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HIGHLIGHTS

o The first deep neural networks for used battery age, EoL, RUL, and cycle-by-cycle discharge voltage/power prediction.

e Highly accurate predictions based on one cycle only.

e Dimension reduction, last padding technique, and convolutional training strategy enable flexible input and high accuracy of predictions.
e Data-driven features are extracted showing more influence on battery properties than human-picked features.
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Rechargeable batteries, such as LiFePO4/graphite cells, age differently by variability in manufacturing, charging
(energy inflow) policy, temperature, discharging conditions, etc. Great economic and environmental value can be
extracted if we can predict how a battery ages and ascertain its current state of health and residual useful life,
based on just a few cycles of testing. Here, by developing novel-architecture deep neural networks with a special
convolutional training strategy and taking advantage of recently published battery cycling data, we show that
one can predict the residual life of a battery to a mean absolute percentage error of 6.46%, using only one cycle of
testing. The cycle-by-cycle profiles, such as discharge voltage, capacity, and power curves of any given cycle, of
used batteries with unknown age can also be accurately predicted for the first time. Moreover, our models can
extract data-driven features from the data which were much more influential on the predicted properties than
human-picked features. This work has shown that single cycle data contains a sufficient amount of information to
predict essential battery properties with high accuracy. It is expected to provide tremendous economic and
environmental benefits since reuse and recycling of batteries can be better planned and less lithium-ion batteries
end up in landfills.

1. Introduction

Rechargeable batteries exemplify industrially manufactured devices.
Large amounts of energy flow in and out of a battery cell, which has
complex chemistry and mechanics inside, but on the outside, manifests
as just current-voltage I-V, exterior temperature T, and other measur-
ables. Battery cycle life depends on (a) the battery chemistry, (b) battery
manufacturer and design, (c) variability in manufacturing, (d) history of
charging and discharging, e.g. cutoff voltages, charging currents (pol-
icy), discharge (use) scenarios, ambient temperature, etc. Highly
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nontrivial tradeoffs exist between the battery cycle life, the energy
output (e.g. by varying the cutoff voltages [1]) and fast-charging [2].
Given a used battery of a certain manufacturer and model, accurately
assessing its state of health (SOH) to predict the remaining useful life
(RUL), with as little testing as possible, will provide tremendous eco-
nomic and environmental benefits. It is known that by improving the
battery management system (BMS) software, one could potentially
double the battery cycle life [3], so less lithium-ion batteries (LIB) end
up in landfills, and reuse and recycling of batteries can be better plan-
ned. In addition, as these rechargeable batteries, such as LiFePO4 (LFP)
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cells, have been widely used in electric vehicles (EVs) [4], the resale
value of used EVs can also be better estimated. Imagine one is given a
used rechargeable battery of a known brand, but with an unknown
number of pre-existing charge—discharge cycles s. In order to assess its
SOH, one can proceed to perform a additional cycles of char-
ge—discharge testing to acquire new I(t)-V(t) data. Ideally, if one can take
a = 1, that is, with just one charge-discharge cycle testing of a used
battery of unknown s, and can then predict the future cycle life (RUL)
and I(V) characteristics accurately, it will be tremendously helpful for
building an intelligent BMS [5]. Using integer end-of-life (EoL) to denote
the cycle life of a new battery just out of the factory, then EoL =s + a +
RUL, where underlined quantity denotes the ground truth. But since we
do not know the true s value, and thereby can only make estimates of s
and RUL, there is also EoL = s + a + RUL, where quantities without
underline are one’s estimates.

The estimation and control of dynamical systems, traditionally
dominated by limited-memory computations such as Kalman filter, is
being challenged by deep neural network (DNN) based algorithms.
While it can often be computationally intensive to train a DNN, with
modern GPU/FPGA/ASIC hardware, a DNN with ~ 107 weights can be
run in real-time in hand-held devices [6-8]. It thus behooves us to see
how well state-of-the-art DNNs can perform in RUL-RUL for different
acquisition cycling numbers a. In addition to the residual life, we could
also task DNN to estimate the current age s, and by applying analysis
tools like Deep Taylor Decomposition (DTD) [9], we could task the
DNNs to rank the importance of features in reducing the root mean
square error (RMSE). That is, in the acquired cycling time-sequence data
I(t)-V(t)-T(t), what might be the most important features for making
accurate predictions, and how well they agree with human expert
intuition.

In their ground-breaking work in 2019, Severson et al. [10] provided
the world’s largest open-source dataset consisting of 124 LiFePOg4/
graphite cells being cycled to end-of-life EoL, defined by the cell’s
discharge capacity Q dropping below 80% of its out-of-factory value.
Many different fast-charging policies were used on the 124 cells. EoL
was shown to vary widely, ranging from 150 to 2,300 cycles, due to the
variabilities (c), (d) in the beginning paragraph, with average <EoL> =
806. They also proposed human-picked features based regression
models to predict EoL [11], using data from the first 100 discharge cy-
cles (s =0, a =100), that is, they provided a solution to the EoL(a = 100)
=0+ 100 + RUL(s = 0, a = 100) problem. Their relative mean absolute
percentage error (MAPE) for EoL was 9.1% for the testing dataset, i.e.
RMSE for EoL was about 167 cycles using a = 100. The human-picked
features consist of the minimum, variance, skewness and kurtosis of
the first-100 cycle discharge capacities {Q(m = 1---100)}, the slope and
intercept of the linear fit to the capacity fade curve Q(m) between cycles
2 to 100, the capacity at cycle 2, the difference between the maximum
discharge capacity (since many types of batteries have activation) and
cycle 2, the average charge time in the first 5 cycles, the integral of
temperature over time in cycles 2 to 100, the minimum internal elec-
trical resistance from cycles 2 to 100, and the difference in the internal
electrical resistance between cycle 100 and cycle 2. In 2020, Attia et al.
[12] utilized the same regression model to optimize closed-loop fast-
charging protocols and produced more LIB cells data with even more
complex fast-charging policies. Knobloch [13] developed a Convolu-
tional Neural Network (CNN) model, applied it to the same dataset [10]
and successfully reduced the required input data amount of consecutive
charging cycles down to a = 20 while maintaining the accuracy. Tian
et al. [14] proposed a DNN to predict complete charging curves by 30
points in given partial charging curves measured within 10 mins. By
using the transfer learning technique, pre-trained DNNs can also be
adapted to various practical scenarios, such as different ageing states,
battery types, and charging strategies [15]. Yang et al. [16] proposed an
extreme learning machine-based thermal model to capture the temper-
ature behavior of batteries under external short circuit conditions,
achieving better computational efficiency and accuracy than the
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conventional models. Xiong et al. [17] proposed a multi-stage model
fusion algorithm and a proportional-integral-differential observer,
which can successfully improve the accuracy of the prediction of state of
charge (SOC) and capacity under a complex application environment.
Hong et al. [18] adopted the dilated CNN architecture [19] to predict
RUL with RMSE of 76 based on 4 cycles (a = 4) of acquisition as the
input data. Most of the training approaches in the literature are end-to-
end, i.e. a set of specific feature correlate to a set of the target value.
Thus, in the case of battery EoL prediction, it becomes difficult when
only a single cycle is considered. Different from the end-to-end
approach, “multi-ends-to-end” is used in the current work, i.e. multi-
ple sets of features correlate to the same set of the target value, by the
proposed last padding technique. This will be detailed in the next
section.

In the present work, we show that (1) just a = 1 is able to provide
RMSE(RUL, RUL) < 50, significantly better than all previous models.
Furthermore, the present age s can also be predicted, with RMSE(s, s) <
35. (2) The cycle-by-cycle discharge voltage curve V(Q) can be pre-
dicted. This offers a great advantage for battery reuse, battery-pack
modeling and EV power-system design, as connecting heterogeneous
cells are the key and knowing the future V(Q), for each cell is essential.
Furthermore, the user can check the difference between cycle-by-cycle V
(Q) and the predicted V(Q) in the future, offering confidence that the
DNN is indeed working or “early-warning system” if it is not, instead of
waiting till the EoL event. (3) Our DNN has identified subtle, low-
dimensional battery SOH features (LDSOH) that are much sparser and
superior than the human-picked features. These low-dimensional fea-
tures (“latent space” in DNN) may in turn offer continuous gradient-
guidelines on future battery manufacturing and usage. That is to say,
since the present RUL/EoLpny takes in few-cycle data to make the EoL
prediction, we can visualize and “invert” our EoLpyy and RULpyy effi-
ciently by focusing on LDSOH space (e.g. 2D maps and 3D contours) and
ask what the few-cycle data should look like in order to have better
EoLpny outcome. This would allow us to ask provocative questions like,
given the limited 124 cell samples of EoL ranging from 150 to 2,300
cycles, is it possible to have LiFePO4/graphite cell with the same
nameplate weight and performance rating but EoL of 3,000 cycles or
even 5,000 cycles under equally challenging fast-charging conditions, by
tweaking the fast-charging policy or even battery design? For the same
battery chemistry, there are still literally hundreds of parameters in
battery manufacturing, for example the electrode, separator and current
collector thicknesses, calendering pressure, electrolyte, carbon black
and binder amounts, the synthesis (e.g. ball-milling, carbon coating and
doping of LiFePO4) conditions, electrolyte additives, prelithiation, for-
mation policy, etc. So, is it possible to numerically guide the optimiza-
tion of these processing and use conditions for long EoLpyy and RULpnyn
using cheap-to-calculate and easy-to-visualize LDSOH, instead of the
expensive-to-measure EoL? Lastly, is our EoL/RULpyny “explainable”?
[20] (4) The architecture and training of our DNN is very flexible and
generic, and should be applicable to all industrially manufactured
cycling devices like washing machines, supercapacitors and material
fatigue experiments. The training outcome is highly self-consistent.
Indeed, examination of our RULpyy has indicated likely slight testing
condition anomaly in the Severson et al. [10] dataset between the 55th
to 70th testing cycles (before we noticed temperature fluctuations of the
environmental chamber in their text), when presumably the testing was
at its early/warm-up stage. This kind of automatic detection of the data
anomaly for DNN training would allow a robust testing-and-prediction
regime to be established for future cycling devices. Note that Table S1
listed n, s, m, a and all the terms used in the manuscript and the corre-
sponding definition is added in supplementary. The illustration of n, s,
m, and a are also shown in Fig. S1.

The present work aims to develop DNNs to enable higher accuracy,
earlier prediction, greater interpretability and more output features to a
wide range of cycling conditions [10]. Three DNNs are trained based on
Severson et al.’s 2019 data of 124 LiFePOy4/graphite cells [10]. Each of
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which has different main objectives, auxiliary learning tasks [21],
testing strategy and purpose, summarized and listed in Table 1. The first
DNN, referred to as Discharge DNN, allow the prediction of EoL, future
charge time at EoL ¢~ | and future voltage vs. discharge capacity
V(Q),_g,. curve at EoL for unseen batteries, based on cycle-by-cycle
information (m = 1---a) including human-picked features F™™" and
the “continuous-t” data of discharge curves without the information
about charging. The second DNN referred to as Full DNN, includes in-
formation about charging in the training data, and adopted a testing
strategy to enable extrapolation for unknown batteries with unknown
charging policies. The generality of the second DNN was significantly
improved and can be applied to accurately predict EoL, cycle-by-cycle
(n = 1---EoL) V(Q), of different batteries, even for the other dataset
provided by Attia et al. in 2020 [12]. The first two DNNs can take
arbitrary a from 1 to amax = 100, but trained to assume s = 0 and were
not tasked to predict s. The third DNN, referred to as Full RUL DNN,
predicted RUL, s (0 < s), cycle-by-cycle (n = 1---EoL) V(Q),,, discharge
capacity Qn, and discharge power D, curves for unknown age of “used”
batteries. Note that Full RUL DNN went through a much larger quantity
of training data since we take arbitrary starting points in the data. The
proposed DNNs can accurately predict EoL/RUL and time-series prop-
erties based on an extremely small amount (even one cycle only) of input
data, which can start from any cycle in the entire life of a battery. This is
achieved due to the special convolutional testing and training strategy
and the last padding technique adopted in the current work, giving a
great flexibility of the DNNSs, and in particular, the ability of detecting
data anomaly. The novel deep neural networks provided highly accurate
health prognostics with no prior professional knowledge of cell chem-
istry and the assumption of degradation mechanisms, showing remark-
able predictive ability, interpretability and generality.

2. Model overview

The workflow of Discharge DNN, Full DNN, and Full RUL DNN is
illustrated in Fig. 1. Note that detailed elements/building blocks/inputs/
outputs etc. of each NN pipeline of all the DNNs have been illustrated in
Fig. S3 to Fig. S13 in Supplementary. Here, s is defined as the number of
shifted cycles from cycle number n = 1 used as the first cycle of the input
data series, and each consisting of a consecutive cycles the testing/
training strategy adopted by the DNN, which will be explained in more
detail in the next section. We firstly consider the case of s = 0. The
voltage V(t), current I(t), capacity Q(t)= f:' I(7)dr, and can temperature
T(t) of the a consecutive cycles during the discharge process provided by
Severson et al. [10] were used as input data, where [t;, t] are the start
and finish times of the discharge half-cycle. We always discretize these
continuous-t data into a vector of dimension 500 by linear interpolation,
with time-step h = (t; —t;)/500, so a 4 x 500 x a “continuous-t” data

Table 1
Summary tables for three DNNs in the current work.

Name of Main Auxiliary Testing strategy Purposes of
DNN objectives learning DNN
Discharge EoL, t;’:‘ﬁi <1> Unselected Predicting for
DNN V(Q) koL random batteries, unknown
only trained with batteries.
100 cycles.

Full DNN EoL, V(Q), <2> Unselected Predicting for
random charging unknown
policies, only charging
trained with 100 policies.
cycles.

Full RUL RUL, Qy, s <3> Unselected Predicting for

DNN Dy, V(Q), random batteries, unknown age of

unknown used
batteries.

trained with 1...
EoL-100 cycles.
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block x5 = [V(£)5, I(t)a, Q(t)%’, T(t)e] for each discharge half-cycle,
where superscript “ dis ” indicates the corresponding data obtained
from discharging process only; index i represents each component of the
data/feature matrices; index m is defined to describe each cycle used as
input and in range of m = 1---a. Then, x{ was processed by two CNNs,
referred to as Dimension reduction 1 and 2, consisting of series of
Inception blocks [22], residual bottleneck [23], and Luong-style atten-
tion layers [24] followed by global average and maximum pooling
layers, i.e. network in network (NiN) [25] architecture. This type of
model performed down-sampling by concatenating pairs of adjacent

projection inputs [26]. Dimension reduction 1 and 2 gave the first

——dis ~charge dis

estimation of EoL and charge time, denoted as EoL,, and (tn:EoL> s
m

based on every single cycle m during the discharge process, respectively.

The two resulting 1 x 1 x a vectors from Dimension reduction 1 and 2
are the lower-fidelity version of the targets, which have great sensitivity
to reflect on the variation of their target of inference. They served as
“data-driven features” denoted by F°““** for the networks.

In addition to the “continuous-t” data x& which were all for
discharge, we also used six human-picked cycle-by-cycle features (6 x 1
x a) denoted by FQ‘;‘['“"‘“ provided by Severson et al. [10] that include both
charge and discharge information, for Discharge and Full DNNs. These
“discrete-m” data include (1) the Charge capacity P, (2) Discharge
capacity Qn, (3) Temperature average T, *, (4) Temperature minimum

Tmin, (5) Temperature maximum T™%, and (6) Total charge time charge ¢
each charge half-cycle m. Note that, based on our trial runs, the data of
internal resistance in the dataset [10] showed the least relevance in deep
Taylor decomposition (DTD) [27] analysis compared to the other
human-picked features, which is somewhat counter-intuitive. Subse-
quently, the internal resistance feature was not used in any of our DNNs,
to reduce the amount of input and save the cost of the corresponding
measurements. These 6 x 1 x a “discrete-m” features FiUma are next

——dis

concatenated with 2 x 1 x a data-driven features F?;’:a'di“ = |EoL,, ,

~charge dis . ) . .
<tn:E0L> described in the previous paragraph, which are also
m

“discrete-m” features, labeled as Discharge features (7) and (8),
respectively. Our DNN is flexible with the choice of a, but we deem the
practically economic maximum to be apma.y = 100, which was what
Severson et al. [10] used. An 8 x 1 x apax data block Ff‘,;‘ can be obtained
from the 8 x 1 x a data block, by using the last-padding technique,
where the last column of the 8 x 1 x a “discrete-m” data block was
copied to fully fill the fixed-width 8 x 1 x 100 data block. This is the key
approach to enable a great flexibility of a, and to let the same value of
targets (such as EoL) being described by different lengths of input data.
Then the input with more cycle information can contribute more
adequate gradients for modifying the weights of the DNN and guide the
training based on the input with less information, leading to an efficient
learning for the DNN. The illustration is shown in Fig. S1 and the effect
of this approach is detailed in Fig. S29 and 30 in supplementary.

Next the 8 x 1 x 100 data block was then fed into two CNN sub-
networks, referred to as Predictors 1 and 2. Predictor 1 has a structure

similar to Dimension reduction with a different set of hyperparameters,

. . h h .. .
and is to predict EoL and ¢,y , where t; "5 prediction was an auxiliary

learning task, which assisted the prediction of EoL as a hint. Predictor 2
was used to predict voltage vs. discharge capacity curves at EoL,
V(Q),_go.» based on the input of 8 x 1 x 100 sequence matrix F3°. It
adopted an attention-based encoder-decoder structure to enable this
sequence-to-sequence prediction.

Full DNN further improved the generality for predicting EoL and
V(Q)),, curves of cells subjected to different charging policies. This was
achieved by taking both charge and discharge curves into account and
adopting a new design of Predictor. Similarly, Dimension reduction 3
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Fig. 1. The workflow of the three DNNs in the current work. Where cubes represent data in tensor form and rounded rectangles represent neural networks. The
detailed elements/building blocks/inputs/outputs etc. of each NN pipeline of all the DNNs have been illustrated in Fig. S3 to Fig. S13 in Supplementary.

and 4 were introduced to extract data-driven features Fou*<hr —

m

——char /~charge  char
[EoLm ) (tn:EiL) ], which are labeled as Charge features (9) and

« ”»

(10) respectively, where “ char ” indicates the data obtained from

charging process to avoid the confusion made by the symbols “ charge ”

used by total charge time t"{£ . The resulting two 1 x 1 x a vectors

were concatenated with the 8 x 1 x a data block mentioned in the
previous paragraphs. Last padding technique was also applied, forming
10 x 1 x 100 data block Fi. Next, Predictor 3 consisted of three CNN
sub-networks with deep mutual learning (DML) strategy [28], and the
outputted results were ensemble averaged to give the predicted EoL. In
which the three sub-networks had different amounts of trainable pa-
rameters to preserve the diversity of learning. Predictor 4 provided
cycle-by-cycle V(Qj), curves, where n can be specified by users as an

integer percentage of EoL, and served as a key for the encoder part of the
attention layer. It is noteworthy that Predictor 4 outputted a 1 x 100
vector of voltage corresponding to pre-defined Q; (j = 1---100) with
equally-spaced interval of Quumeplac/100. This design reduced the
complexity of the prediction of curves enabling a more efficient
training/inference of model, and yet, the detail of steep changes of
curves may be compromised.

Full RUL DNN has almost no limitation for positive s, i.e. the input
sequence does not necessarily begin from the cells first cycle. However,
1 <a <50 was set to reduce the extremely large amount of data in
training process due to the consideration of the wide range of s and a.
Therefore, instead of EoL, RUL can be predicted. This also indicates that
the networks can adapt and respond correctly based on the features in
any cycle as its first input. Full RUL DNN aims at truly well used battery
cells, that may have s > EoL/2 already. Full RUL DNN required two
additional Dimension reduction 5 and 6, extracting the data-driven

~dis ~char
features s,, and s,, , labeled as (11) and (12), respectively. Thus, in

total 12 features of a cycles started from the unknown s™ cycle can be
obtained.

In addition to RUL, cycle-by-cycle Q,, D,, and V(Q;),, the value of s
was also predicted by Full RUL DNN as an auxiliary learning task. Thus,
Full RUL DNN can output the predicted current age s of any well-used
batteries, which can be a validation check for any user who doubt the
efficacy of the DNN (“ask the Fortune Teller my age, before trusting her
prediction of the Doomsday™). A special “convolutional training” strat-
egy was applied to both Full RUL DNN to deal with such complicated
tasks where both s and a are varying with little constraint.

2.1. Network setting and training

Our DNNs used the unmodified “raw data” provided by Severson
et al. [10] Certain data were, however, omitted due to their unsatis-
factory quality specified in the exception notices in the experiment log,
such as early stoppage of the tests, temperature recording failure, or data
with excess noises. In total, 115 batteries with an acceptable quality of
discharge data in the first 100 cycles were considered in our Discharge
DNN; out of these, 95 batteries were considered in Full DNN as the
charge curves data quality of the omitted 20 batteries were not of
satisfaction. Meanwhile, only 81 batteries have acceptable data quality
in all the discharge and charge curves in every 0 <s,m = 1---a cycle,
and thus can be considered in Full RUL DNN. Here the constant-current
regions of the discharge curves, and the entire curves of charging process
of capacity, voltage, current, and temperature were utilized as input
datasets.

Three testing strategies were adopted corresponding to the three
DNNs proposed in our work. Discharge DNN was designed for the pre-
diction of unlearned battery cells. Thus, its testing strategy, referred to
as testing strategy < 1>, was that the data of entire sequences of certain
randomly chosen batteries was omitted from all the considered
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batteries. The resulting datasets then trained and forced Discharge DNN
to learn the features of overall sequences and to extrapolate for different
batteries. Next, Full DNN was designed for batteries with varying
charging policies. Testing strategy < 2>, where the data of entire se-
quences of all the batteries with randomly chosen charging policies were
deliberately omitted, were used by Full DNN to train the ability of
extrapolation for different charging policies. The training of the two
DNNs mentioned above was trained by the first 100 cycles (s = 0,
1 < a < 100) of each battery only, i.e. the information of the remaining
cycles (a > 100) was not considered. In contrast, Full RUL DNN adopted
a special “convolutional training/testing” (CT) strategy < 3>, where the
starting cycle with s shifted cycle from n = 1 and the number of cycles
used a in each set of training data may vary. The kernels with all the
possible combinations of s and a then convoluted throughout the entire
life cycles of 65 randomly selected batteries (around 80% of the 81
considered batteries) in the training set. This allows Full RUL DNN to
possess the ability of multi-vision to obtain full information about the
entire life of batteries. Thus, accurately predicting RUL based on an
arbitrary s with little information of a cycles can be achieved. The detail
of the training strategies < 1>...<3 > was illustrated in Fig. S14 in
Supplementary.

Applied Energy 306 (2022) 118134
2.2. Performance of discharge and Full DNNs

The performance of Discharge and Full DNNs is shown in Fig. 2.
There are 115 cases for Discharge DNN and 95 cases for Full DNN in the
figures, i.e. the total number of batteries considered in the DNNs. The
mean absolute percentage error (MAPE) of the predicted values to
ground truth of EoL corresponding to the training and testing sets were
shown in the legend of each diagram in Fig. 2(a). It is remarkable that
very low testing MAPE(EoL, EoL_) = 6.46% can be achieved by
Discharge DNN based on F.:,:“h”gc, i.e. the discharge curves and the six
human-picked features, at the first cycle only (a = 1). Full DNN can also
give low testing MAPE(EoL, EoL _) = 7.78% for the predicted EoL. These
MAPE values based on one cycle only are even lower than 9.1% based on
100 cycles in the literature [10]. Our testing MAPE of Full DNN can be
further improved to lower than 3.97% when the data of the first 100
consecutive cycles were used (a = 100), but we consider such
improvement in quality to be disproportional to the 100 x input mea-
surement work required. In addition to such high overall accuracy of
prediction, sparse data points and outlier cases with extremely low or
high lifetimes can still be captured by both the DNNs.

Discharge DNN can predict V(Q),_g, curve. Two batteries with the

least and the greatest differences on curves atn = 1 and EoL, i.e. the best
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Fig. 2. (a)(b) The predicted values EoL vs. EoL of Discharge and Full DNNs based on the first cycle (s = 0,a = 1) in data of Severson et al. Low MAPE (<7.78%) were
achieved. (c)(d) The predicted V(Q), curves by the two DNNs for the cases of the lease degraded (best) and the most degraded (worst) batteries. In the second part of
the figure, Full DNN is applied to predict (e) EoL of 34 cells provided by Attia et al. [12] with totally different charging policies, and (f) V(Q;), curves of two of
batteries in (e) are also predicted.
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and worst batteries in the dataset, are shown in Fig. 2(c) as examples.
Here the difference in V(Q),_g, was defined by the integrated area

between the two curves at n = 1 (blue solid line) and EoL (red solid line),
and can be regarded as an indicator of the level of ageing. The dotted
line was the degraded curve predicted based on the first (@ = 1) cycle,

while the red solid line was the ground truth of curves at EoL. It can be
observed that the dotted and red solid lines are almost identical,
showing a great predictive power of our DNN in both long-lived and
short-lived outliers.

We next examine the performance of Full DNN on the prediction of
cycle-by-cycle V(Qj), curves, as shown in Fig. 2(d). Where solid lines in
blue, light blue, orange, and red representing the ground truth of curves
of n = 1%|EoL|., 33%|EoL]., 66%|EoL|., |EoL]are chosen for illus-
tration purposes, where |x| is floor operation giving the greatest integer
less than x. It can be observed that Full DNN accurately predicted these
curves and successfully captured the history of the ageing process of
cells. Note that our DNN provided a more accurate prediction on the
curves for the early-stage usage of cells, since cells in their early stage
typically are at a relatively healthy state and with less uncertainty.

The error metrics of properties predicted by Discharge and Full DNNs
were shown in Table 2. It is remarkable that, with the average
<EoL>=806 cycles and a standard deviation of 377 in the batteries,
RMSE of 57 cycles for EoL prediction can be achieved by Discharge DNN
based on the first-cycle data only (s = 0,a = 1). It is significantly less
than the benchmark of RMSE of 122 obtained from Severson et al. based
on the first 100 consecutive cycles (s = 0, a = 100). RMSE was
dramatically dropped to 33 when data of the first 100 consecutive cycles
were considered in Discharge DNN. In Full DNN, RMSE of 58 and 39
cycles for EoL prediction can be achieved based on data of the first (a =
1) and the first 100 cycles (a = 100). The ability of extrapolation of Full
DNN was excellent and illustrated in Fig. S15 in Supplementary. It is of
interest that Full DNN and Discharge DNN produced very similar RMSE.
This shows that the auxiliary learning task for predicting future charge
time £ in Discharge DNN was very helpful in predicting EoL. The
effect of this design was almost equivalent to the input data of the entire
charge part for Full DNN.

The error metric .#, for V(Q), curves predicted by Discharge DNNs
was also shown in Table 2. It is defined by

. 100 2 )
100 _Z((A‘/!"’/(‘/llpper - Vlower)) + (AQle/Qnameplate) )
M

J1V'(a),ldq

Table 2

Comparison of error metric of properties predicted by the current DNNs and
Severson et al. [10] The superscript <-> indicates the specific training strategy
adopted by the DNN.

Situation First First 5 First 100 First 100
cycle cycles cycles cycles
s=0 s=0 s=0 s=0
a=1 a=5 a =100 a=100
Discharge DNN Discharge
Model in [10]
RMSE (EoL,EoL 7) 44/57 38/49 15/33 76/122
(cycles)
charge charge 0.37/ 0.38/ 0.17/0.45 -
RMSE (tn}LEiL‘ til ) 0.6 0.53
(mins)
M n—EoL 32/43 23/36 17/16 -
Full DNN Full Model in
[10]
2, 1/1
RMSE (EoL. EoL 7) 50/58 42/48 35/39 51/167
(cycles)
(M n) 15/26 12/20 10/22 -
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where AV}, and AQj, are the difference between the jth data point of
ground truth and predicted values of voltage and charge for the given
cycle n; [VIOWer, VUPPeT] js the discharging and charging voltage cutoffs;
Quameplate = 1.1 Ah, i.e. the nameplate discharge capacity of these
18,650 LiFePQg4/graphite cells; the denominator is the total length of
curve. For the prediction of cycle-by-cycle V(Q;), curves by Full DNN,
the error metric, (.#,), is determined by averaging .#,_1yroL through
M n—ror for all the 100 V(Q;), curves. It is remarkable that even though
the complexity of the prediction of cycle-by-cycle curves is significantly
higher than it of the prediction of a single-cycle curve at EoL, their error
metric values listed in Table 2 are very similar to those of Discharge
DNN.

Overall, the error metrics difference between testing and training
sets in all items of Table 2 was converged when the first 100 consecutive
cycles were considered. This indicated that the feature learning process
of the three DNNs were all in good condition and without obvious
overfitting phenomenon. The learning progress of the current DNNs was
illustrated in detail in Supplementary Fig. S16...18. The reproducibility
and reliability of the Discharge and Full DNNs were examined by five-
fold cross-validation tests. Five different training sets were used to
train the two DNNs. The RMSE of EoL curves show slight fluctuations in
the early stage and quickly converge after input cycle a > 30 showing
high robustness, as shown in Fig. S19 in Supplementary.

With the advantage of highly accurate prediction, our DNNs are
particularly suitable for closed-loop optimization for maximizing bat-
tery cycle life recently proposed by Attia et al. [12] As RMSE of our
EoLpny (a = 1) was even less than the benchmark which used a = 100
cycles [10], as shown in Table 2, the required measuring number of
cycles and optimization time in the protocols can be significantly
reduced. Moreover, apart from accurately predicting EoL, our Discharge
DNN can predict additional properties with very high accuracy, such as
the total charge time. This also enables a useful extension for the pro-
tocols to optimize EoL and charge time simultaneously to achieve
different objectives defined by the users who may favor the maximum
EoL, the shortest charging time, or any preferable combination of the
two.

2.3. Application to batteries with different charging policies

The generality of the current work was examined by applying Full
DNN based on the year-2019 dataset to predict EoL of batteries included
in a completely different dataset which is provided by Attia et al. [12] in
2020, without retraining. The batteries were subjected to very complex
charging policies with 5 different constant-current steps. There were 34
batteries chosen from the 2020 dataset [12] to test our Full DNN. Note
that 11 batteries in the dataset were omitted since the data condition of
their first cycle does not have acceptable quality for the inference of EoL.
For example, their current curves are greatly shifted; the patterns of
their temperature curves are different from most of the batteries in the
dataset. The corresponding data screening process is detailed in the
supplementary. Fig. 2(e) shows that Full DNN has MAPE(EoL, EoL .) =
9.58% based on the first cycle only (a = 1), which is slightly higher than
those when Full DNN predicted EoL in the testing dataset provided by
Severson et al. [10] We believe this is because the significant difference
in the discharge capacity of batteries used in the Attia et al. [12] (1.051
=+ 0.003 Ah) and Severson et al. [10] (1.078 £ 0.002 Ah). Even though,
MAPE of 9.58% can still be regarded as sufficiently low for the data and
charging policies which were not learned by the DNN. More detail can
be found in Fig. S21 and S22 in supplementary.

We next examined the performance of Full DNN in predicting time-
series properties V(Q;), of the good and bad batteries. Note that the
curves predicted by Full DNN required two automatic pre-processing
steps for illustration purposes, as the dataset provided by Attia et al.
[12] was not known to the DNN. First, a rigid shift should be performed
to make the first point of the predicted curve matches that of the initial
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curve of the first cycle (i.e. the voltage at zero discharge capacity). After
the rigid shift, the second process was to omit the points in the predicted
curve with voltage lower than the minimum applied voltage specified in
the dataset (2.0 V in this case). This data pre-processing is completely
general and tamper-proof, as all the information required here was
included in the input data of the DNN. Fig. 2(f) shows that Full DNN
successfully predicted the curves with high accuracy for both cases. It is
of interest that, for the case of the bad battery, the ground truth (solid
lines) and predicted (dotted lines) curves were almost identical, while

there was a notable difference for n = EoL in the case of the good battery.
This is because the degradation was insignificant in the good battery,
and fewer aging features can be discovered by the DNN in the first cycle.
Similar conclusions were made in the work of Zheng [29], where the
incremental open circuit voltage test for better estimation of SOC are
recommended.

2.4. The most influential features for predicting EoL

The network design enables the interpretation of the current DNNs.
The total counts for the human-picked and data-driven features on EoL
being the most influential feature in each input cycle in all batteries in
the two DNNs can be revealed by Deep Taylor decomposition (DTD), as
shown in Fig. 3. There are 115 x 100 and 95 x 100 counts in total in
Fig. 3(a) and (b), respectively. In Discharge DNN (Fig. 3(a)), the top 3

——dis ‘~charge 1S

influential features were data-driven features (7) EoL,, , (8) (tn:E0L> ,
m

and human-picked feature (5) Temperature maximum T**. In Full DNN,

) A 3 ‘~charge char
the top 3 influential features were data-driven features (10) <tn:EoL> s
m

~charge dis ) .

(8) (tn:E0L> , and human-picked feature (5) Temperature maximum
m

Ty, In contrast, the feature with relatively low relevance in both the

DNNs was human-picked feature (1) Charge capacity P,,. Remarkably,
the results showed that the most influential features to EoL of a battery
are all data-driven features extracted by our Dimension reduction,
rather than the human-picked features suggested by the literature, by as
much as one order of magnitude. This demonstrated the power of DNNs
which is capable of discovering the crucial underlying factors for the
performance over and above human intuitions.

We next visualized the most influential feature for each of 95 bat-
teries with different EoL in Full DNN, as shown in Fig. 3(c). It can be
observed that data-driven features are more relevant than other features
to the batteries with long-range of EoL, showing their great applicability
to batteries with different qualities. Furthermore, it is of interest to note

——char

that Charge data-driven features (9) EoL,,

‘~charge

char
and (10) <tn:EUL) are

m
more relevant to the batteries with EoL below the average value of 806
cycles (marked by a dashed line) while Discharge data-driven features

~charge dis
(8) trl:EoL

m

are more relevant to those with longer EoL. This result
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implies that charging policies are the main reason to cause aging and
degradation of batteries. It is also worth noting that, batteries with EoL
around the average value typically behaved neutrally without signifi-
cant characteristics. Thus, it is reasonable that both human-picked and
data-driven features were possibly the most influential ones. In our
Supplementary, more correlations between EoL and input data were
determined by layer-wise relevance propagation (LRP) method in
Fig. §23, and selected parts of input data suggested by LRP were also
visualized and enlarged in Fig. S24.

2.5. The prediction of RUL and the current battery age s

Now we examine the performance of RUL prediction by Full RUL
DNN, where 0 <s,1 < a < 50. Fig. 4(a) and (b) show the testing RMSE

(RUL, RUL) and RMSEC(s, s), respectively, where s can be regarded as the
unknown age of a used battery. Since this DNN allows accept input from
wide range of s (1-1684 cycles), three representative ranges corre-
sponding to “Baby” age (1-100 cycles), “Mid” age (401-500 cycles), and
“Old” age (701-800 cycles) were chosen for illustration purpose. RMSE
diagrams for RUL and s in the full range are shown in Fig. S25 in Sup-
plementary. It can be observed that RUL was accurately predicted by
Full RUL DNN. Most of the regions in Fig. 4(a) are in blue, i.e. RMSE

(RUL, RUL) < 50.

It is of interest that, in Fig. 4, the regions with relatively high RMSE
form 45° sharp lines, i.e. a + s_ = ¢, where c is a constant. This is
because the last padding technique used here repeated the information
of the last input cycle, which was equivalent to assign a greater weight to
that cycle in the DNNs. In other words, whenever the data of a single
cycle with low quality of measurements was the last element in the input
data, the prediction was then greatly misled by that particular cycle,
resulting in a sudden increase of RMSE. Similarly, RMSE may also drop
immediately when the last input element was with an acceptable qual-
ity. For example, region A in Fig. 4(a) with relatively high RMSE is a 45°
band located around s_ = 55. It is because an anomaly condition
(temperature fluctuations of the environmental chamber according to
Severson et al. [10]) occurred around those cycles for half of the bat-
teries in the dataset. This indicates that the current DNN successfully
reflects the anomaly conditions that occurred in the testing of given
batteries. In addition, even the input was with such anomaly conditions,
RMSE of the current DNN is still lower than 50 cycles, and it can be
further reduced by simply considering more input cycles (greater a).
This great flexibility, reliability and robustness are not offered by any
other DNN models in the literature which only accept fix amount of
input cycles. Another region with relatively high RMSE is s _ < 15,a <
15 marked by triangle B. It is reasonable as the predictions were based
on small amount of data and batteries were typically at a relatively
healthy state with almost no aging features in their early/warm-up
stage. It is worth noting that the first column (s . = 0) in Fig. 4(a) can
be compared with the results of Full DNN shown in Table 2. Where their
RMSE were both in a similar range between 40 and 80 cycles, even the

prediction of RUL is more complex than that of EoL as s is unknown and
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Fig. 3. The total counts for the human-picked and data-driven features on EoL prediction by (a) Discharge and (b) Full DNNs being the most influential feature in
each input cycle in all batteries, obtained by Deep Taylor decomposition. (c) The most influential feature for each of the 95 batteries with different EoL in Full DNN.
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Fig. 4. Testing RMSE of predicted (a) RUL and (b) s, which can be regarded as the current battery age, by Full RUL DNN.

flexible in Full RUL DNN.

Fig. 4(b) shows the performance of age prediction s by Full RUL DNN.
It can be observed that the occurrence of 45° sharp edges with relatively
high RMSE had good agreement with those in Fig. 4(a), showing a high
correlation between RUL and s. Full RUL DNN typically provided a more
accurate prediction of s when s is small, as shown in Fig. 4(b). In most of
the cases, low RMSE(s, s) (<35 cycles) can be achieved when s < 750.
However, RMSE(s, s) went up as s > 750 (see Fig. S25 in Supplementary
for more detail). This is because the amount of training data corre-
sponding to the batteries with EoL > 750 cycles reduced to 17.3% of the
entire dataset (see Fig. S26 in Supplementary), providing insufficient
information for Full RUL DNN to learn the corresponding features.

We next examine the performance of Full RUL DNN on cycle-by-cycle
information. Fig. 5(a)(b) shows testing MAPE of discharge power D, and
discharge capacity Q, values at the n'™ cycle with 0 <s_, a = 1.Itis
remarkable that our MAPE is typically<4% based on the data at any

Full RUL DNN (a = 1)
(a) MAPE ([D,],[Da] ) (%)

(b) MAPE ([Qn], [Qn] ) (%)
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(c) ]VE: forV(Q

values of s, showing excellent cycle-by-cycle predictability. However, D,
and Q, were relatively difficult to be predicted when n was close to EoL
as the batteries became unstable with higher uncertainty, giving a thin
black band region at the top of the figures. It is also of interest noting
that, for both D, and Q,, high accuracy can be achieved especially when
the values of the predicting target cycle n and the input data age s were
close, resulting in a dark blue band from bottom left to top right in Fig. 5
(a)(b). These results were also reasonable as the less cycle difference
between n and s, less uncertainty may be introduced in the batteries.
Fig. 5(c) is the error metric .#, for V(Q), curves, showing very low
values (typically .#, < 4%). However, a thin black band region at the
top of the figures still existed for the same reason mentioned above. A
relatively higher value of .7, close to 4% can be found in the left half of
Fig. 5(c). This is because the batteries at their early-stage (less s) were
still healthy with less ageing information. In contrast, age left its traces

Fig. 5. Testing MAPE of (a) discharge power
D,, (b) discharge capacity Q, and (c) the
error metric ./, for V(Q;), predicted by Full
RUL DNN with 0 <s_,a = 1. (d) The ground
truth of discharge power curves D! of ten
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on the data at the later stage (greater s), providing sufficient information

for our DNN to predict V(Qj), curves accurately in a wide range of n.
Fig. 5(d) shows the predicted (dotted lines) and ground truth (solid

lines) of discharge power curves D! of ten selected batteries with

various EoL provided by Severson et al. [10]. The prediction was per-
formed based on one cycle only (a = 1) at the age of “Baby” (s_ = 0). It
is remarkable that several important features of the curves of all the ten
curves were accurately predicted. For example, the endpoints of most of
the predicted curves where D = 2.6 Wh matched well with those of
ground truth; slope changes of the curves were also accurately pre-
dicted; some of the batteries (e.g. battery A marked in Fig. 5(d)) had
special fluctuation before the final steepest drop and our DNN can reveal
this phenomenon in the predicted curve. We also plot three green dotted
predicted D! curves for the batteries with the longest EoL as an
example, based on the input cycles of “Teen,” “Mid,” and “Old” ages (i.e.
[(EoL —100) x 33%], | (EoL — 100) x 66%], EoL — 100), respectively.
Note that, the last 100 cycles before EoL were omitted here, as these data
were relatively unstable and may have uncommon features of batteries.
It can be observed that there was no significant difference between the
predicted D" curves based on the four ages of s as input, demonstrating
the robustness of the current DNN.

Overall, Full RUL DNN was proven to be a powerful tool to accurately
predict RUL, age, and cycle-by-cycle information of used batteries based
on input data of few consecutive a cycles started from any cycle s. The
cycles under anomaly conditions can also be identified. Most impor-
tantly, the results proved that the amount of required data for accurate
RUL prediction for any given battery can typically be as small as one
cycle (@ = 1) and including more input cycles (a > 1) has limited effect
on improving the prediction accuracy. We also show that the data of
each cycle of the battery contains sufficient amount of information to be
distinguished from each other, provided that the level of precision/
resolution of the measurement is sufficiently high in Fig. S27 in the
supplementary.

3. Discussion

The proposed DNNs have several advantages compared with the
traditional key index measurement methods in practical application.
First, a more efficient, convenient, and practicable data storage can be
achieved due to the two following reasons. (1) Only a single cycle of data
is needed for our DNNs to achieve highly accurate prediction and (2) the
stored data of that single cycle can be any cycle before EoL for our Full
RUL DNN. This is a significant improvement compared with the con-
ventional machine learning BMSs, which typically required saving the
whole sequence of many cycles to predict EoL. Second, take the key
index AQj00-10(V) suggested by Severson et al. [10] as an example. This
index shows a very high correlation with EoL of battery, and yet, re-
quires long measurement, i.e. the 10th and 100th cycles. On the other
hand, with the help of Dimension Reduction and last padding technique,
our DNNs require measurement on any given single cycle and signifi-
cantly reduce time and cost. Third, the proposed DNNs is suitable to
constantly adjust the model to deal with the interference of environ-
mental change and improve prediction accuracy in practical applica-
tions. It is because our DNNs are constructed by two parts: Dimension
Reduction and Predictor as shown in Fig. 1, offer training flexibility that
the users can choose one of the part or both for adjusting the weights.

As for potential applications for lithium-ion batteries, it is possible
that our DNNs can be used as the early warning and the safety perfor-
mance system. For example, since our DNNs can predict the future cycle-
by-cycle information (such as V(Q;),, and D! curves for the future n-th
cycle) based on any previous single cycle of a given battery, these pre-
dicted curves can serve as baseline for the future usage of that battery.
The users can keep using that battery until the n-th cycle, and compare
the actual curves with the predicted base line curves of the n-th cycle. If
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the actual curves appear worse than predicted baseline curves, it means
that the battery has been damaged by unexpected conditions. In this
way, the early warning about the health status of that battery can be
achieved. Moreover, our DNNs can serve as the predictor in the system
of high-throughput battery fabrication, testing, screening and optimi-
zation. For example, our DNNs can instantly screen out the just-
manufactured batteries with unacceptable predicted EoL; developers
can also use our DNNs to predict EoL of batteries subjected to different
charging strategies, and thus, charging strategy can be optimized. This
approach can also be applied to the optimization of manufacturing
parameters.

In this work, we have shown that single cycle data contains a suffi-
cient amount of information to be distinguished from each other and can
be used to predict EoL, RUL and other related properties with high ac-
curacy, even for a completely different dataset (Attia et al. 2020 [12])
without retraining. However, we still need to emphasize that the data-
sets applied in the current work are measured in laboratories. Our DNNs
may need more training data to adapt more complex charging strategies,
wider engineering/experience of practical aspects, and broader device
type/chemistry.

4. Conclusion

This paper first presents two deep neural networks (DNNs) with a
novel network design to predict End-of-Life (EoL), charge time t<haee,
and discharge voltage curve V(Q) curves at EoL of given batteries. To our
knowledge, this is the first work to achieve testing root mean square
error (RMSE) of EoL prediction as low as 57 and 33 cycles based on
inputs of the first cycle (@ = 1) and the first 100 cycles (a = 100) only,
respectively (where <EoL> = 806 cycles in the dataset). This was
attributed to the introduction of Dimension reduction which extracted
data-driven features from the measured profiles of input properties, and
the last padding technique. Our results show that these data-driven
features played more important roles and were much more influential
on the predicted properties in the inference of the DNNs, compared to
human-picked features such as the charge/discharge capacity (Pm, Qm),
and the maximum/minimum temperature (Tjp*, T;‘,;‘"). Moreover, our
Full DNN was trained to focus on the overall sequences of properties in
each cycle with different charging policies, giving very low RMSE of
predicted EoL even for batteries with unknown charging polices. The
generality of the current DNN was also examined by applying to a
completely different dataset, giving the prediction of EoL and cycle-by-
cycle information, such as discharge capacity Q,, discharge power D,
and V(Qj), curves at any given n-th cycle with very high accuracy.

We also proposed a powerful Full RUL DNN which allows the pre-
diction of remaining useful life (RUL) and the current battery age s, and
most importantly, allow the flexibility of both s and a. The last padding
technique during the training process enables such flexibility,
strengthening the connection of the underlying time-series features be-
tween sections of data with different length. Also, the performance of the
current networks improved as the amount of training data increases,
showing a healthy condition of the networks. The anomaly environ-
mental conditions during the tests of batteries can also be detected in the
proposed network.

With the help of the proposed special convolutional training strategy
throughout the entire life cycles, the DNN enables a more accurate
prediction (RMSE(RUL, RUL) < 50 cycles in the most of the range of
cycles), a more accurate cycle-by-cycle information prediction (error
metrics < 4% for the predicted properties), a much smaller amount of
required cycles of input data (typically only 1 cycle is needed), and more
flexible length of input data (s and a can be arbitrary) than the state-of-
the-art algorithm. Thus, practically, our key contributions, including
high accuracy of prediction, high efficiency on saving battery history
and excellent ability of extrapolation for unknown charging policies and
unknown age of used batteries, make our DNNs suitable to be an
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important component of modern quality control systems in battery
manufacturing and battery management systems. The current work
demonstrated the power of machine learning, which sheds light on
solving the long-lasting problems of health estimation and lifetime
prediction of lithium-ion batteries, providing great economic and envi-
ronmental benefits.

4.1. Methods

In the current work, all the data sets were standardized, such that
X—
Z= IR
c
where Z is standardized value; x is the original value from the raw
data; y and o represent the mean and standard deviation of the raw data,
respectively. These standardized data served as the training and testing
data sets for the all DNNs. The performance of the DNNs was evaluated
by the root mean square error (RMSE), such that

where n is the total amount of sample; y; and y; are the ground truth
and predicted values, respectively. All the DNNs achieved relatively
lower RMSE than other competitors, showing that key features in the
profiles of the properties were successfully captured and correlated with
EoL/RUL of batteries. Mean absolute percentage error (MAPE) also
served as an error metric for cycle-by-cycle information, e.g. Q, and D,
such that

1 ‘)’i - ﬁ‘

MAPE = - -

We also used Huber loss [30] during the training process for pre-
dicting V(Q;), curves, Q, and D,, such that

1 N . ~
E(yi — 5% if i — 56
Huberloss = |
Sy — 3i| — =6
i =3l =5

where § is a hyperparameter which makes the behavior of loss
function similar to MSE or MAE.

We also applied Deep Taylor decomposition (DTD) [9] to the DNNs
to enable the feature explanation. It redistributed the relevance layer by
layer from the predicted results back to the input data. This analysis
provided the most influential key feature on target, showing that the
data-driven features obtained by Dimension reduction were, in general,
more important than human-picked features.

Moreover, in order to obtain the attribution along with the profile of
input data, relevance score R; for the j-th neuron in each layer based on
the k-th neuron in the next layer was calculated by using either LRP- af
or LRP- ¢ methods according to the type of the present layer (convolu-
tion or dense layers, respectively). These relevance scores were then
reweighted by the flat method to have their summation as a unity. The
formulation of LRP- aff and LRP- ¢ method can be expressed as

o a (ajwfk)’ _ (a,wjk)f ) :
K Z:( Yo (awn)” " Yo (@on) f

a;Wix
R — i @j Re
! Xk: (e + Zoﬂjwjk)

where a and w are the output and weight of the current layer; the

notation (x)* and (x)~ are with the value of 0 or x whichever is the
greater or the fewer ones, respectively; @, f, and € are coefficients with
values of 1, 0, and 0.1. In this way, a relevance score unit vector ﬁce”
corresponding to the curve Y, can be obtained, where Y, can be the

10

Applied Energy 306 (2022) 118134

curves of voltage, current, capacity, and temperature of a given cell. The
current DNNs can then be back-propagated layer by layer, turning a
black-box into an explainable model.

All training process was based on python 3.7 and implemented in
Keras (v2.3.1) with Tensorflow GPU backend (v2.1.0). Bayesian opti-
mization with tree parzen estimator [31] technique has applied to all
DNNs to optimize the hyper-parameters, such as the number of filters,
kernel size, pooling type, and the suitable weight for the regularizer of
layers. The process included 80 trials and each of which consisted of 80
epochs. All DNNs were trained by Amsgrad [32] optimizer with the
default setting. We performed 5-fold cross-validation where 20% of the
dataset was chosen as testing sets and 80% as training sets. During the
training of the networks, spatial dropout [33] and early stopping [34]
methods were adopted to prevent overfitting and to terminate the
training. The specification of the current DNNs was detailed in Tables in
Supplementary.

4.2. Data and codes

e The codes for prediction and the two experiments in supplementary
are released in GitHub: https://github.com/acctouhou/Predic
tion_of battery

e The entire pre-trained models and dataset of this work are available
as follow: https://drive.google.com/drive/folders/1Aq-wfoQ8ItDq
ziyHUcka70oUncQ7NgSP8?usp=sharing
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Supplementary

Table S 1: The definition of the symbols used in the current work.

Symbol  Component Definition Symbol Component Definition
n Cycle number in the dataset, n = 1 ... EoL Fi‘,‘,‘jma“ Human-picked features in cycle m
Number of shifted cycles from n =1 used as the first .
s cycle of input to the D};\INS. Fhuman Py Charge capacity in cycle m
m gycl; number in the input dataset to the DNNs, where m = Fhuman Om Discharge capacity in cycle m
a Total number of cycles used as input to the DNNs, i.e. a = Fhuman Tave Average temperature in cycle m
max(m). 3m m
t Time step Ffyuman T;min Temperature minimum in cycle m
EoL End-of-life Fhuman Tmax Temperature maximum in cycle m
RUL Residual useful life Flhuman  jcharge Total charge time in cycle m
D, Discharge power of cycle number n
xdis Continuous-# data in discharge half-cycle m Fl.f;ta' dis Data-driven features in discharge half-cycle m
= dis ; : ;

dis dis . L g data, dis  EOLGS / Data-driven feature for end-of-life/ residual useful

Xitm Q(t)m Capacity curve in discharge half-cycle m Fin ROLiS life in discharge half-cycle m
i i L i . dis  Data-driven feature for total charge time in discharge

dis dis . data, dis charge g 24
X5t V(t)m Voltage curve in discharge half-cycle m Fym (tn:EoL )m half-cycle m
xdis 1(t)dis Current curve in discharge half-cycle m Fsd,flta' dis §dis Data-driven feature for age in discharge half-cycle m
xs T(t)dis Temperature curve in discharge half-cycle m
xShar Continuous-¢ data in charge half-cycle m Fata, char Data-driven features in charge half-cycle m

<57 char : ; H

char char . . g data,char EOLSR?"/ Data-driven feature for end-of-life/ residual useful
Xitm Q)m Capacity curve in charge half-cycle m Fin RULCchar life in charge half-cycle m

char char . S data,char [ zcharge\Mar  Data-driven feature for total charge time in charge
XSt V(t)m Voltage curve in charge half-cycle m Fym (tn:EoL )m half-cycle m
xShar I(t)char Current curve in charge half-cycle m Flata,char - gchar Data-driven feature for age in charge half-cycle m
xghar T (t)shar Temperature curve in charge half-cycle m




The illustration of n, s, m, and a

Since we have enabled the flexibility of the input data for the inference, four symbols
related to each cycle, i.e. n, s, m, and a are defined, and each of which has different
definition. Symbol n represents cycle number in the dataset, and thus, the range of n for
a given battery is n = 1 ... EoL. Symbols s, m, and a are defined for sampling a segment
of cycles from the entire life time of the given battery. Symbol s is defined as the
number of shifted cycles from cycle number n = 1 used as the first cycle of input for
either inference or training. Symbol «a is defined as the total number of cycles used as
input. Symbol m is defined to describe each cycle used as input, and thus, the range of
m for a given inputis m =1 ...a.

Fig. S 1 shows two examples. The first case of s=0, a=5 indicates that the first five
cycles of the battery (cycle number: 1...5 in the dataset) are extracted and with the
features in the fifth cycle padding to form the input data for the inference of EoL,

charge

tm ... etc. by Discharge DNN. The second case of s=5, a=48 indicates that 48 cycles
of the battery from the cycle number 6 (cycle number: 6...53 in the dataset) are
extracted and with the features in the 48 cycle padding twice to form the input data
for the inference of RUL, s... etc. by Full RUL DNN.

(a) Example 1: s=0, a=5
Number of shifted cycles from n=1
=0

F:Iis _ = = P
in =] ]2 ]a]«] s 6 ‘ o [ 53

EoL=
300

54 55 56 796 | 797 | 798 7‘)9‘

l l ! I l k=1 2 3 4 5 6 7 99 100 R )
dis a dis T a=|a ' : Discharge :
pten- DT T b rg [ ] [T b o
Segment of input data Input data stpaddine: =~ -oeaseddd 2
(b) Example 2: s=5, a=48
Number of shifted cycles from #=1
5=5
. - ] i =
Fip n=| 3‘3 4 ‘|“|7] |5I]i1|<‘|54l,‘79r. 797 Tux‘?gqﬁ):gb.
l 1 l l l I k=1 2 4748 49 50 o s
: a Y
Fopm=[ ][] Telolu|®Ful ] |o]uls ] ]*;HULDNN:‘RUL‘\,,

Input data for inference Inputdata  Last paddir

Fig. S 1: The illustration of two examples. (a) s=0, =5 and (b) s=5, a=48 for the
inference by Discharge DNN and Full RUL DNN, respectively.

The detail of each NN pipeline
The workflow of the three DNNs in the current work, as shown in Fig. S 2. Where

cubes represent data in tensor form and rounded rectangles represent neural networks.
The elements/building blocks/inputs/outputs etc. of each NN pipeline have been
illustrated in Fig. S 3 to Fig. S 13, showing all the detail of the current DNNs. Note
that, due to the limitation of the article length, Q,, and D,, predicted by Predictor 4
for cycle-by-cycle information are not mentioned in manuscript and shown in
supplementary only. The codes for prediction and the two experiments in
supplementary are released in GitHub:
https://github.com/acctouhou/Prediction_of battery

The entire pre-trained models and dataset of this work are available as follow:
https://drive.google.com/drive/folders/1 Ag-




wioQ81tDgziyHUcka7o0UncQ7NgSP8?usp=sharing

Note that this link is shared by author’s personal Google Drive and only available for
the current review process.
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Fig. S 2: The workflow of the three DNNs in the current work. Where cubes represent

data in tensor form and rounded rectangles represent neural networks.



(a) Discharge DNN
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Fig. S 3: The architecture of Dimension reduction (a) 1 and (b) 2 in Discharge DNN.
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Fig. S 4: The architecture of Predictor 1 in Discharge DNN.



Discharge DNN
Predictor 2 for V(Q),-goL

?x100x8

ConviD

kernel (3x8x128)
bias (128)

Conv1D

kernel (3x128x256)
bias (256)

Conv1D

kernel (5x256x512)
bias (512)

ConviD

kernel (13x512x256)
bias (256)

SpatialDropout1D

ConviD

kernel (5x256x128)

bias (128)

ConviD ConviD

kernel (11x128x256) kernel (5x256x512)

bias (256) bias (512)

ConviD ConviD

kernel (11x256x256) kernel (5x512x256)

bias (256 bias (256)

ConviD ConviD

kernel (13x256x100) kernel (7x256x=100)

bias (100) bias (100)
GlobalAveragePooling1D GlobalMaxPooling1D GlobalAveragePooling1D GlobalMaxPooling1D

Add

Concatenate

concatenate_1

Fig. S 5: The architecture of predictor 2 in Discharge DNN.
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Full DNN
Predictor 4 for cycle-by-cycle information

SpatialDropout1D

kerned  126+128+9
bias (9

Activation

SpatialDropout1D

ConviD

ConviD

GlobalAverage!

GlobalAveragePooling 10 el

kern
bias (50

GlobalMaxPocling1D GlobalAveragePooling 1D GlobalMaxPooling 1D

Concatenate

Concatenate

concatenate_{

Fig. S 9: The architecture of Predictor 4 in Full DNN.



Full RUL DNN

Dimension reduction 1 for RUL, 2 for ¢<"278¢

n—FoL» @and 5 for s

MaxPooling1D MaxPooiing 1D

Concatenate

ConviD

ConviD

MaxPooling1D MaxPooling 1D

Concatenate

SpatialDropout1D

ConviD.

kernel
bias (125

3768x128

Activation

GlobalAveragePooling1D GlobalAveragePocling1D

Concatenate

ConviD ConviD
kernel (741x256
bias {256

SpatialDropout1D

ConviD
kernel (3
3

GlobalMaxPooling1D

ConviD

kernel
jas (64

GlobalAveragePooling1D GlobalMaxPooling1D GlobalAveragePooling 1D GlobalAveragePooling1D

GlabalMaxPooling1D

Concatenate

concatenate_16

Fig. S 10: The architecture of Dimension reduction 1, 2, and 5 in Full RUL DNN.
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Fig. S 13: The architecture of Predictor 6 in Full RUL DNN.

The illustration of the testing strategies used in the current DNNs

As mentioned in the main texts, three different testing strategies were adopted in the
DNNs. The illustration of the three selection methods for training and testing datasets
was shown in Fig. S 14. Where each grid represents a single cycle, and each column
represents the case of a battery. Fig. S 14 (a) shows that testing strategy <1> unselected
the entire sequences of randomly chosen batteries; Fig. S 14(b) shows that testing
strategy <2> unselected the entire sequences of all the batteries with randomly chosen
charging policies. Sampling started from the first cycle (s = 0) and the length of each
sampling may vary from n =1...100. Fig. S 14 (c) shows that testing strategy <3>
was similar to strategy <2>. However, convolutional sampling was adopted here where
s may vary and a =1..50, corresponding to Full RUL DNN. Note that the
convolution sampling for each selected battery continued until the cycle of EOL — 100
was reached, in order to avoid the unstable properties and behavior of the battery near
its EoL. These testing strategies were designed to force DNNs to achieve their own
objectives.
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Fig. S 14: Three testing strategies. The grids colored in gray will be used as testing sets;
the white grids will be used as training sets; the red grids are the 100 cycles before EoL;
the black grids are the cycles after EoL of that battery.

The ability of extrapolation of Full DNN for unlearned charging policies

There were 68 different charging policies in the datasets provided by Severson et al.
Full DNN adopted special network structure and considered the data of charge
process, enabling accurate prediction of EoL even charging policies that have not
been learned. This remarkable extrapolation ability for EoL prediction can be
illustrated by Fig. S 15. The three axes of the figures (C1, C2, and Q1) represent the
first and second applied discharge currents, and the state of charge current (%) where
the current switched, respectively (the illustration for these symbols is given in Fig.
S 15(c)). This indicates that each point specifies a charging policy. Fig. S 15(a) shows
the RMSE of predicted EoL for each charging policy, based on the first cycle only,
when all the cells with that charging policy were used as testing sets, i.e. they were
not included in training sets. It can be observed that most of the points are in dark
blue color (low RMSE) in Fig. S 15(a). Points with colors other than dark blue
typically accumulated in the region of C2 < 4. This implied that lower currents
applied at the second stage of charge process may be less harmful to cells, leading to
less aging features in the first few cycles for Full DNN to inference. Next, Fig. S 15(b)
shows the reduction of RMSE for each charging policy when the first 100 cycles
were considered. It is interesting that Fig. S 15(a) and (b) look almost the same,
indicating that cells with certain charging policies which were not well captured by



Full DNN with fewer input cycles, had significant improvement as long as large
enough number of cycle used as input.

Full DNN
(a) RMSE of the prediction by the 1stcycle  (b) The reduction on RMSE (improvement)
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Fig. S 15: (a) RMSE of predicted EoL for each charging policy, based on the first cycle
only, when all the cells with that charging policy were used as testing sets. (b) The
reduction of RMSE for each charging policy when the first 100 cycles were considered.
(c) The illustration of the charging policy adopted in Severson et al.

The learning progress of the current DNNs

Here we take Discharge DNN as an example to illustrate the learning progress of the
DNNs on the current battery problems. The loss (RMSE) of Discharge DNN
corresponding to training epochs and first a cycles as input data was visualized as a 3-
dimensional landscape in Fig. S 16. At the early stage of the training, the loss for the
cases with more input cycles decreased more significantly compared to the cases with
fewer input cycles. After 50 training epochs, the loss for cases with more than the first
80 input cycles converged at the minimum. This indicated that cases with more input
cycles dominated the weights and biases of the DNN. Then, the optimizers of the DNN
were able to learn about the cases with fewer input cycles more efficiently due to the

assistance of those existed parameters predetermined by the cases with more input
cycles.
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Fig. S 16: The 3-dimensional landscape of the loss of Discharge DNN corresponding
to training epochs and first a cycles as input data.

We also used the relevance score of each feature corresponding to the first a input
cycles obtained by Deep Taylor decomposition (DTD) to visualize the learning progress
of the two DNNs about each feature, as shown in Fig. S 17. For the illustration purpose,
features of similar types, such as features related to capacity and temperature, were
averaged and merged into one curve. Note that the area under these curves represented
the information about the corresponding features learned by the DNN. It can be
observed that, for both the two DNNs, a significant amount of information has been
learned before the first 40 input cycles and the data after the first 60 or 80 input cycles
were less influential to the predicted results.

It is of interest noting that the curve for Discharge DNN indicated that the predicted
results were still greatly affected by the data around the 80 cycle. This is because of
the uncertainty introduced by the unlearned charging policies, and apparently, the
features of these policies were very difficult to be extracted by Discharge DNN with
the discharge input data only. Full DNN resolved this problem by considering both the
charging and discharge input data. The sufficient amount of data assisted Full DNN to

extract features.
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Fig. S 17: The DTD relevance score of each feature corresponding to the first a input
cycles for (a) Discharge and (b) Full DNN. A significant amount of information has
been learned by all the two DNN5s before the first 40 input cycles and the data after the
first 60 or 80 input cycles were less influential to the predicted results.



The DTD relevance score of each feature was used again to demonstrate the flexibility
and the robustness of EoL prediction of our DNNs. Since network in network (NiN)
structure was adopted in Predictors in all the current DNNSs, the sequence length of the
input data can be varied by using the last padding technique. Here, input data with a
length of 60, 80, and 100 (the present setting described in the main texts) cycles for the
previous version of Discharge DNN was taken as an example here. The bounded DTD
approach was applied to interpret the behavior of the DNN and the corresponding
relevance scores of human-picked and data-driven features with different transparency
are shown in Fig. S 18. It can be observed that the shapes of the curves are all similar,
showing great robustness of the learning progress of the current DNN even with fewer
input cycles. More importantly, the peaks of all the three cases are in the range of the
20™ and 40" cycles. This demonstrates that the power of the current DNN in terms of
serving as an early predictor of EoL of batteries.
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Fig. S 18: The DTD relevance score of the previous version of Discharge DNN with
an input data length of 60, 80, and 100 cycles, showing flexibility and the robustness
of EoL prediction.

Five-fold cross-validation tests of the current DNNs

The reproducibility and reliability of the two DNNs were examined by five-fold cross-
validation tests. Five different training sets were used to train the three DNNs. Fig. S
19 shows the range of RMSE of EoL vs. the number of consecutive input cycles for
all the five cases in blue; the average of the curves was marked by a dashed line. It can
be observed that the fluctuation of RMSE occurred in both DNNs in the early stage.
This was because batteries were typically at a relatively healthy state initially, showing
almost no aging features in the curves. Thus, it is reasonable that DNNs may produce
relatively inaccurate results based on fewer cycles in the early stage. Another reason
was that the quality of measurement in each cycle is more influential to the
performance of prediction when fewer input cycles were considered. These issues can
be solved by either feeding more data of cycles to the DNNs or providing data of the
batteries with early occurrence of aging where extreme charging/discharge policies
were applied.

As the number of input cycle a becomes greater than around 30, all DNNs reached
their converged values of RMSE. Wherein, the converged RMSE value of Discharge
DNN was less than it of Full DNN. This is reasonable due to the different nature of
the two DNNs. As mentioned above, the training datasets of Discharge DNN missed
the data of some randomly selected batteries (testing strategy <1>); those of Full DNN
missed the data of certain batteries with some randomly selected charging policies



(testing strategy <2>). Thus, Discharge DNN and Full DNN were forced to have the
ability to extrapolate for unknown batteries and charging policies, respectively. Thus,
the prediction of Full DNN encountered a much higher complexity than Discharge
DNN. Fortunately, Fig. S 19 shows that both of DNNs achieved high robustness as
the input cycle number increased.
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Fig. S 19: The range of RMSE of EoL vs. the first a cycles as input data for the five-
fold cross-validation tests colored in blue. Where the average of the five curves
marked with the dashed line.

Data screening process for the dataset provided by Attia et al.
We have implemented a program and screen out the unusable data of batteries both

manually and automatically in the dataset provided by Attia et al., based on four types
of reason. First, the experiment log provided in the dataset package stated that batteries
in channel 5, 12, 45, 46, 48 are problematic. Second, after the data was visualized, we
found that curves of some batteries are greatly shifted between different cycles. For
example, current curves of batteries in channel 9, 17, 31, 34 and voltage curves of
batteries in channel 9, 17, 30, 34, 39 are greatly shifted, where one of the cases were
shown in Fig. S 20(a)(b). In addition, Fig. S 20 (b) also shows there was an unusual
voltage drop at the early stage of the measurement step in one of the cycles, marked by
a green circle. Third, the patterns of the measured curves of certain batteries are weird
and different from the most of the batteries in the dataset. For example, temperature
curves of batteries in channel 14, 15, 16, 17, 30, 34, 44 are messy, where one of the
cases were shown in Fig. S 20(c). Forth, an unreasonable negative value recorded in
time log at a random measurement step in the 31% to 35" cycle during the charging or
discharging process in all the batteries. This systematic problem was not recoded in
their experiment log. Thus, we did not inference these batteries as they did not pass our

data screening program.
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Fig. S 20: One of the examples that (a)(b) the measured curves are greatly shifted
between different cycles, and (c) the patterns of the curves in the battery are different

from the most of the batteries in the dataset.

We also have applied Full DNN to inference EoL of 34 batteries in Attia et al. These
34 batteries were chosen because their data of the first cycle only can pass our data
screening program, while the quality of the remaining cycles may not have acceptable
quality for the inference of EoL. The predicted values EoL vs. EoL is shown in Fig. S
21(a). It can be observed that our Full DNN successfully predicted EoL of the 34
batteries with very low mean-absolute-percentage-error of 9.6%, based on the data of

the first cycle (s = 0,a = 1) only.

We further colored these points based on the categories defined in Attia et al. in Fig. S
21(b). It can be observed that the EoL prediction of the batteries in the category of CLO
TOP 3 was with relatively higher error. We believe this is because, during the charging
process of batteries of CLO TOP 3, the current curves had deep gaps between steps in
the given charging policies (marked by green circles in Fig. S 22(a)), and the gaps were
not severe (Fig. S 22(b)) in the other batteries marked by blue and green dots in Fig. S
21(b).
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Fig. S 21: The predicted values EoL vs. EoL plot with MAPE of about 9.6%. Where



Full DNN predicted 34 batteries provided by Attia et al. based on the data of the first
cycle only (s = 0,a = 1). (b) Data points are colored based on the charging protocol
specified in Attia et al., where the EoL prediction of the batteries in the category of
CLO TOP 3 was with relatively higher error.
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Fig. S 22: Typical examples of current curves corresponding to the charging policies
(a) “CLO TOP3” and (b) “Literature inspired” and “Other” provided by Attia et al.

Attribution of the current DNNs

A backward propagation method, layer-wise relevance propagation (LRP), is used to
analyze Full DNN and determine the relevance between EoL (the output layer) and all
data points in the discharge curves of voltage in each cycle (the input layer). We took
four batteries with the fourth and second shortest and longest EoL as examples without
losing generality. Their EoL were 335, 429, 1284, and 1638 cycles. Relevance scores
determined by LRP were plotted on the curves from the 1% to the 100%™ cycles, as shown
in Fig. S 23. It can be observed that features which lead a short EoL for batteries
(colored in red) can be discovered in many regions in the two bad batteries by our DNN.
Similarly, features which lead a long EoL for batteries (colored in green) can also be

discovered in the two good batteries. This indicates that our DNN can capture the key
features to the prediction of EoL.
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Fig. S 23: Relevance scores determined by LRP plotted on voltage curves in
discharging process of batteries with a (a) short and (b) long EoL. Where green and red
colors indicate features for leading to a long and short EoL, respectively, while white
indicates no feature for EoL were found. Segments marked by dashed lines will be
shown in Fig. S 24.



It is of interest to correlate between the value of voltage and EoL. Two segments of the
voltage curves were chosen marked by dashed lines in Fig. S 23. Then, the voltage
curves at that segment of all the batteries in the dataset and their corresponding EoL
were plotted in Fig. S 24. It can be observed that the results show that the higher voltage
at these segments has strong correlation with longer EoL[1]. This section demonstrated
DNN and LRP can provide in-depth insight to design batteries or discharge conditions.
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Fig. S 24: EoL and selected segments of voltage curves in discharging process for all
batteries in the dataset at the 100th cycle, showing that higher voltage within these
segments having longer EoL. Here, dash lines in (a)(b) are corresponding to those
shown in Fig. S 23(a)(b), respectively.

Full range of RMSE RUL and s and the amount of sampling in training set
Testing RMSE diagrams for RUL and s in the full range by Full RUL DNN are shown
in Fig. S 25. It can be observed that most of regions of RMSE of RUL were less than
40. It is also true for RMSE of s when s < 750. However, RMSE of s dramatically
increased around the 800™, 900", and 1000™"—1500" cycles. This is because the
significant reduction of amount of sampling of testing strategy <3> corresponding to
the batteries with EoL > 750 cycles in training dataset. Fig. S 26 shows that the
number of batteries can be used for the given value of s. The amount of convolutional
sampling throughout the entire dataset is in total was 53027, while that with s > 750
was 9166, i.e. 17.3% of the entire dataset. Thus, insufficient information can be learned
by Full RUL DNN.
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Fig. S 25: Testing RMSE of predicted (a) RUL and (b) s, which can be regarded as the
current battery age, in full range from cycle 1--1500 by Full RUL DNN.
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Fig. S 26: The number of batteries can be used for the given value of s, where the area
represents the number of training sample.

The specification of the current DNNs

The specifications of the Discharge DNN, Full DNN and RUL DNN were shown in
Table S 2...Table S 4, respectively. Where the DNNs with an input data length of 60,
80, and 100 cycles for testing purposes mentioned in Fig. S 18 were also listed. The
numbers were estimated by TensorFlow (v2.1.0) and Keras (v2.3.1). It can be observed
that the number of parameters in Discharge DNN were around a million for the
prediction of single value properties and 4 million for time-series curves. The
computation requirements, referred to as the number of floating-point operation
(FLOPs), were less than 40 million. Feature selectors (i.e. Dimension reduction in the
manuscript) in Full DNN required more the number of parameters (around 3 million)
and the three “student networks” in DML required less than a million parameters. It can
be concluded that the current DNNs are very efficient and effective. Our DNNs can be
run in real-time in typical hand-held devices

Table S 2: The specification of the Discharge DNN.

Component Objective Parameters (M) FLOPs (M)
Feature EoL/RUL (Discharge) 1.3 4.1
selector . .

Charge time at EoL (Discharge) 0.7 6.3
Predictor EoL & Charge time at EoL (60 cycle) 1.3 12.6
EoL & Charge time at EoL (80 cycle) 1.3 25.2

EoL & Charge time at EoL (100 cycle) 1.3 37.8

V(Q)n:EoL 4.2 32.3




Table S 3: The specification of the Full DNN.

Component Objective Parameters(M) FLOPs(M)
EoL (Discharge) 3.1 11.7
Charge time at EoL (Discharge) 3.4 20.6
Feature selector
EoL (Charge) 2.1 29.5
Charge time at EoL (Charge) 0.8 32.9

Student 1 0.1

Student 2 0.2

Integrated

Predictor DML Predictor Student 3 0.4
Total 0.8 6

V(@) n=koL 1.3 21.2

Table S 4: The specification of the Full RUL DNN.
Component  Objective Parameters(M) FLOPs(M)
Feature Discharging part (1&2&5) 59 335
selector Charging part (3&4&6) 5.9 23.8
Predictor RUL & s (0 <s, a <50) 2.7 37.9

The data of each cycle of the battery contains sufficient amount of information
and the power of proposed last padding technique

In our work, the proposed DNNs determined and take the advantage of lower-fidelity
version of the target, i.e. our data-driven features, to show higher sensitivity to the
variation of the principal components/axes of the reduced latent feature space of
APR18650M1A batteries than human-picked features. This reduces the complexity
degree of space, and thus, we can extract high influence factors from one single cycle.

Here we proposed two statements to show the first cycle can provide sufficient
information for the prediction of EoL. Firstly, we found that sufficiently high precision
(resolution) of measurement can provide many degrees of freedom to describe battery
status comprehensively. It allows the “battery genome” embedded in time-series
properties in a single cycle. Secondly, our data augmentation (last padding technique)
is the key approach to enable a great flexibility of @, and to let the same value of targets
(such as EoL) being described by different lengths of meaningful input data during the



training process, leading to an efficient learning for the DNN. Each of the statements
will be demonstrated by a simple toy testing model in the follows.

For the first statement, we adopted the model of natural language process to
demonstrate how the battery behavior can be encoded in the curves with sufficiently
high precision of measurement. The algorithm is shown in Algorithm R 1. Here the K-
means[2] Clustering method is used to group each timestep k& in standardized capacity,
voltage, current, and temperature curves, [Cy Vi I Tyl;j, of battery i during the j-th
discharge half-cycle by the given number of cluster N into a sequence S;j .
Where N serves as the number of available vocabularies of the current version of
battery language, and can also be regarded as the level of precision (resolution) of the
data measurement. Since there is no physical meaning between the clusters in S;j, we
next applied positional encoding method[3][4], a typical nature language process (NLP)
used with transformers to tokenize group ID for each time step based on its frequency
and position of occurrence, giving S; ik - These tokenized sequences, i.e. "battery
language," were then fed into ALBERT][5], which is the complex unsupervised neural
network consisting of 223 million parameters trained by dataset of multi-languages.

Algorithm R 1: Testing model 1 to obtain the results in Fig. S 27(a).
Require: Battery i = 1 ...n; cycle numberj = 1...100; time step k = 1 ... 500.
Require: [C; Vi I Ty];;: Standardized Capacity, Voltage, Current, Temperature.
Require: N: Vocabulary size.
Sijk < K— mean clustering([Ck Vi I Tk]ij) with vocabulary size N.
ij < Positional Encoding(S;ji)
Yiir < ALBERT(Siy,)
Yizook < ALBERT(S1g0x)

n 500
D = z z [Yi1k — Yirook |
i=1 L=k =1

Return Normalize(D /n)

Next, Manhattan distance is used to measure the difference between the activation
values outputted by ALBERT based on different N corresponding to the first and the
100" cycles. Error! Reference source not found.(a) shows that, the resulting
Manhattan distance (normalized with the reference of the case with N=100) increased
with the vocabulary size N. This indicated that it is possible that the tokenized
sequences of the two cycles possessing the features of aging effect of the considered
battery can be successfully distinguished by ALBERT with sufficiently high level of
precision of the data measurement.
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Fig. S 27: (a) Normalized Manhattan distance vs. vocabulary size N. (b) The averaged
Manhattan distance throughout different tested number of vocabulary size N between
the tokenized sequences of the j-th (j = 1...99) and the 100" cycles.

Next, we illustrate the averaged Manhattan distance throughout different tested number
of vocabulary size N between the tokenized sequences of the j-th (j = 1...99) and the
100t cycles by

O - {17 9

JIN n x 500 x 784

where () is the symbol of average. The results are shown in Fig. S 27(b). It can be
observed that ALBERT seems to find a one-to-one mapping value corresponding to the
distinct cycle number, and the relationship between each cycle can also be revealed.
Thus, it implies that it is possible to accurately predict the future properties of batteries
based on single cycle by a properly designed DNN. It is also interesting that there is an
unusual peak around the 50" to 55" cycles, where anomaly temperature fluctuation
occurred during the measurement as mentioned in Severson et al., showing that the
mapping values can successfully describe the behavior of the batteries.

N

For the second statement, we will demonstrate that our last padding technique is the
key approach to make the inference based on single cycle possible. In the literature,
most of the training approaches is end-to-end, i.e. a set of specific feature correlate to a
set of target value. Thus, in the case of battery EoL prediction, it becomes extremely
difficult when only single cycle is considered. Different from the end-to-end approach,
“multi-ends-to-end” is used in the current work, i.e. multiple sets of feature correlate to
the same set of target value, where the multiple sets can be augmentable.

We trained the Discharge DNN with a=1, a=2, a=3, ... a=100 all together for each
selected battery. Where the cases of a<100 adopt the last-padding technique to repeat
the information of the last cycle to fully fill the fixed-width of 100 data block. For
example, the training input of the case of a=1 contains the features of cycle 1 repeated
100 times; the training input of the case of a=2 contains the features of cycle 1 and
those of cycle 2 repeated 99 times. Note that these 100 input blocks correlate with the
same EoL of that selected battery, i.e. multi-ends-to-end approach.

It is proved by Severson et al. that the input block of a=100 contains sufficient
information to accurately predict EoL, and of course, this task is easier than it of a=99.
Thus, input of =100 can contribute more adequate gradients for modifying the weights
of the DNN during the training process. Based on the guidance provided by the input
of a=100, the DNN then become more experienced to find the correlation between the
input of =99 and the same EoL, and so on so forth. With this properly designed training
strategy, the DNN can gradually learn how to predict EoL by the input of a=1.

The above-mentioned learning process is very similar to it of U-Net. During the
training, the DNN temps to start its update of weights based on the input with the
highest correlation to the targets, then based on those with lower correlation (i.e. the
more difficult task with the less cycle information). Thus, when the DNN performed
the inference for the difficult tasks, it can either be based on the parameters obtained
from the learning process of the easier tasks, or be based on its own independent
gateway to make the prediction for the target.



To compare the effect between the traditional end-to-end and our multi-ends-to-end
approaches, we applied both approaches to replace the regression procedure done by
gradient descent method on a problem of linear regression. We first generated 1000
lines in x, y space which are in the form of y = wx + b, where w and b are uniformly
randomly chosen in the range 0 < w, b < 10. Each of these lines was described by five
points where x = [1,2,3,4,5] and the corresponding y. Then, gradient descent method
was applied to fit each line with the same initial guess of w® = 0,b° = 0 based on the
five points. We recorded (w/, b’), where j = 1...10, and (w'?, b'°) is expected to be
the result closest to the answer (w*,b*). Fig. S 28 shows the error of w and b are
dramatically altered between the iterations, showing that this task is not as easy as we
expected if gradient descent method is used. After the data preparation, we adopted
three models, (1) ANN with end-to-end approach, (2) ANN with our approach, (3) CNN
with our approach, to learn how to predict (w*, b*) based on (wl, b1). Where the three
models have similar complexity of network with the number of parameters around 10°.

The j-th

1 iteration

liO

Error on b

- 0 5 10 I .
Error on w
Fig. S 28: The error of w and b of 1000 lines in the j-th iteration. Where the black dots

show the path of the convergence of one of the lines, showing the error dramatically
altered between the iterations

The first model directly used all the sets of (wl, b') and (w*, b*) as input and output
to train the network. Where the structure of [2,128,128,2] unit of dense lays was used,
where batch normalization[6] was applied to each layer. The second model adopted the
structure of [20,128,128,2] and was trained by the proposed last padding technique.
Where 20 are 10 for w and 10 for b. For example, if only the first step (w?l, b1) is used,
then they will be repeated for another 9 times to fill the input matrix; if nine steps are
used, and then (w?, b%) will be repeated once. Note that although we used all the ten
steps to train our second model, its inference of (w*, b™) during the testing is still based
on the first step (w?, b). The third model was very similar to the second one and
adopted convolution layers (CNN). The performance of the three models on the testing
sets is shown in Fig. S 29. It can be observed our approach, Model (2) and (3), enables
excellent convergence on both the progress and results. Also, the relationship between
each time step in the entire time series can be well captured by convolution layers in
Model (3).
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Fig. S 29: The performance of the three models on the testing sets. Note that performance
of models evaluated by (wl,b?).

In order to demonstrate the behavior of learning, we plot the gradient summation
contributed by the input matrix containing the information of (w',b?) ...(w/, b’) in
each training batch, as shown in Fig. S 30. It can be observed that the input matrices
containing more meaningful information (i.e. greater j) contributed more and those
containing less meaningful information (i.e. less ) in the early stage of training (before
around the 100™ training batch). However, in the later stage of the training, the model
has completely learned the features provided by the input matrices with greater j, and
started to focus on the learning about the input matrices with less j. With the two demos
mentioned above, we show that (1) the data of each cycle of the battery contains
sufficient amount of information to be distinguished, provided that the level of
precision/resolution of the measurement is sufficiently high; (2) the proposed last
padding technique enables an efficient and effective learning and make the most of the
dataset compared with the traditional end-to-end approach.
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Fig. S 30: The gradient summation contributed by the j-th input matrix in each training
batch.
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