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Robust Extended Kalman Filtering for Systems with
Measurement Outliers

Huazhen Fang, Mulugeta A. Haile and Yebin Wang

Abstract—Caused by sensor errors, model uncertainties, chan-
ges in ambient environment, data loss or malicious cyber attacks,
outliers can contaminate the measurement process of many
nonlinear dynamic systems. When the extended Kalman filter
(EKF) is applied to such systems for state estimation, the
outliers can seriously reduce the estimation accuracy. This paper
proposes an innovation saturation mechanism to make the EKF
robust against outliers. This mechanism applies a saturation
function to the innovation process that the EKF leverages to
correct the state estimation. As such, when outliers occur, the
distorted innovation is saturated so as not to undermine the
state estimation. The mechanism features an adaptive adjustment
of the saturation bounds. The design leads to the development
robust EKF approaches for both continuous- and discrete-time
systems. The stability of the proposed approaches when applied to
linear systems is characterized, showing that they are capable of
performing bounded-error estimation in the presence of bounded
outlier disturbances in this case. A simulation study about mobile
robot localization is presented to illustrate the efficacy of the
proposed design. Compared to existing methods, the proposed
approaches can effectively reject outliers of various magnitudes,
types and durations, at significant computational efficiency and
without requiring measurement redundancy.

Index Terms—Kalman filter, extended Kalman filter, robust
estimation, measurement outlier, localization.

I. INTRODUCTION

The Kalman filter (KF) is arguably the most celebrated

estimation technique in the literature, which can optimally

estimate the state of a linear dynamic system on the basis

of a model and a stream of noisy measurements. In practice,

it is the extended KF (EKF), a nonlinear variant of the KF, that

is the most widely used, because real-world systems usually

involve nonlinearities [1]. The EKF’s applications range from

control systems to signal processing, system health monito-

ring, navigation and econometrics. However, a major challenge

for high-quality estimation in practice is the measurement

outliers, which can come from a diversity of sources, e.g.,

unreliable sensors, environmental variability, data dropouts

in transmission, channel biases, incorrect assumptions about

noises, model mismatch, and data falsification attacks from

cyberspace [2]–[7]. When outliers corrupt the measurement

data, the performance of the EKF can be seriously limited or

degraded. As such, without adequate robustifcaition against
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outliers, the EKF will not be viable for a variety of real-world

practical estimation problems.

Literature review. Robust state estimation against measure-

ment outliers has attracted significant interest from researchers

during the past years. A majority of the effort has been devoted

to robustifying the standard linear KF. One can divide the

existing methods mainly into three main categories. The first

category models the measurement noises using heavy-tailed

distributions rather than exponential distributions, e.g., the

Gaussian distribution as often assumed in the classical KF, to

capture the occurrence of an outlier. Heavy-tailed Gaussian-

mixture [8], [9] and t-distributed noise models [10] have been

used to modify the KF for better robustness. The study [11]

view an outlier as a result of measurement noises with variable

covariances. Assuming the noise covariances to follow an

inverse Gamma distribution, it adds to the KF a procedure of

adaptive identification of the key parameters involved in the

inverse Gamma distribution. Methods of the second category

seek to assign the measurement at each time with a weight, in

an attempt to downweight outlying measurements. In [2], an

expectation-maximization algorithm is used to enable adaptive

determination of the weight for a measurement. The results

are generalized in [12] and then extended to the smoothing

problem. In [13], [14], a measurement-weighting-based pre-

whitening procedure is designed to decorrelate outliers from

normal measurements as a basis for building a robust KF.

The third category of methods extends the KF to conduct

simultaneous state and input estimation, regarding an outlier as

an input added to the measurement and estimating it together

with the state. To accomplish this, a few methods have been

built on minimum variance unbiased estimation [15]–[20].

Further, Bayesian methods are developed in [21] to achieve

joint state and outlier estimation through probabilistic filtering.

Although much attention has been given to outlier rejection

for the linear KF, it is more important and pressing to robustify

the EKF due to its practical significance. The EKF run relies

on linearized approximations based on the most recent estima-

tion. When measurement outliers arise, they would increase

the state estimation error, which in turn will amplify the error

involved in the linearized approximations. This may further

drive away the estimation at the next time instant, potentially

leading to divergence. Hence, the EKF is more vulnerable to

outliers and needs effective ways to reject them. However, the

current literature includes only few studies in this regard, due

to the associated difficulty. In [22], the EKF is blended with a

procedure that detects an outlier by evaluating the probability

of its occurrence based on innovation statistics. The method

in [13] is modified in [23] to deal with outliers affecting the
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EKF run.

It is noteworthy that the above robust KF/EKF techniques,

despite their importance, generally involve a dramatic increase

in computational complexity, due to iterative optimization

or other computationally expensive procedures to detect or

suppress outliers at every time instant. Besides, some of them

require measurement redundancy to differentiate outliers from

normal measurements or estimate them directly. This, however,

is not always possible, because a real system often allows only

a limited number of sensors to be deployed.

In addition to the above outlier-robust KF/EKF methods,

one can also find other types of estimation approaches in the

literature to suppress outliers. Among them is the well-known

H∞ filtering [24], [25], which considers outliers as unknown

yet bounded uncertainty. Yet, this approach introduces con-

servatism as it performs worst-case estimation by design. A

stubborn observer is developed in [26], which employs a

saturation function in the output injection signal to mitigate the

influence of outliers. This method is not only computationally

fast, but also can deal with very large outliers. Nonetheless,

it is applicable to only linear systems suffering outliers that

occur occasionally and individually.

Statement of contribution. In this work, we offer a new

design to enhance the robustness of the EKF against mea-

surement outliers, presenting a three-fold contribution. First,

we propose a unique innovation saturation mechanism to

reject outliers and ensure the performance of the EKF. The

innovation plays a key role in correcting the state prediction

in the EKF but can be distorted by outliers. To overcome this

vulnerability, our mechanism saturates the innovation when

it is unreasonably large in order to reduce the effects of

outliers. At the core of the mechanism is a procedure for

adaptively adjusting the saturation bounds to effectively grasp

the change of the innovation. Along this line, we develop

the innovation-saturated EKF (IS-EKF) for both continuous-

and discrete-time systems. Second, we analyze the stability

of the proposed IS-EKF for the linear case, proving that, if

applied to linear systems, it produces bounded-error estimation

when outlier disturbances are bounded. Finally, we apply the

proposed IS-EKF to the problem of mobile robot localization,

demonstrating its effectiveness in providing reliable estimation

in the presence of measurement outliers.

We point that the idea of innovation saturation was first

considered in [26] to suppress outliers affecting a linear state

observer and then exploited in our previous work [27] to

robustify the linear KF. However, both studies by design can

only deal with outliers that appear singly or one at a time on a

linear system, as is with various other methods in the literature.

By contrast, our approaches can handle outliers of different

magnitudes, types, and durations and imposed on nonlinear

systems. They are structurally concise, computationally effi-

cient, and free from requiring measurement redundancy. These

advantages well lend them to practical application.

Organization.This paper is organized as follows. Section II

develops the IS-EKF for nonlinear continuous-time systems

and analyzes its stability for linear systems. Section III extends

the results to discrete-time systems. A simulation example

based on mobile robot localization is provided in Section IV

to illustrate the usefulness of the proposed design. Finally,

Section V summarizes the concluding remarks.
Notation: Notations used throughout this paper are standard.

The n-dimensional Euclidean space is denoted as R
n. For a

vector, ‖ · ‖ denotes its 2-norm. The notation I is an identity

matrix; X > 0 (≥ 0) means that X is a real, symmetric

and positive definite (semidefinite) matrix; for a symmetric

block matrix, we use a star (�) to represent a symmetry-

induced block in a matrix; the notation diag(. . .) stands

for a block-diagonal matrix. The minimum and maximum

eigenvalues of a real, symmetric matrix are denoted by λ(·)
and λ̄(·), respectively. Matrices are assumed to be compatible

for algebraic operations, if their dimensions are not explicitly

stated.

II. IS-EKF FOR CONTINUOUS-TIME SYSTEMS

This section develops the IS-EKF approach for a nonlinear

continuous-time system and then offers analysis of its stability

in the linear case.

A. IS-EKF Architecture
Consider the following model:{

ẋt = f(xt) + wt,

yt = h(xt) +Ddt + vt,
(1)

where x ∈ R
n is the state vector, y ∈ R

p the measurement

vector, and wt ∈ R
n and vt ∈ R

p zero-mean, mutually

independent noises with covariances given by Q ≥ 0 and

R > 0, respectively. The nonlinear mappings f and h represent

the state evolution and measurement functions, respectively.

Note that the measurement yt is subjected to the outlier effects

caused by an unknown disturbance dt ∈ R
m. The matrix D

shows the relation between dt and yt and is assumed to be

unknown. While an input-free model is considered as in (1),

the state estimation design in sequel can be readily extended

to an input-driven model.
Modifying the conventional EKF, we propose the following

IS-EKF procedure:

˙̂xt = f(x̂t) +Kt · satσ (yt − h (x̂t)) , (2a)

Kt = PtC
�
t R−1, (2b)

Ṗt = AtPt + PtA
�
t +Q−KtRK�

t , (2c)

where Kt is the estimation gain matrix, and Pt is a positive

definite matrix that approximately represents the estimation

error covariance in the standard EKF, and

At =
∂f

∂x

∣∣∣∣
x̂t

, Ct =
∂h

∂x

∣∣∣∣
x̂t

.

Recall that, for the conventional EKF, the state estimation

is corrected by the innovation (yt − h(x̂t)). Its effectiveness,

however, can be compromised if yt is corrupted by an outlier.

To address this issue, we use a saturated innovation instead,

as shown in (2a). Specifically, it is defined as

satσ (yt − h(x̂t)) =

⎡
⎢⎢⎣

...

sat√σi
(yi,t − hi(x̂t))

...

⎤
⎥⎥⎦ , (3)
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where σi > 0, yi is the i-th element of y, and hi the i-
th element of h. For a variable r, the saturation function

is defined as satε(r) = max {−ε,min{ε, r}}. For (3), the

saturation range [−√
σi,

√
σi] can be loosely viewed as an

anticipated range of the innovation. If falling within this range,

the innovation is considered as reasonable and applied without

change to update the state estimation. Otherwise, it may be

affected by an outlier and thus saturated to prevent the outlier

from dragging the estimation away from a correct course.

For the EKF, it is observed that a saturation function with

fixed upper and lower bounds is inadequate to reject outliers,

as it may either confuse with an outlier a certain measurement

generating a large innovation, or miss an outlier approximately

falling within the saturation range. More often than not, one

can also find it practically difficult to choose the fixed bounds,

especially when knowledge of the outliers is scarce. Therefore,

we propose the following procedure to adaptively adjust the

saturation bounds:

σ̇i,t = λ1,iσi,t + γ1,iεi,te
−εi,t , σi,0 > 0, (4a)

ε̇i,t = λ2,iεi,t + γ2,i (yi,t − hi(x̂t))
2
, εi,0 > 0, (4b)

for i = 1, 2, . . . , p, where λ1,i, λ2,i < 0 and γ1,i, γ2,i > 0. For

convenience of notation, we define

Λi = diag([· · · λi,j · · · ]), Γi = diag([· · · γi,j · · · ]),
for i = 1, 2 and j = 1, 2, · · · , p.

Based on (4), σi will dynamically change driven by the

innovation (yi,t − hi(x̂t)) to enable the adaptation of the

saturation bounds. This mechanism specifically involves a

double-layer structure. The lower layer, based on (4b), tracks

the changes in the innovation signal — the variable εi will

keep itself at an appropriate level when the innovation is

normal but become large when the innovation is altered by

outliers. The upper layer, based on (4a), is concerned with

adjusting the saturation bounds. As is seen, σi will rapidly

diminish when εi is large due to outliers; it will also be driven

up by a relatively small εi. Adapting σi like this, the design

proposed in (4) will achieve a discernment between an outlier

and a normal measurement, filtering away innovation if it is

corrupted by outliers and allowing it to pass through otherwise

to correct the prediction.

B. Stability Analysis for Linear Systems

It has been widely acknowledged as a challenge to deter-

mine the exact conditions for the asymptotic stability of the

EKF, even though there exist some studies. The analysis will

be even more difficult for the IS-EKF, because of the added

innovation saturation procedure and the nonlinear update of

the saturation bounds. To formulate a tractable analysis, we

restrict our attention to the asymptotic stability of the IS-EKF

for a linear deterministic system:{
ẋt = Axt,

yt = Cxt +Ddt.

For this system, the IS-EKF acts as a state observer, and the

estimation is performed by the innovation-saturated KF. Here,

we assume that (A,Q
1
2 ) is stabilizable and that (A,C) is

detectable, as often needed for estimation.

Let us first define the state estimation error as et = x̂t−xt.

The dynamics of et is governed by

ėt = Aet −Kt · satσ(Cet −Ddt). (5)

To proceed further, we define the following matrix

St =

[
Mt − αP−1

t −C� (
R−1 +W

)
C�(Γ2 −R−1)D

� 2W WD
� � U

]
,

where Mt = P−1
t QP−1

t +C�(R−1−Γ2)C, W is a diagonal

positive definite matrix, U a positive definite matrix, and

α > 0 a positive scalar. Furthermore, we recall a well-known

fact [28]: if (A,Q
1
2 ) is stabilizable and (A,C) detectable, Pt

for P0 ≥ 0 in (2c) will approach a unique positive-definite

solution P∞ satisfying

AP∞ + P∞A� +Q− P∞C�R−1CP∞ = 0.

We obtain the following result regarding the stability of the

proposed IS-EKF for the linear deterministic case.

Theorem 1. Suppose ‖dt‖ ≤ μ < ∞ and ρ = e−1
∑

i γ1,i <
∞, where μ, ρ > 0. If there exist P0, W , U , α and Γ such
that St ≥ 0 and 0 < α ≤ −max{. . . , λ1,i, λ2,i, . . .} for
i = 1, 2, . . . , p, then the estimation error et is upper bounded
with

‖et‖ ≤
√

1

c2

[
e−αtV0 +

1

α
(1− e−αt)(c1μ2 + ρ)

]
,

(6a)

lim
t→∞ ‖et‖ ≤

√
c1μ2 + ρ

αc3
, (6b)

where c1 = λ̄(U +D�Γ2D), c2 = λ(P−1
t ) and c3 =

λ(P−1
∞ ).

Proof: We consider using the Lyapunov function

Vt = e�t P
−1
t et +

∑
i σi,t +

∑
i εi,t.

The first-order time derivative of Vt along (5) is

V̇t = 2e�t P
−1
t ėt + e�t

d
(
P−1
t

)
dt

et +
∑
i

σ̇i,t +
∑
i

ε̇i,t

= 2e�t P
−1
t [Aet −Kt · satσ (Cet −Ddt)]

− e�t P
−1
t

(
APt + PtA

� +Q−KtRK�
t

)
P−1
t et

+ (Cet −Ddt)
�Γ2(Cet −Ddt) +

∑
i λ1,iσi,t

+
∑

i λ2,iεi,t +
∑

i γ1,iεi,te
−εi,t

≤ −e�t P
−1
t QP−1

t et + e�t C
�(R−1 + Γ )Cet

− 2e�t C
�R−1satσ (Cet −Ddt)− 2e�t C

�Γ2Ddt

+ d�t D
�Γ2Ddt +

∑
i λ1,iσi,t +

∑
i λ2,iεi,t + ρ,

where the relation εi,te
−εi,t ≤ e−1 is used. Let us define

st = Cet −Ddt − satσ(Cet −Ddt). Then,

V̇t ≤ −e�t Mtet + 2e�t C
�R−1st + 2e�t C

�(R−1 − Γ2)Ddt

+ d�t D
�Γ2Ddt +

∑
i λ1,iσi,t +

∑
i λ2,iεi,t + ρ.
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By [29, Lemma 1.6], we have

−s�t W (st − Cet +Ddt) ≥ 0.

It then follows that

V̇t ≤ V̇t − 2s�t W (st − Cet +Ddt)

≤ −e�t Mtet + 2e�t C
� (

R−1 +W
)
st − 2s�t Wst

+ 2e�t C
�(R−1 − Γ2)Ddt − 2s�t WDdt+

+ d�t D
�Γ2Ddt +

∑
i λ1,iσi,t +

∑
i λ2,iεi,t + ρ

= −
⎡
⎣etst
dt

⎤
⎦
� ⎡
⎣Mt −C� (

R−1 +W
)

C�(Γ2 −R−1)D
� 2W WD
� � U

⎤
⎦

·
⎡
⎣etst
dt

⎤
⎦+ d�t

(
U +D�Γ2D

)
dt +

∑
i λ1,iσi,t +

∑
i λ2,iεi,t

+ ρ.

If St ≥ 0, we have

V̇ (t) ≤ −αe�t P
−1
t et − α

∑
i σi,t − α

∑
i εi,t

+ d�t
(
U +D�Γ2D

)
dt +

∑
i(λ1,i + α)σi,t

+
∑

i(λ2,i + α)εi,t + ρ.

If 0 < α ≤ −max(λi), one has λi + α ≤ 0. Then,

V̇t ≤ −αVt + d�t
(
U +D�Γ2D

)
dt + ρ

≤ −αVt + c1‖dt‖2 + ρ

≤ −αVt + c1μ
2 + ρ.

Hence,

Vt ≤ e−αtV0 +
1

α
(1− e−αt)(c1μ

2 + ρ).

Furthermore, Vt ≥ c2‖et‖2. Then,

‖et‖2 ≤ 1

c2

[
e−αtV0 +

1

α
(1− e−αt)(c1μ

2 + ρ)

]
,

which implies (7a). When t → ∞, we can obtain (7b). •
Theorem 1 shows that, when applied to a noise-free li-

near system with upper-bounded outliers, the proposed IS-

EKF scheme can lead to bounded-error estimation if some

conditions are satisfied. Further, the following corollary can

be developed.

Corollary 1. Suppose ‖dt‖ ≤ μ < ∞ for μ > 0. If there
exist P0, W , U , α and Γ such that St ≥ 0 and 0 < α ≤
−max{. . . , λ1,i, λ2,i + γ1,i, . . .} for i = 1, 2, . . . , p, then the
estimation error et is upper bounded with

‖et‖ ≤
√

1

c2

[
e−αtV0 +

1

α
(1− e−αt)c1μ2

]
, (7a)

lim
t→∞ ‖et‖ ≤

√
c1
αc3

μ. (7b)

To prove this result, one can generally follow the proof of

Theorem 1 while upper-bounding εi,te
−εi,t by εi,t instead of

≤ e−1. Corollary 1 implies that et will exponentially approach

zero as t → ∞ if limt→∞ dt = 0.

Remark 1. According to Theorem 1 and Corollary 1, selection
of P0 can be important for making the condition St ≥ 0
satisfied. Given the structure of St, it is cautioned that too
large a P0 may bring the risk of divergent estimation. However,
Pt is monotonically non-decreasing for P0 = 0 if (A,Q

1
2 )

is stabilizable and (A,C) detectable [28]. Leveraging this
property, it is suggested that P0 be set to be small enough
(close to zero in particular if some accurate prior knowledge
about the initial state is available) when the IS-EKF approach
is to be implemented. •

III. IS-EKF FOR DISCRETE-TIME SYSTEMS

Extending Section II, this section investigates the develop-

ment of IS-EKF for nonlinear discrete-time systems.

A. IS-EKF Architecture

Consider a nonlinear discrete-time model{
xk+1 = f(xk) + wk,

yk = h(xk) +Ddk + vk.
(8)

The notations in above are the same as in Section II. Still, the

noises wk and vk are zero-mean, mutually independent with

covariances Q ≥ 0 and R > 0, respectively. We also assume

that (A,Q
1
2 ) is stabilizable and (A,C) detectable without loss

of generality. In addition, we assume that A is invertible.

For this system, we propose the IS-EKF as follows:

x̂k|k−1 = f
(
x̂k−1|k−1

)
, (9a)

Pk|k−1 = Ak−1Pk−1|k−1A
�
k−1 +Q, (9b)

x̂k|k = x̂k|k−1 +Kk · satσ
(
yk − h

(
x̂k|k−1

))
, (9c)

Kk = Pk|k−1C
�
k

(
CkPk|k−1C

�
k +R

)−1
, (9d)

Pk|k = Pk|k−1 −Kk

(
CkPk|k−1C

�
k +R

)
K�

k , (9e)

where x̂k|k−1 is the one-step-forward prediction of xk, x̂k|k
the updated estimate when yk arrives to correct the prediction,

and

Ak =
∂f

∂x

∣∣∣∣
x̂k|k

, Ck =
∂h

∂x

∣∣∣∣
x̂k|k−1

.

In addition, Kk is the estimation gain, and Pk|k−1 and Pk|k
the approximate estimation error covariances in the standard

EKF. Akin to (2), we use an innovation saturation mechanism

to deal with measurement outliers, as shown in (9c). In analogy

to (4), σ is dynamically adjusted by

σi,k+1 = λ1,iσi,k + γ2,iεi,ke
−εi,k , σi,0 > 0, (10a)

εi,k+1 = λ2,iεi,k + γ2,i
(
yi,k − Cix̂k|k−1

)2
, εi,0 > 0,

(10b)

for i = 1, 2, . . . , p, where 0 < λ1,i, λ2,i < 1 and γ1,i, γ2,i > 0.

B. Stability Analysis for Linear Systems

We consider the stability analysis for the above IS-EKF

when it is applied to a linear deterministic system:{
xk+1 = Axk,

yk = Cxk +Ddk.
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Defining the state prediction error as ek = x̂k|k−1 − xk, its

dynamics can be expressed as

ek+1 = x̂k+1|k − xk+1

= Aek −AKk · satσ (Cek −Ddk) . (11)

Before proceeding further, we show some results that will

be needed later. Suppose that (A,Q
1
2 ) is stabilizable and

that (A,C) detectable. Then, Pk|k−1 will converge to a fixed

positive definite matrix P∞ that satisfies

P∞ = AP∞A� +Q−AP∞C� (
CP∞C� +R

)−1

· CP∞A�.

It is also known that Pk|k−1 is upper and lower bounded, and

so is Pk|k. Hence, there should exist ε such that P−1
k|k ≤ εI .

Then, if A is invertible,

P−1
k+1|k =

(
APk|kA� +Q

)−1

= A−� (
Pk|k +A−1QA−�)−1

A−1

= A−�
[
P−1
k|k − P−1

k|k
(
P−1
k|k +A�Q−1A

)−1

P−1
k|k

]
A−1

≤ A−�
[
P−1
k|k − P−1

k|k
(
εI +A�Q−1A

)−1
P−1
k|k

]
A−1

= A−�
[
P−1
k|k − P−1

k|kQ̄P−1
k|k

]
A−1,

where Q̄ =
(
εI +A�Q−1A

)−1
. We also define

Zk =

⎡
⎣T1,k − αP−1

k|k−1 T2,k − C�W T3,k

� T4,k + 2W T5,k +WD
� � U

⎤
⎦ ,

where W is a diagonal positive definite matrix, U a positive

definite matrix, α > 0 a positive scalar, and

T1,k = C�R−1C + P−1
k|kQ̄P−1

k|k − P−1
k|kQ̄C�R−1C

− C�R−1CQ̄P−1
k|k − C�R−1C

(
Pk|k − Q̄

)
· C�R−1C − C�Γ2C,

T2,k = −C�R−1 + P−1
k|kQ̄C�R−1

+ C�R−1C
(
Pk|k − Q̄

)
C�R−1,

T3,k =
[
− C�R−1 + P−1

k|kQ̄C�R−1

+ C�R−1C
(
Pk|k − Q̄

)
C�R−1 + C�Γ2

]
D,

T4,k = −R−1C
(
Pk|k − Q̄

)
C�R−1,

T5,k = − [
R−1C

(
Pk|k − Q̄

)
C�R−1

]
D.

In addition, we consider another matrix

T6,k = D� [
R−1C

(
Pk|k − Q̄

)
C�R−1 + Γ2

]
D.

Here, the upper boundedness of Pk|k implies that T6,k is also

upper bounded, with the bound denoted as T̄6.

The following theorem shows the result about the stability

of the prediction error dynamics.

Theorem 2. Suppose ‖dk‖ ≤ μ < ∞, ρ = e−1
∑

i γ1,i < ∞,
and that A is invertible. If there exist P0|−1, W , U , α and Γ2

such that Zk ≥ 0 and 0 < α ≤ 1−max{. . . , λ1,i, λ2,i, . . .} for

i = 1, 2, . . . , p, then the prediction error ek is upper bounded
with

‖ek‖ ≤
√

1

c2

[
(1− α)kV0 +

1− (1− α)k−1

α
(c1μ2 + ρ)

]
,

(12a)

lim
k→∞

‖ek‖ ≤
√

c1μ2 + ρ

αc3
, (12b)

where c1 = λ̄(T̄6 + U), c2 = λ(P−1
k|k−1), and c3 = λ(P−1

∞ ).
Further, if 0 < α ≤ 1 − max{. . . , λ1,i, λ2,i + γ1,i, . . .} for
i = 1, 2, . . . , p, then

‖ek‖ ≤
√

1

c2

[
(1− α)kV0 +

1− (1− α)k−1

α
c1μ2

]
, (13a)

lim
k→∞

‖ek‖ ≤
√

c1
αc3

μ. (13b)

Proof: Consider a Lyapunov function

Vk = e�k P
−1
k|k−1ek +

∑
i σi,k +

∑
i εi,k.

Using (11), we have

Vk+1 = e�k+1P
−1
k+1|kek+1 +

∑
i σi,k+1 +

∑
i εi,k+1

≤ [Aek −AKk · satσ(CAek −Ddk)]
�

·A−�
[
P−1
k|k − P−1

k|kQ̄P−1
k|k

]
A−1

· [Aek −AKk · satσ(Cek −Ddk)]

+ (Cek −Ddk)
�
Γ2 (Cek −Ddk) +

∑
i λ1,iσi,k

+
∑

i λ2,iεi,k +
∑

i γ1,iεi,ke
−εi,k

≤ e�k
[
P−1
k|k − P−1

k|kQ̄P−1
k|k

]
ek − 2e�k

[
P−1
k|k − P−1

k|kQ̄P−1
k|k

]
·Kk · satσ(Cek −Ddk) + sat�σ (Cek −Ddk) ·K�

k

·
[
P−1
k|k − P−1

k|kQ̄P−1
k|k

]
Kk · satσ(Cek −Ddk)

+ (Cek −Ddk)
�
Γ2 (Cek −Ddk) +

∑
i λ1,iσi,k

+
∑

i λ2,iεi,k + ρ.

Let us define

sk = Cek −Ddk − satσ(Cek −Ddk).

In addition, we have P−1
k|k = P−1

k|k−1 + C�R−1C, P−1
k|kKk =

C�R−1 and K�
k P−1

k|kKk = R−1CPk|kC�R−1. These relati-

ons can be readily proven. It then follows that

Vk+1 ≤ e�k P
−1
k|k−1ek − e�k T1,kek − 2e�k T2sk − 2e�k T3,kdk

− s�k T4,ksk − 2s�k T5,kdk + d�k T6,kdk +
∑

i λ1,iσi,k

+
∑

i λ2,iεi,k + ρ.

According to [29, Lemma 1.6], we have

−s�k W (sk − Cek +Ddk) ≥ 0.

It can be obtained that

Vk+1 ≤ Vk+1 − 2s�k W (sk − Cek +Ddk)

≤ e�k P
−1
k|k−1ek − e�k T1,kek − 2e�k (T2 − C�W )sk

− 2e�k T3,kdk − s�k (T4,k + 2W ) sk



6

− 2s�k (T5,k +WD) dk + d�k T6,kdk

+
∑

i λ1,iσi,k +
∑

i λ2,iεi,k + ρ

= e�k P
−1
k|k−1ek −

⎡
⎣eksk
dk

⎤
⎦
�

·
⎡
⎣T1,k T2,k − C�W T3,k

� T4,k + 2W T5,k +WD
� � U

⎤
⎦
⎡
⎣eksk
dk

⎤
⎦

+ d�k (T6,k + U) dk +
∑

i λ1,iσi,k +
∑

i λ2,iεi,k + ρ.

If Zk ≥ 0, then

Vk+1 ≤ (1− α)e�k P
−1
k|k−1ek + (1− α)

∑
i σi,k

+ (1− α)
∑

i εi,k + d�k (T6,k + U) dk

+
∑

i(λ1,i + α− 1)σi,k +
∑

i(λ2,i + α− 1)εi,k + ρ.

Because 0 < α ≤ 1−max{λ1,i, λ2,i} for i = 1, 2, . . . , p,

Vk+1 ≤ (1− α)Vk + d�k (T6,k + U) dk + ρ

≤ (1− α)Vk + λ̄
(
T̄6 + U

)
μ2 + ρ,

from which one can easily obtain (13a)-(13b). •
Remark 2. For the discrete-time case, it is also recommended
that Pk|k−1 should be initialized to be small enough and near
zero, in order to make the conditions in Theorem 2 satisfied
more easily. •

IV. SIMULATION EXAMPLE

In this section, we offer an application example to show

the effectiveness of the proposed IS-EKF. The example is

concerned with mobile robot localization, the purpose of which

is to enable a mobile robot to determine its position using GPS

and onboard sensing data. However, a challenge for precise

localization is the outliers due to weak or abnormal GPS

signals and sensors noises or temporary failures [30].

Consider a mobile wheeled robot with the following dyna-

mic model [31], [32]:

px,k+1 = px,k + ηkT cos(θk),

py,k+1 = py,k + ηkT sin(θk),

θk+1 = θk + Tδk,

where px,k and py,k are the coordinates of the robot’s center

of mass, θk the heading angle, ηk the robot’s speed at the

center of mass, δk the steering angle, and T the sampling

period. Thus, the state vector of the robot is [px,k py,k θk]
�

,

and the control input vector is [ηk δk]
�

. Here, ηk and δk can

be read from onboard meters. In addition, we let xk and yk
be obtained using GPS and θk be measured by a compass.

The measurement model hence is a linear equation, but the

dynamic model is nonlinear. Process and measurement noises

are included into the model to represent uncertainties.

When the robot is moving and sampled every T = 0.1
s, the measurements of the x-coordinate and the steering

angle are corrupted by outliers from time to time. The outlier

disturbance dk is designed as

dk =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
5 1

]�
150 < k ≤ 200,

2ζk 350 < k ≤ 400,[
100 50

]�
450 < k ≤ 500,[

100 0
0 50

]
ζk 550 < k ≤ 600,

where ζk ∈ R
2 is a uniform random vector. This design takes

account of different types of outliers in four stages — dk is

small at Stages 1-2 and large Stages 3-4, and it is constant at

Stages 1 and 3 and random at Stages 2 and 4. In this setting,

synthetic measurements are generated and shown in Fig. 1,

in which the outlier-corrupted measurements are displayed in

shaded areas.

It can be easily verified that the conventional EKF will

completely fail when the above outliers are imposed on the

measurements. One way to improve the robustness of the EKF

is to use the 3σ rule [33]. That is, the innovation (yk−h(x̂k))
is considered as normal if it lies within the ±3σ bounds based

on the covariance matrix (HkPk|k−1H
�
k +R), and as outlying

otherwise. It is reset to be zero in the latter case so as not to

distort the update procedure. We call this method as EKF with

3σ outlier rejection and use it as a benchmark to compare with

the IS-EKF. In addition, to apply the IS-EKF in (9)-(10), the

following parameters are set for (10):

Λ1 = diag(
[
0.5 0.5 0.1

]
), Λ2 = diag(

[
0.1 0.1 0.1

]
),

Γ1 = diag(
[
102 102 5× 10−3

]
), Γ2 = diag(

[
9 9 9

]
).

Figs. 2(a)-2(c) show the estimation of the x- and y-coor-

dinates and the heading angle θ through time, respectively.

It is seen that, with the 3σ outlier rejection, the EKF does

not diverge seriously but still struggles with providing reliable

state estimation. As a contrast, the IS-EKF demonstrates much

better performance, maintaining a smooth and accurate esti-

mation when the outliers appear. Further, Fig. 3(a) illustrates

the estimated trajectories by the standard EKF, EKF with

3σ outlier rejection, and the IS-EKF, in comparison with the

ground truth. The standard EKF completely fails to estimate

the position due to the outliers in this case. The 3σ outlier

rejection enhances its estimation considerably, but the IS-

EKF reconstructs the trajectory at the best accuracy. These

results reflect a considerable effectiveness of the IS-EKF in

addressing the outliers..

Here, we provide some further remarks about the advantages

and application of the IS-EKF.

Remark 3. In addition to the example presented above, we
performed numerous simulations about robot localization in
different settings (e.g., outliers, noises, initial estimation),
and we found that the IS-EKF consistently offer satisfactory
estimation. Two important observations include:

• The IS-EKF can well handle outliers that last for a
relatively long period and vary in magnitude or type.
This contrasts with many existing methods. For example,
the stubborn observer in [26] can only reject occasional,
singly outliers, and the EKF with 3σ outlier rejection
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Figure 1: Measurement profiles : (a) x-position; (b) y-position; (c) heading angle. The shaded areas represent the occurrence

of outliers.
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Figure 2: Estimation of the state variables: (a) estimation of the x-position; (b) estimation of the y-position; (c) estimation of

the heading angle θ.

is less effective for dealing with small outliers that
approximately align with the ±3σ bounds. Note that
the EKF may offer improved estimation by adjusting the
outlier detection bounds from ±3σ to ±�σ with � ∈ R

+.
However, for each selection of �, it can still be futile for
outliers that roughly lie within the bounds.

• As an additional benefit, the IS-EKF demonstrates good
robustness again initial state uncertainties. It is known
that the EKF can easily fail if the initial guess is not
accurate, although it is often difficult to obtain a precise
guess in practice. However, the innovation saturation can
often check the divergence caused by a poor initial guess,
reducing the possibility of a complete failure. •

Remark 4. Application of the IS-EKF requires the selection
of a set of parameters for the innovation saturation procedure.
We have the following suggestions for practitioners:

• Let λ1,i, λ2,i < 0 for a continuous-time system and 0 <
λ1,i, λ2,i < 1 for a discrete-time system.

• It is useful to choose λ2,i such that the dynamics εi is fast
in order to better track the change in innovation. This can
be done by letting it take an appropriately small negative
number in the continuous-time case or a number close to
zero in the discrete-time case.

• Let γ1,i, γ2,i > 0 and γ2,i < 10.

• The selection of γ1,i depends on the magnitude of the
corresponding innovation process. Set γ1,i to be a large
number if the innovation is usually large in the normal,
i.e., outlier-free, case and a small number otherwise. •

V. CONCLUSION

The EKF has gained wide application across different fields

as a popular state estimation tool. However, its estimation

accuracy can be severely hampered by measurement outliers

due to sensor anomaly, model uncertainties, data transmission

errors or cyber attacks. This paper presented a novel innovation

saturation mechanism, IS-EKF, which is a robustified EKF,

as an alternative to the conventional EKF. This mechanism

saturates the innovation process, which is crucial for correcting

the state estimation, thus ensuring a reasonable correction

to be applied when outliers occur. We showed the IS-EKF

architecture for both continuous- and discrete-time systems

and provided theoretical analysis to derive useful stability

properties of the proposed approaches for linear systems.

We applied the discrete-time IS-EKF approach to mobile

robot localization by simulation to illustrate its effectiveness.

The numerical simulation results showed that the proposed

approach brings about significant robustness for localization

against GPS outliers. This indicated the viability of IS-EKF

in effectively rejecting outliers of varying magnitude and
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Figure 3: Estimated trajectories in comparison with the

ground truth.

durations at a reasonable computational cost and without the

need of measurement redundancy.
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