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Abstract—Caused by sensor errors, model uncertainties, chan-
ges in ambient environment, data loss or malicious cyber attacks,
outliers can contaminate the measurement process of many
nonlinear dynamic systems. When the extended Kalman filter
(EKF) is applied to such systems for state estimation, the
outliers can seriously reduce the estimation accuracy. This paper
proposes an innovation saturation mechanism to make the EKF
robust against outliers. This mechanism applies a saturation
function to the innovation process that the EKF leverages to
correct the state estimation. As such, when outliers occur, the
distorted innovation is saturated so as not to undermine the
state estimation. The mechanism features an adaptive adjustment
of the saturation bounds. The design leads to the development
robust EKF approaches for both continuous- and discrete-time
systems. The stability of the proposed approaches when applied to
linear systems is characterized, showing that they are capable of
performing bounded-error estimation in the presence of bounded
outlier disturbances in this case. A simulation study about mobile
robot localization is presented to illustrate the efficacy of the
proposed design. Compared to existing methods, the proposed
approaches can effectively reject outliers of various magnitudes,
types and durations, at significant computational efficiency and
without requiring measurement redundancy.

Index Terms—Kalman filter, extended Kalman filter, robust
estimation, measurement outlier, localization.

I. INTRODUCTION

The Kalman filter (KF) is arguably the most celebrated
estimation technique in the literature, which can optimally
estimate the state of a linear dynamic system on the basis
of a model and a stream of noisy measurements. In practice,
it is the extended KF (EKF), a nonlinear variant of the KF, that
is the most widely used, because real-world systems usually
involve nonlinearities [1]. The EKF’s applications range from
control systems to signal processing, system health monito-
ring, navigation and econometrics. However, a major challenge
for high-quality estimation in practice is the measurement
outliers, which can come from a diversity of sources, e.g.,
unreliable sensors, environmental variability, data dropouts
in transmission, channel biases, incorrect assumptions about
noises, model mismatch, and data falsification attacks from
cyberspace [2]-[7]. When outliers corrupt the measurement
data, the performance of the EKF can be seriously limited or
degraded. As such, without adequate robustifcaition against
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outliers, the EKF will not be viable for a variety of real-world
practical estimation problems.

Literature review. Robust state estimation against measure-
ment outliers has attracted significant interest from researchers
during the past years. A majority of the effort has been devoted
to robustifying the standard linear KF. One can divide the
existing methods mainly into three main categories. The first
category models the measurement noises using heavy-tailed
distributions rather than exponential distributions, e.g., the
Gaussian distribution as often assumed in the classical KF, to
capture the occurrence of an outlier. Heavy-tailed Gaussian-
mixture [8], [9] and ¢-distributed noise models [10] have been
used to modify the KF for better robustness. The study [11]
view an outlier as a result of measurement noises with variable
covariances. Assuming the noise covariances to follow an
inverse Gamma distribution, it adds to the KF a procedure of
adaptive identification of the key parameters involved in the
inverse Gamma distribution. Methods of the second category
seek to assign the measurement at each time with a weight, in
an attempt to downweight outlying measurements. In [2], an
expectation-maximization algorithm is used to enable adaptive
determination of the weight for a measurement. The results
are generalized in [12] and then extended to the smoothing
problem. In [13], [14], a measurement-weighting-based pre-
whitening procedure is designed to decorrelate outliers from
normal measurements as a basis for building a robust KF.
The third category of methods extends the KF to conduct
simultaneous state and input estimation, regarding an outlier as
an input added to the measurement and estimating it together
with the state. To accomplish this, a few methods have been
built on minimum variance unbiased estimation [15]-[20].
Further, Bayesian methods are developed in [21] to achieve
joint state and outlier estimation through probabilistic filtering.

Although much attention has been given to outlier rejection
for the linear KF, it is more important and pressing to robustify
the EKF due to its practical significance. The EKF run relies
on linearized approximations based on the most recent estima-
tion. When measurement outliers arise, they would increase
the state estimation error, which in turn will amplify the error
involved in the linearized approximations. This may further
drive away the estimation at the next time instant, potentially
leading to divergence. Hence, the EKF is more vulnerable to
outliers and needs effective ways to reject them. However, the
current literature includes only few studies in this regard, due
to the associated difficulty. In [22], the EKF is blended with a
procedure that detects an outlier by evaluating the probability
of its occurrence based on innovation statistics. The method
in [13] is modified in [23] to deal with outliers affecting the



EKF run.

It is noteworthy that the above robust KF/EKF techniques,
despite their importance, generally involve a dramatic increase
in computational complexity, due to iterative optimization
or other computationally expensive procedures to detect or
suppress outliers at every time instant. Besides, some of them
require measurement redundancy to differentiate outliers from
normal measurements or estimate them directly. This, however,
is not always possible, because a real system often allows only
a limited number of sensors to be deployed.

In addition to the above outlier-robust KF/EKF methods,
one can also find other types of estimation approaches in the
literature to suppress outliers. Among them is the well-known
Hoo filtering [24], [25], which considers outliers as unknown
yet bounded uncertainty. Yet, this approach introduces con-
servatism as it performs worst-case estimation by design. A
stubborn observer is developed in [26], which employs a
saturation function in the output injection signal to mitigate the
influence of outliers. This method is not only computationally
fast, but also can deal with very large outliers. Nonetheless,
it is applicable to only linear systems suffering outliers that
occur occasionally and individually.

Statement of contribution. In this work, we offer a new
design to enhance the robustness of the EKF against mea-
surement outliers, presenting a three-fold contribution. First,
we propose a unique innovation saturation mechanism to
reject outliers and ensure the performance of the EKF. The
innovation plays a key role in correcting the state prediction
in the EKF but can be distorted by outliers. To overcome this
vulnerability, our mechanism saturates the innovation when
it is unreasonably large in order to reduce the effects of
outliers. At the core of the mechanism is a procedure for
adaptively adjusting the saturation bounds to effectively grasp
the change of the innovation. Along this line, we develop
the innovation-saturated EKF (IS-EKF) for both continuous-
and discrete-time systems. Second, we analyze the stability
of the proposed IS-EKF for the linear case, proving that, if
applied to linear systems, it produces bounded-error estimation
when outlier disturbances are bounded. Finally, we apply the
proposed IS-EKF to the problem of mobile robot localization,
demonstrating its effectiveness in providing reliable estimation
in the presence of measurement outliers.

We point that the idea of innovation saturation was first
considered in [26] to suppress outliers affecting a linear state
observer and then exploited in our previous work [27] to
robustify the linear KF. However, both studies by design can
only deal with outliers that appear singly or one at a time on a
linear system, as is with various other methods in the literature.
By contrast, our approaches can handle outliers of different
magnitudes, types, and durations and imposed on nonlinear
systems. They are structurally concise, computationally effi-
cient, and free from requiring measurement redundancy. These
advantages well lend them to practical application.

Organization.This paper is organized as follows. Section II
develops the IS-EKF for nonlinear continuous-time systems
and analyzes its stability for linear systems. Section III extends
the results to discrete-time systems. A simulation example
based on mobile robot localization is provided in Section IV

to illustrate the usefulness of the proposed design. Finally,
Section V summarizes the concluding remarks.

Notation: Notations used throughout this paper are standard.
The n-dimensional Euclidean space is denoted as R™. For a
vector, || - || denotes its 2-norm. The notation [ is an identity
matrix; X > 0 (> 0) means that X is a real, symmetric
and positive definite (semidefinite) matrix; for a symmetric
block matrix, we use a star (%) to represent a symmetry-
induced block in a matrix; the notation diag(...) stands
for a block-diagonal matrix. The minimum and maximum
eigenvalues of a real, symmetric matrix are denoted by A(-)
and A(-), respectively. Matrices are assumed to be compatible
for algebraic operations, if their dimensions are not explicitly
stated.

II. IS-EKF FOR CONTINUOUS-TIME SYSTEMS

This section develops the IS-EKF approach for a nonlinear
continuous-time system and then offers analysis of its stability
in the linear case.

A. IS-EKF Architecture
Consider the following model:

{it = f(x¢) + wy,

1
Y = h(xy) + Ddy + vy, )

where x € R” is the state vector, y € RP the measurement
vector, and w; € R"™ and v; € RP zero-mean, mutually
independent noises with covariances given by @ > 0 and
R > 0, respectively. The nonlinear mappings f and / represent
the state evolution and measurement functions, respectively.
Note that the measurement ¥, is subjected to the outlier effects
caused by an unknown disturbance d; € R™. The matrix D
shows the relation between d; and y; and is assumed to be
unknown. While an input-free model is considered as in (1),
the state estimation design in sequel can be readily extended
to an input-driven model.

Modifying the conventional EKF, we propose the following
IS-EKF procedure:

Ty = f(&) 4+ K - saty (ye — h (&), (2a)
K;,=PC/ R, (2b)
P, = AP, + P,A] +Q — K,RK], (2¢)

where K is the estimation gain matrix, and P; is a positive
definite matrix that approximately represents the estimation
error covariance in the standard EKF, and
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Recall that, for the conventional EKF, the state estimation
is corrected by the innovation (y; — h(Z:)). Its effectiveness,
however, can be compromised if y, is corrupted by an outlier.

To address this issue, we use a saturated innovation instead,
as shown in (2a). Specifically, it is defined as
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sato (yr — h(@¢)) = |sat o; (yie — hi(20))|,  (3)



where o; > 0, y; is the i-th element of y, and h; the -
th element of A. For a variable 7, the saturation function
is defined as sat.(r) = max{—e, min{e,r}}. For (3), the
saturation range [—./0;,+/0;] can be loosely viewed as an
anticipated range of the innovation. If falling within this range,
the innovation is considered as reasonable and applied without
change to update the state estimation. Otherwise, it may be
affected by an outlier and thus saturated to prevent the outlier
from dragging the estimation away from a correct course.

For the EKF, it is observed that a saturation function with
fixed upper and lower bounds is inadequate to reject outliers,
as it may either confuse with an outlier a certain measurement
generating a large innovation, or miss an outlier approximately
falling within the saturation range. More often than not, one
can also find it practically difficult to choose the fixed bounds,
especially when knowledge of the outliers is scarce. Therefore,
we propose the following procedure to adaptively adjust the
saturation bounds:

(4a)
(4b)

b —E4t

Oit = M,i0ie + V14808 -, 040 > 0,

. 2

Eit = Noi€it + 72,0 (Wie — hi(2e))”, €0 >0,

fori=1,2,...,p, where A1 ;, Ao ; < 0 and ;1 4,72,; > 0. For
convenience of notation, we define

A; = diag(][- - D), Iy =diag([- -+ vy - 1),

fori=1,2and j=1,2,--- ,p.

Based on (4), o; will dynamically change driven by the
innovation (y;; — h;(Z;)) to enable the adaptation of the
saturation bounds. This mechanism specifically involves a
double-layer structure. The lower layer, based on (4b), tracks
the changes in the innovation signal the variable ¢; will
keep itself at an appropriate level when the innovation is
normal but become large when the innovation is altered by
outliers. The upper layer, based on (4a), is concerned with
adjusting the saturation bounds. As is seen, o; will rapidly
diminish when ¢; is large due to outliers; it will also be driven
up by a relatively small ;. Adapting o; like this, the design
proposed in (4) will achieve a discernment between an outlier
and a normal measurement, filtering away innovation if it is
corrupted by outliers and allowing it to pass through otherwise
to correct the prediction.

Aij e

B. Stability Analysis for Linear Systems

It has been widely acknowledged as a challenge to deter-
mine the exact conditions for the asymptotic stability of the
EKEF, even though there exist some studies. The analysis will
be even more difficult for the IS-EKF, because of the added
innovation saturation procedure and the nonlinear update of
the saturation bounds. To formulate a tractable analysis, we
restrict our attention to the asymptotic stability of the IS-EKF
for a linear deterministic system:

(tt = Axtv

Yy = Cl‘t + Ddt
For this system, the IS-EKF acts as a state observer, and the
estimation is performed by the innovation-saturated KF. Here,

we assume that (A,Q2) is stabilizable and that (A,C) is
detectable, as often needed for estimation.

Let us first define the state estimation error as ¢; = T; — Ty.
The dynamics of e; is governed by

ét = Aet — Kt . Satg(Cet — Ddt) (5)

To proceed further, we define the following matrix

M;—aP " —C"(R'+W) CT(I:—R "D
St = * 2W WD B
* * U

where M; = P, 'QP; ' + CT(R™' — I,)C, W is a diagonal
positive definite matrix, U a positive definite matrix, and
a > 0 a positive scalar. Furthermore, we recall a well-known
fact [28]: if (A, Q2) is stabilizable and (A, C) detectable, P;
for Py > 0 in (2c) will approach a unique positive-definite
solution P, satisfying

APy + PoAT +Q — P .CTR™ICP, = 0.

We obtain the following result regarding the stability of the
proposed IS-EKF for the linear deterministic case.

Theorem 1. Suppose ||d;|| < p <ocoand p=e Y, 7, <
oo, where i, p > 0. If there exist Py, W, U, a and I' such
that Sy > 0 and 0 < o < —max{..., A1, 24,...} for
1 =1,2,...,p, then the estimation error e; is upper bounded
with

1 1
el < \/ [e‘”Vo + —(I—e ) (ap® +p)|,
C9 «

(6a)
2
lim fle,]| < | 212,
t—00 acs

5\(U+DTF2D), Cy =

(6b)

where ¢ = A(Pt_l) and c3 =

APLY).

oo

Proof: We consider using the Lyapunov function
Vi=e/ P e + 2oi0it+ D Eit-

The first-order time derivative of V; along (5) is
. . d(pt : .
Vi :26:Pt716t+6:7(d; )€t+22:0'7;1t+21:5¢7t

=2¢] P! [Ae; — K - sat, (Ce; — Ddy))
—e/ P7' (AP, + AT +Q — KyRK ) P ey
+ (Cey — Ddy) " In(Cey — Ddy) + 32, M.iois
+ > Aoi€i + Y Yi€i e S
< —e PF'QP ey + ¢/ CT(RY + I)Cey
—2¢] CT R 'sat, (Ce; — Ddy) — 2¢] CT I'yDd,
+d[ DT IDdy + 3, Moioie + 32 Aaigin + p,
where the relation g; e™ %9t < e~ is used. Let us define
sy = Cey — Dd; — sat,(Cey — Ddy). Then,
V, < —e] Mye; +2¢/ C"R™'s; 4+ 2¢/ CT(R™Y — I) Dd,
+d! DT DAy + 3, Mo + 3 Aasigin + p



By [29, Lemma 1.6], we have
—s{ W (s; — Ce; + Ddy) > 0.
It then follows that
Vi, <V, — 25/ W (s, — Cey + Ddy)
< —e;thet + Qe:CT (R*1 + W) St — 2s:W5t
+2¢/ CT(R™Y — I)Ddy — 2s] W Dd+
+d! DT Dy + 3, Mg + 3 Aoigie +p

e]" [M, —CT(R'+W) CT(Iy—R1)D
= — |5 * 2W WD
i * * U
€t
St + d: (U + DTF2D> dt + 21 Al,iai,t + 21 )\2’1'57:775
dy
+ p.

If S; > 0, we have
V(t) < —aef P ley —aY 00 —ad i

+d] (U+DTID)dy+ 3, (i + a)oi
+ Zl()‘QJ + Oé)é‘@t + p.

If 0 < @ < —max(\;), one has \; + a < 0. Then,

V,<—aV,+d] (U+D'I:D)d;+p
< —aVi+add® +p
< —aVi+cp® + p.

N

Hence,

1
Ve <emWo+ —(
(67

Furthermore, V; > ca||e¢||?. Then,

L— ™) (e1p? + p).

e—atvb +

1 —
Jer]? < (1= ep +0)|

1
o
which implies (7a). When ¢t — oo, we can obtain (7b). °

Theorem 1 shows that, when applied to a noise-free li-
near system with upper-bounded outliers, the proposed IS-
EKF scheme can lead to bounded-error estimation if some
conditions are satisfied. Further, the following corollary can
be developed.

Corollary 1. Suppose ||d:|| < p < oo for p > 0. If there
exist Py, W, U, o and I" such that S; > 0 and 0 < a <
—max{..., A1, Ao + 714, ...} for it =1,2,...,p, then the
estimation error e; is upper bounded with

1 1
ledl < \/ L [eatm La—eonepe], @
C9 «

C1
— 1.
QC3

lim e < (7b)
t—o00

To prove this result, one can generally follow the proof of
Theorem 1 while upper-bounding ¢; ;e™“** by ¢;; instead of
< e~ 1. Corollary 1 implies that e; will exponentially approach
zero as t — oo if limy_, oo dy = 0.

Remark 1. According to Theorem 1 and Corollary 1, selection
of Py can be important for making the condition S; > 0
satisfied. Given the structure of S, it is cautioned that too
large a Py may bring the risk of divergent estimation. However,
Py is monotonically non-decreasing for Py = 0 if (A,Q%)
is stabilizable and (A,C) detectable [28]. Leveraging this
property, it is suggested that Py be set to be small enough
(close to zero in particular if some accurate prior knowledge
about the initial state is available) when the IS-EKF approach
is to be implemented. °

IIT1. IS-EKF FOR DISCRETE-TIME SYSTEMS

Extending Section II, this section investigates the develop-
ment of IS-EKF for nonlinear discrete-time systems.

A. IS-EKF Architecture

Consider a nonlinear discrete-time model

{$k+1 = f(xx) + wg,

8
yr = h(zk) + Ddy, + vg. ®)

The notations in above are the same as in Section II. Still, the

noises wy and v are zero-mean, mutually independent with

covariances () > 0 and R > 0, respectively. We also assume

that (A, Q7) is stabilizable and (A, C) detectable without loss

of generality. In addition, we assume that A is invertible.
For this system, we propose the IS-EKF as follows:

Tt = f (Zr—1jp-1) 5 (%a)
Pyjj—1 = Ap—1 P11 451 + Q, (9b)
Tk = Tpp—1 + Ki - sate (Y — h (Zrpe-1)), (90
Ky, = Pyp_1Cy (CiPy_1C +R) (9d)
Py = Pyjpo1 — Ky, (CiPy1Cf + R) K, (%)

where Ty ;,_; is the one-step-forward prediction of xg, Ty
the updated estimate when g, arrives to correct the prediction,
and

_9f
 Ox

h
) Ck:i

Tk|k

A

Th|k—1

In addition, K is the estimation gain, and Py and Py
the approximate estimation error covariances in the standard
EKF. Akin to (2), we use an innovation saturation mechanism
to deal with measurement outliers, as shown in (9¢). In analogy
to (4), o is dynamically adjusted by

Tik+1 = A1,i0ik + V2,80 k€ 0%, 00 > 0, (10a)

N 2
Eihr1 = A2,i€ik + V2. (Yik — Cidippi—1) 5 €i,0 > 0,
(10b)

fori=1,2,...,p, where 0 < )\171‘, )\271‘ < 1 and V1,05 V2,0 > 0.

B. Stability Analysis for Linear Systems

We consider the stability analysis for the above IS-EKF
when it is applied to a linear deterministic system:

Tpy1 = Axy,
yr = Cxg + Ddy,.



Defining the state prediction error as ex = Tg|p—1 — Tk, its
dynamics can be expressed as

€k+1 = Thy1lk — Thtl

erk —AKk -sata (Cek —de) (11)

Before proceeding further, we show some results that will
be needed later. Suppose that (A,Q%) is stabilizable and
that (A, C) detectable. Then, Py, will converge to a fixed
positive definite matrix P, that satisfies

P — AP AT + !

OP AT,

Q — AP, CT (CPxCT + R)

It is also known that P ;,_; is upper and lower bounded, and
so is Py ;. Hence, there should exist € such that Pk| ; < el.
Then, if A is invertible,

_ T —1
Pk+1\k (Apk’\kA + Q)
-T (Pk|k + A—IQA—T)_l A—l
1
-7 1 T
|:Pk|k k\k k|k +A4°Q 1A) k|k] A7
<A77 Pl — Pgh (el + ATQT ) gt A7
~T [p-1 L
[ klk — k|kQPk|k} AT
where Q = (el + ATQflA)fl. We also define
Tl,k - apk_Ui—l TQJc - CTW Tg,k
7 = " Tip+2W  Tyn+WD|,
* * U

where W is a diagonal positive definite matrix, U a positive
definite matrix, o > 0 a positive scalar, and

Ty, =C'R'C+P kQ i~ PapQCTRTIC
~C'R'CQPy; —CTR™'C (Pyy — Q)
-CTR™C - CT I,
Top=—-C R+ P,J;C_‘?C’TR_1
+C"R7'C(Pyp —Q)CTR™Y,
Ts ) = [* C'R™'+ PIJ;QC’TR’I
+CTRTC (Pup Q) CTR™ +CT 1| D
Tyx=—R'C(Pyp—Q)CTR™,
Tsp=—[R'C(Pyp — Q) CTR™'] D.
In addition, we consider another matrix
Ter = D" [R_lc (Pk\k — Q) C'R™'+ FQ} D.

Here, the upper boundedness of Py, implies that Ty is also
upper bounded, with the bound denoted as 7§.

The following theorem shows the result about the stability
of the prediction error dynamics.

Theorem 2. Suppose ||di|| < p < oo, p=e"1> 7, < o,
and that A is invertible. If there exist Poy_1, W, U, a and I
suchthat Z, > 0 and 0 < o < 1—max{..., A1, Aas,...} for

i =1,2,...,p, then the prediction error ey, is upper bounded

with

1 1—(1—a)k1
wuhs¢®[u—aW%+(cj”<qw+m>,
(12a)

cipi® +p
acy

lim [leg| < (12b)
k—oo

where ¢ = MNTs +U), ca = )\(Pklli 1), and c3 = M(PZ1).
Further, if 0 < a < 1 —max{..., A4, Aoy +Y14,...} for
1 =1,2,...,p, then

1 1—(1—a)k1
llexll < \/02 {(1 —a)kVy + %cllﬂ . (13a)

. (13b)

lim |leg] <
k—oc0 acs

Proof: Consider a Lyapunov function
Vi = el-ch]J/i,lek + Zl ik + Zl Eik-
Using (11), we have
Vigr = €k+1P +1|k€k+1 + i ikl T D ikl
[Aek — AK,, - sat, (CA@;c — de)]
AT [ ka k|kQ k|k}
. [Aek - AKk . sata(Cek - de)]
+(Cex — Ddy) " T (Cey, — Dd) + 3, At ici e
+ > A€k + D 1iEi ke THE
1 1
<ep [Pk\k k|kQ k|k} —2¢;, [Pk\k k|kQ k|k
- Ky - sat,(Cep — Ddy) +sat, (Cey, — Ddy,) - K,
[Pt = PGrQPL] K -sato (Cer — Ddy)
+ (C’ek - de) Iy (C’ek - de) + Zi >\1,i0'11,k
+ > Aocik + p-
Let us define
s = Cey, — Ddj, — sat, (C’ek — de).
In addition, we have Pk‘; Pk_|k ,+CTR™IC, PklliKk =
CTR™!

and K| P} ik K, = R™1CPy,CT R™1. These relati-
ons can be readily proven. It then follows that

Vi1 < e,;'—P]J,Llek — Qengsk — Ze,IT;;’kdk
— sp Ty kst — 28} Ts gdy, + dj To xdy + 30, M.ioik
+ >, Ak + p-
According to [29, Lemma 1.6], we have
—s5 W (s — Cey, + Ddy) > 0.

T
ek Tl}kek —

It can be obtained that

Virr < Vi1 — 285 W(sy, — Ceg + Ddy,)
Tp—1 T T T
<eg Pk\kqek —eyTiper —2¢, (Tn —C' W

— 26;—T37kdk — Sz (T47k -+ 2W) Sk

)Sk



— 28;r (T5,]c + WD) dk + d;—Tdek

+> Mok + Zz Aoi€ik +p
€L T

= €ZP’;‘;_16;€ — | Sk
dy,

Ty Top—C'W T3 €k

* Ty +2W  T53 +WD Sk

* * U dp

+ d;r (T(;’k + U) di + Zl Ao + Zi A2i€ik + P
If Z;, > 0, then

Vi1 < (1= a)ef Prp_jer + (1= a) 3, 00k
+(1—a)>ein+d (To+U)dy
+3 M ta—1)oie+> (M +a—1)eik+p.

Because 0 < o < 1 — max{A1, Ao} fori=1,2,...,p,

V,H_lg(lfoz)Vker;I(Tes,kJrU)dk*P
<(L—a)WVi+A(Ts+U) p* +p,

from which one can easily obtain (13a)-(13b). °

Remark 2. For the discrete-time case, it is also recommended
that Py i1 should be initialized to be small enough and near
zero, in order to make the conditions in Theorem 2 satisfied
more easily. °

IV. SIMULATION EXAMPLE

In this section, we offer an application example to show
the effectiveness of the proposed IS-EKF. The example is
concerned with mobile robot localization, the purpose of which
is to enable a mobile robot to determine its position using GPS
and onboard sensing data. However, a challenge for precise
localization is the outliers due to weak or abnormal GPS
signals and sensors noises or temporary failures [30].

Consider a mobile wheeled robot with the following dyna-
mic model [31], [32]:

D k+1 = Dake + T cos(0y),
Pyk+1 = Py + T sin(0r),
Ory1 = Op + Ty,

where p, 1, and p, ;, are the coordinates of the robot’s center
of mass, 05 the heading angle, 7; the robot’s speed at the
center of mass, J; the steering angle, and 7' the samplin
period. Thus, the state vector of the robot is [py x Dy.k Ok]
and the control input vector is [n 5k]T. Here, 7, and & can
be read from onboard meters. In addition, we let z; and yy
be obtained using GPS and 6, be measured by a compass.
The measurement model hence is a linear equation, but the
dynamic model is nonlinear. Process and measurement noises
are included into the model to represent uncertainties.

When the robot is moving and sampled every 7' = 0.1
s, the measurements of the z-coordinate and the steering

angle are corrupted by outliers from time to time. The outlier
disturbance dy, is designed as

[51]" 150 < k < 200,

2y 350 < k < 400,

dp =4 [10050]" 450 < k < 500,
100 0

0 50 Gk 550 <k < 600,

where ¢, € R? is a uniform random vector. This design takes
account of different types of outliers in four stages — dj, is
small at Stages 1-2 and large Stages 3-4, and it is constant at
Stages 1 and 3 and random at Stages 2 and 4. In this setting,
synthetic measurements are generated and shown in Fig. 1,
in which the outlier-corrupted measurements are displayed in
shaded areas.

It can be easily verified that the conventional EKF will
completely fail when the above outliers are imposed on the
measurements. One way to improve the robustness of the EKF
is to use the 3o rule [33]. That is, the innovation (yx — h(Z))
is considered as normal if it lies within the 30 bounds based
on the covariance matrix (Hy Py, H ];r + R), and as outlying
otherwise. It is reset to be zero in the latter case so as not to
distort the update procedure. We call this method as EKF with
3o outlier rejection and use it as a benchmark to compare with
the IS-EKF. In addition, to apply the IS-EKF in (9)-(10), the
following parameters are set for (10):

Ay =diag([0.5 0.5 0.1]), Ay =diag([0.1 0.1 0.1]),
I =diag([10* 10* 5x1073]), I =diag([9 9 9]).

Figs. 2(a)-2(c) show the estimation of the z- and y-coor-
dinates and the heading angle 6 through time, respectively.
It is seen that, with the 3¢ outlier rejection, the EKF does
not diverge seriously but still struggles with providing reliable
state estimation. As a contrast, the IS-EKF demonstrates much
better performance, maintaining a smooth and accurate esti-
mation when the outliers appear. Further, Fig. 3(a) illustrates
the estimated trajectories by the standard EKF, EKF with
30 outlier rejection, and the IS-EKF, in comparison with the
ground truth. The standard EKF completely fails to estimate
the position due to the outliers in this case. The 3o outlier
rejection enhances its estimation considerably, but the IS-
EKF reconstructs the trajectory at the best accuracy. These
results reflect a considerable effectiveness of the IS-EKF in
addressing the outliers..

Here, we provide some further remarks about the advantages
and application of the IS-EKF.

Remark 3. In addition to the example presented above, we
performed numerous simulations about robot localization in
different settings (e.g., outliers, noises, initial estimation),
and we found that the IS-EKF consistently offer satisfactory
estimation. Two important observations include:

o The IS-EKF can well handle outliers that last for a
relatively long period and vary in magnitude or type.
This contrasts with many existing methods. For example,
the stubborn observer in [26] can only reject occasional,
singly outliers, and the EKF with 30 outlier rejection
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is less effective for dealing with small outliers that
approximately align with the +3c bounds. Note that
the EKF may offer improved estimation by adjusting the
outlier detection bounds from £30 to £fo with £ € RT.
However, for each selection of ¢, it can still be futile for
outliers that roughly lie within the bounds.

o As an additional benefit, the IS-EKF demonstrates good
robustness again initial state uncertainties. It is known
that the EKF can easily fail if the initial guess is not
accurate, although it is often difficult to obtain a precise
guess in practice. However, the innovation saturation can
often check the divergence caused by a poor initial guess,

reducing the possibility of a complete failure. °

Remark 4. Application of the IS-EKF requires the selection
of a set of parameters for the innovation saturation procedure.
We have the following suggestions for practitioners:

o Let A1 3, Ao < 0 for a continuous-time system and 0 <
A,is A2,i < 1 for a discrete-time system.

o It is useful to choose s ; such that the dynamics €, is fast
in order to better track the change in innovation. This can
be done by letting it take an appropriately small negative
number in the continuous-time case or a number close to
zero in the discrete-time case.

o Let Vi, V2,0 > 0 and Y2,i < 10.

o The selection of vy, depends on the magnitude of the
corresponding innovation process. Set 7y, ; to be a large
number if the innovation is usually large in the normal,
i.e., outlier-free, case and a small number otherwise. e

V. CONCLUSION

The EKF has gained wide application across different fields
as a popular state estimation tool. However, its estimation
accuracy can be severely hampered by measurement outliers
due to sensor anomaly, model uncertainties, data transmission
errors or cyber attacks. This paper presented a novel innovation
saturation mechanism, IS-EKF, which is a robustified EKF,
as an alternative to the conventional EKF. This mechanism
saturates the innovation process, which is crucial for correcting
the state estimation, thus ensuring a reasonable correction
to be applied when outliers occur. We showed the IS-EKF
architecture for both continuous- and discrete-time systems
and provided theoretical analysis to derive useful stability
properties of the proposed approaches for linear systems.
We applied the discrete-time IS-EKF approach to mobile
robot localization by simulation to illustrate its effectiveness.
The numerical simulation results showed that the proposed
approach brings about significant robustness for localization
against GPS outliers. This indicated the viability of IS-EKF
in effectively rejecting outliers of varying magnitude and
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durations at a reasonable computational cost and without the
need of measurement redundancy.
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