmarking

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on October 09,2022 at 01:43:04 UTC from IEEE Xplore. Restrictions apply.

in HPC, weak scaling benchmarks are needed that will prove to
be beneficial for the HPC community, and the SPEChpc 2021
benchmarks could be extended in this direction.

VIII. ACKNOWLEDGEMENTS

The authors would like to acknowledge a number of facil-
ities and grants for their support, but first and foremost, we
would like to thank the full SPEC HPG group for the tremen-
dous effort behind developing and releasing the SPEChpc
2021 benchmark suites. Then, the Center for Information
Services and HPC at TU Dresden for providing its facilities for
high throughput calculations; RWTH Aachen University under
project rwth0663 for supporting simulations on their comput-
ing resources; supported by NSF under grant no. 1814609;
Gauss Centre for Supercomputing e.V. for funding this project
by providing computing time through the John von Neumann
Institute for Computing (NIC) on the GCS Supercomputer
JUWELS at Jiilich Supercomputing Centre (JSC); Oak Ridge
Leadership Computing Facility, a DOE Office of Science User
Facility supported under Contract DE-AC05-000R22725 for
resources used; the Frontera supercomputer at TACC funded
by NSF for large scaling calculations and profiling; the Swiss
PASC initiative via the SPH-EXA project; the Swiss State
Secretariat for Education, Research and Innovation (SERI).

REFERENCES
[1

“CCRedit author statement,” 2021. [Online]. Available: https://www.
elsevier.com/authors/policies-and- guidelines/credit- author- statement
SPEC, “SPEC HPG: High Performance Group,” 2021. [Online].
Available: https://www.spec.org/hpg/

SPEC, “SPEC MPI accelerator benchmark search program,” 2021.
[Online]. Available: http:/spec.org/hpg/search/

“SPEChpc 2021 homepage,” 2021. [Online]. Available: https://www.
spec.org/hpc2021/

S. Boehm et al., “Evaluating performance portability of accelerator
programming models using SPEC ACCEL 1.2 benchmarks,” in ISC.
Springer, 2018, pp. 711-723.

G. Juckeland et al., “From describing to prescribing parallelism: Trans-
lating the SPEC ACCEL OpenACC suite to OpenMP target directives,”
in ISC. Springer, 2016, pp. 470-488.

S. Pophale et al., “Comparing high performance computing accelerator
programming models,” in International Conference on High Perfor-
mance Computing. Springer, 2019, pp. 155-168.

T. Huber et al., “Impact of virtualization and containers on application
performance and energy consumption,” IU Scholar Works, 2018.

T. Cramer et al., “Evaluating the performance of OpenMP offloading
on the NEC SX-Aurora TSUBASA vector engine,” Supercomputing
Frontiers and Innovations, vol. 8, no. 2, p. 59-74, Aug. 2021.

T. Cramer et al., “Performance analysis for target devices with the
OpenMP tools interface,” in 2015 IEEE IPDPSW, 2015, pp. 215-224.
OpenMP ARB, “OpenMP 5.1,” 2020. [Online]. Available: https://www.
openmp.org/wp-content/uploads/OpenMP- API-Specification-5-1.pdf/

T. Hilbrich et al., “MPI runtime error detection with MUST: Advances
in deadlock detection,” in SC72, 2012, pp. 1-10.

A. Kniipfer et al., “Score-P: A Joint Performance Measurement Run-
Time Infrastructure for Periscope,Scalasca, TAU, and Vampir,” in Tools
for High Performance Computing 2011, H. Brunst et al., Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 79-91.

C. Feld et al., “Score-P and OMPT: navigating the perils of callback-
driven parallel runtime introspection,” in IWOMP. Springer, 2019, pp.
21-35.

A. Afzal et al., “Desynchronization and wave pattern formation in mpi-
parallel and hybrid memory-bound programs,” in High Performance
Computing, P. Sadayappan et al., Eds. Springer International Pub-
lishing, 2020, pp. 391-411.

[2]
[3]
[4]
[5]

[6]

[7]

[8]
[9]

[10]
(11]
[12]

[13]

[14]

[15]

684

[16]

[17]

[18]

[19]
[20]
[21]
[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]
[33]
[34]
[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Red Hat Customer Portal, “Kernel: Race condition in hashtables causes
kworker thread to loop into rht_deferred_worker() function,” 2020.
[Online]. Available: https://access.redhat.com/solutions/5337251

T. Ilsche et al., “lo2s — Multi-core System and Application Performance
Analysis for Linux,” in 2017 IEEE CLUSTER, 2017, pp. 801-804.
Ikml.org: Josh Elsasser, “rhashtable: avoid reschedule loop after rapid
growth and shrink,” 2019. [Online]. Available: https://Ikml.org/Ikml/
2019/1/23/789

J. Bucek et al., “SPEC CPU2017: Next-generation compute benchmark,”
in ICPE, 2018, pp. 41-42.

C. D. Spradling, “SPEC CPU2006 benchmark tools,” ACM SIGARCH
Computer Architecture News, vol. 35, no. 1, pp. 130-134, 2007.
“Frontera at the Texas Advanced Computing Center TACC,” 2021.
[Online]. Available: https://www.tacc.utexas.edu/systems/frontera
“Summit at ORNL,” 2021. [Online]. Available: https://docs.olcf.ornl.
gov/systems/summit_user_guide.html

Forschungszentrum Jiilich, “JUWELS booster overview,”
2021. [Online]. Available: https://apps.fz-juelich.de/jsc/hps/juwels/
booster-overview.html

“SPOCK a pre-exascale system at ORNL,” 2021. [Online]. Available:
https://docs.olcf.ornl.gov/systems/spock_quick_start_guide.html

H. Brunst et al., “First Experiences in Performance Benchmarking
with the New SPEChpc 2021 Suites - Measurement Data,” Oct. 2021.
[Online]. Available: https://doi.org/10.5281/zenodo.5753669

A. Danalis et al., “The scalable heterogeneous computing (SHOC)
benchmark suite,” in Proceedings of the 3rd Workshop on General-
Purpose Computation on Graphics Processing Units, 2010, pp. 63-74.
D. Bailey e al., “The NAS parallel benchmarks 2.0,” Technical Report
NAS-95-020, NASA Ames Research Center, Tech. Rep., 1995.

X. Wu and V. Taylor, “Performance characteristics of hybrid
MPI/OpenMP implementations of NAS parallel benchmarks sp and bt on
large-scale multicore supercomputers,” ACM SIGMETRICS Performance
Evaluation Review, vol. 38, no. 4, pp. 56-62, 2011.

H. Jin and R. FE. Van der Wijngaart, “Performance characteristics of the
multi-zone NAS parallel benchmarks,” JPDC, vol. 66, no. 5, pp. 674—
685, 2006.

J. M. Bull and D. O’Neill, “A microbenchmark suite for openmp 2.0,”
ACM SIGARCH Comp. Arch. News, vol. 29, no. 5, pp. 41-48, 2001.
J. J. Dongarra et al., “The LINPACK benchmark: past, present and
future,” Concur. and Comput.: Practice and Experience, vol. 15, no. 9,
pp. 803-820, 2003.

M. Adams, “HPGMG 1.0: A benchmark for ranking high performance
computing systems,” 2014.

M. A. Heroux et al., “HPCG benchmark technical specification,” SNL,
Tech. Rep., 2013.

M. A. Heroux et al., “Improving performance via mini-applications,”
SNL, Tech. Rep. SAND2009-5574, vol. 3, 2009.

J. Cook et al., “Proxy app prospectus for ECP application development
projects,” LLNL, Tech. Rep., 2017.

V. Dobrev et al., “Identify initial kernels, bake-off problems (bench-
marks) and miniapps wbs 1.2. 5.3. 04, milestone ceed-ms6,” ECP
Milestone Report, 2017.

N. Sultana et al., “Understanding the usage of MPI in exascale proxy
applications,” in 2018 SC Conference Workshop, 2018.

R. Eigenmann and S. Hassanzadeh, “Benchmarking with real industrial
applications: the SPEC High-Performance Group,” IEEE Computational
Science and Engineering, vol. 3, no. 1, pp. 18-23, 1996.

R. Eigenmann et al., “SPEC hpc2002: The next high-performance
computer benchmark,” in International Symposium on High Performance
Computing. Springer, 2002, pp. 7-10.

H. Saito et al., “Large system performance of SPEC OMP2001 bench-
marks,” in International Symposium on High Performance Computing.
Springer, 2002, pp. 370-379.

M. S. Miiller et al., “SPEC OMP2012—an application benchmark suite
for parallel systems using OpenMP,” in IWOMP. Springer, 2012, pp.
223-236.

M. S. Miiller et al., “SPEC MPI2007—an application benchmark suite
for parallel systems using MPL” Concur. and Comput.: Practice and
Experience, vol. 22, no. 2, pp. 191-205, 2010.

G. Juckeland et al., “SPEC ACCEL: A standard application suite for
measuring hardware accelerator performance,” in PMBS. Springer,
2014, pp. 46-67.

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on October 09,2022 at 01:43:04 UTC from IEEE Xplore. Restrictions apply.

