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Abstract— We propose factor graph optimization for si-
multaneous planning, control, and trajectory estimation for
collision-free navigation of autonomous systems in environments
with moving objects. The proposed online probabilistic motion
planning and trajectory estimation navigation technique gen-
erates optimal collision-free state and control trajectories for
autonomous vehicles when the obstacle motion model is both
unknown and known. We evaluate the utility of the algorithm
to support future autonomous robotic space missions.

I. INTRODUCTION
On-orbit satellite servicing (OSS) holds the promise to re-

fuel, maintain, upgrade, and repair existing spacecraft, enable
space construction, and actively remove orbital debris [1]–
[3]. During an OSS mission, which involves close proximity
operations with other space objects, it is imperative for
the servicing spacecraft to be able to adapt to a changing
environment while simultaneously achieving the primary
mission objective. As such, the vehicle trajectory planning
should be implemented online [4], while also considering the
combined information (and its uncertainty) collected from
onboard system sensors [5], [6]. In fact, onboard spacecraft
autonomy has been identified by the National Aeronautics
Space Administration and the European Space Agency as a
necessary technology for future space missions [7], [8].

To achieve the desired onboard spacecraft autonomy, there
is a need for both online trajectory estimation and planning,
given model and sensor uncertainty [7]. Traditional online
trajectory optimization methods for spacecraft navigation
usually solve the optimal control problem [9]–[11], by
performing vehicle trajectory estimation independently from
planning [5]. However, such two-step optimization processes
may potentially lead to suboptimal results given that both the
estimation and planning problems can be viewed as variants
of a single trajectory optimization problem.

Alternative trajectory optimization approaches, such as
sampling-based motion planning (SBMP), offer techniques
that combine the planning and estimation into a single
optimization problem and have already been applied to
spacecraft OSS applications, such as, inspection [12] and
exploratory guidance about resident space objects [13]. Ad-
ditionally, SBMP techniques have been used for planning
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collision-free spacecraft trajectories in static obstacle envi-
ronments [14]. However, despite SBMP contributions to the
spacecraft navigation and estimation communities, all afore-
mentioned SBMP studies do not account for measurement
uncertainty from sensors during optimization.

In the robotics community, probabilistic inference has been
used to address various problems related to state estima-
tion [15], [16], localization [17]–[20], optimal control prob-
lems [21]–[25], and path planning [26]–[28] given uncertain
sensor measurements and models. In particular, Mukadam
et al. [29], have used factor graphs to solve probabilistic
inference problems for simultaneous trajectory estimation
and planning (STEAP) for robotic systems in static envi-
ronments. STEAP solves the probabilistic estimation and
path planning problem in a single factor graph, enabling
information to quickly flow between the two problems during
online optimization [30].

Building on this prior work, this research proposes simul-
taneous control and trajectory estimation (SCATE) for online
probabilistic trajectory motion planning and estimation for
autonomous satellites in environments with moving obstacles
that addresses some of the shortcomings of STEAP, such
as, lacking robot dynamics and planning restricted to static
obstacle environments. Specifically, this work contributes the
following advancements over STEAP:

1) Adding realistic vehicle dynamics to factor graphs.
2) Collision-free path planning and trajectory estimation

in environments with moving obstacles.
3) Evaluation of SCATE navigation on a physical au-

tonomous spacecraft simulator platform [31], [32].
The remainder of the paper is organized as follows:

Section II establishes the mathematics necessary for SCATE
trajectory optimization, Section III describes the robotic
spacecraft platform and testing facility, Section IV presents
the results of real-time SCATE navigation. Section V re-
views the viability of SCATE navigation for OSS missions,
discusses some of its limitations, and suggests some potential
avenues for future work.

II. APPROACH AND METHODOLOGY

In this section, we review the use of factor graphs for
probabilistic inference for trajectory optimization. We then
introduce STEAP, a factor graph motion planning approach
for collision avoidance of kinematic robotic systems in static
environments. Motivated by STEAP, we propose SCATE,
a new algorithm for collision-free navigation of dynamic
robotic systems in environments with moving obstacles using
factor graphs.



A. Trajectory Optimization as Probabilistic Inference

We represent a trajectory as a continuous-valued function
that maps time t to robot states x(t) so as to determine
the maximum a posteriori (MAP) continuous-time trajectory
of x(t) given a prior distribution on the space of state
trajectories and a likelihood function.

1) Trajectory Prior: A prior distribution over trajectories
can be defined as a vector-valued Gaussian process (GP)
x(t) ∼ GP (µ(t),K(t, t′)), where µ(t) is the vector-valued
mean function and K(t, t′) is a matrix-valued covariance
function. For any collection of times t = {t0, . . . , tN},x has
a joint Gaussian distribution x ≜ [x0 · · ·xN ]

T ∼ N(µ,K),
with mean vector µ and covariance kernel K defined as

µ ≜ [µ(t0) · · ·µ(tN )]
T
, K ≜ [K(ti, tj)]

∣∣∣
ij,0≤i,j≤N

. (1)

The prior distribution is then defined by the GP mean µ
and the covariance K as

p(x) ∝ exp

{
−1

2
∥x− µ∥2K

}
. (2)

Information known a priori is then encoded with such priors.
2) Likelihood Function: Let z be a collection of binary

events, where events are defined as actions such as a col-
lision, or receiving a sensor measurement. The likelihood
function is the conditional distribution l(x; z) = p(z|x),
which specifies the probability of events z given a trajectory
x. We define the likelihood as a distribution in the exponen-
tial family

l(x; z) ∝ exp

{
−1

2
∥h(x, z)∥2Σ

}
, (3)

where h(x, z) is a cost function with covariance matrix Σ.
3) Computing the Maximum A Posteriori Trajectory:

Using Bayes rule, we express the posterior distribution
of the trajectory given the events in terms of the prior
and the likelihood as p(x|z) ∝ p(x)p(z|x). Then, we
can compute the MAP of the set Θ ≜ {x} as
Θ∗ = argmaxΘ{p(x|z)} = argmaxΘ{p(x)p(z|x))} =
argminΘ{− log(p(x)p(z|x)))} or

Θ∗ = argmin
Θ

{
1

2
∥x− µ∥2K +

1

2
∥h(x, z)∥2Σ

}
, (4)

where the last expression follows from (2) and (3). The un-
derlying sparsity of the problem is computationally exploited
by formulating (4) into an inference problem on a graphical
model [15].

4) Factor Graphs for Estimation and Planning: A com-
putationally efficient way to compute the MAP trajectory
given in (4) is to exploit the known structure of the problem
by representing the posterior distribution as a factor graph.
As shown in [33], a factor graph allows for any distribution
to be factored into a product of functions that is organized
as a bipartite graph G = {Θ,Φ, E}. The graph consists of
factor nodes Φ ≜ {ϕ0, . . . , ϕV }, variable nodes given by the
set Θ ≜ {x}, and edges E which connect the two types
of nodes, as shown in Figure 1.

Letting Θi be a variable subset of Θ, then the posterior
distribution can be expressed as the product of the factors

p(x) ∝
V∏
i=0

ϕi(Θi). (5)

Factor graphs that are sparse lend to sparse precision ma-
trices, which are exploitable, yielding a computationally
efficient way to determine Θ∗ from (4) [15].

B. Simultaneous Trajectory Estimation and Planning

The simultaneous trajectory estimation and planning
(STEAP) algorithm proposed by Mukadam et al. [29], is a
unified probabilistic framework constructed via factor graphs
for both past state estimation and future path planning of
robotic systems. The state trajectory, x, is represented by the
GP prior given in (2), with mean and covariance functions
µ,K, given all sensor data and cost information collected
into a single likelihood. The posterior distribution is thought
to represent events that happen in the past and in the future
simultaneously and is represented by

p(x̂ ∪ x̌|z) = ϕgpϕmeasϕobsϕfix, (6)

where ϕgp, ϕmeas, ϕobs, ϕfix, are the GP prior, state measure-
ment, obstacle, and goal factors, respectively, of the graph,
as shown in Figure 1, and are defined in Section II-C.1.

Fig. 1: STEAP factor graph for trajectory estimation and planning.

The MAP solution to the factor graph formulation given
in (6), i.e., Θ∗ = {x̂ ∪ x̌}, solves both the estimation (i.e.,
x̂) and planning (i.e., x̌) problems in a single step. As the
robot transverses the trajectory over time, new measurements
and cost information is used to appropriately update the
likelihood and graph for online planning and estimation [30].

STEAP, however, only considers the kinematics for robot
systems that operate in static object environments. Further-
more, STEAP generates GP priors by linear time-varying
stochastic differential equations maintaining constant veloc-
ity, i.e., noise-on-acceleration input [27], [29]. Such GP
priors factor according to ϕgp =

∏
i ϕ

gp
i (xi,xi+1), where

any GP prior factor connects to only its two neighboring
states (without control), forming a (Gauss-Markov) chain.

C. Simultaneous Control and Trajectory Estimation

To account for environments with moving obstacles, we
must also consider the robot (spacecraft) dynamics. Hence,
we propose simultaneous control and trajectory estima-
tion (SCATE) to determine the MAP solution to the set
Θ ≜ {x,u, l}, where u is the control input trajectory,
and l is the set of obstacle-l locations. We investigate
both reactive and predictive SCATE navigation given an
unknown and known obstacle motion model, respectively.



Finally, the MAP solution to SCATE factor graphs is given
as Θ∗ ≜ {x̂ ∪ x̌, û ∪ ǔ, l̂}, where û, x̂, l̂ are estimates
of u,x, l, and x̌, ǔ are the planned state and control input,
respectively, to execute along the remaining trajectories.

Reactive SCATE factor graphs are given by the posterior
distribution

p(x̂ ∪ x̌, û ∪ ǔ, l̂|z) = ϕdynϕmeasϕlimϕobsϕfix, (7)

where ϕdyn, ϕlim are dynamic, and control limit factors,
respectively, as shown in Figure 2, and are defined in
Section II-C.1. Reactive SCATE factor graphs plan for state
xi assuming obstacles observed are static in the environment.

Predictive SCATE factor graphs, are given the obstacle
trajectory, l̃, and are expressed by the posterior distribution

p(x̂ ∪ x̌, û ∪ ǔ, l̂|z, l̃) = ϕdynϕmeasϕlimϕobsϕfix. (8)

Knowing l̃ in advance enables predictive SCATE to allocate
cost to future obstacle locations via the remaining obstacle
factors, i.e., the set {ϕobsi+1, . . . , ϕ

obs
N }, during planning for xi.

Fig. 2: SCATE factor graph for control and trajectory estimation.

Figure 2 also shows the removal of outdated planning
factors, i.e., the set {ϕstart, ϕlim0 , . . . , ϕobsi }, from the graph
such that they do not influence the ti-th optimization.

1) SCATE Factor Definitions: We now define the factors
ϕfix, ϕmeas, ϕobs, ϕdyn, ϕlim given in (6) to (8).
Start and goal factor: The multivariate Guassian factors

ϕstart(x0) ∝ exp

{
−1

2
∥x0 − xstart∥2Σfix

}
, (9)

ϕgoal(xN ) ∝ exp

{
−1

2
∥xN − xgoal∥2Σfix

}
, (10)

with the mean as the start or goal and a small covariance Σfix

define ϕfix = ϕstart(x0)ϕ
goal(xN ) and root the trajectory

endpoints to the start and goal locations.
Measurement factors: For simplicity, we use multivariate
Gaussian measurement factors for state measurements

ϕmeas
xi

(xi) ∝ exp

{
−1

2
∥xi − zmeas

xi
∥2Σx

meas

}
, (11)

where, with a slight abuse of notation, zmeas
xi

denotes
the i-th state measurement with covariance Σx

meas. As-
suming an obstacle is observed via relative bearing and
range measurements, zmeas

θi
, zmeas

ri , with covariance matrices
Σθ

meas,Σ
r
meas, respectively, we can then define a bearing and

range factors as

ϕmeas
θi (xi, li) ∝ exp

{
−1

2
∥hθi(xi, li)− zmeas

θi ∥2Σθ
meas

}
,

ϕmeas
ri (xi, li) ∝ exp

{
−1

2
∥hri(xi, li)− zmeas

ri ∥2Σr
meas

}
,

(12)
where hθi(xi, li) = atan2(li,y − xi,y, li,x − xi,x), and
hri(xi, li) = ∥rSB/A∥2 is the relative range given the
planar displacement vector between the robot and obstacle,

rSB/A =

[
c(xi,ψV/S ) −s(xi,ψV/S )
s(xi,ψV/S ) c(xi,ψV/S )

]T [
li,x − xi,x
li,y − xi,y

]
, where

c(·) = cos(·), and s(·) = sin(·), as shown in Figure 5. A 2D
bearing range factor is then given by ϕmeas

li
= ϕmeas

θi
ϕmeas
ri .

Linear time-invariant dynamics factor: We assume that
the dynamics of the robotic system are governed by a linear
time-invariant (LTI) state-space model, i.e.,

ẋ(t) = Ax(t) +Bu(t), (13)

which, after discretization with δt = ti+1 − ti, yields

xi+1 = Fxxi + Fuui, (14)

where Fx = eAδt and Fu = eAδt
∫ ti+1

ti
e−AτdτB.

Given (14), we define the discrete LTI dynamics factor as

ϕdyni (xi+1,xi,ui)∝exp

{
−1

2
∥xi+1 − Fxxi − Fuui∥2Σdyn

}
,

(15)
where Σdyn is the covariance matrix of the factor.
Control limit factor: The control limit factor is designed
to ensure that control trajectories respect limits. Defining the
hinge loss cost function for the ui control input

h(ui) =

uji,− + uji,ths − uji if uji < uji,− + uji,ths
0 if uji ≤ uji,+ − uji,ths
uji − uji,+ + uji,ths otherwise

 ∣∣∣∣∣
1≤j≤m

,

(16)

where uji,−, u
j
i,+ are the lower and upper limit of the uji

component of ui, respectively, and uji,ths is a threshold value,
then given (16), the control limit factor is given as

ϕlimi (ui) ∝ exp

{
−1

2
∥h(ui)∥2Σlim

}
, (17)

where Σlim is the covariance matrix of the factor.
Obstacle factor: The obstacle factor derives from the likeli-
hood function, which is given by the conditional distribution
lobs(xi; zi = 0) = p(zi = 0|xi), which specifies the
probability of being clear of collisions, or the probability
that collision event zi = 0, given the current configuration
xi. This likelihood is represented as a distribution in the
exponential family

ϕobsi (xi) = lobs(xi; zi = 0) ∝ exp

{
−1

2
∥hli(xi)∥2Σobs

}
,

(18)
where hli(xi) is a vector-valued obstacle cost function with
embedded obstacle location li ∈ Rq and Σ−1

obs = σobsI is a
hyperparameter [18].



(a) Reactive: continuous factor cost (re)assignment using Dli (z). (b) Predictive: preemptive factor cost assignment using {Dl̃0
, . . . ,Dl̃N

}.

Fig. 3: SCATE obstacle factor cost assignment. The color bar indicates the value of SDF Dli at a point z.

Given the likelihood in (18), we define the hinge loss 1

c(z, li) =

{
−Dli(z) + ϵ, if Dli(z) ≤ ϵ,

0, if Dli(z) > ϵ,
(19)

where Dli(z) is the signed distance field (SDF) about the
point z given obstacle-li, and provides the distance from
point z in the workspace to the closest obstacle surface, and ϵ
is a “safety distance” indicating the boundary of the “danger
area” near obstacle surfaces, as shown in Figure 3.

For fast collision checking, we adopt sphere representation
of M -body systems [34] . The obstacle cost function for each
state xi is determined by computing the signed distance for a
sphere representing each body, i.e., sj(j = 1, . . . ,M bodies),
and collecting them into a single vector such that

hli(xi) = [c(f(xi, sj), li)]
∣∣∣
1≤j≤M

, (20)

where f(·) maps the state xi to the corresponding set of
sphere locations in the workspace (more details in [26]).

Figure 3 shows how assignment of obstacle factors differs
between reactive and predictive SCATE factor graphs. In Fig-
ure 3a, reactive SCATE factor graph assigns future obstacle
factors, i.e., the set {ϕobsi+1, . . . , ϕ

obs
N }, assuming obstacle, li,

is static in the environment with SDF Dli(z). In Figure 3b,
predictive SCATE factor graphs use l̃ embedded into a
sequence of SDFs, i.e., the set {Dl̃0

,Dl̃1
, . . . ,Dl̃N

}, such
that the obstacle factor assignment reflects the anticipated
obstacle trajectory. Finally, Algorithm 1 shows that predictive
SCATE factor graphs do not need to reassign cost for future
obstacles and hence require fewer computational steps than
reactive SCATE factor graphs for the same problem.

2) Computational Complexity Analysis: We solve for Θ∗
i

at time-step ti by linearizing (4), given (7) or (8), about
a trajectory (starting with guess x̃, ũ at t0) and then use
variable elimination [35] to solve (n+m)N+ iq local linear
sub-problems [15]. Since finding an optimal elimination
order is NP-complete [36], we follow [37], and use Col-
umn Approximate Minimum Degree (ColAMD) [38]. When
eliminating variables in the estimation portion of SCATE
factor graphs, because the number of constraints per pose
is constant, the complexity is O(1) [39]. Elimination of
planning state and control variables results in O(n3), O(m3)
complexity per sub-problem, respectively [25], but since the

1The hinge loss is not differentiable at d(z) = ϵ, so in this implementation
c′(z) = −0.5 when d(z) = ϵ [26].

ColAMD algorithm has complexity O(E) for a bounded
degree graph with E edges [40], then the total complexity
is O(i+ (N − i) · (κ1n3 + κ2m

3)) for κ1, κ2 > 0.
3) Pseudocode for Computer Implementation of SCATE:

Algorithm 1 SCATE Factor Graph Optimization
Generate Initial Plan:

1: G = gtsam.NonlinearFactorGraph() ▷ Create graph via gtsam [41]
2: G.Φ.add

(
ϕfix

)
▷ Root graph endpoints with factors in (9) and (10)

3: for i = 0 : N do ▷ Add constraint factors to graph over {t0, . . . , tN}
4: if i < N then
5: G.Φ.add

(
ϕdyn
i (xi+1,xi,ui)

)
▷ Dynamics factor in (15)

6: G.Φ.add
(
ϕlim
i (ui)

)
▷ Control limit factor in (17)

7: if PlanningMode = Reactive then ▷ Plan without l̃
8: G.Φ.add

(
ϕobs
i (xi) , ∅

)
a ▷ Obstacle factor in (18)

9: else if PlanningMode = Predictive then ▷ Plan given l̃

10: G.Φ.add
(
ϕobs
i (xi) , l̃i

)
▷ Obstacle factor in (18)

11: Θ0 = gtsam.Values(x̃, ũ) ▷ Initialize solution guess given x̃, ũ at t0
12: Θ∗

0 ← gtsam.LevenbergMarquardt(G,Θ0).Optimize() ▷ Find solution

Iterative Online Factor Graph Optimization:
13: for i = 0 : N do ▷ Iteratively solve factor graph along {t0, . . . , tN}
14: G.Φ.add

(
ϕmeas
xi

(xi), ϕ
meas
li

(xi, li)
)

▷ Factors in (11) and (12)

15: Θ∗
i .add.Values(lmeas

i
b) ▷ Add obstacle location to solution

16: if i = 0 then
17: G.Φ.remove

(
ϕstart(x0)

)
▷ Remove start factor in (9)

18: else if i = N then
19: G.Φ.remove

(
ϕgoal(xN )

)
▷ Remove goal factor in (10)

20: G.Φ.remove
(
ϕlim
i (ui), ϕ

obs
i (xi)

)
▷ Remove outdated factors

21: if PlanningMode = Reactive then ▷ Plan given lmeas
i

22: for k = i+ 1 : N do ▷ Assign cost for future obstacle factors
23: G.Φ.replace

(
ϕobs
k (xk) , l

meas
i

)
▷ Obstacle factor in (18)

24: Θ∗
i+1 ← gtsam.LevenbergMarquardt(G,Θ∗

i ).Optimize() ▷ Solve

aObstacle factors encode an empty bounded workspace when li = ∅.
blmeas
i = f(zmeas

xi
,zmeas
θi

,zmeas
ri

) denotes measured obstacle location.

III. EXPERIMENTAL VALIDATION

We have verified SCATE for onboard spacecraft navigation
in the Dynamics and Control Systems Laboratory’s (DCSL)
friction-less robotic spacecraft simulator experimental facil-
ity, shown in Figure 4. A mounted overhead network of 12
VICONTM cameras monitor a 4m x 4m flat epoxy floor arena
shown in Figure 4b, providing localization necessary for
inertial pose estimation of all robots within the facility with
sub-millimeter and sub-degree accuracy post calibration [32].

Figure 4b also shows the 5-DOF air-bearing robotic plat-
form, ASTROS (Autonomous Spacecraft Testing of Robotic
Operations in Space) [31], [32], which is equipped with
a three-axis inertial measurement unit, a three-axis rate
gyro, and 12 pressurized air thrusters, arranged in a 3-3-3-3



(a) Dimensions of the testing arena. (b) ASTROS platform in arena bay.

Fig. 4: The DCSL’s robotic air-bearing spacecraft testing facility.

configuration, which impart changes in linear and angular
momentum necessary for trajectory tracking.

A. Planar Mechanics and SCATE MAP Trajectory Tracking

For this analysis and experiment, we assume
that the ASTROS platform is confined to 3-DOF
planar air-bearing motion such that the state is
x =

[
xV ẋV yV ẏV ψV/S ψ̇V/S

]T ∈ R6, where

Fig. 5: Heading angle, ψV/S ,
bearing angle, θ, frames, and cen-
ter of mass definitions.

xV , yV are the planar compo-
nents of displacement vector
rVA/O = [xV , yV ]T, and ψV/S

is the heading angle between
v1 of the inertial frame V =
{O,v1,v2} and s1 of body-
fixed frame S = {A, s1, s2},
as shown in Figure 5. The
translational dynamics are

mr̈VA/O =AfV , (21)

where m is the mass, and
AfV = [AfVx ,

A fVy ]T is the applied planar force and the
single-DOF rotational attitude dynamics are given by

AIVzzψ̈
V/S =AτVz , (22)

where AIVzz is the moment of inertia and AτVz is the applied
torque about the body-fixed z-axis. The system can be written
in a state-space form (13) where the control input is u =
[AfVx ,

A fVy ,
AτVz ]T.

We track the SCATE factor graph MAP solution Θ∗ =
{x̂ ∪ x̌, û ∪ ǔ, l̂} to either (7) or (8), during online imple-
mentation by letting u be

u = ǔ−K(x− x̌), (23)

and designing a feedback matrix K ∈ R3×6 such that the
matrix A−BK is Hurwitz.

B. Implementing Online Factor Graph Planning

The proposed online factor graph planning is integrated
in these experiments by using by two computers: one as the
control computer, which (re)solves the factor graph given
the available information, and an onboard real-time Simulink
SpeedgoatTM computer, which executes the current plan.
UDP packets of the set {x̌, ǔ} from the SCATE MAP
Θ∗ = {x̂ ∪ x̌, û ∪ ǔ, l̂} are communicated to the onboard
computer. The onboard computer simultaneously solves a

linear program [42] to allocate the onboard thrusters to
execute u in (23) such that u = ǔ − K(x̂EKF − x̌),
where x̂EKF is an extended Kalman Filter (EKF) estimate
of ASTROS’ state [43], and sends UDP packets of x̂EKF,
and measurements of the obstacle, zmeas. Note that x̂EKF

is computed at 100 Hz, whereas Θ∗ is computed at 3 Hz,
hence x̂EKF is used for feedback and is treated as a state
measurement during optimization.

IV. EXPERIMENTAL RESULTS

The viability of reactive SCATE factor graph navigation is
evaluated experimentally in an environment with an unknown
obstacle which is: a) static and b) moving, while predictive
SCATE navigation is tested both on hardware and in software
via a to-scale-CAD mesh rendering of the DCSL spacecraft
testing facility, ASTROS, and a new 3-DOF air-bearing
robot. The objective is for the ASTROS platform to navigate
collision-free from rest at one corner of the workspace to a
fixed position and attitude in the diagonal corner 2.

A. Reactive SCATE Navigation With A Static Obstacle
Reactive SCATE navigation is tested with a static ob-

stacle (i.e., the VICONTM wand) environment, as shown
in Figure 6. The system EKF state estimate, x̂EKF, is given

(a) Time: t = 0s. (b) Time: t = 20s. (c) Time: t = 60s.

Fig. 6: Reactive SCATE navigation in a static obstacle environment.

in Figure 7, where along with Figure 6, we see that the
ASTROS platform navigates collision-free along the MAP
reference trajectory, x̌, reaching the terminal goal state.

Fig. 7: State estimate, x̂EKF, and MAP reference, x̌.

B. Reactive SCATE Navigation With A Moving Obstacle
We now move the obstacle around the workspace, forcing

the ASTROS platform to navigate to the perimeter of the
arena in order to avoid an obstacle collision while navigating
to the terminal reference waypoint, as shown in Figure 8.

Note that the large instantaneous changes in the MAP
reference planar velocities during the 45-70 seconds is the

2Results available online at https://youtu.be/C03TKAtqm8I.

https://youtu.be/C03TKAtqm8I


(a) Time: t = 0s. (b) Time: t = 40s. (c) Time: t = 80s.

Fig. 8: Reactive SCATE navigation with a moving obstacle.

Fig. 9: State estimate, x̂EKF, and MAP reference, x̌, during
reactive SCATE navigation around a moving obstacle.

result of close obstacle proximity, as shown in Figure 9.
After 80 seconds, Figure 9 shows that the deviation from the
MAP reference trajectory increases, which is a result of the
exhausting the fuel necessary for proper thruster allocation.

C. Predictive SCATE Navigation With A Moving Obstacle
1) Hardware Validation: For predictive SCATE imple-

mentation, given in (8), we attached the obstacle to a 7-
DOF UR10eTM manipulator such that the obstacle follows a
predefined trajectory, i.e., l̃. The ASTROS platform navigates
collision-free around the obstacle, as shown in Figure 10, and

(a) Time: t = 0s. (b) Time: t = 40s. (c) Time: t = 60s.

Fig. 10: Predictive SCATE navigation with a moving obstacle.

reaches the terminal goal state with small deviations from the
MAP reference trajectory, as shown in Figure 11.

Fig. 11: State estimate, x̂EKF, and MAP reference, x̌, during
predictive SCATE navigation around a moving obstacle.

2) Numerical Simulation: Predictive SCATE factor graph
navigation is also simulated with the same navigation con-
straints as the reactive SCATE case, with another robot, as
shown in Figure 12. The ASTROS platform successfully

Fig. 12: Predictive SCATE navigation. Faded figures show the past.

navigates without collisions around the obstacles to reach
the terminal state, as shown in Figures 12 and 13a. Finally,

(a) Platform state, x, MAP estimate, x̂, and reference, xref (tN ).

(b) MAP obstacle trajectory estimation error, el = l− l̂.

Fig. 13: Predictive SCATE simulation trajectories and estimations.

Figure 13 shows that the MAP estimates x̂ and l̂, are in close
correspondence with x, l, respectively.

V. CONCLUSION

We show the utility of using factor graphs for simultaneous
control and trajectory estimation (SCATE) for collision-free
navigation of autonomous robotic spacecraft systems in envi-
ronments with moving objects with and without an obstacle
motion model. We have numerically and experimentally val-
idated SCATE factor graph navigation, confirming the algo-
rithm’s capacity to: a) incorporate realistic vehicle dynamics,
b) generate online collision-free reference trajectories and
estimates of vehicle state, control, and obstacle trajectories
in a moving obstacle environment, and c) navigate spacecraft
systems autonomously in support of future OSS missions.

Although the utility of this algorithm has only been
demonstrated for linear planar mechanics, SCATE factor
graph navigation is readily extendable to 6-DOF nonlinear
single- and multi-body dynamics, as well as, 3D motion
planning, where 3D SDFs are necessary. This investigation
is part of ongoing and future work.
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[21] H. J. Kappen, V. Gómez, and M. Opper, “Optimal Control
as a Graphical Model Inference Problem,” Machine Learning,
vol. 87, no. 2, pp. 159–182, Feb. 2012. [Online]. Available:
https://doi.org/10.1007/s10994-012-5278-7

[22] D.-N. Ta, M. Kobilarov, and F. Dellaert, “A Factor Graph Approach
to Estimation and Model Predictive Control on Unmanned Aerial
Vehicles,” in International Conference on Unmanned Aircraft Systems
(ICUAS), Orlando, FL., May 2014, pp. 181–188. [Online]. Available:
https://doi.org/10.1109/ICUAS.2014.6842254

[23] S. Levine, “Reinforcement Learning and Control as Probabilistic
Inference: Tutorial and Review,” CoRR, vol. abs/1805.00909, May
2018. [Online]. Available: http://arxiv.org/abs/1805.00909

[24] J. Watson, H. Abdulsamad, and J. Peters, “Stochastic Optimal
Control as Approximate Input Inference,” in Conference on
Robot Learning, ser. Proceedings of Machine Learning Research,
L. P. Kaelbling, D. Kragic, and K. Sugiura, Eds., vol. 100.
PMLR, 30 Oct–01 Nov 2020, pp. 697–716. [Online]. Available:
https://proceedings.mlr.press/v100/watson20a.html

[25] S. Yang, G. Chen, Y. Zhang, F. Dellaert, and H. Choset,
“Equality Constrained Linear Optimal Control With Factor Graphs,”
CoRR, vol. abs/2011.01360, Nov. 2020. [Online]. Available: https:
//arxiv.org/abs/2011.01360

[26] J. Dong, M. Mukadam, F. Dellaert, and B. Boots, “Motion
Planning as Probabilistic Inference using Gaussian Processes and
Factor Graphs,” in Robotics: Science and Systems, vol. 12,
no. 4, Ann Arbor, MI., June 2016. [Online]. Available: https:
//homes.cs.washington.edu/∼bboots/files/GPMP2.pdf

[27] J. Dong, M. Mukadam, B. Boots, and F. Dellaert, “Sparse
Gaussian Processes on Matrix Lie Groups: A Unified Framework
for Optimizing Continuous-Time Trajectories,” in International
Conference on Robotics and Automation, Brisbane, QLD, Australia,
May 21-25 2018, pp. 6497–6504. [Online]. Available: https:
//doi.org/10.1109/ICRA.2018.8461077

[28] M. Mukadam, J. Dong, F. Dellaert, and B. Boots, “Simultaneous
Trajectory Estimation and Planning Via Probabilistic Inference,” in
Robotics: Science and Systems, Cambridge, MA., July 2017. [Online].
Available: https://par.nsf.gov/servlets/purl/10046313

[29] M. Mukadam, J. Dong, F. Dellaert, and B. Boots, “STEAP:
Simultaneous Trajectory Estimation and Planning,” Autonomous
Robots, vol. 43, no. 2, pp. 415–434, Jul. 2018. [Online]. Available:
https://doi.org/10.1007/s10514-018-9770-1

[30] M. Mukadam, J. Dong, X. Yan, F. Dellaert, and B. Boots, “Continuous-
Time Gaussian Process Motion Planning Via Probabilistic Inference,”
The International Journal of Robotics Research, vol. 37, no. 11, pp.
1319–1340, Sep. 2018. [Online]. Available: https://doi.org/10.1177/
0278364918790369

[31] D.-M. Cho, D. Jung, and P. Tsiotras, “A 5-dof Experimental
Platform for Spacecraft Rendezvous and Docking,” in AIAA
Infotech@Aerospace Conference, Seattle, WA., Apr. 2009, pp. 1–20.
[Online]. Available: https://arc.aiaa.org/doi/abs/10.2514/6.2009-1869

[32] P. Tsiotras, “ASTROS: A 5DOF Experimental Platform for
Research in Space Proximity Operations,” in ASS Guidance and
Control Conference. Breckenridge, CO: Georgia Institute of

https://doi.org/10.1016/j.paerosci.2014.03.002
https://doi.org/10.2514/6.2015-4426
https://arc.aiaa.org/doi/abs/10.2514/6.2016-5478
https://doi.org/10.1609/aimag.v28i4.2066
https://doi.org/10.1609/aimag.v28i4.2066
https://doi.org/10.1109/JSYST.2017.2720682
http://www.scopus.com/inward/record.url?scp=85070098230&partnerID=8YFLogxK
http://www.scopus.com/inward/record.url?scp=85070098230&partnerID=8YFLogxK
https://doi.org/10.1109/SMC-IT.2006.72
https://doi.org/10.1007/978-3-662-47694-9_1
https://doi.org/10.2514/1.G003774
https://arc.aiaa.org/doi/abs/10.2514/6.2020-0616
https://doi.org/10.2514/1.G003736
https://doi.org/10.2514/1.G003736
https://www.researchgate.net/publication/349318751_Guidance_for_Autonomous_Inspection_of_Unknown_Uncooperative_Resident_Space_Objects
https://www.researchgate.net/publication/349318751_Guidance_for_Autonomous_Inspection_of_Unknown_Uncooperative_Resident_Space_Objects
https://www.researchgate.net/publication/349318751_Guidance_for_Autonomous_Inspection_of_Unknown_Uncooperative_Resident_Space_Objects
https://www.sciencedirect.com/science/article/pii/S2405896317319432
https://www.sciencedirect.com/science/article/pii/S2405896317319432
https://arc.aiaa.org/doi/abs/10.2514/6.2013-4549
https://doi.org/10.1177%2F0278364906072768
https://doi.org/10.1177%2F0278364906072768
https://scholar.archive.org/work/vwclhxa4anhsvb7g6dckbhg4ue/access/wayback/http://www.cs.cmu.edu/~kaess/pub/Dellaert17fnt.pdf
https://scholar.archive.org/work/vwclhxa4anhsvb7g6dckbhg4ue/access/wayback/http://www.cs.cmu.edu/~kaess/pub/Dellaert17fnt.pdf
https://doi.org/10.1109/TRO.2018.2838556
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.707.3225&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.707.3225&rep=rep1&type=pdf
https://doi.org/10.1109/IROS.2015.7353368
https://doi.org/10.1109/IROS.2015.7353368
https://doi.org/10.1007/s10514-015-9455-y
https://doi.org/10.1007/s10514-015-9455-y
https://doi.org/10.1007/s10994-012-5278-7
https://doi.org/10.1109/ICUAS.2014.6842254
http://arxiv.org/abs/1805.00909
https://proceedings.mlr.press/v100/watson20a.html
https://arxiv.org/abs/2011.01360
https://arxiv.org/abs/2011.01360
https://homes.cs.washington.edu/~bboots/files/GPMP2.pdf
https://homes.cs.washington.edu/~bboots/files/GPMP2.pdf
https://doi.org/10.1109/ICRA.2018.8461077
https://doi.org/10.1109/ICRA.2018.8461077
https://par.nsf.gov/servlets/purl/10046313
https://doi.org/10.1007/s10514-018-9770-1
https://doi.org/10.1177/0278364918790369
https://doi.org/10.1177/0278364918790369
https://arc.aiaa.org/doi/abs/10.2514/6.2009-1869


Technology, Jan. 31-Feb. 5 2014, paper 14-114. [Online]. Available:
http://hdl.handle.net/1853/53259

[33] F. Kschischang, B. Frey, and H.-A. Loeliger, “Factor Graphs and
the Sum-Product Algorithm,” Transactions on Information Theory,
vol. 47, no. 2, pp. 498–519, Feb. 2001. [Online]. Available:
https://doi.org/10.1109/18.910572

[34] M. Zucker, N. Ratliff, A. D. Dragan, M. Pivtoraiko, M. Klingensmith,
C. M. Dellin, J. A. Bagnell, and S. S. Srinivasa, “CHOMP: Covariant
Hamiltonian Optimization for Motion Planning,” The International
Journal of Robotics Research, vol. 32, no. 9-10, pp. 1164–1193, Aug.
2013. [Online]. Available: https://doi.org/10.1177/0278364913488805

[35] J. Blair and B. Peyton, “An Introduction to Chordal Graphs and
Clique Trees,” Oak Ridge National Lab, TN, USA, Tech. Rep.
ORNL/TM-12203 ON: DE93012508, Nov. 1992. [Online]. Available:
https://www.osti.gov/biblio/10145949

[36] M. Yannakakis, “Computing the Minimum Fill-In is NP-Complete,”
SIAM Journal on Algebraic Discrete Methods, vol. 2, no. 1, pp. 77–79,
Mar 1981. [Online]. Available: https://doi.org/10.1137/0602010

[37] R. Pradhan, S. Yang, F. Dellaert, H. Choset, and M. J. Travers,
“Optimal Control for Structurally Sparse Systems using Graphical
Inference,” ArXiv, vol. abs/2104.02945, April 2021. [Online].
Available: https://api.semanticscholar.org/CorpusID:233169157

[38] T. A. Davis, J. R. Gilbert, S. I. Larimore, and E. G. Ng, “A Column
Approximate Minimum Degree Ordering Algorithm,” Transactions
on Mathematical Software, vol. 30, no. 3, pp. 353–376, Sept. 2004.
[Online]. Available: https://doi.org/10.1145/1024074.1024079

[39] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. Leonard, and
F. Dellaert, “iSAM2: Incremental Smoothing and Mapping with Fluid
Relinearization and Incremental Variable Reordering,” in International
Conference on Robotics and Automation, Shanghai, China, May 2011.
[Online]. Available: https://doi.org/10.1109/ICRA.2011.5979641

[40] P. R. Amestoy, T. A. Davis, and I. S. Duff, “An Approximate
Minimum Degree Ordering Algorithm,” SIAM Journal on Matrix
Analysis and Applications, vol. 17, no. 4, pp. 886–905, Oct. 1996.
[Online]. Available: https://doi.org/10.1137/S0895479894278952

[41] F. Dellaert, “Factor Graphs and GTSAM: A Hands-On Introduction,”
Georgia Institute of Technology, Atlanta, GA, USA, Tech. Rep.
GT-RIM-CP&R-2012-002, Sept. 2012. [Online]. Available: http:
//hdl.handle.net/1853/45226

[42] A. Makhorin, “GLPK (GNU Linear Programming Kit),”
https://www.gnu.org/software/glpk/, 2011, Moscow: Department
for Applied Informatics, Moscow Aviation Institute.

[43] N. Filipe, M. Kontitsis, and P. Tsiotras, “Extended Kalman Filter
for Spacecraft Pose Estimation Using Dual Quaternions,” Journal of
Guidance, Control, and Dynamics, vol. 38, no. 9, pp. 1625–1641,
Sep 2015. [Online]. Available: https://doi.org/10.2514/1.G000977

http://hdl.handle.net/1853/53259
https://doi.org/10.1109/18.910572
https://doi.org/10.1177/0278364913488805
https://www.osti.gov/biblio/10145949
https://doi.org/10.1137/0602010
https://api.semanticscholar.org/CorpusID:233169157
https://doi.org/10.1145/1024074.1024079
https://doi.org/10.1109/ICRA.2011.5979641
https://doi.org/10.1137/S0895479894278952
http://hdl.handle.net/1853/45226
http://hdl.handle.net/1853/45226
https://www.gnu.org/software/glpk/
https://doi.org/10.2514/1.G000977

	INTRODUCTION
	Approach and Methodology
	Trajectory Optimization as Probabilistic Inference
	Trajectory Prior
	Likelihood Function
	Computing the Maximum A Posteriori Trajectory
	Factor Graphs for Estimation and Planning

	Simultaneous Trajectory Estimation and Planning
	Simultaneous Control and Trajectory Estimation
	SCATE Factor Definitions
	Computational Complexity Analysis
	Pseudocode for Computer Implementation of SCATE


	Experimental Validation
	Planar Mechanics and SCATE MAP Trajectory Tracking
	Implementing Online Factor Graph Planning

	Experimental Results
	Reactive SCATE Navigation With A Static Obstacle
	Reactive SCATE Navigation With A Moving Obstacle
	Predictive SCATE Navigation With A Moving Obstacle
	Hardware Validation
	Numerical Simulation


	Conclusion
	References

