
First Experiences in Performance Benchmarking

with the New SPEChpc 2021 Suites

Holger Brunst‡, Sunita Chandrasekaran∗, Florina M. Ciorba†, Nick Hagerty‖, Robert Henschel††, Guido Juckeland¶,

Junjie Li∗∗, Verónica G. Melesse Vergara‖, Sandra Wienke§, and Miguel Zavala∗,
∗ University of Delaware, Newark, DE, USA. †University of Basel, Basel, Switzerland

‡Technische Universität Dresden, Dresden, Germany. §RWTH Aachen University, Aachen, Germany
¶Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany. ‖Oak Ridge National Laboratory, Oak Ridge, TN, USA

∗∗ Texas Advanced Computing Center, The University of Texas at Austin, Austin, TX, USA.
††Indiana University, Bloomington, IN, USA

Abstract—Modern High Performance Computing (HPC) sys-
tems are built with innovative system architectures and novel
programming models to further push the speed limit of comput-
ing. The increased complexity poses challenges for performance
portability and performance evaluation. The Standard Perfor-
mance Evaluation Corporation (SPEC) has a long history of
producing industry-standard benchmarks for modern computer
systems. SPEC’s newly released SPEChpc 2021 benchmark suites,
developed by the High Performance Group, are a bold attempt to
provide a fair and objective benchmarking tool designed for state-
of-the-art HPC systems. With the support of multiple host and
accelerator programming models, the suites are portable across
both homogeneous and heterogeneous architectures. Different
workloads are developed to fit system sizes ranging from a few
compute nodes to a few hundred compute nodes. In this work we
present our first experiences in performance benchmarking the
new SPEChpc2021 suites and evaluate their portability and basic
performance characteristics on various popular and emerging
HPC architectures, including x86 CPU, NVIDIA GPU, and AMD
GPU. This study provides a first-hand experience of executing
the SPEChpc 2021 suites at scale on production HPC systems,
discusses real-world use cases, and serves as an initial guideline
for using the benchmark suites.

Index Terms—HPC, SPEC, HPG, SPEChpc 2021, benchmarks,
performance benchmarking and analysis, heterogeneity, offload-
ing, MPI, MPI+X, OpenMP, OpenACC

I. INTRODUCTION

Evaluating the performance of computing systems using

carefully designed benchmarks supports comparisons between

different systems. Performance benchmarks have contributed

to improvements in successive generations of systems, which

are important for pushing the speed limit of computing,

purchasing investments, development of research software and

performance analysis tools, system maintenance, and others.

Authors listed in alphabetical order. Following [1] to list contributions:
H. Brunst (Investigation, Writing - Review & Editing), S. Chandrasekaran
(Conceptualization, Investigation, Supervision, Project administration, Writing
- Original Draft), F. M. Ciorba (Methodology, Writing - Review & Editing),
N. Hagerty (Software, Writing - Review & Editing), R. Henschel (Writing
- Review & Editing), G. Juckeland (Data Curation, Writing - Review &
Editing), J. Li (Software, Investigation, Writing - Original Draft), V. Vergara
(Software, Investigation, Writing - Review & Editing), S. Wienke (Investiga-
tion, Writing - Original Draft), M. Zavala (Software)

The SPEC High Performance Group (HPG) [2] has been

designing benchmarks for the last three decades, releasing

the first benchmark suite, SPEC HPC96, in 1996. Over the

years, SPEC HPG released various benchmark suites that

target all parallel execution layers of modern HPC sys-

tems. Nevertheless, each suite focused on individual par-

allelism layers: SPEC MPI2007 on inter-node communica-

tion, SPEC OMP2012 on intra-node CPU parallelism, and

SPEC ACCEL 2017 on the performance of accelerator devices.

Motivation. The design and release of SPEC ACCEL raised

the question as to how to measure performance of a system

with multiple accelerator devices. To answer this question,

contributors of SPEC HPG discussed how to better reflect

overall system performance, specifically considering the in-

creasing heterogeneity in system architectures and diversity

in programming models. The outcome materialized as the

launch of a new application search program [3] in late 2017 to

gather input from the HPC community on potential benchmark

applications that are, among others, characterized by more

than one form of parallelism (cross-node, node-level, with/out

accelerator offloading). The SPEChpc 2021 benchmark suites

are comprised of those applications that fulfill the selection

criteria (see Section III).

Most of the existing benchmarks either focus on low-level

hardware performance features and provide microbenchmarks

and small application kernels, or on higher level code features

and provide mini- or proxy apps selected to prepare the

hardware and software stacks of upcoming large systems.

In contrast, SPEChpc 2021 comprises real-world applications

solicited from the broader HPC community, provides a set

of execution and reporting rules, and adopts a peer-review

process before publishing benchmarking results online.

To the best of our knowledge, SPEChpc 2021 is a one of

a kind benchmark suite that offers a harness to handle the

process from installation to ensuring the correctness of the

results and providing a performance score (called the SPEC

score) to enable ranking, that explores hybrid programming

models as well as MPI-only, and facilitates benchmarking on

university clusters and large HPC center systems.

Contributions. This work brings forward the following

675

2022 22nd International Symposium on Cluster, Cloud and Internet Computing (CCGrid)

978-1-6654-9956-9/22/$31.00 ©2022 IEEE
DOI 10.1109/CCGrid54584.2022.00077

20
22

 2
2n

d
In

te
rn

at
io

na
l S

ym
po

siu
m

 o
n

Cl
us

te
r,

Cl
ou

d
an

d
In

te
rn

et
 C

om
pu

tin
g

(C
CG

rid
) |

 9
78

-1
-6

65
4-

99
56

-9
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
CC

GR
ID

54
58

4.
20

22
.0

00
77

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on October 09,2022 at 01:43:04 UTC from IEEE Xplore. Restrictions apply.

contributions: (1) Presents the new SPEChpc 2021 benchmark

suites, including code statistics, instruction mix, MPI call

percentages, and roofline models. (2) Provides a first study of

how well the suites meet the search requirements by evaluating

the performance results on a variety of hardware systems

as well as exploring different system configurations. To the

best of our knowledge, this work is among the first few,

with respect to evaluating scientific applications on a pre-

exascale system, namely Spock, equipped with AMD MI100

GPUs. (3) Compares the performance of employing MPI+X

programming models with various X, namely OpenMP host,

OpenACC and OpenMP target offloading.

Impact. The significance and impact of this performance

benchmarking study are multi-fold: (i) Added value through

extensive testing on a wide range of platforms, going beyond

classical building and compilation or error testing. (ii) The

performance numbers obtained across devices allow identify-

ing unsuspected system configuration bugs. (iii) Engaged the

HPC community by enlisting the help of testers for the beta

release candidate of the suites.

II. MOTIVATION

HPC application benchmarks are of value for researchers

and system managers who have used previous SPEC HPG

benchmark suites, such as SPEC MPI, SPEC OMP, or

SPEC ACCEL, in various scenarios. The new SPEChpc 2021

benchmark suites also encourage similar uses.

Procurement: HPC system procurement is an important

flagship. During the preparation of the tendering documents,

managers compare SPEC scores across different hardware

and software setups, available as submitted results online [4].

This helps define limits and thresholds in the tendering

documents. Given SPEC’s application benchmark character-

istics, the benchmark suites are highly valuable to extrapolate

performance of complex scientific applications for various

and especially future hardware architectures. To this end, it

has been beneficial to further integrate SPEC scores into

acceptance tests for HPC system procurement. vendors need

to demonstrate that their products deliver high performance

with scientific applications and not just on highly-optimized

microbenchmarks. In the past, numerous organizations have

extensively used SPEC HPG benchmarks for procurement

purposes.

Research Software: Academic HPC systems provide users

with a varied HPC-based software stack, including research

compilers and runtime systems. Academic researchers use

the SPEC benchmarks to analyze whether the software stack

is mature enough to compile and correctly execute these

applications (using the verification feature of the SPEC

harness), and whether the research compilers deliver high

performance [5]–[10]. The SPEC HPG benchmarks have also

been used during the prototype implementation of OMPT

in LLVM’s OpenMP runtime as part of the OpenMP tools

committee work before the final specification of OMPT [11].

Performance Analysis of Tools: Development of software

tools, such as performance analysis tools for parallel pro-

grams, is another HPC-related activity with high relevance for

academic HPC systems. The SPEC HPG benchmark suites

are often used to measure the overhead of such tools, i.e.,

executing the SPEC benchmarks with and without the HPC

software tool under development. For example, the MUST

tool [12] provides runtime correctness and deadlock anal-

ysis of parallel programs. MUST has been evaluated with

SPEC MPI L2007 v2 to assess its overhead and the influence

of specific changes in the tool infrastructure. Similarly, specific

parts of tools can be assessed using SPEC benchmarks, such

as the OpenMP measurement adapters of Score-P [13], an

instrumentation and measurement infrastructure for profiling

and event tracing. The SPEC OMP benchmark suite has also

been used to evaluate the existing Opari2 adapter against a

prototype measurement adapter based on OMPT [14].

System Regression Testing: HPC centers perform regular

systems maintenance. This includes security and software

updates as well as performance optimizations. In the past,

RWTH Aachen and TU Dresden observed that performance-

relevant changes and errors arise unintentionally during this

process. Regression tests following maintenance intervals with

well-defined SPEC benchmarks make it possible to detect

such unintentional changes in the system. The exact same

application scenario is executed regularly, and the results

are automatically compared against results from previous

measurements. The development and testing of the SPEChpc

2021 benchmark suites help identify non-performing HPC

nodes among other issues. To elaborate further, we present

two motivational scenarios at sites RWTH Aachen and TU

Dresden.

Case Study 1: At RWTH Aachen University, tests with

the new SPEChpc 2021 benchmark suites (medium suite) on

50 compute nodes of the system showed significant negative

performance differences for some of the benchmarks compared

to other HPC systems with a very similar setup, e.g., available

as SPEC results [4]. Via a deep dive into the performance data,

the execution times were found to differ mostly in the amount

of MPI time, specifically, in MPI Allreduce collective oper-

ations. This cross-node execution time imbalance is caused

by: (1) dropping memory bandwidth and (2) noise (which

leads to desynchronization [15]). While the memory DIMMs

did not completely malfunction and were not detected in the

system’s health check, some of them delivered roughly 20 %

less bandwidth than expected. Hence, additional job-based

bandwidth checks have been implemented and are regularly

reported to the vendor responsible for replacing those DIMMs.

Although (system and network) noise is a known issue, its high

impact for the worst-case scenarios as triggered by the SPEC

benchmarks was surprising, underscoring the usefulness of the

new benchmark suites. To improve and achieve comparable

performance for such bulk-synchronous parallel programs

using MPI collectives, users at RWTH Aachen University

will now be advised to leave one core empty per NUMA

domain per compute node instead of fully occupying the

nodes with MPI processes. Given these important findings,

the performance of other applications will also be investigated

676

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on October 09,2022 at 01:43:04 UTC from IEEE Xplore. Restrictions apply.

and, if necessary, improved.

Case Study 2: At TU Dresden, several undetected sys-

tem problems were discovered on the TU Dresden system,

even though system health checks were implemented. The

SPEChpc 2021 benchmarks revealed significant performance

variations when executed multiple times across a changing

subset of equal nodes of the system. For example the tealeaf

benchmark is very sensitive to process scheduling due to its

intensive use of collective MPI operations. We observed a

performance degradation of a factor of 2. The reasonable

cases had an MPI Allreduce time contribution of 7% and the

bad cases had a time contribution of 52%. These cases led

to the kernel bug (referring to (2) below) that stole 50% of

cycles of a small group of pinned MPI processess thereby

slowing down all the others. The suites have shown its high

suitability to detect system problems (by means of comparison

with reference data) that did not lead to a partial or complete

failure of the system, but slowed down a subset of nodes

significantly. Once the partial slow downs were recognized

as such, their causes were found quickly to be: (1) a faulty

BIOS configuration of a number of computing nodes, (2) a

kernel bug [16] occurring infrequently, and (3) an unfavor-

able configuration of the SLURM daemon. The commonality

between all these issues is that no crashes occurred and the

entire system was 100% available at all times. Nevertheless,

benchmarks from the SPEChpc 2021 suites showed perfor-

mance degradation of up to 50% in the BIOS setup and kernel

bug cases. While the degradation must have occurred due to

one or two application, it still shows how the SPEChpc2021

suites were able to highlight those. It is pertinent to have a

good/right mix of applications in a suite that can highlight such

issues in the system. The above-mentioned kernel bug, was

discovered due to the fact that the execution time of the Tealeaf

benchmark (see Section III) occasionally doubled inexplicably,

even though the CPU resource configuration was unaltered.

Increasing the number of compute nodes also increased the

frequency of observation of this phenomenon.

A profiler-assisted [13] analysis of the core cycle counters

over time revealed that a very small random fraction of MPI

ranks were only processed at half speed because they received

only half of the theoretically possible processor cycles. This in

turn led to the load imbalance at execution time of the actually

very well statically balanced solver. Deploying an additional

system profiler [17] revealed that errant kernel threads on

the affected nodes were responsible for the absence of CPU

cycles. The root cause was determined to be a missing kernel

patch [18], now installed.

III. OVERVIEW OF SPECHPC 2021 BENCHMARK SUITES

The search program [3] for SPEChpc 2021 benchmarks

from 2017 gathered applications from the HPC community

with the following characteristics:

• Support for MPI+X parallelism, where X takes one of

three values: OpenMP host (denoted as OMP), OpenMP

target (denoted as TGT), and/or OpenACC (denoted as

ACC). They offer hybrid execution using all potentially

available parallelism within and across compute nodes.

An MPI-only version of the application is needed for

baseline comparisons.

• Origin in various science domains to reflect the diver-

sity of typical and real HPC workloads.

• Fortran or C/C++ programming language.

• Support for strong scaling of work distribution for

multiple data set sizes, as one SPEC suite will always

distribute the same workload of a benchmark regardless

of the actual number of process/threads used.

• Predictable code paths with no algorithmic differences

depending on the computing platform

• Limited time spent in I/O as this not an I/O benchmark.

• Numerically verifiable output to check for correctness

within a definable margin of error.

A. SPEChpc 2021 Benchmark Composition

The first official release (version 1.0.3) of the

SPEChpc 2021 suites consists of nine applications [4].

The applications and their basic properties are summarized

in Table I. Not all application benchmarks are included in all

the suites. This is the case when the maximum problem size

that represents a realistic problem has already been reached

in a smaller suite or when the problem does not naturally

scale to all suites (see Section III-B). Other applications did

not support all three levels of intra-node parallelism, namely

‘X’ in MPI+X, before submission in response to the search

program. During the benchmark preparation phase, those

have been refactored accordingly to support the three ‘Xs’.

B. SPEChpc 2021 Suites and Metrics

The SPEChpc 2021 benchmark suites support strong scal-

ing workloads by offering four suites: tiny, small, medium,

and large, which represent common workload sizes for all

benchmarks in one suite. Thus, the SPEC performance mea-

surement harness (Section IV) can be used to execute and

verify the results where everyone solves the same problem(s).

The SPEC score is the ratio of the execution time of the

benchmarks on the reference system (RS) to the execution

time on the system under test (SUT) that is also reported in

the public SPEC results repository [4].

The maximum memory requirements for each workload size

is defined to reflect typical HPC system sizes. The benchmarks

have also been tested with MPI rank counts typical of these

system sizes. Due to communication buffers, the maximum

memory requirements can easily be exceeded for very large

MPI rank counts. All these design limits are shown in Table II.

Each suite is assigned a prefix number (Table II) and each

benchmark a postfix number (Table I). For example, 505

denotes the LBM benchmark in the tiny suite.

IV. SPEC HARNESS

The SPEChpc 2021 suites reside within the SPEC harness

which has been maintained by SPEC for more than 15 years.

Users of the popular SPEC CPU benchmarks [19], [20] will

be able to readily use SPEChpc 2021 benchmarks as well,

677

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on October 09,2022 at 01:43:04 UTC from IEEE Xplore. Restrictions apply.

TABLE I: SPEChpc 2021 benchmark application properties

Name Application Area Language Suite approx. # LOC # MPI calls # OMP dir. # ACC dir.

LBM D2Q37 (x05) Computational Fluid Dynamics C T/S/M/L 9,000 118 50 66
SOMA (x13) Physics / Polymeric Systems C T/S/-/- 9,500 90 192 185
Tealeaf (x18) Physics, High Energy Physics C T/S/M/L 5,400 22 86 40
Cloverleaf (x19) Physics, High Energy Physics Fortran T/S/M/L 12,500 23 827 886
Minisweep (x21) Nuclear Engineering, Radiation Transport C T/S/-/- 17,500 41 39 43
POT3D (x28) Solar Physics Fortran T/S/M/L (incl. HDF5) 495,000 88 124 77
SPH-EXA (x32) Astrophysics and Cosmology C++14 T/S/-/- 3,400 82 36 18
HPGMG-FV (x34) Cosmology, Astrophysics, Combustion C T/S/M/L 16,700 53 206 127
miniWeather (x35) Weather Fortran T/S/M/L 1,100 11 36 20

TABLE II: Design limits for the SPEChpc 2021 suites

Suites max memory min ranks max ranks

tiny (T) (5xx) 64 GB 1 256
small (S) (6xx) 480 GB 64 1,024
medium (M) (7xx) 4 TB 256 4,096
large (L) (8xx) 14.5 TB 2,048 32,768

as the harness used with both is the same and its usage

very similar. The SPEC harness is involved in all aspects

of running the benchmark, from installation, correctness to

submission and publication of results [4]. It can be tuned to

all usage scenarios, supports different compilers and compiler

environments, as well as batch systems, code verification and

ensures code source integrity. The harness supports publishing

of benchmark results that include all the information required

to reproduce the benchmark results. Therefore, the harness

promotes performance reproducibility, which is of increasing

importance to the HPC community.

V. RESULTS

We present here the results of executing the SPEChpc 2021

suites on four HPC systems: (a) Frontera at Texas Ad-

vanced Computing Center (TACC) [21], (b) Summit [22] at

ORNL, (c) JUWELS Booster module at Forschungszentrum

Jülich [23], and (d) Spock [24], a pre-exscale system also

at ORNL. We have chosen these systems to show results

and findings on a range of homogeneous (Frontera Intel Cas-

cade Lake Xeon) and heterogeneous (Summit NVIDIA V100,

JUWELS NVIDIA A100 and Spock AMD MI100) systems

utilizing MPI-only and MPI+X programming paradigms. All

experiments used 1 MPI rank/GPU.

We present strong scaling results. The SPEC benchmark

suites are traditionally evaluated using a SPEC score (defined

in Section IV) which facilitates comparison between systems.

Given that performance comparisons of systems falls outside

the scope of this work, we will report the traditional execution

time in seconds. Table III describes the experimental setup.

We have also populated Zenodo [25] (a general purpose open-

access repository to share and maintain data) with performance

data that was generated to build the plots and tables in this

manuscript. The plots in Zenodo ishow that the comparisons

may be interpreted in different ways drawing ambiguous

conclusions, hence we do not focus on them in this paper

but leave the interpretation of the comparisons to the different

stakeholders including the procurement managers, HPC sys-

tem operators, tools developers and application developers.

TABLE III: Overview of the experimental setup

System Dominant chips Parallelism Suite min |max ranks

Frontera Intel Xeon Plat-
inum 8280

MPI-only,
MPI+OMP

T, S,
M, L

56 | 57,344

JUWELS
Booster

NVIDIA A100 MPI+ACC,
MPI+TGT

M, L 100 | 1,400

Spock AMD MI100 MPI+TGT S 16 | 32
Summit NVIDIA V100 MPI+ACC,

MPI+TGT
M, L 1,050 | 16,800

TABLE IV: Execution Time of the Large Suite on Frontera⋆

(in seconds)

Benchmark 140 nodes 256 nodes 384 nodes 512 nodes 1024 nodes

805.lbm l 998.6 517.1 391.2 265.9 149.6
818.tealeaf l 828.1 448.2 298.6 223.7 123.6
819.clvleaf l 1113.2 612.9 405.8 304.8 172.2
828.pot3d l 2593.0 1497.2 984.7 716.1 382.4
834.hpgmgfv l 1045.4 596.9 423.8 305.6 183.9
835.weather l 1207.5 644.2 408.9 271.3 122.1

⋆Results collected on Frontera for MPI+OpenMP executions.

A. Performance Results on Frontera

Experimental setup. Frontera consists of 8,368 Cascade

Lake based Dell PowerEdge C6420 compute nodes with dual

socket Intel Xeon Platinum 8280 28-core CPU and 192 GB

DDR4 memory. The system’s interconnection network is a fat

tree topology with a blocking factor of 22:18. The interconnect

is Infiniband HDR technology with full HDR connectivity

between switches and HDR100 connectivity to the compute

nodes. Since this is a CPU-only platform, MPI and MPI+OMP

are the programming models used. For MPI-only executions,

56 MPI ranks per node were used. For MPI+OMP executions,

2 MPI ranks with 28 OpenMP threads per node were used,

each of the MPI ranks being placed on separate NUMA

domains to minimize cross-NUMA OpenMP memory traffic.

For timing data collection, median is taken from 3 iterations of

Tiny and Small, while Medium and Large were run for only

1 iteration. For all cases, the Intel Fortran/C/C++ compilers

and Intel MPI from Intel Parallel Studio 2020 Update 4

were used. Codes are compiled with the -O3 -no-prec-div

-fp-model fast=2 -xCORE-AVX512 -ipo flags. All profiles

TABLE V: SPEChpc 2021 Instruction Mix⋆

Benchmark
FP32 FP64 Non-FP Vectorization of FP

(% of uOps) (% of uOps) (% of uOps) (% of uOps)

605.lbm s 0.00 51.98 48.02 86.80
613.soma s 0.20 23.43 76.17 1.18
618.tealeaf s 0.00 42.20 57.80 2.67
619.clvleaf s 0.00 21.93 78.08 86.65
621.miniswp s 0.00 8.92 91.07 57.90
628.pot3d s 0.00 17.70 82.30 97.90
632.sph exa s 0.00 36.27 63.70 49.75
634.hpgmgfv s 0.00 22.30 77.70 81.22
635.weather s 0.00 26.32 73.67 3.45

⋆Results collected on Frontera for MPI-only executions using 4 nodes and
56 MPI ranks/node. Only results for the small suite are shown; the codes
in other suites exhibit nearly identical characteristics.

678

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on October 09,2022 at 01:43:04 UTC from IEEE Xplore. Restrictions apply.

(a
)

T
in

y
su

it
e

1 2 4 8
1

4

8

12

number of nodes (56 cores/node)

S
p
ee
d
u
p

505.lbm t

513.soma t

518.tealeaf t

519.clvleaf t

521.miniswp t

528.pot3d t

532.sph exa t

534.hpgmgfv t

535.weather t

LinearScaling

4 8 16 32 64
1

4

8

12

16

24

number of nodes (56 cores/node)

S
p
ee
d
u
p

605.lbm s

613.soma s

618.tealeaf s

619.clvleaf s

621.miniswp s

628.pot3d s

632.sph exa s

634.hpgmgfv s

635.weather s

LinearScaling

(b
)

S
m

a
ll

su
it

e

(c
)

M
ed

iu
m

su
it

e

32 64 128 192 256
1

2

4

6

8

10

12

number of nodes (56 cores/node)

S
p
ee
d
u
p

705.lbm m

718.tealeaf m

719.clvleaf m

728.pot3d m

734.hpgmgfv m

735.weather m

LinearScaling

140 256 384 512 1,024
1

2

4

6

8

10

number of nodes (56 cores/node)

S
p
ee
d
u
p

805.lbm l

818.tealeaf l

819.clvleaf l

828.pot3d l

834.hpgmgfv l

835.weather l

LinearScaling

(d
)

L
a

rg
e

su
it

e

Fig. 1: Speedup for MPI-only. Tiny, Small, Medium, and Large suites on Frontera

(a
)

T
in

y
su

it
e

1 2 4 8
1

4

8

12

number of nodes (56 cores/node)

S
p
ee
d
u
p

505.lbm t

513.soma t

518.tealeaf t

519.clvleaf t

521.miniswp t

528.pot3d t

532.sph exa t

534.hpgmgfv t

535.weather t

LinearScaling

4 8 16 32 64
1

4

8

12

16

24

number of nodes (56 cores/node)

S
p
ee
d
u
p

605.lbm s

613.soma s

618.tealeaf s

619.clvleaf s

621.miniswp s

628.pot3d s

632.sph exa s

634.hpgmgfv s

635.weather s

LinearScaling

(b
)

S
m

a
ll

su
it

e

(c
)

M
ed

iu
m

su
it

e

32 64 128 192 256
1

2

4

6

8

10

12

number of nodes (56 cores/node)

S
p
ee
d
u
p

705.lbm m

718.tealeaf m

719.clvleaf m

728.pot3d m

734.hpgmgfv m

735.weather m

LinearScaling

140 256 384 512 1,024
1

2

4

6

8

10

number of nodes (56 cores/node)

S
p
ee
d
u
p

805.lbm l

818.tealeaf l

819.clvleaf l

828.pot3d l

834.hpgmgfv l

835.weather l

LinearScaling

(d
)

L
a

rg
e

su
it

e

Fig. 2: Speedup for MPI+OMP. Tiny, Small, Medium, and Large suites on Frontera. 621.miniswp s unable to run on 64 nodes due to a
potential OpenMP compiler bug.

679

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on October 09,2022 at 01:43:04 UTC from IEEE Xplore. Restrictions apply.

0

5

10

15

605.lbm_s
613.soma_s

618.tealeaf_s
619.clvleaf_s

621.miniswp_s
628.pot3d_s

632.sph_exa_s
634.hpgmgfv_s

635.weather_sP
er

ce
nt

ag
e

of
to

ta
lr

un
tim

e
(%

)

Benchmark

4.37

7.84

4.79 4.10
5.41

14.40

8.44

17.24

55

60

65

MPI_Waitall
MPI_Wait

MPI_Send
MPI_Recv
MPI_Isend

MPI_Init
MPI_Barrier

MPI_Allreduce

56.56

(a) Small suite

0

5

10

15

20

25

30

35

40

805.lbm_l
818.tealeaf_l

819.clvleaf_l
828.pot3d_l

834.hpgmgfv_l
835.weather_l

P
er

ce
nt

ag
e

of
to

ta
lr

un
tim

e
(%

)

Benchmark

MPI_Waitall
MPI_Wait

MPI_Isend
MPI_Init_thread

MPI_Init
MPI_Finalize
MPI_Barrier

MPI_Allreduce

15.57

20.74

8.44

16.90

29.70

21.36

(b) Large suite

Fig. 3: MPI functions distribution for small and large suites. Data
collected on Frontera for MPI-only versions using 4 nodes and
56 MPI ranks/node for the small suite, and 140 nodes and 56
MPI ranks/node for the large suite. Plot shows MPI functions that
contribute more than 0.5% of total execution time.

0

100

200

300

400

500

600

700

800

900

0 1 2 3 4 5 6 7

G
Fl

op
s/

s

Arithmetic Intensity (Flops/Byte)

605.lbm_s

621.miniswp_s

632.sph_exa_s

DRAM 212GB/s
RPeak SSE

0

50

100

0 0.5 1

613.soma_s

618.tealeaf_s
619.clvleaf_s

628.pot3d_s

634.hpgmgfv_s

635.weather_s

Fig. 4: Roofline plot for the small suite. Data collected for MPI-only
versions using 4 nodes (224 ranks on Frontera). The roofline plots
for the tiny, medium, and large suites are similar. Arithmetic intensity
and memory bandwidth are collected for the entire duration of each
program.

were collected using Intel Application Performance Snapshot

representing basic tuning. Fine tuning of MPI parameters, such

as rank/thread distribution, can certainly further improve the

performance. Results on scalability and performance statistics

from the experiments on Frontera are next discussed.

Results- Scalability: To understand the parallel perfor-

mance of the benchmark, a set of strong scaling tests

were performed for all four suites with both MPI-only and

MPI+OMP programming models. Fig. 1 shows MPI-only

scalability, and Fig. 2 demonstrates the MPI+OMP scalability.

The execution times of the large suite with MPI+OpenMP are

presented in Table IV. For additional information on execution

times of other suites, please refer to performance data collected

via Zenodo available at [?].

For the MPI-only runs, all suites scale well within their

design limit, and have their appropriate applicable ranges.

From the tiny suite, Minisweep and SOMA scale relatively

poorly and scaling efficiency drops below 50% when more

than 4 nodes are used. For SOMA, this is due to a high volume

of all-to-all communication which is the nature of the code.

Regarding Minisweep, the poor scaling beyond certain node

count is due to a combination of inherently high amount of

MPI communication and relatively small data set being used

to fit the designed memory limit of the benchmark. As soon as

the tiny suite no longer scales well, the small suite should be

considered unless benchmarking MPI and interconnect is the

main goal. From the small suite, Minisweep and SOMA also

scale relatively poorly compared to other codes for the same

reasons outlined above. Another code, SPH-EXA, joins the

list of non-ideal scaling at 32 nodes also due to high volume

of MPI traffic and reduced compute work per rank. Beyond

32 nodes on Frontera, the medium suite works best on up to

192 nodes, beyond which the large suite should be favored.

In the hybrid MPI+OMP case, performance is significantly

better for several codes due to reduced MPI all-to-all com-

munication and/or reduced memory traffic given the shared

memory model. It is also worth mentioning that two codes,

Tealeaf and miniWeather, will often achieve super-linear scal-

ing. These two codes have the smallest memory footprint in the

suites, yet are highly memory-bound. As more nodes are used

to solve the same problem, the problem size per node reduces,

resulting in decreased memory traffic and fewer memory stalls.

For example, miniWeather in the small suite

(635.weahter s) used 220.03 GB/s as peak memory

bandwidth and 202.05 GB/s as average bandwidth when

4 nodes are used; this is close to the upper limit of the

achievable memory bandwidth, while at 16 nodes, the

memory bandwidth utilization was reduced to 197.52 GB/s

as peak and 146.44 GB/s as average. On 32 nodes, the

metrics further reduced to 155.29 GB/s and 118.11 GB/s,

respectively. The resulting DRAM stall was 33.43%, 11.27%,

7.31% at 4, 16, and 32 nodes, respectively. Such a change in

performance characteristics alleviates performance bottleneck

and yields the super-linear scaling behavior. Demonstrated by

all the scalability results, with the four different suites, the

SPEChpc 2021 benchmark covers the entire spectrum from a

few nodes to few hundreds. The tiny suite is suitable for a

single node or a few nodes, the small suite is bigger and will

be best suited to test a handful of nodes with a few hundred

cores. The medium suite works well on a small cluster with a

few thousand cores, while the large suite is large enough to

test a medium-sized cluster with tens of thousands cores.

Performance statistics: MPI profiles were collected for all

the codes in all four suites. In this manuscript, profiles of

680

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on October 09,2022 at 01:43:04 UTC from IEEE Xplore. Restrictions apply.

the small suite executed on 4 nodes (224 ranks), representing

the performance characteristics at small scale, and of the

large suite executed on 140 nodes (7840 ranks), illustrating

the performance characteristics at large scale, are shown. For

additional information please refer to performance data col-

lected via Zenodo [?]. The MPI functions that consume more

than 0.5% of total execution time are shown in Fig. 3(a) and

Fig. 3(b) for the small and large suites, respectively. Clearly,

MPI Allreduce plays a big role in many codes, such as SOMA,

Tealeaf, Cloverleaf, POT3D, and SPH-EXA. Point-to-point

communications are a key component for Minisweep, SPH-

EXA, HPGMG-FV, and miniWeather. The purple bar denotes

MPI Waitall and indicates codes that rely on large amount of

non-blocking communication. In addition, the floating point

metrics were inspected. The instruction mix of single precision

floating point (FP32) operations, double precision floating

point (FP64) operations, and non-floating point (non-FP) op-

erations, along with the SIMD vectorization rate are shown in

Table V. The statistics are identical for different workloads;

thereby, only the data for the small suite are presented here.

With the -xCORE-AVX512 flag, the compilers will choose

to the most efficient level of vectorization up to 512 bit,

and in this particular case, it is mostly the 256-bit AVX2

instruction being used. Since the amount of AVX512 or AVX2

vectorization depends on the compiler switches and hardware,

we only show the total percentage of FP operations being

vectorized and do not distinguish the underlying instruction

set in the table. These codes have a healthy mix of FP and

non-FP operations, and most codes have their FP operations

very well vectorized. The codes are FP64-heavy, with only

SOMA having a tiny percentage of FP32 operations. Memory

bandwidth is the limiting factor for many HPC codes. Most

SPEChpc 2021 codes are also memory-bound. The roofline

analysis in Fig. 4 reveals that five out of the nine codes land

on the DRAM bandwidth boundary. This is for the small suite

executed on 4 nodes (224 ranks); other workloads executed

at the lower range of the design limits (Table II) show very

similar characteristics. As more resources are added, codes

like TeaLeaf and miniWeather become less memory-bound as

mentioned in the above super-linear scaling discussion. All

floating point operations of the the most compute-intensive

code, LBM, in the suite can be vectorized; this code will

benefit most from a long SIMD instruction set.

B. Performance Results on Summit

Experimental setup. These results use ORNL’s Summit

supercomputer which consists of over 4,600 nodes each with

two 22-core IBM POWER9 CPU and six NVIDIA V100

GPUs. On Summit, the MPI+ACC and MPI+TGT models

were executed using NVHPC 21.7 and IBM XL 16.1.1-10,

respectively. For MPI+ACC, the benchmarks were compiled

using -O3 -acc=gpu. For MPI+TGT, the benchmarks were

compiled using -O3 -qarch=pwr9 -qtune=pwr9 -qsmp=omp -

qoffload -qtgtarch=auto. For the experiments using MPI+ACC

at-scale, two iterations were used. For MPI+TGT, however,

4,200 8,400 16,800
0

1

2

4

Ranks (1 V100 GPU per Rank)

S
p
ee
d
u
p

805.lbm l

818.tealeaf l

819.clvleaf l

828.pot3d l

834.hpgmgfv l

835.weather l

LinearScaling

Fig. 5: Speedup for MPI+ACC, Large Suite on Summit

4,200 8,400 16,800
0

1

2

4

6

Ranks (1 V100 GPU per Rank)

S
p
ee
d
u
p

819.clvleaf l

828.pot3d l

835.weather l

LinearScaling

Fig. 6: Speedup for MPI+TGT, Large Suite on Summit

1,050 2,100 4,200
0

1

2

4

6

Ranks (1 V100 GPU per Rank)

S
p
ee
d
u
p

719.lbm m

718.tealeaf m

719.clvleaf m

728.pot3d m

734.hpgmgfv m

735.weather m

LinearScaling

Fig. 7: Speedup with MPI+ACC, Medium Suite on Summit

1,050 2,100 4,200
0

1

2

4

6

Ranks (1 V100 GPU per Rank)

S
p
ee
d
u
p

719.clvleaf m

728.pot3d m

735.weather m

LinearScaling

Fig. 8: Speedup with MPI+TGT, Medium Suite on Summit

681

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on October 09,2022 at 01:43:04 UTC from IEEE Xplore. Restrictions apply.

TABLE VI: Execution Time of the Medium and Large
Suites on Summit (in seconds)

Medium Suite

Benchmark 1050 Ranks 2100 Ranks 4200 Ranks

ACC TGT ACC TGT ACC TGT

705.lbm m 20.4 CE 16.3 CE 17.3 CE
718.tealeaf m 71.3 RE 56.4 RE 49.3 RE
719.clvleaf m 32.0 4154 22.4 2072 20.3 1028
728.pot3d m 95.7 3159 81.2 1645 74.2 1470
734.hpgmgfv m 187 RE 123 RE 105 RE
735.weather m 27.1 5416 20.3 2792 20.3 1497

Large Suite

Benchmark 4200 Ranks 8400 Ranks 16800 Ranks

ACC TGT ACC TGT ACC TGT

805.lbm l 31.8 CE 38.6 CE 66.6 CE
818.tealeaf l 60.1 RE 68.3 RE 90.9 RE
819.clvleaf l 29.4 3415 37.4 1253 66.2 670
828.pot3d l 140 3618 156 2996 175 1516
834.hpgmgfv l 128 RE 151 RE 116 RE
835.weather l 26.3 4887 39.3 2461 59.2 1264

due to the long execution time, a single iteration was used.

All experiments on Summit used 1 MPI rank per V100 GPU.

Results. The experiments on Summit use both MPI+ACC

and MPI+TGT programming models. Fig. 5 shows that run-

ning the large suite with more than 4,200 MPI ranks, each

offloading to a single V100 GPU, results in poor scalability.

The problem sizes in the large suite likely need to be increased

to accommodate systems of Summit’s scale. Only three of the

six benchmarks successfully compiled with IBM XL 16.1.1-10

compiler. As shown in Fig. 6, although performance improves

as the number of MPI ranks increases, overall, the execution

time is over 200x slower than that obtained with MPI+ACC

using the same number of GPUs (see Table VI). An important

point to take away is that performance largely depends on the

implementations. In addition, performance of the medium suite

was investigated using 1,050 to 4,200 ranks, each offloading

to a single V100 GPU. Both programming models at this scale

show increasing speedup. However, as shown in Table VI, the

execution time in these cases is 30-200X slower. CE and RE

in Table VI refer to Compiler and Runtime errors. Additional

studies are necessary to understand this degradation. Fig. 7

and Fig. 8 show strong scaling results for the medium suite.

C. Performance Results on JUWELS Booster

TABLE VII: Execution time of the Large Suite on JUWELS
Booster (in seconds)

Benchmark 400 Ranks 800 Ranks 1400 Ranks

ACC TGT ACC TGT ACC TGT

805.lbm l 56.7 70.9 32.5 40 22.2 26.6
818.tealeaf l 154 70.7 106 53.5 73.4 38.8
819.clvleaf l 61.9 236 33.6 128 20.4 84.2
828.pot3d l 200 280 150 205 95 136
834.hpgmgfv l 209 539 141 332 133 229
835.weather l 59.9 73.4 37.4 48.3 23.7 34.1

Experimental setup. The JUWELS Booster module con-

sists of NVIDIA’s A100 GPUs and AMD EPYC Rome CPUs.

For both MPI+TGT and MPI+ACC runs, the GCC 10.3.0 and

NVHPC 21.5 compilers are used, respectively, while ParaSta-

tion MPI/5.2.9-1 is used for MPI. Each of the booster module

consists of 4 NVIDIA A100 GPUs. For both MPI+ACC and

MPI+TGT versions, we use -w -Mfprelaxed -Mnouniform -

Mstack arrays -fast. For all the experiments, due to long

execution time, one iteration was used.

Results. The strong scaling results on JUWELS for the

large suite using both MPI+ACC and MPI+TGT versions

400 800 1,400
0

1

2

3.5

Ranks (1 A100 GPU per Rank)

S
p
ee
d
u
p

805.lbm l

818.tealeaf l

819.clvleaf l

828.pot3d l

834.hpgmgfv l

835.weather l

LinearScaling

Fig. 9: Speedup for MPI+ACC, Large Suite on JUWELS Booster

400 800 1,400
0

1

2

3.5

Ranks (1 A100 GPU per Rank)
S
p
ee
d
u
p

805.lbm l

818.tealeaf l

819.clvleaf l

828.pot3d l

834.hpgmgfv l

835.weather l

LinearScaling

Fig. 10: Speedup for MPI+TGT, Large Suite on JUWELS Booster

are shown in Figures 9 and 10. These show that almost all

six benchmarks achieve close to linear scaling with room

for improvement. For both MPI+ACC and MPI+TGT ver-

sions, Cloverleaf shows the best scaling behavior followed by

LBM and the rest. Table VII presents the execution time in

seconds for the large suite for both versions spanning 400

to 1,400 MPI ranks. We observe that for LBM, Cloverleaf,

POT3D, HPGMG-FV and miniWeather, the MPI+ACC ver-

sion performs better than the MPI+TGT version. Cloverleaf

is evidently over 3.9x faster on an average across ranks and

HPGMG-FV over 2.2x faster on an average across ranks.

However for Tealeaf, the MPI+TGT version is about 2x

better than the MPI+ACC version. The observations above

were similar for the medium suite as well. Future work will

include investigation of these discrepancies in more detail.

For additional information on any of these experiments along

with data on the medium suite, please refer to performance

data collected in Zenodo [?]. While comparing the parallel

efficiency of the large suite with that of the medium suite, we

observe that the efficiency of medium workload drops below

75% with 400 ranks for almost all the benchmarks, indicating

that for ranks above 400, it is better to use larger workload to

achieve the best parallel efficiency especially on large clusters

such as JUWELS. The trend seems to hold for both MPI+ACC

and MPI+TGT versions.

D. Performance Results on Spock

Experimental setup. The Spock pre-production AMD [24]

system at ORNL is used to collect scalability and profiling data

682

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on October 09,2022 at 01:43:04 UTC from IEEE Xplore. Restrictions apply.

TABLE VIII: Execution Time of the Small Suite on
Spock (in seconds)

Benchmark 16 Ranks 24 Ranks 32 Ranks

605.lbm s 234.2 169.4 142.3
618.tealeaf s 624.2 507.6 461.8
621.miniswp s 1319.6 967.9 828.1
628.pot3d s 1426.1 968.7 897.4
632.sph exa s 1065.5 747.2 631.6
635.weather s 5154.7 3305.4 2226.4

16 24 32
0.5

1

2

3

Ranks (1 MI100 GPU per Rank)

S
p
ee
d
u
p

605.lbm s

618.tealeaf s

621.miniswp s

628.pot3d s

632.sph exa s

635.weather s

LinearScaling

Fig. 11: Speedup for MPI+TGT, Small Suite on Spock

using the SPEChpc 2021 benchmark suites. Spock consists of

36 compute nodes, each with one AMD EPYC 7662 64-Core

processor, 256 GB DDR4 memory, and four AMD Instinct

MI100 GPUs. These experiments used 16, 24, and 32 MPI

ranks with 4 ranks per node corresponding to 4, 6 and 8

nodes. Two iterations were used for the 4- and 8-node runs

and 3 iterations were used for the 6-node run. The reported

time is the average over all iterations. The benchmark suites

were compiled with the LLVM Clang v12.0.0 compiler suite

packaged with ROCm v4.2.0, acceleration libraries for the

MI100 architecture, and Cray MPICH v8.1.8. The bench-

marks were compiled using -O3 -fopenmp -target x86 64-pc-

linux-gnu -fopenmp-targets=amdgcn-amd-amdhsa -Xopenmp-

target=amdgcn-amd-amdhsa -march=gfx908.

Results. We ran SPEChpc 2021 small suite on Spock.

SOMA could not compile because of an internal compiler error

while processing the TGT directives. HPGMG-FV did not run

to completion within the time allowed for jobs on Spock; this

is potentially caused by the TGT or MPI implementations.

The exact cause is unknown and investigation is ongoing. We

present strong scalability plots for the small suite on Spock

in Fig. 11. The execution times for these codes (shown in

Table VIII) decreased for all codes as more nodes were added.

VI. RELATED WORK

Numerous benchmarks focus on hardware performance fea-

tures. For instance, SHOC [26] that includes both the OpenCL

and CUDA implementations provides microbenchmarks and

small application kernels. The classic NASA parallel bench-

marks (NPB) [27] are a popular multi-zone, hybrid (MPI+X)

benchmark suite [28], [29] that are used for evaluating proto-

types of programming features, runtime or compiler imple-

mentations. A benchmark suite [30] consisting of a set of

low-level operations to test raw performances compilers and

hardware is developed by EPCC. The HPC community also

widely uses HPL [31] for floating-point focused operations,

HPMG [32] for multigrid methods, and HPCG [33] for

bandwidth-focused operations. The benchmarking landscape

has also been influenced by so-called mini or proxy applica-

tions that abstract a specific (performance) behaviour from the

real-world application they mimic. Examples are Mantevo [34]

and Exascale Computing Project’s (ECP) Mini-apps [35]–[37].

The SPEChpc 2021 suites differ from the above benchmark-

ing effort in a way that the suites are incorporated into the

SPEC harness (detailed in Section IV) adding benefits such

as reproducibility, results publication, and ranking of systems

utilizing the SPEC scores. Other SPEC related benchmarking

efforts include the release of the following suites for the HPC

community: SPEC HPC96 [38] benchmark suites, improved

and replaced by SPEC HPC2002 [39], SPEC OMP2001 [40],

superseded by SPEC OMP2012 [41] for shared-memory paral-

lel systems using CPUs, SPEC MPI2007 [42] for distributed-

memory parallel systems using CPUs, and SPEC ACCEL [43]

with applications using OpenACC and OpenMP 4.5 in a

performance portable manner, thus, targeting different (single)

accelerator devices. SPEChpc 2021 suites complement the

above SPEC suites by enabling scalability and efficiency stud-

ies at large scale, using large homogeneous and heterogeneous

HPC clusters that are recently increasingly being built with

multiple-GPUs per node.

VII. CONCLUSIONS AND FUTURE WORK

This work illustrates first experiences in performance bench-

marking with the new SPEChpc 2021 suites on 4 HPC

systems: Frontera, Summit, JUWELS Booster, and Spock, that

have diverse hardware architectures: Intel Cascade Lake CPUs,

NVIDIA V100/A100 GPUs, and AMD Instinct MI100 GPUs.

The SPEChpc 2021 suites (tiny, small, medium, and large)

employ MPI-only, MPI+OMP, MPI+ACC, and MPI+TGT as

parallel programming APIs. Analysis of SPEChpc’s applica-

tion properties on Frontera reveals that (1) most codes are

memory-bound, (2) they utilize mainly FP64 as in traditional

HPC applications, and (3) 8-30% of the total execution

time of the large suite corresponds to MPI, in particular

MPI Allreduce. We presented strong-scaling results for all

suites on all systems with up to 16,800 MPI ranks. Select-

ing an appropriate suite for performance benchmarking is

critical for trading off poor scalability with superlinearity.

The best and the worst parallel efficiencies were obtained

on the state-of-the-art NVIDIA’s A100 GPUs. On the same

accelerator-based systems, the performance of MPI+TGT im-

plementations lags behind that of MPI+ACC implementations.

These performance differences are due to the OpenMP offload-

ing features’ implementations in compilers (e.g., NVHPC vs

IBM XL vs LLVM) which require further in-depth investi-

gation. These results have been motivating compiler vendors

to invest efforts towards closing the performance gaps. All

performance measurements presented here will be published

on the SPEC website [4] upon the official release of the

SPEChpc 2021 suites by SPEC HPG. Due to the growing im-

portance of application scaling and of scalable benchmarking

683

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on October 09,2022 at 01:43:04 UTC from IEEE Xplore. Restrictions apply.

in HPC, weak scaling benchmarks are needed that will prove to

be beneficial for the HPC community, and the SPEChpc 2021

benchmarks could be extended in this direction.

VIII. ACKNOWLEDGEMENTS

The authors would like to acknowledge a number of facil-

ities and grants for their support, but first and foremost, we

would like to thank the full SPEC HPG group for the tremen-

dous effort behind developing and releasing the SPEChpc

2021 benchmark suites. Then, the Center for Information

Services and HPC at TU Dresden for providing its facilities for

high throughput calculations; RWTH Aachen University under

project rwth0663 for supporting simulations on their comput-

ing resources; supported by NSF under grant no. 1814609;

Gauss Centre for Supercomputing e.V. for funding this project

by providing computing time through the John von Neumann

Institute for Computing (NIC) on the GCS Supercomputer

JUWELS at Jülich Supercomputing Centre (JSC); Oak Ridge

Leadership Computing Facility, a DOE Office of Science User

Facility supported under Contract DE-AC05-00OR22725 for

resources used; the Frontera supercomputer at TACC funded

by NSF for large scaling calculations and profiling; the Swiss

PASC initiative via the SPH-EXA project; the Swiss State

Secretariat for Education, Research and Innovation (SERI).

REFERENCES

[1] “CCRedit author statement,” 2021. [Online]. Available: https://www.
elsevier.com/authors/policies-and-guidelines/credit-author-statement

[2] SPEC, “SPEC HPG: High Performance Group,” 2021. [Online].
Available: https://www.spec.org/hpg/

[3] SPEC, “SPEC MPI accelerator benchmark search program,” 2021.
[Online]. Available: http://spec.org/hpg/search/

[4] “SPEChpc 2021 homepage,” 2021. [Online]. Available: https://www.
spec.org/hpc2021/

[5] S. Boehm et al., “Evaluating performance portability of accelerator
programming models using SPEC ACCEL 1.2 benchmarks,” in ISC.
Springer, 2018, pp. 711–723.

[6] G. Juckeland et al., “From describing to prescribing parallelism: Trans-
lating the SPEC ACCEL OpenACC suite to OpenMP target directives,”
in ISC. Springer, 2016, pp. 470–488.

[7] S. Pophale et al., “Comparing high performance computing accelerator
programming models,” in International Conference on High Perfor-

mance Computing. Springer, 2019, pp. 155–168.

[8] T. Huber et al., “Impact of virtualization and containers on application
performance and energy consumption,” IU Scholar Works, 2018.

[9] T. Cramer et al., “Evaluating the performance of OpenMP offloading
on the NEC SX-Aurora TSUBASA vector engine,” Supercomputing

Frontiers and Innovations, vol. 8, no. 2, p. 59–74, Aug. 2021.

[10] T. Cramer et al., “Performance analysis for target devices with the
OpenMP tools interface,” in 2015 IEEE IPDPSW, 2015, pp. 215–224.

[11] OpenMP ARB, “OpenMP 5.1,” 2020. [Online]. Available: https://www.
openmp.org/wp-content/uploads/OpenMP-API-Specification-5-1.pdf/

[12] T. Hilbrich et al., “MPI runtime error detection with MUST: Advances
in deadlock detection,” in SC12, 2012, pp. 1–10.

[13] A. Knüpfer et al., “Score-P: A Joint Performance Measurement Run-
Time Infrastructure for Periscope,Scalasca, TAU, and Vampir,” in Tools

for High Performance Computing 2011, H. Brunst et al., Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 79–91.

[14] C. Feld et al., “Score-P and OMPT: navigating the perils of callback-
driven parallel runtime introspection,” in IWOMP. Springer, 2019, pp.
21–35.

[15] A. Afzal et al., “Desynchronization and wave pattern formation in mpi-
parallel and hybrid memory-bound programs,” in High Performance

Computing, P. Sadayappan et al., Eds. Springer International Pub-
lishing, 2020, pp. 391–411.

[16] Red Hat Customer Portal, “Kernel: Race condition in hashtables causes
kworker thread to loop into rht deferred worker() function,” 2020.
[Online]. Available: https://access.redhat.com/solutions/5337251

[17] T. Ilsche et al., “lo2s — Multi-core System and Application Performance
Analysis for Linux,” in 2017 IEEE CLUSTER, 2017, pp. 801–804.

[18] lkml.org: Josh Elsasser, “rhashtable: avoid reschedule loop after rapid
growth and shrink,” 2019. [Online]. Available: https://lkml.org/lkml/
2019/1/23/789

[19] J. Bucek et al., “SPEC CPU2017: Next-generation compute benchmark,”
in ICPE, 2018, pp. 41–42.

[20] C. D. Spradling, “SPEC CPU2006 benchmark tools,” ACM SIGARCH

Computer Architecture News, vol. 35, no. 1, pp. 130–134, 2007.
[21] “Frontera at the Texas Advanced Computing Center TACC,” 2021.

[Online]. Available: https://www.tacc.utexas.edu/systems/frontera
[22] “Summit at ORNL,” 2021. [Online]. Available: https://docs.olcf.ornl.

gov/systems/summit user guide.html
[23] Forschungszentrum Jülich, “JUWELS booster overview,”

2021. [Online]. Available: https://apps.fz-juelich.de/jsc/hps/juwels/
booster-overview.html

[24] “SPOCK a pre-exascale system at ORNL,” 2021. [Online]. Available:
https://docs.olcf.ornl.gov/systems/spock quick start guide.html

[25] H. Brunst et al., “First Experiences in Performance Benchmarking
with the New SPEChpc 2021 Suites - Measurement Data,” Oct. 2021.
[Online]. Available: https://doi.org/10.5281/zenodo.5753669

[26] A. Danalis et al., “The scalable heterogeneous computing (SHOC)
benchmark suite,” in Proceedings of the 3rd Workshop on General-

Purpose Computation on Graphics Processing Units, 2010, pp. 63–74.
[27] D. Bailey et al., “The NAS parallel benchmarks 2.0,” Technical Report

NAS-95-020, NASA Ames Research Center, Tech. Rep., 1995.
[28] X. Wu and V. Taylor, “Performance characteristics of hybrid

MPI/OpenMP implementations of NAS parallel benchmarks sp and bt on
large-scale multicore supercomputers,” ACM SIGMETRICS Performance

Evaluation Review, vol. 38, no. 4, pp. 56–62, 2011.
[29] H. Jin and R. F. Van der Wijngaart, “Performance characteristics of the

multi-zone NAS parallel benchmarks,” JPDC, vol. 66, no. 5, pp. 674–
685, 2006.

[30] J. M. Bull and D. O’Neill, “A microbenchmark suite for openmp 2.0,”
ACM SIGARCH Comp. Arch. News, vol. 29, no. 5, pp. 41–48, 2001.

[31] J. J. Dongarra et al., “The LINPACK benchmark: past, present and
future,” Concur. and Comput.: Practice and Experience, vol. 15, no. 9,
pp. 803–820, 2003.

[32] M. Adams, “HPGMG 1.0: A benchmark for ranking high performance
computing systems,” 2014.

[33] M. A. Heroux et al., “HPCG benchmark technical specification,” SNL,
Tech. Rep., 2013.

[34] M. A. Heroux et al., “Improving performance via mini-applications,”
SNL, Tech. Rep. SAND2009-5574, vol. 3, 2009.

[35] J. Cook et al., “Proxy app prospectus for ECP application development
projects,” LLNL, Tech. Rep., 2017.

[36] V. Dobrev et al., “Identify initial kernels, bake-off problems (bench-
marks) and miniapps wbs 1.2. 5.3. 04, milestone ceed-ms6,” ECP

Milestone Report, 2017.
[37] N. Sultana et al., “Understanding the usage of MPI in exascale proxy

applications,” in 2018 SC Conference Workshop, 2018.
[38] R. Eigenmann and S. Hassanzadeh, “Benchmarking with real industrial

applications: the SPEC High-Performance Group,” IEEE Computational

Science and Engineering, vol. 3, no. 1, pp. 18–23, 1996.
[39] R. Eigenmann et al., “SPEC hpc2002: The next high-performance

computer benchmark,” in International Symposium on High Performance

Computing. Springer, 2002, pp. 7–10.
[40] H. Saito et al., “Large system performance of SPEC OMP2001 bench-

marks,” in International Symposium on High Performance Computing.
Springer, 2002, pp. 370–379.

[41] M. S. Müller et al., “SPEC OMP2012—an application benchmark suite
for parallel systems using OpenMP,” in IWOMP. Springer, 2012, pp.
223–236.

[42] M. S. Müller et al., “SPEC MPI2007—an application benchmark suite
for parallel systems using MPI,” Concur. and Comput.: Practice and

Experience, vol. 22, no. 2, pp. 191–205, 2010.
[43] G. Juckeland et al., “SPEC ACCEL: A standard application suite for

measuring hardware accelerator performance,” in PMBS. Springer,
2014, pp. 46–67.

684

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on October 09,2022 at 01:43:04 UTC from IEEE Xplore. Restrictions apply.

