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Abstract — For automotive radar, direction-of-arrival (DoA)
estimation is the most challenging component in the target
detection problem. To cope highly dynamic driving conditions
and to achieve full autonomy, there are stringent requirements
on the processing time and DoA estimation resolution. None of the
state-of-the-art methods can accomplish both at the same time:
FFT-based algorithm is computationally fast but cannot provide
high resolution, while subspace-based algorithms such as MUSIC
and ESPRIT can achieve super-resolution but cannot meet the
timing requirement. In this paper, we present MARS – a real-time
super-resolution algorithm based on maximum likelihood (ML)
estimation. In contrast to traditional ML estimation, MARS
exploits the intrinsic correlation between the input data of
adjacent time slots to reduce the search space. To further reduce
computation time, MARS decomposes the problems in each step
into independent sub-problems that can be efficiently executed on
GPU parallel computing platform. Simulation experiments show
that MARS can achieve 1◦ super-resolution in DoA estimation
under 1 ms.

I. INTRODUCTION

The field of autonomous driving has shown a potential
to revolutionize future transportation. A critical component
to achieve a high level of automation is to obtain accurate
road information in real time. Although camera and lidar
can offer a fine resolution, their performances are sensitive
to their environments. In contrast, radars are robust to the
environmental conditions and are the most reliable. It is
expected that radar will remain an indispensable component
in advanced driver assistant systems (ADASs).

A fundamental problem in automotive radar is to achieve
a high resolution direction-of-arrival (DoA) estimation in
real time. For a high resolution, a 1◦ resolution (a.k.a
super-resolution) is needed [1], [7]. For real time requirement,
although there is no consensus in the literature on the exact
number, we argue that ∼1 ms is needed eventually. This is
because the end-to-end time delay from receiving signals at
the radar to taking specific actions on the vehicle should be
no more than 10 ms. So taking into account of data transfer
among the sub-systems, data fusion, decision making, etc.,
the available time for DoA estimation can only be ∼1 ms.
In summary, a fundamental challenge in automotive radar is
to achieve 1◦ super-resolution in ∼1 ms.

DoA estimation has been investigated for many years.
The maximum likelihood (ML) method enjoys the high
estimation accuracy and robustness, but its computational
time is prohibitively high. Fast Fourier transform (FFT)
based method is computationally efficient, but requires a
very large number of antennas to achieve 1◦ super-resolution.
Subspace-based methods such as MUSIC [2] and ESPRIT
[3] can achieve 1◦ super-resolution with a small number of

Fig. 1. (a) Data Cube. (b) Range-velocity bin with spectrum peak.

antennas, but at the cost of much higher computation time and
suffers from poor performance under low SNR.

There are a number of recent works devoted to DoA
estimation of automotive radar. The authors of [4] designed a
modified DFT-based DoA estimation method by adding virtual
signals to improve accuracy. However, this method cannot
achieve 1◦ resolution requirement. In [5], the range, velocity
and angular estimation were modeled as a multi-dimensional
frequency estimation problem. The computation time is high
due to the number of iterations required to refine the results
and cannot meet the 1 ms time requirement. In [6], the MUSIC
algorithm was implemented on graphics processing unit (GPU)
and other multi-core processors. Although the authors showed
the computation of the GPU-based algorithm is faster than the
others, it is still on the order of ∼100 ms. To the best of our
knowledge, none of the existing algorithms can consistently
achieve 1◦ super-resolution within 1 ms for most realistic
scenarios.

In this paper, we present MARS–a real-time
super-resolution DoA estimation algorithm for automotive
radar. We start with the same formulation for the DoA
estimation problem as ML estimation. Unlike ESPRIT and
MUSIC whose performances deteriorate under low SNR,
ML estimation can find the optimal DoA that meets the 1◦

super-resolution requirement in most cases. To cut down
the computation time associated with ML, we exploit the
correlation between the input data of adjacent time slots.
Since the range, velocity and DoA of each target only have
modest change over two consecutive time slots, we propose to
use the estimation results from the previous time slot to form
a promising and reduced searching space. To further reduce
computation time, we propose to decompose the problems at
each step into independent sub-problems and employ GPU
parallel computing. Through simulation experiments, we find
that MARS is the only algorithm which can handle up to 100
bins of reflection points with 1◦ super-resolution within 1 ms.

II. SIGNAL MODEL FOR DOA ESTIMATION

Consider a moving target with a relative range R (in meter)
and relative velocity V (in m/s) to a frequency modulated
continuous wave (FMCW) radar that is equipped with an
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array of M antenna elements. The space between adjacent
antenna elements is d m. The carrier frequency of the FMCW
radar is fc Hz. Denote C as the speed of the light. Then
the corresponding wavelength λ satisfies λ = C/fc. Denote
Tc (in second) as the chirp duration and S (in Hz/s) as the
chirp slope of the radar. Denote the sampling rate of the radar
receiver as fs Hz. Denote lf as the sampling index within
one chirp (a.k.a. the fast time index), i.e., lf = 1, · · · , Lf ,
where Lf = fs · Tc. Denote ls as the index of chirps within
one coherent processing interval (CPI) (a.k.a. the slow time
index), i.e., ls = 1, · · · , Ls. Denote m = 1, · · · ,M as the
index of receive antenna element. Denote φ as the Azimuth
angle of the target to the receive antenna. Assume the additive
white Gaussian noise (AWGN) is ω[lf , ls,m] ∈ CN

(
0, σ2

)
and ignore the distortion of reflected signal. Denote ξ[lf , ls,m]
as the attenuation caused by the path loss, the antenna gain and
the radar cross section (RCS) of the target. With the above
notations, the output of the radar receiver within one frame
can be represented as:

x[lf ,ls,m] ≈ ξ[lf , ls,m]exp
{
j2π[(fb + fd)

lf
fs

+

fcmdsin(φ)

C
+ fdlsTc +

2fcR

C
]
}

+ ω[lf , ls,m]

(1)

In (1), fb = 2SR
c is beat frequency and is dependent on the

range of target; fd = 2V
λ is the Doppler shift due to the

movement of the target.
In (1), the measurement x[lf , ls,m] spans over the fast

time, the slow time and the space dimension as illustrated in
Fig. 1(a). For velocity estimation, the Doppler shift fd can
be extracted by Ls-point FFT across the slow time dimension
to obtain the velocity V . Similarly, fb can be extracted by
Lf -point FFT across the fast time dimension and then range
R can be obtained. The spectrum after 2-D FFT spans over
a 2-dimension (2D) range-velocity grid, if there are multiple
targets then multiple spectrum peaks may exist and they can
be specified by R and V as shown in Fig. 1(b). Moreover, each
peak may be associated with multiple incident signals from a
clutter of targets with the same range and velocity but different
DoAs. Denote Ne as the total number of bins containing the
spectrum peaks. Denote Ni as the number of DoAs to measure
in the i-th bin. Then the peak in the i-th bin corresponds to
a linear combination of Ni incident signals. Its measurement
for DoA estimation at the m-th antenna can be obtained as:

xi[m] =

Ni∑
n=1

ξin[m]ej2π
mdsin(φin)

λ + ωin[m]. (2)

For M antennas, we have a set Xi = {xi[1], · · · , xi[M ]}, and
for a total of Ne bins, we have X = {X1, · · · ,XNe}.

The goal of DoA estimation is to design a method (denoted
as Ψ) to estimate φin via φ̃in = Ψ(Xi) such that the following
objective function is minimized:

min
Ψ

Ne∑
i=1

Ni∑
n=1

|φin − φ̃in|2 . (3)

III. MARS: A NOVEL MAXIMUM-LIKELIHOOD BASED
REAL-TIME SUPER-RESOLUTION ALGORITHM

A. Main Idea

The goal of this work is to achieve 1◦ super-resolution
in DoA estimation in real-time (under 1 ms). The main
idea of MARS is to use ML estimation as our objective
function because it can provide optimal solution and can be
solved in parallel. To address the prohibitive computational
time associated with the ML estimation, we exploit intrinsic
correlation in range, velocity and DoA of a target between
successive time slots. Specifically, we use the DoA estimation
result from the previous time slot as the center of the search
space and identify a much smaller promising search space
for the current time slot (based on the target’s range and
velocity). In each step of MARS, we decompose a problem
into a larger number of independent sub-problems and use
GPU parallel computing to accelerate computational time. We
briefly describe these ideas in the rest of this section.

B. Objective function

In (3), since φin only depends on Xi, the complete problem
(3) can be decomposed into Ne sub-problems based on each
bin with spectrum peak. In each sub-problem, under ML
estimation, the complex Gaussian noise at each antenna is
assumed to be temporally and spatially independent. To solve
the i-th sub-problem, the ML objective function can be reduced
to the following:

min
φ̃in

M∑
m=1

∣∣∣∣xi[m]−
Ni∑
n=1

ξinexp
[
j2π
(fcmdsin(φ̃in)

c

)]∣∣∣∣2 (4)

Thus, the search space of the sub-problem becomes (φ) and
the size of the search space is |(φ)|Ni which is determined by
three parameters (the fields of view of radar, granularity and
the number of targets in the same range-velocity bin). Fields
of view differ between different types of radars. For example,
a short-range radar may have an azimuthal filed of view
from −80◦ to 80◦ due to its wide beam-width. Granularity is
determined by the required resolution and estimation accuracy,
which is 1◦ in our case. The number of targets falling in
the same range-velocity bin corresponds to the number of
reflection points (from the same or different objects).

C. Reducing Search Space

Since the search space of (4) is prohibitively large, we
propose to reduce its size by exploiting the correlation between
estimation results from adjacent time slots. To do this, we need
to associate estimation results from the last time slot with bins
in the current time slot.

The Euclidean distance between the i-th bin in the current
time slot t (with coordinate (Rt,i, Vt,i)) and the j-th bin in the
previous time slot t− 1 (with coordinate (Rt−1,j , Vt−1,j)) is:

di,j(t) =

√(
Rt,i −Rt−1,j

Rr

)2

+

(
Vt,i − Vt−1,j

Vr

)2

, (5)
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where Rr and Vr are the range and velocity resolutions,
respectively. Define ki in (t− 1) as:

ki = arg min
j

di,j(t) . (6)

To find ki, we can start from a center point (Rt,i, Vt,i) with a
radius ∆. If di,ki(t) ≤ ∆, then bin i can be associated with bin
ki and we can use reduced search space for DoA estimation.
Otherwise, we cannot find ki and the search space cannot be
reduced.

If we can find ki, then by using φ̃kin in (4), we can find a
sub search space as follows:

skin = {φ|φ̃kin − ekin ≤ φ ≤ φ̃kin + ekin } (7)

where n = 1, · · ·Nki and ekin is the expected DoA deviation
between two adjacent time slots. Since the movement of any
target on the road is continuous, ekin (in degrees) can be
calculated by the following equation:

ekin = a
180|(Vt,i + Vt−1,ki) tan(φ̃kin )|Ts

(Rt,i +Rt−1,ki)
+ b , (8)

where Ts is the time interval between adjacent estimations.
a and b are scale parameters to guarantee that the estimation
solution exists in the reduced space. The first term represents
potential DoA deviation caused due to mobility while the
second term accounts for potential estimation error due to
noise. For a far-distant target, the change in DoA is relatively
small (between consecutive estimations) but the impact of the
noise is large (because of attenuation over large distance).
For a nearby target, the reserve is true. Thus, the size of the
search space can be reduced substantially and the actual DoA
is guaranteed to fall in the reduced search space.

By combining all skin ’s, the new search space for the current
i-th sub-problem is:

Si = ski1 ∪ s
ki
2 · · · ∪ s

ki
Nki

. (9)

The complete algorithm for MARS is given in Algorithm 1.

D. Parallel Implementation

To accelerate computation time, we implement our
algorithm based on parallelism and use GPU platform as
follows:

• Step 1. We transfer measurement X from the
range-velocity bins from host to the GPU memory. A
total of NeM signals will be transferred.

• Step 2. The DoA estimation problem (3) is decomposed
into Ne independent sub-problems that can be solved in
parallel. On a GPU platform, Ne blocks will need to be
allocated to all bins respectively. Each block runs one
sub-problem independently.

• Step 3. Within each sub-problem, all elements in the
reduced search space of (4) are calculated in parallel.

1This exhaustive search for all bins may take ∼100s ms. But it only occurs
once when the radar is turned on.

2A new bin is typically detected by a long-range radar with a relatively
small DoA search space.

Algorithm 1 MARS
1: Initialization:
2: Use 2-D FFT to estimate R and V for all range-velocity

bins with spectrum peaks.
3: Use ML estimation to estimate DoAs for all targets based

on exhaustive search.1

4: Save the coordinate of each range-velocity bin (R and V )
with spectrum peak and the corresponding estimated {φ}

5: while receiving new input data do
6: Use 2-D FFT to estimate R and V for all range-velocity

bins with spectrum peaks
7: for each bin do
8: if it is a new bin then
9: Use ML estimation to estimate {φ} based on

exhaustive search.2

10: else
11: Reduce search space
12: Estimate DoA
13: end if
14: end for
15: Save the current estimation results
16: end while

On a GPU platform, in the i-th block, there are |Si|Ni
threads, each allocated to compute one element of (4).

• Step 4. we use parallel reduction technique to find a
DoA estimation solution from all elements.

• Step 5. Save the estimation result in GPU memory for
further use and also transfer it from GPU memory to the
host.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of MARS
through simulation experiments. We implement MARS on a
NVIDIA DGX Station, which is equipped with an Intel Xeon
E5-2698 v4 2.2 GHz CPU and a Tesla V100 GPU. We employ
NVIDIA CUDA Toolkit 11.2 for implementation on GPU.

A. Setting

We set M = 16, which is a typical configuration in radars
for autonomous driving applications. Consider a medium-range
FMCW radar operating at 77 GHz. The range and velocity
resolutions are 30 cm and 3 m/s, respectively [7]. The
azumithal filed of view is [−50◦, 50◦]. Ts is set to be 10 ms
and contains 10 frames. Denote N as the number of DoAs in
one bin.

For MARS, we set ∆ = 2, a = 2, b = 1 and the granularity
used in the search space is 1◦. We compare results from
MARS with those from MUSIC and ESPRIT, both of which
are state-of-the-art super-resolution algorithms. For MUSIC
and ESPRIT, 10 frames are needed to calculate the covariance
matrix [2][3].

B. Performance of DoA Estimation

The RMSEs (Root-mean-square error) of estimated DoA
as a function of SNR for different DOA settings are shown in
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Fig. 2. RMSE vs. SNR for different DoA settings.
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Fig. 3. Computation time of MARS vs. ESPRIT and MUSIC under different DoA settings.

Fig. 2. Each point in the figure is obtained by averaging over
1,000 simulations. In Fig. 2(a)–(c), RMSE decreases as SNR
increases for all three algorithms (MARS, ESPRIT, MUSIC),
which is intuitive. From Fig. 2(a) to (c), the RMSE under each
algorithm increases as the number of DoAs increases from 1 to
3. In Fig. 2(a) and (b), the performance of all three algorithms
meet the 1◦ requirement. But in Fig. 2(c), only MARS can
meet the 1◦ requirement over the entire range (SNR ∈ [10, 25])
while ESPRIT requires SNR > 15 and MUSIC requires SNR
> 19.

In Fig. 2(d), RMSE versus SNR under 2 DoAs with 1◦

spacing is shown. We find that MARS is the only algorithm
among the three to meet 1◦ resolution requirement over the
entire range (SNR ∈ [10, 25]). On the other hand, ESPRIT
requires SNR > 15 to achieve 1◦ resolution while MUSIC is
unable to do so even when SNR increases to 25 dB.

C. Processing time of DoA estimation

We now evaluate the processing time of MARS and
compare it to ESPRIT and MUSIC. We set the total number of
bins, Ne, to 100. The mobility model is generated by SUMO
under an urban scenario and the relative velocity of each target
follows a uniform distribution from 0 to 160 km/h. Fig. 3
presents average computation time (over 100 bins) for DoA
estimation over 1,000 estimations (over a 10-second period). In
Fig. 3(a) to (c), the number of DoAs in each bin N varies from
1 to 3. In all figures, the computation time of MARS is always
under 1 ms. In contrast, the computation times of ESPRIT
and MUSIC are substantially higher than MARS. In particular,
MUSIC algorithm requires 100s more times of computational
time than MARS while ESPRIT requires 10s more times of
computational time than MARS when N = 2 or 3.

V. CONCLUSIONS

In this paper, we presented MARS – a novel real-time
super-resolution DoA estimation algorithm for automotive
radar. By exploiting the correlation between input data and

results of adjacent time slots, we reduce the search space
of ML estimation. We also exploited problem decomposition
and GPU parallel computing to accelerate the estimation
process. Simulation results demonstrated that MARS can
achieve 1◦ super-resolution within 1 ms, which is the first
known algorithm to achieve this resolution-time performance
under most testing scenarios.
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