
Energy-Efficient Distributed Machine Learning at
Wireless Edge with Device-to-Device

Communication
Rui Hu⇤, Yuanxiong Guo†, and Yanmin Gong⇤

⇤ Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, TX 78249
† Department of Information Systems and Cyber Security, University of Texas at San Antonio, San Antonio, TX 78249

rui.hu@utsa.edu, yuanxiong.guo@utsa.edu, yanmin.gong@utsa.edu

Abstract—This paper considers a federated edge learning

(FEL) system where a base station (BS) coordinates a set of edge

devices to train a shared machine learning model collaboratively.

One of the fundamental issues in such systems is maintaining

the learning performance with the limited and heterogeneous

resource capabilities of edge devices. Our goal is to improve

the energy efficiency of edge devices in FEL by mitigating the

temporal and spatial heterogeneity of their energy resources.

Specifically, to balance the heterogeneous energy levels among

edge devices, energy-hungry devices can offload their data to

nearby devices that have sufficient energy via device-to-device

(D2D) communication links at low transmission overheads. Be-

sides, to mitigate the impact of the time-varying energy level of

a device, data collected by edge devices can be queued to be

processed when sufficient energy is available. To compute the

optimal offloading and queuing strategies, we propose an online

control algorithm based on Lyapunov optimization to determine

the amount of data to be offloaded, queued, and processed at

each time slot. Our simulation results on the real-world dataset

demonstrate that our approach achieves a better overall energy

efficiency than baselines.

Index Terms—Federated learning, energy efficiency, wireless

edge, device-to-device communication, Lyapunov optimization

I. INTRODUCTION

The confluence of Internet of Things (IoT) and machine
learning technologies paves the way for intelligence at the
network edge. The International Data Corporation (IDC) es-
timates that there will be 55.7 billion IoT devices by 2025,
generating almost 80B zettabytes of data [1], and those data
could be processed and analyzed using machine learning
approaches to improve human lives. In traditional machine
learning approaches, a cloud server first collects those raw
data from IoT devices and then uses the collected data to
train a machine learning model. However, as the volume of
data generated at the edge increases, the traditional cloud-
based machine learning approach is no longer suitable for
IoT settings [2]. Transmitting the raw data from massive IoT
devices to a cloud server incurs expensive communication
costs over the core network and causes high transmission
delays. In addition, due to the increasing privacy concerns,
users will be unwilling to share their data to a cloud server
for machine learning purposes [3], [4].

The above drawbacks of traditional cloud-based machine
learning approaches motivate the development of distributed

machine learning methods that push machine learning from
the cloud to the edge. As one of the most popular distributed
machine learning methods, federated edge learning (FEL)
was proposed to improve the privacy and communication
efficiency of training machine learning models over distributed
data [5]. Specifically, in FEL, edge devices train a shared
machine learning model collaboratively in an iterative manner
under the coordination of the cloud server while keeping
their data locally. During the training, edge devices use their
local datasets to update a shared model downloaded from the
server and then transmit the updated models to the server for
aggregation. Since the model parameters transmitted between
edge devices and the server contain much less sensitive
information and are much smaller than the raw data, FEL
greatly reduces the communication cost and privacy leakage.
However, FEL faces several key challenges that hinder its wide
adoption in real applications. One of the challenges is the
limited and heterogeneous resources of edge devices, which
will significantly impact the quality of the trained model.
As edge devices in FEL are involved in the model training
process, the resource capabilities of devices, such as network
connectivity, computational speed, memory size, or battery
level, will influence the qualities of local models collected
by the server and hence hinder the convergence of global
model. Therefore, it is essential to manage the resources of
edge devices in FEL efficiently.

Related works on improving the resource efficiency of FEL
have been proposed recently [6]–[8]. For example, a joint
bandwidth allocation and scheduling policy approach was
proposed in [6] to reduce the communication energy consump-
tion of edge devices in FEL. In [7], an energy-efficient FEL
scheme was developed by jointly optimizing the computation
and communication energy consumption of edge devices.
In [8], the transmission power and rate of edge devices and
their CPU frequencies are jointly optimized to minimize the
overall energy consumption of edge devices. Particularly, these
works assumed that all devices have homogeneous and fixed
resource capabilities when designing their resource-efficient
mechanisms. However, in practice, the resource capabilities
of edge devices vary a lot across devices and time.

In this paper, we take the heterogeneity and dynamicity of
devices’ resource capabilities into consideration to improve

Figure 1: System architecture of our proposed FEL over a
two-tier network.

the resource efficiency of FEL. Specifically, we focus on
mitigating the influence of the heterogeneous energy levels
across devices and the dynamic energy level of each device
over time. We propose a novel FEL scheme over a two-tier
network to reduce the overall energy cost of edge devices
while preserving the learning performance. The basic idea is to
use the device-to-device (D2D) network to balance the spatial
energy heterogeneity and use the data queuing to mitigate the
temporal energy dynamicity. Specifically, we design a data
offloading and queuing mechanism to allow energy-hungry
devices to either offload their training data to nearby energy-
sufficient devices via fast D2D links with low communication
cost or queue their data to be processed later until they have
sufficient energy. Since the offloading and queuing strategies
highly depend on the uncertain device resources, we formulate
a stochastic optimization problem and design an online control
algorithm based on Lyapunov optimization to determine the
amount of data to offload, queue, and process on every device
at each time slot during the training. Finally, we compare
our scheme with two baselines using the real-world dataset
and demonstrate the effectiveness of our scheme in improving
energy efficiency.

The rest of this paper is organized as follows. In Section II,
we propose our FEL scheme over a two-tier network. In
Section III, we formulate the energy cost minimization as a
stochastic optimization problem. In Section IV, we solve the
formulated problem using Lyapunov optimization and propose
an online control algorithm. Finally, we present and discuss
our simulation results in Section V and conclude the paper in
Section VI.

II. SYSTEM MODELING

A typical FEL system consists of I edge devices and a base
station (BS). We consider a FEL system deployed over a two-
tier network which consists of a macro-tier and a device-tier

as shown in Figure 1. In the macro-tier, the BS communicates
with devices through cellular communication. In the device-
tier, a device communicates directly with another device via
D2D communication without the intervention of a BS or relay
device. As the BS serves as a cloud server, the goal of our
FEL system is to allow these edge devices to train a global
model collaboratively and iteratively under the coordination of
the BS.

Due to the heterogeneity and dynamicity of edge devices,
devices in this system have different and time-varying energy
levels. Here, we assume that each device has a time-varying
energy cost for completing the learning task due to its time-
varying energy level. Specifically, the energy cost of a device
for completing the training task will be high if it does not
have sufficient energy, and the energy cost for a device with
sufficient energy will be low. In the rest of this work, the
difference in the energy costs of devices is defined as the
spatial variability of energy cost, whereas the variation of
energy cost from one time slot to another is defined as the
temporal variability of energy cost.

To balance the spatial variability of energy cost, devices
with high energy costs may offload (via D2D links) newly
arrived data samples to other devices with lower energy costs.
To tackle the temporal variability of energy cost, devices may
delay the processing of newly arrived data samples at the
current time slot to future time slots when energy cost is
low. With local data samples, each device updates the global
model downloaded from the BS by performing ⌧ local gradient
descent updates. Then, each device sends its local updated
model to the BS, which will aggregate the local models
to update the global model for the next round of training.
This training process will repeat K rounds until the global
model converges. Hence, each device will perform T := K⌧

local training iterations in total. In the following, we describe
the three steps in each training round of our proposed FEL
scheme.

A. Data Collection

Let I := {1, . . . , I} denote the set of I edge devices. At
time slot t 2 {0, . . . , T � 1}, each device i 2 I collects a
new set of Di(t) data samples denoted by Di(t). Each data
sample d := (xd, yd) in Di(t) consists of a feature vector
xd and its associated scalar label yd. We assume Di(t) to be
independent identically distributed (i.i.d.) over time slots. Let
D(t) := [i2IDi(t) denote the set of data samples collected
by all devices at time slot t.

B. Data Offloading and Queuing

Given the new dataset Di(t) at time slot t, device i has two
options to deal with each data sample d 2 Di(t) depending
on its energy situation: it can either 1) offload the data sample
d to another device j 2 I, j 6= i; 2) or queue the data
sample d locally for the training on device i. Note that the data
samples offloaded to device j will be queued to be processed
at incoming time slots. Let fij(t) denote the number of data
samples offloaded from device i to device j and fii(t) denote

the number of data samples kept locally on device i at time slot
t, then the total number of data samples which are queued on
device i for local training is

P
j2I fji(t). Each data sample in

Di(t) should be either offloaded to another device or queued
locally, which can be constrained as follows:

Di(t) =
IX

j=1

fij(t), fij(t) � 0, 8i 2 I. (1)

Assume the transmission capacity of the D2D link between
device i and device j is Bij , which is the maximum number
of data samples that can be transmitted at a time slot. Then,
the number of data samples offloaded from device i to device
j should satisfy that

fij(t)  Bij , 8i, j 2 I. (2)

For the data queue maintained by device i, we define the queue
backlog Qi(t) as the number of data samples waiting in the
queue at time slot t, where Qi(0) is initialized to 0 at time
slot 0. Let Gi(t) represent the set of data samples that are in
the queue and will be used for local training at the current
time slot t, then the queue dynamics can be expressed as

Qi(t+ 1) = [Qi(t)�Gi(t)]
+ +

IX

j=1

fji(t), 8i 2 I, (3)

where Gi(t) := |Gi(t)| represents the size of Gi(t), and we can
see that the departure and arrival rates of the queue are Gi(t)
and

PI
j=1 fji(t), respectively. To maintain the stability of the

queue, we need to guarantee that the queues remain bounded
as new data samples arrive and are queued, i.e., the average
queue backlog over time should be bounded as follows:

Q := lim
T!1

1

T

T�1X

t=0

IX

i=1

E [Qi(t)] < 1. (4)

C. Data Processing

To train the model in an online manner, we minimize the
following global loss over time slots:

min
w

L(w|D) :=

PT�1
t=0

PI
i=1

P
d2Gi(t)

l(w,xd, yd)

D
, (5)

where w 2 Rn represents an n-dimensional global model;
l(w,xd, yd) is the loss on data sample d; D := [t<TD(t)
represents the set of data samples collected at all time slots;
and D := |D| represents the size of D. The global loss is the
weighted average of local losses, i.e.,

L(w|D) =

PI
i=1 GiLi(w|Gi)

D
, (6)

where

Li(w|Gi) :=

PT�1
t=0

P
d2Gi(t)

l(w,xd, yd)

Gi
, 8i 2 I. (7)

Here, Li(w|Gi) represents the local loss function of device i,
where Gi := [t<TGi(t) represents the set of all data samples
collected at device i, and Gi := |Gi| represents the size of Gi.

We use the FedAvg algorithm proposed in [3] to solve our
online learning problem in a distributed manner. Generally, at
each time slot of FedAvg, each device downloads the global
model maintained by the BS as its local model and updates
the model using its local dataset, then the BS collects and
aggregates all the updated local models to renew the global
model for the next round of training. Specifically, let w(t)
represent the global model at time slot t. In each training
round k 2 [K], after receiving the global model from the BS,
the device takes the global model as its initial local model
and performs ⌧ steps of gradient descent towards minimizing
its local loss function to update its local model, i.e., device i

performs the following update for ⌧ time slots:

wi(t) = wi(t� 1)� ⌘rLi(wi(t� 1)|Gi(t)), 8i 2 I, (8)

where ⌘ > 0 is the step size, wi(t) represents the local
model of device i at time slot t. When t mod ⌧ = 0,
that is, at the beginning of each training round, wi(t) is
initialized as the global model w(t) downloaded from the BS.
Here, rLi(wi(t�1)|Gi(t)) :=

P
d2Gi(t)

rl(w,xd, yd)/Gi(t)
represents the gradient of local loss Li at time slot t. We define
the maximum computation capacity of device i as Ci, which is
the maximum number of data samples that can be processed by
device i for training at each time slot. Therefore, the number
of data samples to be processed Gi(t) should be bounded by
computation capacity in any time slot, i.e.,

Gi(t)  Ci, 8i 2 I. (9)

After ⌧ steps of gradient descent, each device sends its local
model to the BS, and the BS updates the global model by
aggregating the local models as follows:

w(k⌧) =

PI
i=1 Hi(k⌧)wi(k⌧)PI

i=1 Hi(k⌧)
, (10)

where k⌧ indicates that the global aggregation happens every
⌧ time slots, Hi(k⌧) =

P
(k�1)⌧t<k⌧ Gi(t) is the number

of data samples processed at device i since last aggregation.
Once the BS gets the new global model, it will broadcast the
model to all devices for the next round of training.

III. COST MINIMIZATION PROBLEM FORMULATION

In this section, we define the cost function for our proposed
FEL scheme to find the optimal data offloading, queuing, and
processing mechanism that can minimize the energy cost and
achieve a desirable learning performance at the same time.
Our cost function consists of two components: the energy
consumption of devices and the model training loss. Before a
global aggregation, the energy consumed by device i consists
of 1) the energy to offload data from device i to device j and
2) the energy to process data for local model training. During
and after the global aggregation, additional energy is needed
for device i to transmit the local model to the BS and then
download the new global model from the BS. The transmission
energy is proportional to the size of the local model, but it is
not related to our design variables. Therefore, in our modeling,

we exclude the energy needed for model transmissions and
focus on the energy cost for data offloading and processing.
Specifically, we formulate the total energy cost of device i at
time slot t as follows:

ei(t) := Ui(t)

0

@
IX

j=1

cijfij(t) + ciGi(t)

1

A , i 2 I. (11)

Here, Ui(t) is a random variable that represents the per unit
energy cost of device i at time slot t measured in $/Joule. As
we mentioned, the energy cost depends on the energy level,
i.e., an energy-sufficient device will have a low per unit energy
cost, and vice versa. The total energy consumed by device i at
time slot t is

PI
j=1 cijfij(t) + ciGi(t) (in Joules), where cij

is the amount of energy (in Joules) to offload one data sample
(which depends on the data transmission rate and transmission
power), and ci is the amount of energy (in Joules) to process
one data sample for local training (which depends on the CPU
frequency and CPU cycles).

As we want to minimize the energy cost and training loss
simultaneously, our overall cost function at time slot t can be
formulated as follows:

Cost(t) :=
IX

i=1

[ei(t) + pi(t)(L(wi(t))� L(w⇤(t)))] , (12)

where pi(t) > 0 is a scaling factor that represents the
importance of global training loss, and L(w⇤(t)) represents
the minimal loss at the optimal point w⇤(t). As the training
loss is unknown beforehand, we use the convergence result of
our FEL scheme (as given in Theorem III.1) to approximate
the training loss gap in (12).

Theorem III.1. (Convergence of the global loss with respect

to the number of processed data) According to [9], the rela-

tionship between the global loss and the number of processed

data can be expressed as: L(wi(t))�L(w⇤(t)) /
q
G

�1
i (t).

Proof. Full proof is provided in the supplementary mate-

rial [10]. ⌅
From Theorem III.1, we can observe that the global training

loss gap (L(wi(t)) � L(w⇤(t))) in (12) could be approx-
imated by its upper bound

q
G

�1
i (t). Since

q
G

�1
i (t) is

monotonically decreasing with Gi(t), minimizing
q
G

�1
i (t) is

equivalent to minimizing �Gi(t). In this case, we approximate
our cost function in (12) as

Cost(t) :=
IX

i=1

[ei(t)� pi(t)Gi(t)] . (13)

In summary, along with all the constraints mentioned before,
our optimization problem becomes:

min
fij(t),Gi(t)

Cost := lim
T!1

1

T

T�1X

t=0

E [Cost(t)] , (14)

subject to (1), (2), (3), (4), (9).

Our goal is to find the optimal values for data offloading
and queuing fij(t) and data processing Gi(t) that minimize
the average cost over time Cost. The expectation in (14)
is with respect to random data arrival Di(t) and random
energy cost Ui(t). Solving Problem (14) is challenging be-
cause optimization variables chosen at time slot t depend
on future data arriving at time slots t + 1, t + 2, . . . , T � 1,
which are unknown yet. In the following, we use Lyapunov
optimization [11] to ensure the stability of our data queues and
transform our problem (14) from a long-term problem to an
online control problem, where decision variables are chosen
based on information in past and present time slots, without
requiring prior knowledge about future information.

IV. OUR ONLINE CONTROL ALGORITHM

In this section, we solve Problem (14) using Lyapunov op-
timization. We define the quadratic Lyapunov function and the
one-step conditional Lyapunov drift, respectively, as follows:

Y (Q(t)) , 1

2

IX

i=1

Q
2
i (t),

�(Q(t)) , E [Y (Q(t+ 1))� Y (Q(t))|Q(t)] , (15)

where Q(t) = [Q1(t), . . . , QI(t)] is a vector concatenating the
queue backlogs of all devices at time slot t. The expectation
is with respect to the random data arrival and per-unit energy
cost. The quadratic Lyapunov function Y (Q(t)) generates a
scalar value that indicates the queues’ stability. Our objective
is to minimize the cost function in (14) while maintaining
the stability of the queues {Qi(t)}i2I . To achieve this, we
use the drift-plus-penalty minimization method [12], [13]. This
method minimizes an upper bound of the drift-plus penalty at
time slot t, i.e., �(Q(t)) + V E[Cost(t)|Q(t)], where V is a
scaling parameter used for weighting the drift and penalty.

Algorithm 1 Our Online Control Algorithm Using Lyapunov
Optimization

1: Initialize Q(0) = 0
2: for t = 1 to T do

3: Observe the system states Di(t) and Ui(t), 8i 2 I, and
the queues Q(t)

4: Choose the design variables f
⇤
ij(t), and G

⇤
i (t) which

are the optimal solution to the following problem:

min
fij(t),Gi(t)

IX

i=1

2

4Qi(t)

0

@
IX

j=1

fji(t)�Gi(t)

1

A

3

5

+ V Cost(t) (16)

subject to (1), (2), and (9)
5: Update Q(t) according to the queue dynamics in (3)
6: end for

Lemma IV.1. At time slot t, an upper bound for the drift-

plus-penalty expression can be written as follows

�(Q(t)) + V E [Cost(t)|Q(t)]  B1 + V E [Cost(t)|Q(t)]

IX

i=1

Qi(t)E

2

4
IX

j=1

fji(t)�Gi(t)|Q(t)

3

5 , (17)

where B1 is a constant.

Proof. Full proof is provided in the supplementary mate-

rial [10]. ⌅
Lemma IV.2. The optimal solution of Problem (16) minimizes

the upper bound of the drift-plus-penalty in (17).

Proof. Full proof is provided in the supplementary mate-

rial [10]. ⌅
In Lemma IV.1, we give the upper bound of the drift-plus-

penalty. We propose an online Lyapunov control algorithm in
Algorithm 1 to solve this upper bound. In this algorithm, the
queue vector is initialized as 0 at first. Then, at each time slot
t, we observe the system states: data arrival Di(t) and energy
cost per unit energy Ui(t) for all i 2 I. Finally, we calculate
the optimal design variables f

⇤
ij(t) and G

⇤
i (t) at time slot t

by solving Problem (16), which minimizes the right hand side
of (17) (as stated in Lemma IV.2). As Problem (16) is linear,
it can be solved using simplex methods. In Theorem IV.3, we
prove the optimality of our algorithm in bounding the average
queue backlog and minimizing the average total loss.

Theorem IV.3. (Optimality of our online control algorithm)

Assuming both Ui(t) and Di(t) is i.i.d. over time slots for

all i 2 I, our online Lyapunov control algorithm ensures

that the time-average queue backlog is bounded as: Q 
(B1 + V B2)/⇣, where B1, B2, and ⇣ are constants. Moreover,

the time-average total cost is within B1/V of the optimal cost

g
⇤
: Cost  B1/V + g

⇤
.

Proof. Full proof is provided in the supplementary mate-

rial [10]. ⌅
V. SIMULATION RESULTS

In this section, we present the experimental setup and
discuss the simulation results.

A. Experimental Setup

1) Dataset and Baselines: We evaluate our approach for
the image recognition task, which uses the modified national
institute of standards and technology (MNIST) dataset. The
MNIST dataset consists of 70, 000 samples of 28⇥28 images.
We use 60, 000 samples for training and the rest for testing
in our experiments. We set the number of edge devices as
I = 10 and the total number of time slots as T = 1000.
As the total number of data samples collected at all devices
D = 60, 000, we simulate data arrival on device i at time slot t
as a Poisson arrival process with the rate � = D/IT . The rate
� represents the average number of data samples arrived on a
device at each time slot. We compare our proposed scheme that

considers both spatial and temporal variability of energy cost
with two baseline schemes: 1) one ignoring spatial variability
(i.e., without data offloading); and 2) another one ignoring both
spatial and temporal variability (i.e., without data offloading
and queuing).

2) Communication and Computation Capability: Here, we
assume all communication links between edge devices are
active, i.e., a fully connected D2D network. The link capacity
Bij between device i and device j, 8i, j 2 I, i 6= j, is set as
5�, and the computation capacity Ci at device i, 8i 2 I, is set
as 5�.

3) Energy Consumption and Cost: We set the size of one
data sample (image) nb = 28⇥ 28 (bits), the frequency of the
CPU clock # = 109 (Hz), the number of CPU cycles required
for computing one bit of data ! = 40 (cycles/bit), and the
energy consumption coefficient = 10�28. Therefore, the
energy consumed at device i for processing one data sample
ci = nb#

2
! = 31.36 (Joules/sample), 8i 2 I. Furthermore,

let each device transmit data with power P = 0.5 (W). We
model the average data rate for device i to communicate with
device j as a Uniform random variable R

j
i ⇠ U(50, 150)

(Mbps) by default, 8i, j 2 I, i 6= j. Hence, the energy
consumed for offloading one data sample from device i to
device j is cij = Pnb/R

j
i (Joules/sample). Besides, we

simulate the per unit energy cost Ui(t) as a Uniform random
variable. Specifically, the per unit energy cost of device
i 2 {1, 2, 3, 4, 5} satisfies Ui(t) ⇠ U(2, 8) ($/Joule), and the
per unit energy cost of device i 2 {5, 6, 7, 8, 9, 10} satisfies
Ui(t) ⇠ U(6, 12) ($/Joule).

B. Experimental Results

We first study the energy efficiency of our approach com-
pared with the baselines. In Figure 2a, we report the av-
erage total cost with respect to the number of time slots.
For our approach, we consider three different D2D channel
rates, i.e., R

j
i ⇠ U(40, 60) (Mbps) with mean 50 (Mbps),

R
j
i ⇠ U(50, 150) (Mbps) with mean 100 (Mbps), and

R
j
i ⇠ U(200, 300) (Mbps) with mean 250 (Mbps). We set

the control parameter V = 1 and the training loss scaling
factor pi(t) = 100. We can observe that the baseline scheme
that ignores spatial and temporal variability achieves the
highest cost, followed by the baseline scheme that ignores only
spatial variability, while our scheme achieves the lowest cost.
This matches our theoretical observation that when spatial
variability is ignored, energy-hungry devices that have high
energy costs do not offload data samples to other devices
where data can be processed at a lower cost. In this case, the
newly arrived data are queued and processed locally regardless
of the energy cost, resulting in low efficiency. Furthermore, if
temporal variability is ignored, devices do not queue data to
wait for being processed. Instead, all data samples will be
processed at the time slot they arrived in the device, even
though the energy cost at that time is very high. Besides, with
different channel data rate between devices, the average total
cost of our approach varies. We can observe that a higher
average channel data rate implies a lower total cost since less

0 200 400 600 800 1000

Time slot

0

2

4

6

8

A
ve

ra
g

e
 t

o
ta

l c
o

st

103

B1: Without data offloading

B2: Without data offloading and queuing

Our framework - 50 Mbps

Our frameowrk - 100 Mbps

Our framework - 250 Mbps

(a)

0 10 20 30

1

2

3

4

A
ve

ra
g

e
 t

o
ta

l c
o

st

103

-1

0

1

2

3

4

5

A
ve

ra
g

e
 d

ri
ft

 (
a

ve
ra

g
e

 d
e

la
y)

104

(b)

0 50 100 150 200
7

8

9

10

A
ve

ra
g

e
 e

n
e

rg
y

co
st

103

-60.2

-59.8

-59.4

-59

-58.6

A
ve

ra
g

e
 g

lo
b

a
l M

L
 lo

ss

(c)

Figure 2: (a) Average total cost for our scheme compared with other baselines. (b) Trade-off between total cost and queue
drift. (c) Trade-off between energy cost and training loss.

energy is needed for transmitting data samples via D2D links,
which encourages energy-hungry devices to offload their data
to other devices with sufficient energy. However, when the
average channel data rate is low, the energy cost of the data
transmission between devices is high. In this case, if devices
cannot benefit much from offloading their data due to the high
communication cost, they may queue the newly-arrived data
locally to wait for being processed.

Then, we observe the trade-off between total cost (i.e.,
penalty) and queue drift and the trade-off between energy
cost and training loss in our approach. Figure 2b shows the
average total cost and average drift with respect to different
Lyapunov control parameters. Here, we set the training loss
scaling factor pi(t) = 100. We can see the trade-off between
the cost and drift controlled by the Lyapunov control parameter
V . As V increases, the queue drift increases. In this case, fewer
data samples will be processed for training at each time slot,
and data samples that are not processed in the current time
slot are queued to be processed in the following time slots
at a lower cost, and hence, the total cost decreases. Fig 2c
shows the average energy cost and training loss with respect
to different training loss scaling factors pi(t). Here, we set
the Lyapunov control parameter V = 1. We can observe the
trade-off between energy cost and training loss controlled by
the training loss scaling factor pi(t). With a higher scaling
factor, devices tend to process more data samples to reduce
the training loss, which will result in a higher cost in data
processing and hence increase the total energy cost.

VI. CONCLUSION

In this paper, we have proposed a two-tier FEL scheme
to improve the energy efficiency of edge devices. We have
considered the practical situation that edge devices have
heterogeneous and time-varying energy capabilities, which
incur a high energy cost in FEL. By optimally designing
the data offloading and queuing mechanism, the limited and
heterogeneous energy of edge devices can be better utilized
while maintaining the learning performance. Simulation results
on the real-world dataset show that our scheme achieves the

best overall performance compared with baselines without the
offloading or queuing mechanism.

ACKNOWLEDGMENT

The work of R. Hu and Y. Gong was supported in part by the
U.S. National Science Foundation under grants CNS-1850523,
CNS-2047761, and CNS-2106761. The work of Y. Guo was
supported in part by the US NSF under grants CNS-2029685
and CNS-2106761.

REFERENCES

[1] [Online]. Available: https://blogs.idc.com/2021/01/06/future-of-industry-
ecosystems-shared-data-and-insights/

[2] Y. Guo and Y. Gong, “Practical collaborative learning for crowdsensing
in the internet of things with differential privacy,” in IEEE Conference

on Communications and Network Security (CNS), 2018, pp. 1–9.
[3] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,

“Communication-efficient learning of deep networks from decentralized
data,” in Artificial intelligence and statistics (PMLR), 2017, pp. 1273–
1282.

[4] R. Hu, Y. Guo, H. Li, Q. Pei, and Y. Gong, “Personalized federated
learning with differential privacy,” IEEE Internet of Things Journal,
vol. 7, no. 10, pp. 9530–9539, 2020.

[5] A. Tak and S. Cherkaoui, “Federated edge learning: Design issues and
challenges,” IEEE Network, vol. 35, no. 2, pp. 252–258, 2020.

[6] Q. Zeng, Y. Du, K. Huang, and K. K. Leung, “Energy-efficient radio
resource allocation for federated edge learning,” in IEEE International

Conference on Communications Workshops, 2020.
[7] ——, “Energy-efficient resource management for federated edge learn-

ing with CPU-GPU heterogeneous computing,” IEEE Transactions on

Wireless Communications, vol. 20, no. 12, pp. 7947–7962, 2021.
[8] X. Mo and J. Xu, “Energy-efficient federated edge learning with joint

communication and computation design,” Journal of Communications

and Information Networks, vol. 6, no. 2, pp. 110–124, 2021.
[9] S. Wang, Y. Ruan, Y. Tu, S. Wagle, C. G. Brinton, and C. Joe-Wong,

“Network-aware optimization of distributed learning for fog computing,”
IEEE/ACM Transactions on Networking, vol. 29, no. 5, pp. 2019–2032,
2021.

[10] R. Hu, Y. Guo, and Y. Gong, “Supplementary.” [Online]. Avail-
able: https://drive.google.com/file/d/1JPyhi159UFlNE28McuJeKO8m
AvOd7R47/view?usp=sharing

[11] M. J. Neely, “Stochastic network optimization with application to
communication and queueing systems,” Synthesis Lectures on Commu-

nication Networks, vol. 3, no. 1, pp. 1–211, 2010.
[12] E. Fountoulakis, N. Pappas, Q. Liao, A. Ephremides, and V. Angelakis,

“Dynamic power control for packets with deadlines,” in IEEE Global

Communications Conference (GLOBECOM), 2018, pp. 1–6.
[13] Z. Zhou, S. Yang, L. J. Pu, and S. Yu, “CEFL: Online admission control,

data scheduling and accuracy tuning for cost-efficient federated learning
across edge nodes,” IEEE Internet of Things Journal, 2020.

