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Abstract
Limited information availability represents a fundamental challenge for control of

multi-agent systems, since an agent often lacks sensing capabilities to measure cer-

tain states of its own and can exchange data only with its neighbors. The challenge

becomes even greater when agents are governed by high-order dynamics. The present

work is motivated to conduct control design for linear and nonlinear high-order

leader-follower multi-agent systems in a context where only the first state of an agent

is measured. To address this open challenge, we develop novel distributed observers

to enable followers to reconstruct unmeasured or unknown quantities about them-

selves and the leader and on such a basis, build observer-based tracking control

approaches. We analyze the convergence properties of the proposed approaches and

validate their performance through simulation.
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1 INTRODUCTION

Cooperative autonomy based on multi-agent systems (MASs) is finding ever-increasing application in different fields. This has

driven a surge of research on distributed cooperative control for different tasks, including consensus, leader-follower tracking,

synchronization, rendezvous, flocking, optimization, learning, formation control, and coverage control1–10. Most of the current

literature considers agents governed by first- or second-order models. Although such low-order models are useful as well as

amenable to control design, they are often found inadequate to characterize agents with more complex higher-order dynamics.

It is also neither trivial nor easy to extend low-order cooperative control designs to high-order systems. Recent years have thus

seen a growing amount of work on high-order MAS control synthesis11.

The study12 takes a lead in investigating high-order MAS consensus, presenting a distributed consensus control algorithm.

This subject has since attracted considerable research efforts, with many studies proposed to deal with various challenges,

e.g., directed communication topologies13,14, switching topologies13,15, output feedback design16–21, bipartite consensus22,23,

external disturbances24,25, switching or heterogeneous dynamics26, quantization27, and constrained energy budget8, to name

a few. Besides consensus, high-order leader-follower tracking has emerged as another problem of great interest. A basic form

of the problem is introduced in12, which assumes that the leader agent continuously broadcasts its state information to all the

followers. A consensus-based control algorithm is then developed therein to make the followers track the leader. The study28

considers a more general setting where only a subset of the followers can receive information from the leader. It proposes a

leader-follower tracking control method and proves that followers with small degrees must be informed by the leader to ensure
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tracking convergence. Further, nonlinear dynamics constitutes a stronger challenge for high-order leader-follower tracking. The

investigations29,30 propose to adaptively estimate the nonlinearity inherent in an agent’s dynamics using neural networks and

then offset it in the control run. A few well-known nonlinear control techniques, including backstepping control and iterative

nonlinear control, have also found use in addressing tracking problems of nonlinear multi-agent systems31–33. In34, a finite-time

tracking control approach is developed for a high-order nonlinear MAS with actuator saturation, and the work in35 studies the

problem of finite-time higher-order tracking with mismatched disturbances.

Despite the importance, the above studies generally assume that a follower can obtain a large amount of information to make

control decisions. For example, it is required in12,28,29,34 that a follower must know all of its own states, all of the states of its

neighbors, and if connected with the leader, all of the leader’s states. This requirement can be hardly met in a real world where

relevant sensors can be unavailable28. One can also find similar requirements in studies about high-order consensus control.

This hence motivates us to explore a more realistic setting—when only the first state of every agent (leader and followers) is

measured. It is unsurprising that the low information availability will increase the difficulty for tracking control. In addition, the

present literature often requires that the leader’s dynamics is input-free29–33,36, which comes as another limitation in practice.

To overcome the challenges, we propose to exploit the notion of observer-based control design and present two major contribu-

tions. First, we design an observer-based tracking control approach for linear high-order MASs. We propose a set of distributed

observers to compensate for the limited information, allowing a follower to comprehensively estimate the leader’s maneuver

input and states along with its own states. These observers are then combined with a nominal controller to form an observer-

embedded tracking controller. We further characterize the convergence of tracking when the proposed controller is applied. As

the second contribution, the study extends to the more challenging case when the agents’ dynamics is not only high-order but

also nonlinear. Extrapolating the design for the linear case, we develop an observer-based tracking control approach and analyze

its convergence. Compared to the literature, our work is distinct in two aspects. First, the control design requires very limited

information—only every agent’s first state. Second, the leader’s dynamics is input-driven, and the input is only known by the

followers that communicate with the leader.

Our work is further related with two lines of research. 1) Leader-follower tracking via output feedback, which generally

considers a state-space model and uses local state or parameter observers to estimate certain unknown quantities37–42. Differing

from them, our study designs distributed observers to help the followers cooperate to infer the leader’s input and states, removing

the restriction that the leader’s maneuver input must be either zero or known by all the followers. 2) Observer-based first- and

second-order tracking control. The literature includes various kinds of observers designed to allow a follower to estimate its

own velocity43,44, the disturbances acting on it35, its velocity relative to the leader45, the leader’s input46–48, or the leader’s

velocity49,50. These results nonetheless cannot be readily generalized to the high-order MASs. Finally, the conference version of

this study in51 considers only agents with linear high-order dynamics. We make substantial expansion in this paper to investigate

MASs with generic-form nonlinear high-order dynamics.

The rest of the paper is organized as follows. Section 2 introduces the notation about graph theory. Section 3 formulates the

problem of leader-follower tracking control for a linear high-order MAS, develops an observer-based tracking control approach,

and analyzes its convergence. Section 4 proceeds to study the tracking problem for a nonlinear high-order MAS. Section 5 then

offers a numerical simulation example to validate the proposed design. Finally, Section 6 gathers our conclusions.

2 NOTATION

We use a graph to delineate the information exchange topology among the leader and followers. First, consider a network

composed of𝑁 independent followers, the topology of which is modeled as an undirected graph. The follower graph is expressed

as  = ( , ), where  = {1, 2,⋯ , 𝑁} is the node set and  ⊆  ×  is the edge set that contains unordered pairs of nodes. A

path is a sequence of connected edges in a graph. The follower graph is connected if there is a path between every pair of nodes.

The neighbor set of node 𝑖 is denoted as 𝑖. The adjacency matrix of  is 𝐴 = [𝑎𝑖𝑗] ∈ ℝ𝑁×𝑁 , which has non-negative elements.

The element 𝑎𝑖𝑗 > 0 if and only if (𝑖, 𝑗) ∈  , and moreover, 𝑎𝑖𝑖 = 0 for all 𝑖 ∈  . For the Laplacian matrix 𝐿 = [𝑙𝑖𝑗] ∈ ℝ𝑁×𝑁 ,

𝑙𝑖𝑗 = −𝑎𝑖𝑗 if 𝑖 ≠ 𝑗 and 𝑙𝑖𝑖 =
∑

𝑘∈𝑖
𝑎𝑖𝑘. The leader is numbered as node 0 and can send information to its neighboring followers.

Then, we define a graph ̄ = (̄ , ̄) for the entire network, where ̄ = {0} ∪  , and ̄ ⊆ ̄ × ̄ is the edge set for all nodes.

The leader is globally reachable in ̄ if there is a path in graph ̄ from every node 0 to node 𝑖. We denote the leader adjacency

matrix associated with ̄ by 𝐵 = diag(𝑏1,… , 𝑏𝑁 ), where 𝑏𝑖 > 0 if the leader is a neighbor of agent 𝑖 and 𝑏𝑖 = 0 otherwise.
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3 LEADER-FOLLOWER TRACKING WITH LINEAR HIGH-ORDER DYNAMICS

In this section, we show the leader-follower tracking problem for linear high-order MASs and develop an observer-based tracking

control method as well as convergence analysis.

3.1 Problem Formulation
Consider an MAS composed of 𝑁 + 1 agents, among which agent 0 is the leader and agents 1 to 𝑁 are followers. Each agent

has 𝑙th-order dynamics (𝑙 ≥ 3) expressed as

�̇�𝑖,𝑚 = 𝑥𝑖,𝑚+1, 𝑚 = 1, 2,… , 𝑙 − 1, (1a)

�̇�𝑖,𝑙 = 𝑢𝑖, (1b)

for 𝑖 = 0, 1,… , 𝑁 , where 𝑥𝑖,𝑚 ∈ ℝ is the 𝑚th state of agent 𝑖, and 𝑢𝑖 the maneuver input. The objective is to design a distributed

control law 𝑢𝑖 such that follower 𝑖 for 𝑖 = 1, 2,… , 𝑁 can convergently track the leader with lim𝑡→∞ |𝑥𝑖,𝑚(𝑡) − 𝑥0,𝑚(𝑡)| = 0 for

𝑚 = 1, 2,… , 𝑙.

Here, we assume that only 𝑥𝑖,1 for 𝑖 = 0, 1,… , 𝑁 is available. That is, only the first state of an agent is measured, regardless of

whether it is the leader or a follower. This assumption considerably relaxes the usual requirement in the literature that substantial

states of an agent must be measured. However, it also implies that the accessible information about the agents is rather limited,

which makes it more challenging to design an effective distributed tracking controller.

3.2 The Proposed Algorithm
We develop an observer-based control algorithm to enable convergent tracking in the above setting. To begin with, we consider

the following controller for follower 𝑖:

𝑢𝑖 = − 𝑘1

⎡⎢⎢⎣
∑
𝑗∈𝑖

𝑎𝑖𝑗(𝑥𝑖,1 − 𝑥𝑗,1) + 𝑏𝑖(𝑥𝑖,1 − 𝑥0,1)
⎤⎥⎥⎦ −

𝑙∑
𝑚=2

𝑘𝑚(�̂�𝑖,𝑚 − �̂�0,𝑖,𝑚) + �̂�0,𝑖, (2)

for 𝑖 = 1,… , 𝑁 , where 𝑘𝑚 for 𝑚 = 1, 2,… , 𝑙 are gain parameters, �̂�0,𝑖,𝑚 and �̂�0,𝑖 are follower 𝑖’s estimates of the leader’s state

𝑥0,𝑚 and input 𝑢0, respectively, and �̂�𝑖,𝑚 is follower’s estimate of its own state 𝑥𝑖,𝑚. The motivation underlying (2) is to drive

follower 𝑖 toward its neighbors and the leader simultaneously. When all the followers do this, they can track the leader in a

collective manner. Next, we design the observers so as to obtain the estimates as needed in (2).

A distributed input observer is first introduced to enable the followers to estimate 𝑢0, which is given by

̇̂𝑢0,𝑖 = −
∑
𝑗∈𝑖

𝑎𝑖𝑗(�̂�0,𝑖 − �̂�0,𝑗) − 𝑏𝑖(�̂�0,𝑖 − 𝑢0) − 𝑑𝑖 ⋅ sgn
⎡⎢⎢⎣
∑
𝑗∈𝑖

𝑎𝑖𝑗(�̂�0,𝑖 − �̂�0,𝑗) + 𝑏𝑖(�̂�0,𝑖 − 𝑢0)
⎤⎥⎥⎦ , (3a)

�̇�𝑖 = 𝜏𝑖

||||||
∑
𝑗∈𝑖

𝑎𝑖𝑗(�̂�0,𝑖 − �̂�0,𝑗) + 𝑏𝑖(�̂�0,𝑖 − 𝑢0)
|||||| , (3b)

for 𝑖 = 1,… , 𝑁 , where 𝑑𝑖 is an adaptive gain, and 𝜏𝑖 a positive scalar. For (3a), the first two terms on its right-hand side are

used to drive the input estimation �̂�0,𝑖 to approach 𝑢0 while maintaining consistency with the neighboring followers; further, its

third term serves as further correction with an adaptive gain given in (3b) to enhance the convergence.

We further propose another distributed observer for the followers to estimate 𝑥0,𝑚 for 𝑚 = 2, 3,… , 𝑙:

�̇�0,𝑖,2 = −𝑏𝑖𝑐0,2𝑧0,𝑖,2 − 𝑏2
𝑖
𝑐20,2𝑥0,1 − 𝑐0,2

∑
𝑗∈𝑖

𝑎𝑖𝑗(�̂�0,𝑖,2 − �̂�0,𝑗,2) + �̂�0,𝑖,3, (4a)

�̂�0,𝑖,2 = 𝑧0,𝑖,2 + 𝑏𝑖𝑐0,2𝑥0,1, (4b)

�̇�0,𝑖,𝑚 = −𝑐0,𝑚𝑧0,𝑖,𝑚 − 𝑐20,𝑚�̂�0,𝑖,𝑚−1 + �̂�0,𝑖,𝑚+1, (4c)

�̂�0,𝑖,𝑚 = 𝑧0,𝑖,𝑚 + 𝑐0,𝑚�̂�0,𝑖,𝑚−1, 𝑚 = 3, 4,… , 𝑙 − 1, (4d)

�̇�0,𝑖,𝑙 = −𝑐0,𝑙𝑧0,𝑖,𝑙 − 𝑐20,𝑙�̂�0,𝑖,𝑙−1 + �̂�0,𝑖, (4e)

�̂�0,𝑖,𝑙 = 𝑧0,𝑖,𝑙 + 𝑐0,𝑙�̂�0,𝑖,𝑙−1, (4f)
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for 𝑖 = 1,… , 𝑁 , where 𝑧0,𝑖,𝑚 and 𝑐0,𝑚 for 𝑚 = 2, 3,… , 𝑙 are the observer’s internal states and gain parameters, respectively.

The development of (4) is inspired by52, in which a centralized disturbance observer is designed for a single plant. Significantly

transforming the original design, we develop the above observer, which has a distributed structure that is uniquely suitable

for the considered MAS setting. Here, the observer in (4a)-(4b) attempts to estimate the leader’s second state 𝑥0,2. In (4a),

−
∑

𝑗∈𝑖
𝑎𝑖𝑗(�̂�0,𝑖,2 − �̂�0,𝑗,2) tries to keep the estimation consistent between follower 𝑖 and its neighbors; then, (4b) performs the

estimation to obtain �̂�0,𝑖,2 using the internal variable 𝑧0,𝑖,2 and the leader’s first state 𝑥0,1. Following similar lines in (4a)-(4b),

the observers in (4c)-(4f) are designed to estimate the leader’s rest higher-order state.

Finally, we design the following observer such that follower 𝑖 can estimate its own states 𝑥𝑖,𝑚 for 𝑚 = 2, 3,… , 𝑙:

�̇�𝑖,2 = −𝑟2𝑧𝑖,2 − 𝑟22𝑥𝑖,1 + �̂�𝑖,3, (5a)

�̂�𝑖,2 = 𝑧𝑖,2 + 𝑟2𝑥𝑖,1, (5b)

�̇�𝑖,𝑚 = −𝑟𝑚𝑧𝑖,𝑚 − 𝑟2
𝑚
�̂�𝑖,𝑚−1 + �̂�𝑖,𝑚+1, (5c)

�̂�𝑖,𝑚 = 𝑧𝑖,𝑚 + 𝑟𝑚�̂�𝑖,𝑚−1, 𝑚 = 3, 4,… , 𝑙 − 1, (5d)

�̇�𝑖,𝑙 = −𝑟𝑙𝑧𝑖,𝑙 − 𝑟2
𝑙
�̂�𝑖,𝑙−1 + 𝑢𝑖, (5e)

�̂�𝑖,𝑙 = 𝑧𝑖,𝑙 + 𝑟𝑙�̂�𝑖,𝑙−1, (5f)

for 𝑖 = 1,… , 𝑁 , where 𝑧𝑖,𝑚 and 𝑟𝑖,𝑚 for 𝑚 = 2, 3,… , 𝑙 are the internal states and gain parameters, respectively.

Putting together (2)-(5), we obtain a distributed observer-based control algorithm to achieve high-order leader-follower

tracking. Its convergence is analyzed in Section 3.3.

Remark 1. We highlight a comparison between the proposed approach and the study of output-feedback leader-following track-

ing control in37–42. These references use different observers to help a follower estimate its own states or certain parameters.

These observers are local observers as they are designed to estimate local unknown quantities. Compared with them, the pro-

posed approach focuses more on distributed observer design—the observers in (3)-(4) have a distributed structure to enable the

followers to collectively infer the leader’s input and states by information exchange. This new design allows the followers to

keep tracking the input-driven leader, setting it apart from the references that restrictively require the leader to be input-free or

the followers to have at least certain knowledge of the leader’s input. ∙

3.3 Convergence Analysis
This section characterizes the convergence property for the algorithm proposed above. Before proceeding further, we make the

following assumption:

Assumption 1. The leader’s input 𝑢0 ∈ 1 with |�̇�0| ≤ 𝑤 < ∞, where 𝑤 is unknown.

This assumption is reasonable and justifiable due to the fact that control actuations are usually smooth and subject to ramp-

up/down limits.

As the convergence depends on the estimation and tracking errors, we lay out the definitions of these errors first. For the

observer in (3), we define the estimation error as 𝑒𝑢,𝑖 = �̂�0,𝑖 − 𝑢0. Its dynamics is

�̇�𝑢,𝑖 = −𝑏𝑖𝑒𝑢,𝑖 −
∑
𝑗∈𝑖

𝑎𝑖𝑗(𝑒𝑢,𝑖 − 𝑒𝑢,𝑗) − 𝑑𝑖 ⋅ sgn
⎡⎢⎢⎣
∑
𝑗∈𝑖

𝑎𝑖𝑗(𝑒𝑢,𝑖 − 𝑒𝑢,𝑗) + 𝑏𝑖𝑒𝑢,𝑖

⎤⎥⎥⎦ − �̇�0. (6)

Further, define 𝑒𝑢 =
[
𝑒𝑢,1 𝑒𝑢,2 ⋯ 𝑒𝑢,𝑁

]⊤
. It then follows from (6) that

�̇�𝑢 = −𝐻𝑒𝑢 −𝐷 ⋅ sgn(𝐻𝑒𝑢) − �̇�0𝟏, (7)

where 𝐻 = 𝐵 + 𝐿 and 𝐷 = diag{𝑑1,… , 𝑑𝑁}. It is seen that the signum function term in (7) is discontinuous, measurable and

locally bounded. Therefore, (7) admits a Filippov solution according to53, which is governed by the differential inclusion [⋅]:

�̇�𝑢 ∈𝑎.𝑒. 
[
−𝐻𝑒𝑢 −𝐷 ⋅ sgn(𝐻𝑒𝑢) − �̇�0𝟏

]
. (8)
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Now, we consider the observer in (4). Defining 𝑒0𝑥,𝑖,𝑚 = �̂�0,𝑖,𝑚 − 𝑥0,𝑚, we have

�̇�0𝑥,𝑖,2 = −𝑐0,2𝑏𝑖𝑒0𝑥,𝑖,2 + 𝑒0𝑥,𝑖,3𝑐0,2
∑
𝑗∈𝑖

𝑎𝑖𝑗(𝑒0𝑥,𝑖,2 − 𝑒0𝑥,𝑗,2), (9a)

�̇�0𝑥,𝑖,𝑚 = −𝑐0,𝑚𝑐0,2𝑏𝑖𝑒0𝑥,𝑖,2 + 𝑒0𝑥,𝑖,𝑚+1 − 𝑐0,𝑚𝑐0,2
∑
𝑗∈𝑖

𝑎𝑖𝑗(𝑒0𝑥,𝑖,2 − 𝑒0𝑥,𝑗,2), 𝑚 = 3, 4,… , 𝑙 − 1, (9b)

�̇�0𝑥,𝑖,𝑙 = −𝑐0,𝑙𝑐0,2𝑏𝑖𝑒0𝑥,𝑖,2 + 𝑒𝑢,𝑖 − 𝑐0,𝑙𝑐0,2
∑
𝑗∈𝑖

𝑎𝑖𝑗(𝑒0𝑥,𝑖,2 − 𝑒0𝑥,𝑗,2). (9c)

Define 𝑒0𝑥,𝑚 =
[
𝑒0𝑥,1,𝑚 𝑒0𝑥,2,𝑚 ⋯ 𝑒0𝑥,𝑁,𝑚

]⊤
and 𝑒0𝑥 =

[
𝑒⊤0𝑥,2 𝑒

⊤
0𝑥,3 ⋯ 𝑒⊤0𝑥,𝑙

]⊤
. Then, (9) can be written into a compact form as

below:

�̇�0𝑥 = 𝐹1𝑒0𝑥 + 𝓁1, (10)

where

𝐹1 =

⎡⎢⎢⎢⎢⎢⎣

−𝑐0,2𝐻 𝐼 0 ⋯ 0
⋮ 0 ⋱ ⋱ ⋮
⋮ ⋮ ⋱ ⋱ 0

−𝑐0,𝑙−1𝑐0,2𝐻 0 ⋯ 0 𝐼

−𝑐0,𝑙𝑐0,2𝐻 0 ⋯ ⋯ 0

⎤⎥⎥⎥⎥⎥⎦
, 𝓁1 =

⎡⎢⎢⎢⎢⎣
0
⋮
0
𝑒𝑢

⎤⎥⎥⎥⎥⎦
.

Proceeding further, we define 𝑒𝑥,𝑖,𝑚 = �̂�𝑖,𝑚 − 𝑥𝑖,𝑚 for the observer in (5) and have

�̇�𝑥,𝑖,2 = −𝑟2𝑒𝑥,𝑖,2 + 𝑒𝑥,𝑖,3,

�̇�𝑥,𝑖,𝑚 = −𝑟𝑚𝑟2𝑒𝑥,𝑖,2 + 𝑒𝑥,𝑖,𝑚+1, 𝑚 = 3, 4,… , 𝑙 − 1,
�̇�𝑥,𝑖,𝑙 = −𝑟𝑙𝑟2𝑒𝑥,𝑖,2.

Define 𝑒𝑥,𝑚 =
[
𝑒𝑥,1,𝑚 𝑒𝑥,2,𝑚 ⋯ 𝑒𝑥,𝑁,𝑚

]⊤
for 𝑚 = 2, 3,… , 𝑙 and 𝑒𝑥 =

[
𝑒⊤
𝑥,2 𝑒

⊤
𝑥,3 ⋯ 𝑒⊤

𝑥,𝑙

]⊤
. Then,

�̇�𝑥 = 𝐹2𝑒𝑥, (11)

where

𝐹2 =

⎡⎢⎢⎢⎢⎢⎣

−𝑟2𝐼 𝐼 0 ⋯ 0
⋮ 0 ⋱ ⋱ ⋮
⋮ ⋮ ⋱ ⋱ 0

−𝑟𝑙−1𝑟2𝐼 0 ⋯ 0 𝐼

−𝑟𝑙𝑟2𝐼 0 ⋯ ⋯ 0

⎤⎥⎥⎥⎥⎥⎦
.

Finally, to investigate the state tracking error, we define it as 𝑒𝑖,𝑚 = 𝑥𝑖,𝑚 − 𝑥0,𝑚. The dynamics of 𝑒𝑖,𝑚 is

�̇�𝑖,𝑚 = 𝑒𝑖,𝑚+1, 𝑚 = 1, 2,… , 𝑙 − 1

�̇�𝑖,𝑙 = −𝑘1
⎡⎢⎢⎣
∑
𝑗∈𝑖

𝑎𝑖𝑗(𝑒𝑖,1 − 𝑒𝑗,1) + 𝑏𝑖𝑒𝑖,1

⎤⎥⎥⎦ −
𝑙∑

𝑚=2
𝑘𝑚𝑒𝑖,𝑚 −

𝑙∑
𝑚=2

𝑘𝑚(𝑒𝑥,𝑖,𝑚 − 𝑒0𝑥,𝑖,𝑚) + 𝑒𝑢,𝑖.

Define 𝑒𝑚 =
[
𝑒1,𝑚 𝑒2,𝑚 ⋯ 𝑒𝑁,𝑚

]⊤
for 𝑚 = 1, 2,… , 𝑙, and 𝑒 =

[
𝑒⊤1 𝑒⊤2 ⋯ 𝑒⊤

𝑙

]⊤
. Here, 𝑒 is the global tracking error with its

dynamics governed by

�̇� = 𝐹3𝑒 + 𝓁3, (12)

where

𝐹3 =

⎡⎢⎢⎢⎢⎢⎣

0 𝐼 0 ⋯ 0
⋮ 0 ⋱ ⋱ ⋮
⋮ ⋮ ⋱ ⋱ 0
0 0 ⋯ 0 𝐼

−𝑘1𝐻 −𝑘2𝐼 ⋯ ⋯ −𝑘𝑙𝐼

⎤⎥⎥⎥⎥⎥⎦
,𝓁3 =

⎡⎢⎢⎢⎢⎣
0
⋮
0

−
∑𝑙

𝑚=2 𝑘𝑚(𝑒𝑥,𝑚 − 𝑒0𝑥,𝑚) + 𝑒𝑢

⎤⎥⎥⎥⎥⎦
.

As a main result, the following theorem outlines the convergence property of the proposed algorithm.
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Theorem 1. Suppose that the controller in (2)-(5) is applied to (1). If Assumption 1 holds, then

lim
𝑡→∞

𝑒𝑢(𝑡) = 0. (13)

Further, lim
𝑡→∞

𝑒0𝑥(𝑡) = 0 if there exist 𝑐0,2, 𝑐0,3,… , 𝑐0,𝑙 > 0 such that the polynomials

ℎ𝑖(𝑠) = 𝑠𝑙−1 + 𝑐0,2𝑠
𝑙−2𝜆𝑖(𝐻) + 𝑐0,2𝜆𝑖(𝐻)

𝑙−3∑
𝑧=0

𝑐0,𝑙−𝑧𝑠
𝑧 (14)

for 𝑖 = 1, 2,… , 𝑁 are Hurwitz stable, and lim𝑡→∞ 𝑒𝑥(𝑡) = 0 if there exist 𝑟2, 𝑟3,… , 𝑟𝑙 > 0 such that the polynomial

𝑠𝑙−1 + 𝑟2𝑠
𝑙−2 + 𝑟2

𝑙−3∑
𝑧=0

𝑟𝑙−𝑧𝑠
𝑧 (15)

is Hurwitz stable. Finally, the global tracking error lim𝑡→∞ 𝑒(𝑡) = 0 if there exist 𝑘𝑚 for 𝑚 = 1, 2,… , 𝑙 such that the polynomials

𝑠𝑙 + 𝑘1𝜆𝑖(𝐻) +
𝑙∑

𝑧=2
𝑠𝑧−1𝑘𝑧 (16)

for 𝑖 = 1, 2,… , 𝑁 are Hurwitz stable.

Proof: To prove (13), let us consider a Lyapunov functional candidate, 𝑉1 = 𝑉1(𝑒𝑢) + 𝑉1(𝑑𝑖), where

𝑉1(𝑒𝑢) =
1
2
𝑒⊤
𝑢
𝐻𝑒𝑢, 𝑉1(𝑑𝑖) =

𝑁∑
𝑖=1

(𝑑𝑖 − 𝛽)2

2𝜏𝑖
,

with 𝛽 ≥ 𝑤. The set-valued Lie derivative of 𝑉1(𝑒𝑢) denoted by  ̇̄𝑉1 along (8) is given by

 ̇̄𝑉1 = 
[
−𝑒⊤

𝑢
𝐻2𝑒𝑢 − 𝑒⊤

𝑢
𝐻𝐷 ⋅ sgn(𝐻𝑒𝑢) − 𝑒⊤

𝑢
𝐻�̇�0𝟏

]
= 

[
−

𝑁∑
𝑖=1

𝑑𝑖

⎛⎜⎜⎝
∑
𝑗∈𝑖

𝑎𝑖𝑗(�̂�0,𝑖 − �̂�0,𝑗) + 𝑏𝑖(�̂�0,𝑖 − 𝑢0)
⎞⎟⎟⎠
⊤

⋅ sgn
⎛⎜⎜⎝
∑
𝑗∈𝑖

𝑎𝑖𝑗(�̂�0,𝑖 − �̂�0,𝑗) + 𝑏𝑖(�̂�0,𝑖 − 𝑢0)
⎞⎟⎟⎠ − 𝑒⊤

𝑢
𝐻2𝑒𝑢 − 𝑒⊤

𝑢
𝐻�̇�0𝟏

]
≤ −

𝑁∑
𝑖=1

𝑑𝑖

||||||
∑
𝑗∈𝑖

𝑎𝑖𝑗(�̂�0,𝑖 − �̂�0,𝑗) + 𝑏𝑖(�̂�0,𝑖 − 𝑢0)
|||||| − 𝑒⊤

𝑢
𝐻2𝑒𝑢 +𝑤‖𝐻𝑒𝑢‖1,

where the fact that [𝑓 ] = {𝑓} if 𝑓 is continuous is used. It then is obtained that ̇̄𝑉1 ∈  ̇̄𝑉1
53. Hence,

�̇�1 = ̇̄𝑉1 + ̇̃𝑉1 = ̇̄𝑉1 +
𝑁∑
𝑖=1

(𝑑𝑖 − 𝛽)�̇�𝑖
𝜏𝑖

≤ −
𝑁∑
𝑖=1

𝑑𝑖

||||||
∑
𝑗∈𝑖

𝑎𝑖𝑗(�̂�0,𝑖 − �̂�0,𝑗) + 𝑏𝑖(�̂�0,𝑖 − 𝑢0)
||||||

+
𝑁∑
𝑖=1

(𝑑𝑖 − 𝛽)
||||||
∑
𝑗∈𝑖

𝑎𝑖𝑗(�̂�0,𝑖 − �̂�0,𝑗) + 𝑏𝑖(�̂�0,𝑖 − 𝑢0)
|||||| − 𝑒⊤

𝑢
𝐻2𝑒𝑢 +𝑤‖𝐻𝑒𝑢‖1

= −𝑒⊤
𝑢
𝐻2𝑒𝑢 − (𝛽 −𝑤)‖𝐻𝑒𝑢‖1.

Note that 𝐻 is positive definite54. This, together with 𝛽 ≥ 𝑤, indicates �̇�1 ≤ 0. Thus, 𝑉1(𝑒𝑢) is non-increasing, implying

that 𝑒𝑢 and 𝑑𝑖 are bounded. It follows from (3b) that 𝑑𝑖 is monotonically increasing. This means that 𝑑𝑖 should converge to

some finite value. In the meantime, 𝑉1(𝑒𝑢) reaches a finite limit as it is decreasing and lower-bounded by zero. If denoting

𝑠(𝑡) = ∫ 𝑡

0 𝑒
⊤
𝑢
(𝜏)𝐻2𝑒𝑢(𝜏)𝑑𝜏, we see that 𝑠(𝑡) ≤ 𝑉1(0) − 𝑉1(𝑡) by integrating �̇�1(𝑒𝑢) ≤ −𝑒⊤

𝑢
𝐻2𝑒𝑢. Hence, lim𝑡→∞ 𝑠(𝑡) exists and is

finite. Due to the boundedness of 𝑒𝑢 and �̇�𝑢, �̈� is also bounded. This implies that �̇� is uniformly continuous. Then, lim𝑡→∞ �̇�(𝑡) = 0
by Barbalat’s Lemma55. Therefore, we can obtain lim𝑡→∞ 𝑒𝑢(𝑡) = 0.
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To prove the asymptotic stability of 𝑒0𝑥, we use the Schur complement, we can find out that the characteristic polynomial of

𝐹1 is
∏𝑁

𝑖=1 ℎ𝑖(𝑠), where ℎ𝑖(𝑠) is shown in (14). Note that lim𝑡→∞ 𝓁1(𝑡) = 0 due to (13). Hence, we have lim𝑡→∞ 𝑒0𝑥(𝑡) = 0 based

on the input-to-state stability (ISS) theory55. Following similar lines, we can obtain that lim𝑡→∞ 𝑒𝑥(𝑡) = 0 given (15), and further

prove that lim𝑡→∞ 𝑒(𝑡) = 0 if (16) holds. ∙

Remark 2. The proposed controller only requires the neighboring followers to interchange 𝑥𝑖,1, �̂�0,𝑖 and �̂�0,𝑖,2, because the

observers can locally estimate other quantities necessary for control. This greatly reduces the amount of data to be exchanged

between agents and makes the design more advantageous in terms of communication costs. ∙

4 HIGH-ORDER TRACKING FOR NONLINEAR DYNAMICS

We have investigated leader-follower tracking for a linear high-order MAS in the previous section. Given the importance of

nonlinear leader-follower MASs, this section moves forward to study the case when an MAS has nonlinear high-order dynamics.

We will develop an observer-based tracking control algorithm and analyze its convergence properties.

Suppose that agent 𝑖’s dynamics is governed by

�̇�𝑖,𝑚 = 𝑥𝑖,𝑚+1 + 𝑓𝑚(𝑥𝑖,𝑚), 𝑚 = 1, 2,… , 𝑙 − 1, (17a)

�̇�𝑖,𝑙 = 𝑢𝑖 + 𝑓𝑙(𝑥𝑖,𝑙), (17b)

for 𝑖 = 0, 1,… , 𝑁 , where 𝑓𝑚(𝑥𝑖,𝑚) ∶ ℝ𝑚 → ℝ for 𝑚 = 1, 2,… , 𝑙 are nonlinear functions with 𝑥𝑖,𝑚 = (𝑥𝑖,1, 𝑥𝑖,2,… , 𝑥𝑖,𝑚).
Following Section 1, we assume that only 𝑥𝑖,1 is measured and continue to hold Assumption 1. The control design objective

here is still to enable convergent tracking, i.e., lim𝑡→∞ |𝑥𝑖,𝑚(𝑡) − 𝑥0,𝑚(𝑡)| = 0 for 𝑚 = 1, 2,… , 𝑙 and 𝑖 = 1, 2,… , 𝑁 .

To achieve the above objective, we propose the following distributed controller:

𝑢𝑖 = −𝑘1(𝑥𝑖,1 − �̂�0,𝑖,1) −
𝑙∑

𝑚=2
𝑘𝑚(�̂�𝑖,𝑚 − �̂�0,𝑖,𝑚) + �̂�0,𝑖. (18)

This controller must be supplemented by corresponding observers. It is noted first that the observer in (3) can also be applied to

obtain �̂�0,𝑖 here, so we continue to use it for the distributed estimation of 𝑢0. We then construct the following state observer to

allow follower 𝑖 to estimate 𝑥0,𝑚 for 𝑚 = 1, 2,… , 𝑙:

̇̂𝑥0,𝑖,1 = −𝑐0,1
⎡⎢⎢⎣
∑
𝑗∈𝑖

𝑎𝑖𝑗(�̂�0,𝑖,1 − �̂�0,𝑗,1) + 𝑏𝑖(�̂�0,𝑖,1 − 𝑥0,1)
⎤⎥⎥⎦ + �̂�0,𝑖,2 + 𝑓1(�̂�0,𝑖,1), (19a)

�̇�0,𝑖,2 = −𝑏𝑖𝑐0,2𝑧0,𝑖,2 − 𝑏2
𝑖
𝑐20,2𝑥0,1 + �̂�0,𝑖,3 + 𝑓2(�̂�0,𝑖,2)

− 𝑐0,2
∑
𝑗∈𝑖

𝑎𝑖𝑗(�̂�0,𝑖,2 − �̂�0,𝑗,2) − 𝑏𝑖𝑐0,2𝑓1(𝑥0,1), (19b)

�̂�0,𝑖,2 = 𝑧0,𝑖,2 + 𝑏𝑖𝑐0,2𝑥0,1, (19c)

�̇�0,𝑖,𝑚 = −𝑐0,𝑚𝑧0,𝑖,𝑚 − 𝑐20,𝑚�̂�0,𝑖,𝑚−1 + �̂�0,𝑖,𝑚+1 + 𝑓𝑚(�̂�0,𝑖,𝑚) − 𝑐0,𝑚𝑓𝑚−1(�̂�0,𝑖,𝑚−1), (19d)

�̂�0,𝑖,𝑚 = 𝑧0,𝑖,𝑚 + 𝑐0,𝑚�̂�0,𝑖,𝑚−1, 𝑚 = 3, 4,… , 𝑙 − 1, (19e)

�̇�0,𝑖,𝑙 = −𝑐0,𝑙𝑧0,𝑖,𝑙 − 𝑐20,𝑙�̂�0,𝑖,𝑙−1 + �̂�0,𝑖 + 𝑓𝑙(�̂�0,𝑖,𝑙) − 𝑐0,𝑙𝑓𝑙−1(�̂�0,𝑖,𝑙−1), (19f)

�̂�0,𝑖,𝑙 = 𝑧0,𝑖,𝑙 + 𝑐0,𝑙�̂�0,𝑖,𝑙−1, (19g)

where �̂�0,𝑖,𝑚 = (�̂�0,𝑖,1, �̂�0,𝑖,2,… , �̂�0,𝑖,𝑚). To make a follower able to estimate its own states, we develop an observer as follows:

�̇�𝑖,2 = −𝑟2𝑧𝑖,2 − 𝑟22𝑥𝑖,1 + �̂�𝑖,3 + 𝑓2(𝑥𝑖,1, �̂�𝑖,2) − 𝑟2𝑓1(𝑥𝑖,1), (20a)

�̂�𝑖,2 = 𝑧𝑖,2 + 𝑟2𝑥𝑖,1, (20b)

�̇�𝑖,𝑚 = −𝑟𝑚𝑧𝑖,𝑚 − 𝑟2
𝑚
�̂�𝑖,𝑚−1 + �̂�𝑖,𝑚+1 + 𝑓𝑚(𝑥𝑖,1, �̂�𝑖,𝑚) − 𝑟𝑚𝑓𝑚−1(𝑥𝑖,1, �̂�𝑖,𝑚−1), (20c)

�̂�𝑖,𝑚 = 𝑧𝑖,𝑚 + 𝑟𝑚�̂�𝑖,𝑚−1, 𝑚 = 3, 4,… , 𝑙 − 1, (20d)

�̇�𝑖,𝑙 = −𝑟𝑙𝑧𝑖,𝑙 − 𝑟2
𝑙
�̂�𝑖,𝑙−1 + 𝑢𝑖 + 𝑓𝑙(𝑥𝑖,1, �̂�𝑖,𝑙) − 𝑟𝑙𝑓𝑙−1(𝑥𝑖,1, �̂�𝑖,𝑙−1), (20e)

�̂�𝑖,𝑙 = 𝑧𝑖,𝑙 + 𝑟𝑙�̂�𝑖,𝑙−1, (20f)
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where �̂�𝑖,𝑚 = (�̂�𝑖,2, �̂�𝑖,3,… , �̂�𝑖,𝑚).
Integrating the above observers in (3), (19)-(20) into the controller in (18) will yield a complete observer-based tracking

controller. Before going further to analyze its effectiveness, we make the following assumption:

Assumption 2. There exist 𝜌𝑚 ≥ 0 such that|𝑓𝑚(𝜉) − 𝑓𝑚(𝜖)| ≤ 𝜌𝑚‖𝜉 − 𝜖‖, 𝑚 = 1, 2,… , 𝑙,

where 𝜉, 𝜖 ∈ ℝ𝑚.

Assumption 2 implies that the nonlinear functions must be of Lipschitz class. It is commonly used in the literature on nonlinear

MAS control and can be satisfied by many practical systems.

The following theorem shows the main result about convergence of the proposed controller.

Theorem 2. Assume that Assumptions 1 and 2 hold and that the controller proposed above is applied to (17). The state tracking

error converges to zero, i.e., lim𝑡→∞ |𝑥𝑖,𝑚(𝑡) − 𝑥0,𝑚(𝑡)| = 0 for 𝑚 = 1, 2,… , 𝑙 and 𝑖 = 1, 2,… , 𝑁 , if there exist 𝑐0,𝑚, 𝑟𝑛 and 𝑘𝑚
for 𝑚 = 1, 2,… , 𝑙 and 𝑛 = 2,… , 𝑁 such that the polynomials (14), (15) and(

𝑠𝑙 +
𝑙∑

𝑧=1
𝑠𝑧−1𝑘𝑧

)𝑁

(21)

are Hurwitz stable, and if there exist matrices 𝑄𝑖 > 0 and 𝜂𝑖 > 0 for 𝑖 = 1, 2, 3 such that

𝐹⊤
4 𝑄1 +𝑄1𝐹4 = −𝜂1𝐼, (22a)

𝐹⊤
2 𝑄2 +𝑄2𝐹2 = −𝜂2𝐼, (22b)

𝐹⊤
6 𝑄3 +𝑄3𝐹6 = −𝜂3𝐼, (22c)

𝑙∑
𝑖=1

‖𝑃0𝑥,𝑖‖ < min
{

𝜂1
2‖𝑄1‖ , 𝜂3

2‖𝑄3‖
}
, (22d)

𝑙∑
𝑖=2

‖𝑃𝑥,𝑖‖ < 𝜂2
2‖𝑄2‖ , (22e)

where 𝑃0𝑥,𝑖 = diag{𝜌1𝐼, 𝜌2𝐼,… , 𝜌𝑖𝐼, 0𝐼, 0𝐼,… , 0𝐼}, 𝑃𝑥,𝑖 = diag{𝜌2𝐼, 𝜌3𝐼,… , 𝜌𝑖𝐼, 0𝐼, 0𝐼,… , 0𝐼} for 𝑖 = 1, 2,… , 𝑙, and

𝐹4 =

⎡⎢⎢⎢⎢⎢⎢⎣

−𝑐0,1𝐻 𝐼 0 ⋯ ⋯ 0
0 −𝑐0,2𝐻 𝐼 0 ⋯ 0
⋮ ⋮ 0 ⋱ ⋱ ⋮
⋮ ⋮ ⋮ ⋱ ⋱ 0
⋮ −𝑐0,𝑙−1𝑐0,2𝐻 0 ⋯ 0 𝐼

0 −𝑐0,𝑙𝑐0,2𝐻 0 ⋯ ⋯ 0

⎤⎥⎥⎥⎥⎥⎥⎦
, 𝐹6 =

⎡⎢⎢⎢⎢⎢⎣

0 𝐼 0 ⋯ 0
⋮ 0 ⋱ ⋱ ⋮
⋮ ⋮ ⋱ ⋱ 0
0 0 ⋯ 0 𝐼

−𝑘1𝐼 −𝑘2𝐼 ⋯ ⋯ −𝑘𝑙𝐼

⎤⎥⎥⎥⎥⎥⎦
.

Proof: Let us define 𝑒0𝑥 =
[
𝑒⊤0𝑥,1 𝑒

⊤
0𝑥,2 ⋯ 𝑒⊤0𝑥,𝑙

]⊤
, where 𝑒0𝑥,𝑚 follows the same definition as in Section 3, and define 𝑓0𝑥,𝑚 =[

⋯ 𝑓𝑚(�̂�0,𝑖,𝑚) − 𝑓𝑚(𝑥0,𝑚) ⋯
]⊤

for 𝑖 = 1, 2,⋯ , 𝑁 . By (17) and (19), we have

�̇�0𝑥 = 𝐹4𝑒0𝑥 + 𝓁4, (23)

where 𝓁4 =
[
𝑓⊤
0𝑥,1 ⋯ 𝑓⊤

0𝑥,𝑙−1 𝑓
⊤
0𝑥,𝑙 + 𝑒⊤

𝑢

]⊤
. We choose a Lyapunov candidate function

𝑉2(𝑒0𝑥) =
1
2
𝑒⊤0𝑥𝑄1𝑒0𝑥,

for which there exist 𝛼1, 𝛼2 > 0 such that

𝛼1‖𝑒0𝑥‖2 ≤ 𝑉2(𝑒0𝑥) ≤ 𝛼2‖𝑒0𝑥‖2.
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By (22a), we have

�̇�2 =
1
2
𝑒⊤0𝑥(𝑄1𝐹4 + 𝐹⊤

4 𝑄1)𝑒0𝑥 + 𝑒⊤0𝑥𝑄1𝓁4

≤ −1
2
𝜂1‖𝑒0𝑥‖2 + ‖𝑒0𝑥‖‖𝑄1‖‖𝓁4‖

≤ −1
2
𝜂1‖𝑒0𝑥‖2 + ‖𝑒0𝑥‖‖𝑄1‖(‖𝑃0𝑥,1𝑒0𝑥‖ + ‖𝑃0𝑥,2𝑒0𝑥‖

+⋯ + ‖𝑃0𝑥,𝑙𝑒0𝑥‖ + ‖𝑒𝑢‖)
= −

(
1
2
𝜂1 − ‖𝑄1‖ 𝑙∑

𝑖=1
‖𝑃0𝑥,𝑖‖)‖𝑒0𝑥‖2 + ‖𝑒0𝑥‖‖𝑄1‖‖𝑒𝑢‖,

Define

𝜎1 =
1
2
𝜂1 − ‖𝑄1‖ 𝑙∑

𝑖=1
‖𝑃0𝑥,𝑖‖, (‖𝑒𝑢‖) = ‖𝑄1‖‖𝑒𝑢‖

𝜎1𝜃1

for any 0 < 𝜃1 < 1. By (22d), one can see that 𝜎1 > 0. It can be verified that‖𝑒0𝑥‖ ≥ (‖𝑒𝑢‖) ⇒ �̇�2 ≤ −𝜎1(1 − 𝜃1)‖𝑒0𝑥‖2.
Hence, 𝑉2 is an ISS-Lyapunov function, implying that the system (23) is ISS55. Then, we have lim𝑡→∞ 𝑒0𝑥 = 0 since lim𝑡→∞ 𝑒𝑢 =
0 as indicated in (13).

Define 𝑓𝑥,𝑚 =
[
⋯ 𝑓𝑚(𝑥𝑖,1, �̂�𝑖,𝑚) − 𝑓𝑚(𝑥𝑖,1, 𝑥𝑖,𝑚) ⋯

]⊤
for 𝑖 = 1, 2,… , 𝑁 . and continue to adopt 𝑒𝑥 as defined in (11).

According to (20), its dynamics can be expressed as

�̇�𝑥 = 𝐹2𝑒𝑥 + 𝓁5, (24)

where 𝐹2 was defined in (11), and 𝓁5 =
[
𝑓⊤
𝑥,2 ⋯ 𝑓⊤

𝑥,𝑙

]⊤
. Following similar lines to the above, we can prove that lim𝑡→∞ 𝑒𝑥 = 0

if (22b) and (22e) hold.

We proceed to consider the global tracking error when the controller in (18) is applied. We define 𝑓𝑚 =[
⋯ 𝑓𝑚(𝑥𝑖,𝑚) − 𝑓𝑚(𝑥0,𝑚) ⋯

]⊤
for 𝑖 = 1, 2,⋯ , 𝑁 . The dynamics of the tracking error 𝑒𝑖,𝑚 = 𝑥𝑖,𝑚 − 𝑥0,𝑚 is

�̇�𝑖,𝑚 = 𝑒𝑖,𝑚+1 + 𝑓𝑚(𝑥𝑖,𝑚) − 𝑓𝑚(𝑥0,𝑚), (25a)

�̇�𝑖,𝑙 = −
𝑙∑

𝑚=1
𝑘𝑚𝑒𝑖,𝑚 −

𝑙∑
𝑚=2

𝑘𝑚𝑒𝑥,𝑚 +
𝑙∑

𝑚=1
𝑘𝑚𝑒0𝑥,𝑚 + 𝑒𝑢,𝑖 + 𝑓𝑙(𝑥𝑖,𝑙) − 𝑓𝑙(𝑥0,𝑙), (25b)

for 𝑚 = 1, 2,… , 𝑙 − 1 and 𝑖 = 1, 2,… , 𝑁 . The notation of 𝑒 in (12) is still adopted here. Now, combining (19), (20) and (25),

the closed-loop system is indicated into a compact structure as below:

�̇� = 𝐹6𝑒 + 𝓁6 + 𝓁7, (26)

where 𝓁6 =
[
𝑓⊤
1 ⋯ 𝑓⊤

𝑙

]⊤
and

𝓁7 =

⎡⎢⎢⎢⎢⎣
0
⋮
0

−
∑𝑙

𝑚=2 𝑘𝑚𝑒𝑥,𝑚 +
∑𝑙

𝑚=1 𝑘𝑚𝑒0𝑥,𝑚 + 𝑒𝑢

⎤⎥⎥⎥⎥⎦
.

For (26), we can use the ISS theory to prove that it is asymptotically stable if (22c)-(22d) hold. Therefore, lim𝑡→∞ 𝑒(𝑡) = 0 is

established as lim𝑡→∞ 𝓁7(𝑡) = 0 due to (7), (23) and (24). We conclude that lim𝑡→∞ |𝑥𝑖,𝑚(𝑡) − 𝑥0,𝑚(𝑡)| = 0. Finally, we highlight

that the Hurwitz stable polynomials (14), (15) and (21) would ensure the existence of solutions for the Lyapunov equations

in (22a)-(22c). This concludes the proof. ∙

Remark 3. Theorem 2 can be briefly explained as follows. The conditions (22a) and (22d) ensure that the distributed observers

in (19) are asymptotically stable; the conditions (22b) and (22e) ensure that the local state observers in (20) are asymptotically

stable; further, the conditions (22c) and (22d) ensure that the global closed-loop tracking errors converge to zero. When the

polynomials (14), (15) and (21) are Hurwitz stable, 𝐹4, 𝐹2, and 𝐹6 will be stable, and then the Lyapunov equations in (22a)-(22c)

will admit solutions.
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FIGURE 1 Topology of the MAS in the simulation.

Remark 4. The above design can be extended to the case when the nonlinear functions 𝑓𝑚(⋅) is unknown but admits

approximation by a known function with bounded error. Specifically, suppose that there exist 𝑔𝑚(⋅) and 𝜑𝑚 ≥ 0 such that||𝑔𝑚(𝜙) − 𝑓𝑚(𝜙)|| ≤ 𝜑𝑚, 𝑚 = 1, 2,… , 𝑙,

for any 𝜙 ∈ ℝ𝑚. We then can replace 𝑓𝑚(⋅) in (19)-(20) by 𝑔𝑚(⋅) and obtain a tracking controller based on the approximate

nonlinearity. It can be proven that this controller will lead to bounded-error tracking under certain mild conditions. The analysis

is omitted here for the sake of space.

5 NUMERICAL STUDY

This section presents a numerical simulation example to show the effectiveness of the proposed design. For the sake of space, we

only illustrate the case of nonlinear leader-follower tracking. Consider a third-order MAS including one leader and five followers.

The agents interchange information based on a communication topology shown in Fig. 1. Here, node 0 is the leader, and nodes

1 to 5 are followers. The leader transmits data to only follower 1, and the followers maintain bidirectional communication

with their neighbors. The agents’ dynamics is as described in (17), for which 𝑓𝑚(𝑥𝑖,𝑚) = cos(𝑥𝑖,𝑚)⊤𝟏 =
∑𝑚

𝑘=1 cos(𝑥𝑖,𝑘). The

leader’s maneuver input is set to be 𝑢0 = sin(0.2𝜋𝑡). When implementing the proposed observer-based controller, we select

𝑐0,1 = 𝑐0,2 = 𝑐0,3 = 5, 𝑟2 = 𝑟3 = 4 and 𝑘1 = 𝑘2 = 𝑘3 = 3. Such a gain set is verifiable to make the convergence conditions

satisfied. The simulation results are summarized in Fig. 2. Figs. 2(a)-2(c) illustrate followers’ and the leader’s state trajectories,

showing that the followers can manage to catch up with and then keep tracking the leader, despite they differ in initial states.

Fig. 2(d) shows the estimation of the leader’s input by the followers. For each follower, the estimation can quickly converge to

the actual values. Meanwhile, the followers can also effectively estimate the leader’s states using the designed observer, with the

estimation errors approaching zero as shown in Figs. 2(e)-2(g). Figs. 2(h) and 2(i) further present the followers’ estimation of

their own unmeasured states. These results validate that the proposed design can ensure convergent tracking, despite nonlinearity

and limited information availability.

6 CONCLUSION

We studied leader-follower tracking control for high-order MASs in this paper. While this problem has recently attracted growing

attention, the previous studies generally require all the states of an agent to be measured, even though the measurement infor-

mation can be practically limited by the availability of sensors. Here, we focused on the challenging but more realistic setting

where only the first state of an agent is measured. We designed novel distributed observers, by which a follower can reconstruct

unknown or unmeasured quantities about itself and the leader, and then performed distributed observer-based controller synthe-

sis. We conducted the design for both linear and nonlinear MASs and characterized the convergence properties. A simulation

result demonstrated the effectiveness of our design. Our future work will be directed towards extending the results to directed

graphs and completely unknown nonlinearity.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIGURE 2 Third-order nonlinear MAS profiles: (a) leader’s and followers’ state trajectory profiles of 𝑥𝑖,1 for 𝑖 = 0, 1,… , 𝑁 ;

(b) leader’s and followers’ state trajectory profiles of 𝑥𝑖,2 for 𝑖 = 0, 1,… , 𝑁 ; (c) leader’s and followers’ state trajectory profiles

of 𝑥𝑖,3 for 𝑖 = 0, 1,… , 𝑁 ; (d) leader’s input profile and the estimation by each follower; (e) leader’s state trajectory profile of 𝑥0,1
and the estimation by each follower; (f) leader’s state trajectory profile of 𝑥0,2 and the estimation by each follower; (g) leader’s

state trajectory profile of 𝑥0,3 and the estimation by each follower; (h) followers’ estimation of their own state trajectories of 𝑥𝑖,2
for 𝑖 = 1, 2,… , 𝑁 ; (i) followers’ estimation of their own state trajectories of 𝑥𝑖,3 for 𝑖 = 1, 2,… , 𝑁 .
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