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Abstract

For a number ring O, Borel and Serre proved that SLn(O) is a virtual duality group
whose dualizing module is the Steinberg module. They also proved that GLn(O) is a
virtual duality group. In contrast to SLn(O), we prove that the dualizing module of
GLn(O) is sometimes the Steinberg module, but sometimes instead is a variant that
takes into account a sort of orientation. Using this, we obtain vanishing and nonvanishing
theorems for the cohomology of GLn(O) in its virtual cohomological dimension.
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1 Introduction

The following contrasting theorems are two of the main results of this paper. Let cl(O)
denote the class group of a number ring O.

Theorem A (Vanishing). Let O be the ring of integers in a number field K and let vcd be
the virtual cohomological dimension of GLn(O). Assume that n is even and that O× contains
an element of norm −1. Also, letting r and 2s be the number of real and complex embeddings
of K, assume that r + s ≥ n. Then Hvcd(GLn(O);Q) = 0.

Theorem B (Nonvanishing). Let O be the ring of integers in a number field K and let vcd
be the virtual cohomological dimension of GLn(O). Assume either that n is odd or that O×

does not contain an element of norm −1. Then the dimension of Hvcd(GLn(O);Q) is at least
(| cl(O)| − 1)n−1.

In the rest of the introduction, we will explain the origin and motivation for these results.
In particular, we will explain why the parity of n and the (non)existence of elements in
O× of norm −1 should have something to do with the cohomology of GLn(O) in its virtual
cohomological dimension.

Remark 1.1. In light of the dichotomy suggested by Theorems A and B, it is natural to
wonder which of their hypotheses are necessary. In particular, it is unclear whether the
restrictive hypothesis r + s ≥ n is needed in Theorem A. We will discuss this at the end of
the introduction.

Remark 1.2. Theorem B is closely connected to a recent theorem of Church–Farb–Putman [7]
that says that if ν is the virtual cohomological dimension of SLn(O), then the dimension of
Hν(SLn(O);Q) is at least (| cl(O)|−1)n−1. Note that no assumption on n or O× is necessary.
The paper [7] also proves a vanishing theorem for Hν(SLn(O);Q) that bears a superficial
relationship to Theorem A, but in fact the mechanisms behind the results are completely
different. We will discuss this more later in the introduction.

Duality. Let O be the ring of integers in a number field K and let r and 2s be the numbers
of real and complex embeddings of K. A fundamental result of Borel–Serre [4] says that the
virtual cohomological dimension of GLn(O) is

vcd = r

(︃
n+ 1

2

)︃
+ sn2 − n.

Even better, they proved that GLn(O) is a virtual duality group of dimension vcd. By
definition, this means that there is a Z[GLn(O)]-module D called the virtual dualizing module
such that the following holds. Let G ⊂ GLn(O) be a finite-index subgroup, including possibly
G = GLn(O). Let R be a commutative ring such that for all finite subgroups F < G, the
order |F | is invertible in R. We thus can take R = Z if G is torsion-free and R = Q in all
cases. Then for all R[G]-modules M , we have

Hvcd−i(G;M) ∼= Hi(G;M ⊗D)

for all i ≥ 0.
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Remark 1.3. In most treatments of virtual duality groups, the duality relation is only
discussed for torsion-free subgroups of finite index. It is well-known that the above holds for
subgroups with torsion, but we do not know a source that gives a detailed proof of this. We
will describe how this works for GLn(O) in §2.1.

Specializing to i = 0 and G = GLn(O) and M = Q, this says that

Hvcd(GLn(O);Q) ∼= H0(GLn(O);Q⊗D) ∼= (Q⊗D)GLn(O),

where the subscript indicates that we are taking coinvariants. Theorems A and B can thus
be translated into results about the action of GLn(O) on its virtual dualizing module D.
The third main result of this paper identifies D.

Special linear group and and the Steinberg module. To motivate this identification,
we first explain the better-understood case of SLn(O). Just like for GLn(O), Borel–Serre
proved that SLn(O) is a virtual duality group of virtual cohomological dimension

ν = r

(︃
n+ 1

2

)︃
+ sn2 − n− r − s+ 1.

They also gave the following beautiful description of the virtual dualizing module for SLn(O):
it is the Steinberg module for SLn(K), which we now describe. Let Tn(K) be the Tits building
for SLn(K), i.e. the geometric realization of the poset of K-parabolic subgroups of SLn. The
K-parabolic subgroups of SLn are precisely the stabilizers of flags

0 ⊊ V0 ⊊ · · · ⊊ Vr ⊊ Kn, (1.1)

and Tn(K) can alternately be described as the simplicial complex whose r-simplices are flags
as in (1.1). The Solomon–Tits theorem [18, 6] says that Tn(K) is homotopy equivalent to
a wedge of (n− 2)-spheres. The Steinberg module Stn(K) is ˜︁Hn−2(Tn(K)). The action of
SLn(O) on Stn(K) is the restriction to SLn(O) of the one induced by the action of SLn(K)
on Tn(K).

Borel–Serre proved their theorem by constructing a bordification of the symmetric space
for SLn(O). The boundary of this bordification has a stratification whose combinatorics
are encoded by those of the K-parabolic subgroups of SLn. As a result, the boundary is
homotopy equivalent to Tn(K).

General linear group. To prove that GLn(O) is a virtual duality group, Borel–Serre
constructed a bordification of its associated symmetric space in terms of the K-parabolic
subgroups of GLn. Since the K-parabolic subgroups of GLn are also the stabilizers of flags in
Kn, it follows that the boundary of their bordification for GLn(O) is homotopy equivalent to
Tn(K). This might lead the reader to expect that the virtual dualizing module for GLn(O)
is also the Steinberg module Stn(K).

Unfortunately, this is false (see, e.g., [16, §3] and [9, §3.1]). Here is an easy example of this
failure. We would like to thank Jeremy Miller and Peter Patzt for pointing it out to us.

Example 1.4. The virtual cohomological dimension of GL2(Z) is 1. Let Γ2(2) denote the level-
2 principal congruence subgroup of GL2(Z), i.e. the kernel of the map GL2(Z) → GL2(F2)
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that reduces matrix entries modulo 2. Letting D be the virtual dualizing module for GL2(Z)
and thus also for its finite-index subgroup Γ2(2), we have

H1(Γ2(2);Q) ∼= H0(Γ2(2);Q⊗D) = (Q⊗D)Γ2(2),

where the subscripts indicate that we are taking the coinvariants. As the following calculations
show, H1(Γ2(2);Q) = 0 and (Q⊗ St2(Q))Γ2(2) ̸= 0, so St2(Q) ̸= D.

• The group Γ2(2) is generated by the matrices

a =

(︃
1 2
0 1

)︃
and b =

(︃
1 0
2 1

)︃
and c =

(︃
−1 0
0 1

)︃
and d =

(︃
1 0
0 −1

)︃
.

We have c2 = d2 = 1. Also, cac−1 = a−1 and cbc−1 = b−1. It follows that all the
generators become torsion in the abelianization of Γ2(2), so H1(Γ2(2);Q) = 0.

• The space T2(Q) is the discrete set of lines in Q2. Such lines are in bijection with
rank-1 direct summands of Z2, and thus can be reduced modulo 2 to give lines in F2

2.
This gives a surjection T2(Q) ↠ T2(F2) and hence a surjection π : St2(Q) ↠ St2(F2).
Since π is Γ2(2)-invariant, it induces a surjection

(Q⊗ St2(Q))Γ2(2) ↠ Q⊗ St2(F2) ̸= 0.

What is happening in the above example is that GL2(Z) acts in an orientation-reversing
way on its symmetric space. The identification of the Steinberg module for SLn(O) passes
through Poincaré–Lefschetz duality, so to do the same for GLn(O) we must take into account
orientations.

Dualizing module. If G is a group and A is an abelian group and χ : G → {±1} is a
homomorphism, then let Aχ denote A endowed with the Z[G]-module structure arising from
the action

g · a = χ(g) · a for all g ∈ G and a ∈ A.

Our third main theorem is then the following. Recall that the group of units O× is precisely
the set of elements of O whose norm is ±1.

Theorem C (Dualizing module). Let O be the ring of integers in a number field K and
let D be the virtual dualizing module of GLn(O). Letting χ : GLn(O) → {±1} be the
composition of the determinant homomorphism with the norm map O× → {±1}, we then
have D ∼= Stn(K)⊗ (Zχ)

⊗(n−1).

The virtual dualizing module of GLn(O) is thus different from Stn(K) if and only if n is even
and O× has an element of norm −1. This latter condition forces O to have a real embedding,
so for instance never holds for rings of integers in imaginary quadratic fields. Beyond this,
it is poorly understood which number rings have elements of norm −1, even for rings of
integers in real quadratic fields.

Remark 1.5. Theorem C seems to have been known to the experts, and results like it are
mentioned in the literature in several places (see, e.g., [16, §3] and [9, §3.1]). However, no
source we are aware of contains a proof of it in complete generality. Since we need Theorem
C for Theorems A and B, we have taken this opportunity to fill this hole in the literature.
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Cohomology in the vcd. Having identified the virtual dualizing module D for GLn(O) in
Theorem C, we now discuss Theorems A and B, which concern

Hvcd(GLn(O);Q) ∼= (Q⊗D)GLn(O).

The restriction of the GLn(O)-module D to SLn(O) is simply the Steinberg module Stn(K).
Letting ν be the virtual cohomological dimension of SLn(O), we thus have

Hν(SLn(O);Q) ∼= (Q⊗ Stn(K))SLn(O) = (Q⊗D)SLn(O).

In [7], Church–Farb–Putman proved two results about these SLn(O)-coinvariants.

The first result of [7] generalizes a theorem of Lee–Szczarba [11, Theorem 4.1] that says
that if O is Euclidean, then (Q ⊗ Stn(K))SLn(O) = 0. The paper [7] says that this also
holds if cl(O) = 0 and O has a real embedding. Since (Q ⊗ D)GLn(O) is a quotient of
(Q⊗ Stn(K))SLn(O), this implies that under these assumptions we have

Hvcd(GLn(O);Q) ∼= (Q⊗D)GLn(O) = 0.

This vanishing result was already noted by Church–Farb–Putman; we will later comment on
its relationship to Theorem A (see the “Trouble” paragraph below).

The second result of [7] says that the dimension of (Q⊗ Stn(K))SLn(O) is at least (| cl(O)| −
1)n−1. In fact, the proof in [7] actually proves that the dimension of (Q ⊗ Stn(K))GLn(O)

is at least (| cl(O)| − 1)n−1, which is a stronger result. The hypotheses of Theorem B are
precisely those needed to ensure that D = Stn(K), so Theorem B immediately follows.

A tempting but wrong proof. As we discussed above, Theorem B follows from Theorem
C together with the work of Church–Farb–Putman, so it only remains to discuss Theorem A.
In light of Theorem C, Theorem A is equivalent to the assertion that under its assumptions,
we have

(Stn(K)⊗Qχ)GLn(O) = 0,

where χ : GLn(O) → {±1} is the composition of the determinant homomorphism and
the norm map O× → {±1}. The Solomon–Tits theorem says that Stn(K) is generated
by apartment classes (see below for the definition), and it is tempting to try to prove
this by showing that the images of these apartment classes in Stn(K) ⊗ Qχ vanish in the
GLn(O)-coinvariants.

The apartment classes [AB] are indexed by expressions B = (L1, . . . , Ln) such that the Li

are 1-dimensional subspaces in Kn with Kn = L1 ⊕ · · · ⊕ Ln. For such a B, let AB denote
the full subcomplex of Tn(K) spanned by the vertices ⟨Li | i ∈ I⟩, where I ⊂ {1, . . . , n} is a
nonempty proper subset. The complex AB is thus isomorphic to the barycentric subdivision
of the boundary of an (n− 1)-simplex, and hence is homeomorphic to an (n− 2)-sphere. The
apartment class is then the image

[AB] ∈ ˜︁Hn−2(Tn(K)) = Stn(K)

of the fundamental class of AB.
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The most straightforward way to show that [AB]⊗ 1 ∈ Stn(K)⊗Qχ vanishes in the GLn(O)-
coinvariants would be to find some g ∈ GLn(O) such that g([AB]) = [AB] but χ(g) = −1; in
the GLn(O)-coinvariants the elements [AB]⊗ 1 and g([AB]⊗ 1) = −([AB]⊗ 1) would then
be equal. For a general B, this seems difficult.

However, it is easy to find such g ∈ GLn(O) for the integral apartments, i.e. the B =
(L1, . . . , Ln) such that

On = (On ∩ L1)⊕ · · · ⊕ (On ∩ Ln).

Indeed, for such a B we can use a g ∈ GLn(O) that scales L1 by an element of O× whose
norm is −1 and fixes all the other Li. To prove Theorem A, it would thus be enough to
prove that Stn(K) is generated by integral apartments.

Ash–Rudolph [1] proved that if O is Euclidean, then Stn(K) is generated by integral
apartments. This was extended in [7] to also include O with a real embedding and cl(O) = 0.
Using a variant of the argument described above that avoids use of the χ-factor, [7] used this
to prove their aforementioned vanishing theorem.

Trouble. This leaves the cases of Theorem A that are not consequences of Church–Farb–
Putman’s work, i.e. those where cl(O) ̸= 0. Unfortunately, [7] also proves that if cl(O) ̸= 0,
then Stn(K) is not generated by integral apartments. Finding a nice generating set for
Stn(K) when O is not Euclidean or a PID with a real embedding seems like a difficult
problem, so we cannot use one to prove Theorem A.

What we do. Our proof of Theorem A is thus by necessity entirely different from the above
sketch. Recall that we are trying to prove that H0(GLn(O); Stn(K)⊗Qχ) = 0. Our proof
of this has two steps. The first is to carefully study the action of GLn(O) on the simplicial
chain complex of the Tits building to translate our theorem into a sequence of results about
the stable untwisted cohomology of GLn(O). The precise results we need are a bit technical,
but the following special case of one of them gives the general flavor. Define CLn(O) to be
the kernel of the homomorphism GLn(O) → {±1} obtained by composing the determinant
and norm maps.

• Let r and 2s be the numbers of real and complex embeddings of K. Then the action of
GLn(O) on its normal subgroup CLn(O) induces the trivial action on Hk(CLn(O);Q)
for 0 ≤ k ≤ min(n, r + s)− 1.

See Proposition 4.4 for a more general statement. For some range of k (up to around n
2 ),

this could be easily deduced from Borel’s [3] computation of the stable rational cohomology
of SLn(O). However, we really need the whole range of values of k above – even getting a
result that was off by 1 would cause everything to break!

There is a vast literature on homological stability results, and we use some of the technology
developed there in a rather non-standard way to prove our theorem. It is a bit surprising
that while an optimal homological stability theorem for SLn(O) is not known, the technology
that has been developed is just barely strong enough to prove a result like the above that
gives information well outside the known stable range.
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Necessity of hypotheses. Theorem A has three hypotheses:
• n is even, and
• O× contains an element of norm −1, and
• r + s ≥ n, where r and 2s are the numbers of real and complex embeddings of K.

The third of these is quite restrictive, and it is natural to wonder whether or not it is
necessary. For O× to contain an element of norm −1, it is necessary for O to have a real
embedding. Lee and Szczarba [11, Theorem 4.1] also proved1 that if O is Euclidean, then
Hvcd(GLn(O);Q) = 0 for n ≥ 2. The simplest number rings not covered by Lee–Szczarba’s
theorem for which an element of norm −1 might exist are therefore real quadratic O with
positive class numbers. For these, the group GL2(O) is covered by Theorem A (which
says that vanishing does not hold), while the group GL3(O) is covered by Theorem B. The
smallest possible interesting examples not covered by these known results are thus GL4(O)
for real quadratic number rings O with positive class number and elements of norm −1.
Unfortunately, these are complicated enough that we are unaware of any computational data
concerning them.

Outline. The two theorems above we must prove are Theorems C and A. We prove Theorem
C in §2, and we start the proof of Theorem A in §3, which reduces it to results proved in
subsequent sections.

Acknowledgments. The first author would like to thank Thomas Church and Benson Farb
for many inspiring conversations about the Steinberg module. The second author would like
to thank Dave Witte Morris and Kevin Wortman for help understanding the construction
of Borel–Serre. We both would like to thank Jeremy Miller and Peter Patzt for showing us
Example 1.4 and asking us what was going on with the virtual dualizing module for GLn(Z).
We also would like to thank Will Sawin for showing us how to prove Lemma 5.5 below.
Finally, we would like to thank Khalid Bou-Rabee for some helpful comments.

2 Identifying the virtual dualizing module

In this section, we prove Theorem C. There are two subsections. In §2.1, we use standard
techniques to reduce ourselves to the existence of an action of GLn(O) on a space with
appropriate properties. This space was constructed by Borel–Serre [4], but they did not
verify one key property we need. In §2.2 we recall the construction of the space and verify
the key property.

2.1 Reduction to a group action

In this section, we will show how Theorem C follows from the following proposition, which is
essentially due to Borel–Serre [4]. However, they did not verify all the properties in it, in

1The reference [11, Theorem 4.1] actually states that if O is Euclidean, then H0(SLn(O); Stn(K)) = 0 for
n ≥ 2. Bieri–Eckmann duality implies that this is equivalent to the vanishing of the rational cohomology of
SLn(O) in its virtual cohomological dimension. Using the Hochschild–Serre spectral sequence associated to
the short exact sequence 1 → SLn(O) → GLn(O) → O× → 1, this implies that Hvcd(GLn(O);Q) = 0.
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particular conclusion (iv).

Proposition 2.1. Let O be the ring of integers in a number field K, and let r and 2s be the
numbers of real and complex embeddings of K. Let χ : GLn(O) → {±1} be the composition
of the determinant with the norm map O× → {±1}. Then there exists a smooth contractible
manifold with corners X such that the following hold.

(i) The group GLn(O) acts smoothly, properly discontinuously, and cocompactly on X.
(ii) The boundary ∂X is homotopy equivalent to the Tits building Tn(K), and the restriction

of the GLn(O)-action to ∂X corresponds to the usual action of GLn(O) on Tn(K).
(iii) The dimension of X is d = r

(︁
n+1
2

)︁
+ sn2 − 1.

(iv) For g ∈ GLn(O), the action of g on X reverses orientation if and only if n is even and
χ(g) = −1.

We will explain how to extract Proposition 2.1 from Borel–Serre’s work in §2.2. Here we
show how to use it to derive Theorem C. This derivation is mostly standard, but we spell it
out since we do not know a source that carefully deals with orientations and non-free actions.
Indeed, many sources talk about virtual duality groups, but ignore the fact that they are
also Q-duality groups if they have torsion, which is essential for our applications.

We need two lemmas. The first is a tiny generalization of a familiar fact about representations
of groups over fields. Recall that if F is a group and χ : F → {±1} is a homomorphism and
R is a commutative ring, then Rχ is the R[F ]-module whose underlying R-module is R and
where g ∈ F acts as multiplication by χ(g).

Lemma 2.2. Let F be a finite group, χ : F → {±1} be a homomorphism, and R be a
commutative ring such that |F | is invertible in R. Then the R[F ]-module Rχ is projective.

Proof. The surjection π : R[F ] → Rχ defined via the formula

π(g) = χ(g) ∈ R (g ∈ F )

splits via the homomorphism ι : Rχ → R[F ] taking 1 ∈ Rχ to

1

|F |
∑︂
g∈F

χ(g) · g.

Thus Rχ is a direct summand of the free R[F ]-module R[F ], and is therefore projective.

Lemma 2.3. Let G be a group and let Z be a contractible simplicial complex upon which G
acts properly discontinuously and cocompactly. Let R be a commutative ring such that for all
finite subgroups F < G, the order |F | is invertible in R. Then the simplicial chain complex
C•(Z;R) is a resolution of R by finitely generated projective R[G]-modules.

Proof (compare to [8, Lemma 3.2]). The fact that Z is contractible implies that C•(Z;R)
is a resolution of R. We must prove that each Cn(Z;R) is a finitely generated projective
R[G]-module. For an oriented n-simplex σ of Z, let Mσ be the R[G]-submodule of Cn(Z;R)
generated by the basis element corresponding to σ. Since G acts cocompactly on Z, there are
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finitely many orbits of the action of G on the set of n-simplices of Z. Let {σ(1), . . . , σ(m)}
be a set of orbit representatives for this action. Fixing an orientation on each σ(i), we have

Cn(Z;R) =
m⨁︂
i=1

Mσ(i).

It is thus enough to prove that each Mσ(i) is a projective R[G]-module. Let Gσ(i) be the
setwise stabilizer of σ. Since the action of G on Z is properly discontinuous, Gσ(i) is a
finite subgroup of G. The action of Gσ(i) on Z might reverse the orientation of σ(i). Let
χ : Gσ(i) → {±1} be the homomorphism that records whether or not an element of Gσ(i)

reverses the orientation of σ(i). We then have

Mσ(i) = IndGGσ(i)
Rχ.

Lemma 2.2 says that Rχ is a projective R[Gσ(i)]-module, i.e. a direct summand of a free
R[Gσ(i)]-module. Since

IndGGσ(i)
R[Gσ(i)] ∼= R[G],

it follows that Mσ(i) is also a direct summand of a free R[G]-module, and is thus projective,
as desired.

Proof of Theorem C, assuming Proposition 2.1. Let us first recall what must be proved. This
requires introducing a large amount of notation:

• Let O be the ring of integers in a number field K.
• Let χ : GLn(O) → {±1} be the composition of the determinant homomorphism and

the norm map O× → {±1}.
• Let r and 2s be the numbers of real and complex embeddings of K.
• Let vcd = r

(︁
n+1
2

)︁
+ sn2 − n.

• Let G be a finite-index subgroup of GLn(O).
• Let R be a commutative ring such that for all finite subgroups F < G, the order |F | is

invertible in R.
We must prove that G is an R-duality group of dimension vcd with R-dualizing module
Stn(K)⊗(Rχ)

⊗(n−1). Since this purported dualizing module is a free R-module, the standard
theory of R-duality group (see, e.g. [2, §9]) says that this is equivalent to showing that

Hk(G;R[G]) ∼=

{︄
Stn(K)⊗ (Rχ)

⊗(n−1) if k = vcd,

0 otherwise
(2.1)

for all k ≥ 0.

Let X and X be as in Proposition 2.1, so X is a

d = r

(︃
n+ 1

2

)︃
+ sn2 − 1

dimensional manifold with boundary. Fix a GLn(O)-equivariant triangulation of X. Lemma
2.3 implies that the simplicial chain complex C•(X;R) is a resolution of R by finitely-generated
projective R[G]-modules.
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The proof of [5, Proposition VIII.7.5] now shows that

Hk(G;R[G]) ∼= Hk
c (X;R). (2.2)

Let Ror be the orientation module for the action of GLn(O) on X, so Ror = R and elements
of GLn(O) act on Ror by ±1 depending on whether or not they reverse the orientation of X.
Conclusion (iv) of Proposition 2.1 implies that

Ror ∼= (Rχ)
⊗(n−1). (2.3)

Applying Poincaré-Lefschetz duality, we see that as a G-module, we have

Hk
c (X;R) ∼= Hd−k(X, ∂X;R)⊗Ror. (2.4)

Using the fact that X is contractible, the long exact sequence of a pair gives

Hd−k(X, ∂X;R)⊗Ror ∼= ˜︁Hd−k−1(∂X;R)⊗Ror ∼= ˜︁Hd−k−1(Tn(K))⊗Ror. (2.5)

Since the Tits building Tn(K) is homotopy equivalent to a wedge of (n− 2)-spheres and

d− vcd−1 =

(︃
r

(︃
n+ 1

2

)︃
+ sn2 − 1

)︃
−
(︃
r

(︃
n+ 1

2

)︃
+ sn2 − n

)︃
− 1 = n− 2,

we have ˜︁Hd−k−1(Tn(K)) ∼=

{︄
Stn(K) if k = vcd,

0 otherwise.
(2.6)

Combining (2.2)–(2.6), we obtain (2.1).

2.2 The Borel–Serre bordification

Let O be the ring of integers in an algebraic number field K. A space X satisfying the
conclusions of Proposition 2.1 was constructed by Borel–Serre [4], who proved that it satisfies
the first three conclusions of that proposition. In this section, we recall their construction
and verify that it also satisfies the fourth conclusion.

Algebraic groups setup. Let G = RK/Q(GLn) be the Q-algebraic group obtained as the
restriction of scalars of the K-algebraic group GLn. We thus have G(Q) ∼= GLn(K) and
G(Z) ∼= GLn(O). Let r and 2s be the numbers of real and complex embeddings of K and let

G = G(R) = GLn(K ⊗Q R) ∼=
r∏︂

i=1

GLn(R)×
s∏︂

j=1

GLn(C).

The group GLn(O) is thus a discrete subgroup of the real Lie group G. Let

K =

r∏︂
i=1

O(n)×
s∏︂

j=1

U(n),

so K is a maximal compact subgroup of G.

10



Center. Recall that a bordification of a smooth manifold Y is a smooth manifold with
corners Y such that Int(Y ) = Y . The space X constructed by Borel–Serre is a bordification
of an appropriate symmetric space X. If we were working with a semisimple group like SLn,
then X would simply be G/K. To deal with a reductive group like GLn, we will have to
further quotient G/K by the following subgroup of the center. The center of the K-algebraic
group GLn is the multiplicative group Gm, so Z(G) = RK/Q(Gm). Let S be the maximal
Q-split torus in Z(G), so

S(Q) = Q× < K× = Z(G)(Q).

Set S = S(R) < G. Letting Id be the n× n identity matrix, we have

S =
{︁
(a Id, . . . , a Id) | a ∈ R×}︁ ≤ Z(G).

Symmetric space. Let X be the smooth manifold G/(K · S). The space X is a symmetric
space of noncompact type, and is thus contractible. This can be seen in an elementary way
using the Gram–Schmidt orthogonalization process. Its dimension is

dim(X) = r(dim(GLn(R))− dim(O(n))) + s(dim(GLn(C))− dim(U(n)))− 1 (2.7)

= r(n2 − n(n− 1)

2
) + s(2n2 − n2)− 1 = r

n(n+ 1)

2
+ sn2 − 1.

Since GLn(O) ∩ K · S is finite, the smooth and properly discontinuous action of GLn(O) on
G by left multiplication descends to a smooth and properly discontinuous action of GLn(O)
on X.

Borel–Serre bordification. Borel–Serre [4] prove that X has the following properties.

Theorem 2.4 (Borel–Serre, [4]). Let the notation be as above. The manifold X has a
bordification X with the following properties.

(i) The action of GLn(O) on X extends to a smooth, properly discontinuous, and cocompact
action on X.

(ii) The boundary ∂X is homotopy equivalent to the Tits building Tn(K), and the restriction
of the GLn(O)-action to ∂X corresponds to the usual action of GLn(O) on Tn(K).

Proof. The space X is a “space of type S − Q for G” in the language of Borel–Serre; see
[4, 2.5(2)]. Borel–Serre construct a manifold with corners X containing X as an open
submanifold; see [4, 7.1]. Their construction satisfies (i) by [4, 9.3] and satisfies (ii) by [4,
8.4.2].

What remains. Theorem 2.4 says that the bordification X satisfies the first two conclusions
of Proposition 2.1, and (2.7) shows that X satisfies the third conclusion. To prove Proposition
2.1, we must therefore only verify the fourth conclusion, which identifies the elements of
GLn(O) that preserve the orientation of X. Since a diffeomorphism of a smooth manifold
with corners is orientation-preserving if and only if its restriction to the interior is orientation-
preserving, it is enough to determine which elements of GLn(O) preserve the orientation of
X. The advantage of doing this is that the whole Lie group G acts on X, and in fact we will
determine which elements of G preserve the orientation of X.

11



Define χ : G → R via the formula

χ(g1, . . . , gr, g
′
1, . . . , g

′
s) = det(g1) · · · det(gr) · | det(g′1)| · · · |det(g′s)|.

The restriction of χ to GLn(K) ⊂ GLn(K) (and hence to GLn(O)) is is the composition of
the determinant homomorphism GLn(K) → K× with the norm map K× → Q×. From this,
we see that the following lemma generalizes the fourth conclusion of Proposition 2.1.

Lemma 2.5. Let the notation be as above. For g ∈ G, the action of g on X reverses
orientation if and only if n is even and χ(g) < 0.

Once we prove Lemma 2.5, the proof of Proposition 2.1 will be complete. Before we do this,
we must discuss two preliminary results.

Homogeneous spaces and orientations. The first is the following lemma. To interpret
it, observe that if M is a connected orientable manifold, then the question of whether a
homeomorphism of M preserves the orientation is independent of a choice of orientation.

Lemma 2.6. Let H be a Lie group and let M be smooth connected orientable homogeneous
space for H. Fix a basepoint p ∈ M . Then the action of H on M preserves the orientation
of M if and only if the stabilizer Hp preserves the orientation of the tangent space TpM .

Proof. If the action of H on M preserves the orientation of M , then clearly Hp preserves the
orientation of TpM . We must prove the converse. Assume that Hp preserves the orientation
of TpM . Since M is connected, it is enough to construct an H-invariant orientation of M .
For this, let ω be an orientation on TpM . We can then define an orientation on M by
letting the orientation on TqM for q ∈ M be h∗(ω), where h ∈ H satisfies h(p) = q. This is
independent of the choice of h, and clearly gives a H-invariant orientation on M .

Ignoring the center. Our second lemma will allow us to ignore the difference between
X = G/(K · S) and G/K:

Lemma 2.7. Let the notation be as above. For g ∈ G, the action of g on X preserves
orientation if and only if the action of g on G/K preserves orientation.

Proof. Define Ψ: G → R>0 via the formula

Ψ(g1, . . . , gr+s) = |det g1| · · · |det gr+s| .

Via Ψ, the group G acts in an orientation-preserving way on R>0. To prove the lemma, it is
thus enough to prove that there is a G-equivariant homeomorphism

R>0 ×X ∼= G/K.

To do this, it is enough to prove that R>0 ×X is the homogeneous G-space G/K.

Since Ψ(S) = R>0, the subgroup S < G acts transitively on R>0. The subgroup S lies in the
center of G, so S acts trivially on X = G/(K · S). Together, these facts imply that R>0 ×X
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is a homogeneous G-space. As a G-space, R>0 is isomorphic to G/ ker(Ψ). We conclude that
R>0 ×X is isomorphic as a G-space to G modulo

ker(Ψ) ∩ (K · S) = K · (ker(Ψ) ∩ S) = K · (S ∩ K) = K.

Here we are using the fact that K ⊂ ker(Ψ) and that S is central. The lemma follows.

Completing the proof. We finally prove Lemma 2.5, thus completing the proof of
Proposition 2.1.

Proof of Lemma 2.5. By Lemma 2.7, it is enough to prove that the action of g ∈ G on G/K
reverses orientation if and only if n is even and χ(g) < 0. By definition,

G =

(︄
r∏︂

i=1

GLn(R)

)︄
×

⎛⎝ s∏︂
j=1

GLn(C)

⎞⎠
and

G/K =

(︄
r∏︂

i=1

GLn(R)
O(n)

)︄
×

⎛⎝ s∏︂
j=1

GLn(C)
U(n)

⎞⎠ .

The action of G on G/K respects these product decompositions. It follows that for g =
(g1, . . . , gr, g

′
1, . . . , g

′
s) ∈ G, the action of g on G/K reverses orientation if and only if

#

{︃
1 ≤ i ≤ r | gi reverses orientation of

GLn(R)
O(n)

}︃
+#

{︃
1 ≤ j ≤ s | g′j reverses orientation of

GLn(C)
U(n)

}︃
is odd. Since GLn(C) is connected, the action of g′j will preserve orientation for all 1 ≤ j ≤ s.
What is more, since

χ(g1, . . . , gr, g
′
1, . . . , g

′
s) = det(g1) · · · det(gr) · | det(g′1)| · · · |det(g′s)|,

we see that χ(g) < 0 if and only if

# {1 ≤ i ≤ r | det(gi) < 0}

is odd. We conclude that to prove the lemma, it is enough to prove the following claim.

Claim. The subgroup of GLn(R) consisting of elements that fix the orientation of

Y =
GLn(R)
O(n)

is GL>0
n (R) if n is even and is GLn(R) if n is odd.
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Since GLn(R) has two components, the subgroup in question is either GLn(R) or GL>0
n (R),

so it is enough to prove that GLn(R) itself preserves the orientation on Y if and only if n is
odd.

By Lemma 2.6, the group GLn(R) preserves the orientation on Y if and only if O(n) preserves
the orientation on the tangent space at the identity coset. We can identify this tangent space
as the quotient of Lie algebras

V =
gln(R)
o(n)

,

and the action of O(n) on it is the one induced by conjugation.

Since O(n) has only two components and the component of the identity clearly preserve the
orientation on this tangent space, it suffices to check a single element of the non-identity
component. We will use the matrix e11(−1) obtained from the identity matrix by replacing
the entry at (1, 1) with −1.

For 1 ≤ i, j ≤ n, let aij ∈ gln(R) be the matrix with a 1 at position (i, j) and zeros elsewhere.
The vector space V has a basis consisting of the cosets of {aij | 1 ≤ i ≤ j ≤ n}. Conjugation
by e11(−1) fixes aii for 1 ≤ i ≤ n, and also fixes aij for 2 ≤ i < j ≤ n. However, conjugation
by e11(−1) takes a1j with j ≤ 2 ≤ n to −a1j . This conjugation action thus negates precisely
(n− 1) elements of our basis, so the determinant of its action on V is (−1)n−1. We conclude
that e11(−1) preserves the orientation if and only if n is odd, as desired.

3 Reduction I: the action on flag stabilizers is trivial

We now begin our proof of Theorem A. In this section, we reduce this theorem to proving
that a certain action is trivial.

Setup. Let O be the ring of integers in a number field K such that O has an element of
norm −1. Let χ : GLn(O) → {±1} be the composition of the determinant with the norm
map O× → {±1}, and define CLn(O) = ker(χ). Let F be a length-q flag in Kn, i.e. an
increasing sequence of subspaces

0 ⊊ F0 ⊊ F1 ⊊ · · · ⊊ Fq ⊊ Kn.

By convention, the degenerate case q = −1 simply means the empty flag. Define GLn(O,F)
(resp. CLn(O,F)) to be the subgroup of GLn(O) (resp. CLn(O)) that preserves F. If q = −1,
then GLn(O,F) = GLn(O) and CLn(O,F) = CLn(O). The group CLn(O,F) is a normal
subgroup of GLn(O,F) of index at most 2. See Remark 4.2 below for a proof that it has
index equal to 2.

The reduction. The proof of the following proposition begins in §4.

Proposition 3.1. Let O be the ring of integers in a number field K and let F be a flag
in Kn. Assume that O× has an element of norm −1, and let r and 2s be the numbers of
real and complex embeddings of K. Then the action of GLn(O,F) on its normal subgroup
CLn(O,F) induces the trivial action on Hk(CLn(O,F);Q) for 0 ≤ k ≤ min(r + s, n)− 1.
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Here we will assume the truth of Proposition 3.1 and use it to prove Theorem A.

Proof of Theorem A, assuming Proposition 3.1. We start by recalling what we must prove.
Let O be the ring of integers in a number field K and let vcd be the virtual cohomological
dimension of GLn(O). Assume that the following hold.

• n is even.
• O× contains an element of norm −1.
• Letting r and 2s be the numbers of real and complex embeddings of K, we have
r + s ≥ n.

Our goal is then to prove that Hvcd(GLn(O);Q) = 0. Let χ : GLn(O) → {±1} be the
composition of the determinant with the norm map O× → {±1}. Applying Borel–Serre
duality and Theorem C, we see that our goal is equivalent to showing that

H0 (GLn (O) ; Stn (K)⊗Qχ) = 0.

For this, we must study the action of GLn(O) on the chain complex for the building Tn(K).

Let ˜︁C• be the usual augmented chain complex calculating the reduced simplicial homology
of Tn(K), so ˜︁C−1 = Z and

Hk

(︂ ˜︁C•

)︂
=

{︄
Stn (K) if k = n− 2,

0 if k ̸= n− 2.

The chain complex ˜︁C• can be regarded as a chain complex of GLn(K)-modules, but we will
only consider it as a chain complex of GLn(O)-modules. Define D• = ˜︁C• ⊗Qχ, so

Hk (D•) =

{︄
Stn (K)⊗Qχ if k = n− 2,

0 if k ̸= n− 2

as GLn(O)-modules.

We will examine the homology of GLn(O) with coefficients in the chain complex D• in the
sense of [5, §VII.5]. Letting F• be a projective resolution of the trivial GLn(O)-module Z, by
definition H∗(GLn(O);D•) is the homology of the double complex F• ⊗D•. Just like for any
double complex, there are two spectral sequences converging to the homology of F• ⊗D•.
The first spectral sequence has

E2
pq = Hq (GLn (O) ; Hp (D•)) =

{︄
Hq (GLn (O) ; Stn (K)⊗Qχ) if p = n− 2,

0 if p ̸= n− 2.

This spectral sequence thus degenerates to show that

Hk (GLn (O) ;D•) = Hk−(n−2) (GLn (O) ; Stn (K)⊗Qχ) .

We deduce that our goal is equivalent to showing that Hn−2(GLn(O);D•) = 0.

The second spectral sequence converging to the homology of F• ⊗D• has

(E′)1pq = Hp (GLn (O) ;Dq) .
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To prove that Hn−2(GLn(O);D•) = 0, it is enough to prove that (E′)1pq = Hp(GLn(O);Dq) =
0 for all p ≥ 0 and q ≥ −1 such that p+ q = n− 2. To that end, fix such p and q.

Let F be the set of length-q flags in Kn; by convention, for q = −1 the set F consists of
the single empty flag. The vector space Dq thus consists of formal Q-linear combinations of
elements of F , where GLn(O) acts on F via its obvious action and on the coefficients Q via
χ. Let I be a set of orbit representatives for the action of GLn(O) on F . For F ∈ I, recall
that GLn(O,F) is the GLn(O)-stabilizer of F. We have

Dq =
⨁︂
F∈I

Ind
GLn(O)
GLn(O,F)Qχ,

so

Hp (GLn (O) ;Dq) =
⨁︂
F∈I

Hp

(︂
GLn (O) ; Ind

GLn(O)
GLn(O,F)Qχ

)︂
=
⨁︂
F∈I

Hp (GLn (O,F) ;Qχ) ,

where the final isomorphism comes from Shapiro’s Lemma. It is thus enough to prove that
Hp(GLn(O,F);Qχ) = 0 for all F ∈ I.

Fix F ∈ I. Recall that CLn(O,F) is the kernel of the restriction of χ : GLn(O) → {±1} to
GLn(O,F). Since CLn(O,F) is a finite-index normal subgroup of GLn(O,F), the existence
of the transfer map shows that

Hp (GLn (O,F) ;Qχ) = (Hp (CLn (O,F) ;Qχ))GLn(O,F) ,

where the subscript indicates that we are taking the GLn(O,F)-coinvariants. See [5, Proposi-
tion III.10.4] for more details.

We thus must show that these coinvariants vanish. Since p = n− 2− q ≤ n− 1 (with equality
precisely when q = −1), we can apply Proposition 3.1 to deduce that the action of GLn(O,F)
on Hp(CLn(O,F);Q) is trivial. Using this along with the fact that CLn(O,F) acts trivially
on Qχ, we compute as follows:

(Hp (CLn (O,F) ;Qχ))GLn(O,F) = (Hp (CLn (O,F) ;Q)⊗Qχ)GLn(O,F)

= Hp (CLn (O,F) ;Q)⊗ (Qχ)GLn(O,F)

= Hp (CLn (O,F) ;Q)⊗ 0 = 0.

Here we are using the fact that O has an element of norm −1, so the group GLn(O,F) acts
nontrivially on Qχ and (Qχ)GLn(O,F) = 0. The theorem follows.

4 Reduction II: splitting a flag

In the previous section, we reduced Theorem A to Proposition 3.1. In this section, we reduce
Proposition 3.1 to two further propositions that will be proven in subsequent sections.
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4.1 Basic facts about flags

Before we can do this reduction, we must discuss some basic facts about flags for which [13]
is a suitable reference. Let O be the ring of integers in a number field K. Fix a finite-rank
projective O-module Q and let n = rk(Q). We can then identify Kn with Q⊗K.

Subspace stabilizers and projective modules. For a subspace V of Kn = Q⊗K, the
intersection V ∩Q is a direct summand of Q. Here is a quick proof of this standard fact:
Q/V ∩Q is a finitely generated O-submodule of Kn/V , and thus is torsion-free and hence
projective, allowing us to split the short exact sequence

0 −→ V ∩Q −→ Q −→ Q/V ∩Q −→ 0.

This implies that V ∩Q is itself a projective O-module.

Splitting flag stabilizers. Now consider a flag F in Kn = Q⊗K of the form

0 ⊊ F0 ⊊ F1 ⊊ · · · ⊊ Fq ⊊ Kn.

Just like we did for GLn(O), we will write GL(Q,F) for the subgroup of GL(Q) stabilizing
F. Intersecting our flag with Q, we obtain a flag

0 ⊊ F0 ∩Q ⊊ F1 ∩Q ⊊ · · · ⊊ Fq ∩Q ⊊ Q

of direct summands of Q. Each term of this flag is a direct summand of the next one.
Iteratively splitting each off from the next, we obtain a decomposition

Q = P0 ⊕ P1 ⊕ · · · ⊕ Pq+1

such that
Fi ∩Q = P0 ⊕ · · · ⊕ Pi (0 ≤ i ≤ q).

The Pi are all projective O-modules, and we will call the sequence P = (P0, . . . , Pq+1) a
projective splitting of Q with respect to the flag F. Define

GL(Q,P) = GL(P0)× · · · ×GL(Pq+1) ⊂ GL(Q,F).

If Q ∼= On, we will often write GLn(O,P) instead of GL(On,P).

Determinants of automorphisms of projective modules. For a finite-rank projective
O-module P , we have

GL(P ) ⊂ GL(P ⊗K) ∼= GLrk(P )(K),

so there is a well-defined determinant map GL(P ) → K×. In fact, the image of this map lies
in O×:

Lemma 4.1. Let O be the ring of integers in a number field K and let P be a finite-rank
projective O-module. Then det(f) ∈ O× for f ∈ GL(P ).
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Proof. Since P is a finite-rank projective O-module, there exists another finite-rank projective
O-module P ′ such that P ⊕P ′ ∼= Om for some m. Extending automorphisms of P over P ′ by
the identity, we get an embedding GL(P ) ↪→ GL(Om) that fits into a commutative diagram

GL(P ) −−−−→ GL(P ⊗K)
∼=−−−−→ GLrk(P )(K)

det−−−−→ K×⏐⏐↓ ⏐⏐↓ ⏐⏐↓ ⏐⏐↓=

GL(Om) −−−−→ GL(Om ⊗K)
∼=−−−−→ GLm(K)

det−−−−→ K×.

We get an equality on the rightmost vertical arrow since, with respect to an appropriate basis,
the map GLrk(P )(K) → GLm(K) is the standard one induced by the inclusion Krk(P ) ↪→ Km.
Since matrices in GL(On) ∼= GLn(O) have determinant in O×, so do matrices in GL(P ).

Assuming now that O× has an element of norm −1, we can define CL(P ) to be the kernel of
the map χ : GL(P ) → {±1} obtained by composing the determinant with the norm map
O× → {±1}.

Splitting flag stabilizers II. Continue to assume that O× has an element of norm −1.
Recall that Q is a fixed rank-n projective O-module. If F is a length-q flag in Kn = Q⊗K
and P = (P0, . . . , Pq+1) is a projective splitting of Q with respect to F, then using the above
we can define

CL(Q,P) = CL(P0)× · · · × CL(Pq+1) ⊂ GL(Q,P).

The group CL(Q,P) is a normal subgroup of GL(Q,P) of index 2q+2 (see Remark 4.2 below
if this is not clear). Just like above, for Q = On we will sometimes write CLn(O,P) instead
of CL(Q,P).
Remark 4.2. If F is a flag in Kn (possibly the empty flag), then the determinant map
GL(Q,F) → O× is surjective (and thus if O has an element of norm −1, then CL(Q,F) is
an index-2 subgroup of GL(Q,F)). Indeed, without loss of generality we can assume that F
is a maximal flag since this just replaces GL(Q,F) by a subgroup. Let P = (P0, . . . , Pn−1)
be a projective splitting of Q with respect to F, so we have

GL(Q,P) = GL(P0)× · · · ×GL(Pn−1) ⊂ GL(Q,F).

For all d ∈ O×, the element of GL(Q,P) that scales P0 by d and fixes P1, . . . , Pn−1 lies in
GL(Q,F) and has determinant d.

4.2 The reduction

We now turn to Proposition 3.1. Our goal is to reduce it to two propositions. The first is the
following, which informally says in a range of degrees the homology groups of a flag-stabilizer
are completely supported on a projective splitting:

Proposition 4.3. Let O be the ring of integers in a number field K, let Q be a rank-n
projective O-module, let F be a flag in Q⊗K, and let P be a projective splitting of Q with
respect to F. Assume that O× has an element of norm −1, and let r and 2s be the numbers
of real and complex embeddings of K. Then the map Hk(CL(Q,P);Q) → Hk(CL(Q,F);Q)
is a surjection for 0 ≤ k ≤ r + s− 1.
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The second is the following, which is a generalization from On to an arbitrary finite-rank
projective module of the special case of Proposition 3.1 where the flag is trivial, and thus
the conclusion of Proposition 3.1 is that GLn(O) acts trivially on the rational homology of
CLn(O).

Proposition 4.4. Let O be the ring of integers in a number field K and let P be a finite-rank
projective O-module. Assume that O× has an element of norm −1, and let r and 2s be the
numbers of real and complex embeddings of K. Then the action of GL(P ) on its normal
subgroup CL(P ) induces the trivial action on Hk(CL(P );Q) for 0 ≤ k ≤ min(r+s, rk(P ))−1.

We will prove Propositions 4.3 and 4.4 in §5 and §6, respectively. Here we will assume their
truth and derive Proposition 3.1.

Proof of Proposition 3.1, assuming Propositions 4.3 and 4.4. Let us recall the setup. Let O
be the ring of integers in a number field K and let F be a flag in Kn. Assume that O× contains
an element of norm −1, and let r and 2s be the numbers of real and complex embeddings of
K. Consider some 0 ≤ k ≤ min(r + s, n)− 1. We must prove that the action of GLn(O,F)
on its normal subgroup CLn(O,F) induces the trivial action on Hk(CLn(O,F);Q).

Let P = (P0, . . . , Pm) be a projective splitting of On with respect to F. By Proposition 4.3,
the map

Hk(CLn(O,P);Q) → Hk(CLn(O,F);Q)

is surjective. The Künneth formula says that

Hk(CLn(O,P);Q) = Hk(CL(P0)× · · · × CL(Pm);Q)

∼=
⨁︂

i0+···+im=k

Hi0(CL(P0);Q)⊗ · · · ⊗Him(CL(Pm);Q). (4.1)

It is thus enough to show that GL(O,F) acts trivially on the images of each of these factors
in Hk(CLn(O,F);Q).

Consider a summand

V = Hi0(CL(P0);Q)⊗ · · · ⊗Him(CL(Pm);Q)

of (4.1). Since inner automorphisms always act trivially on homology and CLn(O,F) is an
index-2 subgroup of GLn(O,F), it is enough to find a single element of GLn(O,F)\CLn(O,F)
that acts trivially on the image of V in Hk(CLn(O,F);Q). Since

i0 + · · ·+ im = k ≤ min(r + s, n− 1) and rk(P0) + · · ·+ rk(Pm) = n,

there must exist some 0 ≤ j ≤ m such that ij ≤ min(r + s, rk(Pj))− 1. We can thus apply
Proposition 4.4 to see that GL(Pj) acts trivially on Hij (CL(Pj);Q). Pick xj ∈ GL(Pj) such
that xj /∈ CL(Pj) (and thus χ(xj) = −1). For 0 ≤ j′ ≤ m with j′ ≠ j, set xj′ = 1 ∈ GL(Pj′).
Set

x = (x0, . . . , xm) ∈ GL(P0)× · · · ×GL(Pm) = GLn(O,P).

We thus have x /∈ CLn(O,F), and by construction x acts trivially on the image of V in
Hk(CLn(O,P);Q) and hence also on the image of V in Hk(CLn(O,F);Q), as desired.
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5 The homology carried on a split flag

In this section, we will prove Proposition 4.3. We start in §5.1 with a basic structural result
about flag stabilizers, and then in §5.2 we reduce the proof to a simpler homological lemma
whose proof occupies the remaining subsections of this section.

5.1 Decomposing stabilizers of flags

Let O be the ring of integers in an algebraic number field K and let Q be a finite-rank
projective O-module. Proposition 4.3 concerns the homology of the GL(Q)-stabilizer of a
flag. This section shows how to decompose this stabilizer as a semidirect product.

Motivating example. To understand the form this decomposition takes, we start with a
familiar example. Let Γ ⊂ GLn+n′(R) be the subgroup consisting of matrices with an n′ × n
block of zeros in their lower left hand corner:

Γ =

{︃(︃
A ∗
0 B

)︃
| A ∈ GLn(R) and B ∈ GLn′(R)

}︃
.

The group Γ contains the subgroups

GLn(R)×GLn′(R) =
{︃(︃

A 0

0 B

)︃
| A ∈ GLn(R) and B ∈ GLn′(R)

}︃
and

Matn,n′(R) =
{︃(︃

1 U

0 1

)︃
| U ∈ Matn,n′(R)

}︃
.

The additive subgroup Matn,n′(R) is normal, and

Γ = Matn,n′(R)⋊ (GLn(R)×GLn′(R)). (5.1)

The action of GLn(R) × GLn′(R) on Matn,n′(R) in (5.1) arises from the identification
Matn,n′(R) = Hom(Rn′

,Rn).

Our decomposition. Our analogue of (5.1) is as follows:

Lemma 5.1. Let O be the ring of integers in a number field K, let Q be a rank-n projective
O-module, let F be a flag in Q⊗K = Kn, and let P = (P0, . . . , Pt) be a projective splitting of
Q with respect to F. Set Q′ = P0⊕· · ·⊕Pt−1, so Q = Q′⊕Pt, and let F′ be the flag in Q′⊗K
obtained by omitting the last term of F. Then GL(Q,F) = Hom(Pt, Q

′) ⋊ (GL(Q′,F′) ×
GL(Pt)).

Proof. Elements of GL(Q,F) preserve Q′, and thus also act on Q/Q′, which we can identify
with Pt. Combining the resulting homomorphisms GL(Q,F) → GL(Q′,F′) and GL(Q,F) →
GL(Pt), we get a homomorphism ϕ : GL(Q,F) → GL(Q′,F′)×GL(Pt). The homomorphism
ϕ is a split surjection via the evident inclusion GL(Q′,F′)×GL(Pt) ↪→ GL(Q,F). Letting
U = ker(ϕ), we have U ∼= Hom(Pt, Q

′) via the identification that takes f : Pt → Q′ to the
automorphism of Q taking (x, y) ∈ Q′ ⊕ Pt = Q to (x+ f(y), y). The lemma follows.
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5.2 A reduction

In this section, we reduce Proposition 4.3 to the following lemma. For later use, we state the
lemma in more generality than we need.

Lemma 5.2. Let O be the ring of integers in a number field K and let Q and P be finite-rank
projective O-modules. Assume that O contains an element of norm −1, and let r and 2s be
the numbers of real and complex embeddings of K. Let G be an arbitrary subgroup of GL(Q)
and let Γ = Hom(P,Q)⋊ (G×CL(P )). Then the map Hk(G×CL(P );Q) → Hk(Γ;Q) is an
isomorphism for 0 ≤ k ≤ r + s− 1.

The restriction on k in the statement of Lemma 5.2 is the reason for the restriction on n
in Theorem A. The proof of Lemma 5.2 occupies the remaining subsections of this section.
Here we show how to derive Proposition 4.3 from it.

Proof of Proposition 4.3, assuming Lemma 5.2. We first recall the setup. Let O be the ring
of integers in a number field K, let Q be a rank-n projective O-module, let F be a flag in
Q⊗K = Kn, and let P be a projective splitting of Q with respect to F. Assume that O×

has an element of norm −1, and let r and 2s be the numbers of real and complex embeddings
of K. We must prove that the map Hk(CL(Q,P);Q) → Hk(CL(Q,F);Q) is a surjection for
0 ≤ k ≤ r + s− 1.

Write P = (P0, . . . , Pt). The proof will be by induction on t. The base case t = 0 being
trivial, assume that t ≥ 1 and that the result is true for all smaller t. Let Q′ = P0⊕· · ·⊕Pt−1,
so Q = Q′ ⊕ Pt. Let F′ be the flag in Q′ ⊗K obtained by omitting the last term of F and let
P′ = (P0, . . . , Pt−1), so P′ is a projective splitting of Q′ with respect to F′.

Lemma 5.1 says that

GL(Q,F) = Hom(Pt, Q
′)⋊ (GL(Q′,F′)×GL(Pt)). (5.2)

We factor the map CL(Q,P) → CL(Q,F) as follows:

CL(Q,P) = CL(Q′,P′)× CL(Pt)
ϕ1
↪→ CL(Q′,F′)× CL(Pt)

ϕ2
↪→ Hom(Pt, Q

′)⋊ (CL(Q′,F′)× CL(Pt))
ϕ3
↪→ CL(Q,F).

The map ϕ3 comes from identifying the indicated semidirect product with a subgroup of
CL(Q,F) via (5.2). It is enough to prove that each ϕi induces a surjection on Hk(−;Q) for
0 ≤ k ≤ r + s− 1:

• For ϕ1, this comes from combining the Künneth formula with our inductive hypothesis,
which implies that the map Hk(CL(Q

′,P′);Q) → Hk(CL(Q
′,F′);Q) is a surjection for

0 ≤ k ≤ r + s− 1.
• For ϕ2, this follows from Lemma 5.2.
• For ϕ3, this follows from the fact that ϕ3 is the inclusion of a finite-index subgroup

and thus induces a surjection on Hk(−;Q) for all k, which follows from the existence
of the transfer map (see, e.g. [5, §III.9]).
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5.3 Killing homology with a center

We will prove Lemma 5.2 by studying the Hochschild–Serre spectral sequence of the indicated
semidirect product. This spectral sequence is composed of various twisted homology groups,
and our goal will be to show that most of them vanish. The following lemma gives a simple
criterion for showing this.

Lemma 5.3. Let G be a group and let M be a finite-dimensional vector space over a field of
characteristic 0 upon which G acts. Assume that there exists a central element c of G that
fixes no nonzero element of M . Then Hk(G;M) = 0 for all k.

Proof. Let C be the cyclic subgroup of G generated by c. Since c is central, the subgroup C
is central and hence normal in G. Define Q = G/C. We thus have a short exact sequence

1 −→ C −→ G −→ Q −→ 1.

The associated Hochschild–Serre spectral sequence is of the form

E2
pq = Hp(Q; Hq(C;M)) ⇒ Hp+q(G;M).

To prove that Hk(G;M) = 0 for all k, it is enough to prove that all terms of this spectral
sequence vanish. In fact, we will prove that Hq(C;M) = 0 for all q.

Since c fixes no nonzero element of M , the linear map M → M taking x ∈ M to cx− x ∈ M
has a trivial kernel. It is thus an isomorphism, which immediately implies that the C-
coinvariants H0(C;M) = MC vanish. If c has finite order, then C is a finite group. Since
M is a vector space over a field of characteristic 0, this implies that Hq(C;M) = 0 for all
q ≥ 1, and we are done. Otherwise, C ∼= Z and we also have to check that H1(C;M) = 0.
For this, we apply Poincaré duality to Z (the fundamental group of a circle!) to see that
H1(C;M) ∼= H0(C;M) = MC . These invariants vanish by assumption.

The following lemma will help us recognize when Lemma 5.3 applies.

Lemma 5.4. Let C be a group and let M be a finite-dimensional vector space on which
C acts. Let ϕ : C → GL(M) be the associated homomorphism and let C ⊂ GL(M) be the
Zariski closure of ϕ(C). Assume that C contains an element that fixes no nonzero element
of M . Then C does as well.

Proof. The set of x ∈ GL(M) that fix a nonzero element of M is a Zariski-closed subspace;
indeed, it is precisely the set of all x such that det(x − 1) = 0. By assumption, C is not
contained in it, so ϕ(C) must not be as well.

5.4 The Zariski closure of units

To apply Lemma 5.3 to the Hochschild–Serre spectral sequence associated to the split short
exact sequence

1 −→ Hom(P,Q) −→ Γ −→ G× CL(P ) −→ 1
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discussed in Lemma 5.2, we need some interesting central elements of G× CL(P ). Let O×
1

be the set of norm-1 units in O. The central elements we will use are in the subgroup O×
1 of

CL(P ), which acts on P as scalar multiplication.

We will want to apply Lemma 5.4 to this, which requires identifying the Zariski closure of
O×

1 in an appropriate real algebraic group. To state the general result we will prove, let r
and 2s be the numbers of real and complex embeddings of the algebraic number field K, so
O ⊗ R ∼= Rr ⊕ Cs, where Cs is regarded as a 2s-dimensional R-vector space. The group O×

acts on O ⊗ R, providing us with a representation

O× −→ GL(O ⊗ R) ∼= GLr+2s(R).

The following lemma identifies the Zariski closure of the image of O×
1 in GL(O ⊗ R) when

O× has an element of norm −1, since any such K has a real embedding.

Lemma 5.5. Let O be the ring of integers in an algebraic number field K. Assume that K
has a real embedding, and let r and 2s be the numbers of real and complex embeddings of K,
so O⊗R ∼= Rr ⊕Cs. The Zariski closure of the image of O×

1 in GL(O⊗R) ∼= GLr+2s(R) is⎧⎨⎩(a1, . . . , ar, b1, . . . , bs) ∈ (R×)r × (C×)s

⃓⃓⃓⃓
⃓⃓ r∏︂
j=1

aj

s∏︂
k=1

|bk| = 1

⎫⎬⎭ .

Remark 5.6. Lemma 5.5 is not true for all algebraic number fields. For instance, the norm-1
units in Z[i] are {±1,±i}, which are not Zariski dense in {b ∈ C× | |b| = 1}. It turns out
that the conclusion of Lemma 5.5 holds if and only if K does not contain a CM subfield. We
will not need this stronger result, so we prove only the above for the sake of brevity.

Lemma 5.5 could be deduced from general results about algebraic tori (see, e.g., [17, Appendix
to Chapter 2]). To make this paper more self-contained, we include an elementary proof. We
would like to thank Will Sawin for showing it to us.

Our proof will require a consequence of the standard proof of the Dirichlet Unit The-
orem (see, e.g., [14, §I.7]). Continuing the above notation, let f1, . . . , fr : K → R and
fr+1, f r+1, . . . , fr+s, f r+s : K → C be the real and complex embeddings of K. For x ∈ K,
the norm of x equals

f1(x) · · · fr(x) · |fr+1|2 · · · |fr+s|2. (5.3)

For x ∈ O×, this will be ±1. To convert the multiplication in O× into addition and also to
eliminate the distinction between ±1, we take absolute values and logarithms, and define
Φ: K× → Rr+s via the formula

Ψ(x) = (log |f1(x)|, . . . , log |fr(x)|, 2 log |fr+1(x)|, . . . , 2 log |fr+s(x)|) ∈ Rr+s.

For x ∈ O×, the fact that (5.3) is ±1 implies that

log |f1(x)|+ · · ·+ log |fr(x)|+ 2 log |fr+1(x)|+ · · ·+ 2 log |fr+s(x)| = 0.

In other words, for x ∈ O× the image Ψ(x) ∈ Rr+s lies in the hyperplane

H = {(x1, . . . , xr+s) | x1 + · · ·+ xr+s = 0} .
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The key step in the proof of the Dirichlet Unit Theorem is showing that Ψ(O×) is a lattice
in H; see [14, Theorem I.7.3]. Since the norm-1 units O×

1 are an index-2 subgroup of O×, it
follows that Ψ(O×

1 ) also forms a lattice in H. As a consequence, we deduce the following.

Lemma 5.7. Letting the notation be as above, consider c1, . . . , cr+s ∈ R such that

c1 log |f1(x)|+ · · ·+ cr+s log |fr+s(x)| = 0 for all x ∈ O×
1 .

Then 2c1 = · · · = 2cr = cr+1 = · · · = cr+s.

Proof of Lemma 5.5. Let f1, . . . , fr+2s : O×
1 → Q× be the restrictions to O×

1 of the different
embeddings of K into Q, ordered in an arbitrary way. The norm of an element of K is the
product of its images under the different embeddings of K into Q, so since O×

1 consists of
elements of norm 1 we have f1 · · · fr+2s = 1. Let Λ be the R-algebra of C-valued functions on
O×

1 . Fix an embedding Q ↪→ C and let ϕ : R[x±1
1 , . . . , x±1

r+2s] → Λ be the algebra map taking
xi to fi. We have x1 · · ·xr+2s − 1 ∈ ker(ϕ), and the lemma is equivalent to the assertion that
the ideal I in R[x±1

1 , . . . , x±1
r+2s] generated by x1 · · ·xr+2s − 1 equals ker(ϕ). Note that this is

independent of the order of the embeddings f1, . . . , fr+2s.

The starting point is the following special case.

Claim. Let m ∈ R[x±1
1 , . . . , x±1

r+2s] be a monomial such that m−1 ∈ ker(ϕ). Then m−1 ∈ I.

Proof of claim. Write m = xd11 · · ·xdr+2s

r+2s with each di ∈ Z. To prove the claim, it is enough
to prove that all the di are equal. Since m− 1 ∈ ker(ϕ), the function

ϕ(m) = fd1
1 · · · fdr+2s

r+2s : O×
1 → Q

is the trivial character. Reordering the fi if necessary, we can assume that d1 ≥ di for all
1 ≤ i ≤ r+2s. Since there is at least one real embedding of K, we can change our embedding
Q ↪→ C by precomposing it with an appropriate element of the absolute Galois group and
ensure that f1 is a real embedding. We finally reorder f2, . . . , fr+2s such that f1, . . . , fr are
the real embeddings, such that fr+1, . . . , fr+2s are the complex embeddings, and such that
f r+i = fr+i+s for all 1 ≤ i ≤ s.

For u ∈ O×
1 , we have fd1

1 (u) · · · fdr+2s

r+2s (u) = 1, so

1 =
(︂
fd1
1 (u) · · · fdr+2s

r+2s (u)
)︂(︂

fd1
1 (u) · · · fdr+2s

r+2s (u)
)︂

= |f1(u)|2d1 · · · |fr(u)|2dr |fr+1(u)|2dr+1+2dr+1+s · · · |fr+s|2dr+s+2dr+2s .

Taking logarithms and dividing by 2, we see that

0 = d1 log |f1(u)|+ · · ·+ dr log |fr(u)|
+ (dr+1 + dr+1+s) log |fr+1(u)|+ · · ·+ (dr+s + dr+2s) log |fr+s(u)|

for all u ∈ O×
1 . Lemma 5.7 then implies that

2d1 = · · · = 2dr = dr+1 + dr+1+s = · · · = dr+s + dr+2s.
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Since d1 ≥ dr+i and d1 ≥ dr+i+s, the only way that we can have dr+i + dr+i+s = 2d1 is for
dr+i = dr+i+s = d1, so in fact

d1 = d2 = · · · = dr+2s,

as desired.

We now turn to the general case. Consider a nonzero θ ∈ ker(ϕ). Write

θ =
k∑︂

i=1

λimi with mi ∈ R[x±1
1 , . . . , x±1

r+2s] a monomial and λi ∈ R.

Collecting terms, we can assume that the mi are all distinct and that λi ̸= 0 for all i. For
1 ≤ i ≤ k, the image ϕ(mi) : O×

1 → C is a character. Since distinct characters on an abelian
group are linearly independent, it follows that there are distinct 1 ≤ j, j′ ≤ k such that
ϕ(mj) = ϕ(mj′). This implies that ϕ(mjm

−1
j′ ) is the trivial character, so mjm

−1
j′ −1 ∈ ker(ϕ).

The above claim thus implies that mjm
−1
j′ − 1 ∈ I, so

mj −mj′ = mj′(mjm
−1
j′ − 1) ∈ I.

Subtracting λj(mj −mj′) ∈ I from θ eliminates its λjmj term. Collecting terms in θ and
repeating the above argument over and over again, we conclude that θ ∈ I, as desired.

5.5 The proof of Lemma 5.2

We finally prove Lemma 5.2.

Proof of Lemma 5.2. We start by recalling what want to prove. Let O be the ring of integers
in a number field K and let Q and P be finite-rank projective O-modules. Assume that
O contains an element of norm −1, and let r and 2s be the numbers of real and complex
embeddings of K. Let G be an arbitrary subgroup of GL(Q) and let Γ = Hom(P,Q)⋊ (G×
CL(P )). Our goal is to prove that the map Hk(G×CL(P );Q) → Hk(Γ;Q) is an isomorphism
for 0 ≤ k ≤ r + s− 1. It is a little easier (but equivalent) to prove this with real coefficients.

The Hochschild–Serre spectral sequence for the split extension

1 −→ Hom(P,Q) −→ Γ −→ G× CL(P ) −→ 1

is of the form

E2
pq = Hp(G× CL(P ); Hq(Hom(P,Q);R)) ⇒ Hp+q(Γ;R).

We have
E2

k0 = Hk(G× CL(P );R),

and to prove the lemma it is enough to prove that E2
pq = 0 for all p and all 1 ≤ q ≤ r+ s− 1.

Fix some 1 ≤ q ≤ r+ s− 1. The group CL(P ) contains the central subgroup O×
1 , which acts

on P as scalar multiplication. Combining Lemmas 5.3 and 5.4, it is enough to prove that the
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Zariski closure of the image of O×
1 in the group GL(Hq(Hom(P,Q);R)) contains an element

that fixes no nonzero vector of Hq(Hom(P,Q);R).

We have
Hq (Hom (P,Q) ;R) ∼= ∧q (Hom (P,Q)⊗ R) .

We now identify Hom(P,Q)⊗ R:

Claim. Let n = rk(P ) and m = rk(Q). We then have

Hom(P,Q)⊗ R ∼= Matn,m(O ⊗ R).

Proof of claim. By the classification of finitely generated projective modules over Dedekind
domains (see, e.g. [13, §1]), there exist nonzero ideals I, J ⊂ O such that P = On−1 ⊕ I and
Q = Om−1 ⊕ J . Using this identification, we see Hom(P,Q) can be viewed as{︃(︃

A B

C D

)︃
| A ∈ Matm−1,n−1(O), B ∈ Matm−1,1(I

−1), C ∈ Mat1,n−1(J), D ∈ JI−1

}︃
.

Here I−1 ⊂ K is the inverse of I using the usual multiplication of fractional ideals in a
Dedekind domain. The claim now follows from the fact that

O ⊗ R = J ⊗ R = I−1 ⊗ R = JI−1 ⊗ R = K ⊗ R.

From this, we see that the action of O×
1 on ∧q(Hom(P,Q)⊗ R) can be identified with the

action of O×
1 on

V := ∧q(O ⊗ R)nm ∼= ∧q(Rr ⊕ Cs)nm.

Identify GL(Rr ⊕ Cs) as a Zariski-closed subgroup of GL(V ) in the natural way. By Lemma
5.5, the Zariski closure of the image of O×

1 in GL(V ) can be identified with⎧⎨⎩(a1, . . . , ar, b1, . . . , bs) ∈ (R×)r × (C×)s |
r∏︂

j=1

aj

s∏︂
k=1

|bk| = 1

⎫⎬⎭ , (5.4)

which acts on Rr ⊕ Cs by scalar multiplication. We claim that the element

x = (a1, . . . , ar, b1, . . . , bs) = (2, . . . , 2,
1

2r+s−1
)

fixes no nonzero vector in V . Indeed, the eigenvalues for the action of x on V lie in the set of
elements that can be expressed as the product of q elements of {2, 1

2r+s−1 }, and q ≤ r+ s− 1,
so 1 cannot be expressed in this form.

6 The action on automorphisms of projectives is trivial

In this section, we prove Proposition 4.4. The actual proof is in §6.3. This is preceded by
two sections of preliminary results.
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6.1 Equivariant homology

Our proof of Proposition 4.4 will use a bit of equivariant homology. In this section, we review
some standard facts about this. See [5, §VII.7] for a textbook reference.

Semisimplicial sets. The natural setting for our proof is that of semisimplicial sets, which
are a technical variant on simplicial complexes whose definition we briefly recall. For more
details, see [10], which calls them ∆-sets. Let ∆ be the category with objects the sets
[k] = {0, . . . , k} for k ≥ 0 and whose morphisms [k] → [ℓ] are the strictly increasing functions.
A semisimplicial set is a contravariant functor X from ∆ to the category of sets. The
k-simplices of X are the image X(k) of [k] ∈ ∆. The maps X(ℓ) → X(k) corresponding to
the ∆-morphisms [k] → [ℓ] are called the boundary maps.

Geometric properties. A semisimplicial set X has a geometric realization |X| obtained
by taking geometric k-simplices for each element of X(k) and then gluing these simplices
together using the boundary maps. Whenever we talk about topological properties of a
semisimplicial set, we are referring to its geometric realization. An action of a group G on a
semisimplicial set X consists of actions of G on each X(k) that commute with the boundary
maps. This induces an action of G on |X|. The quotient X/G is naturally a semisimplicial
set with k-simplices X(k)/G.

Definition of equivariant homology. Let G be a group and let X be a semisimplicial
set on which G acts. For a ring R, there are two equivalent definitions of the equivariant
homology groups HG

∗ (X;R):
• Let EG be a contractible semisimplical set on which G acts freely, so EG/G is a
K(G, 1). The group G then acts freely on EG ×X, and HG

∗ (X;R) is the homology
with coefficients in R of the quotient space (EG×X)/G.

• Let F• → Z be a projective resolution of the trivial Z[G]-module Z and let C•(X;R)
be the simplicial chain complex of X with coefficients in R. Then HG

∗ (X;R) is the
homology of the double complex F• ⊗ C•(X;R).

Neither of these definitions depends on any choices.

Functoriality. Equivariant homology is functorial in the following sense. If G and G′ are
groups acting on semisimplicial sets X and X ′, respectively, and if f : G → G′ is a group
homomorphism and ϕ : X → X ′ is a map such that ϕ(gx) = f(g)ϕ(x) for all g ∈ G and
x ∈ X, then we get an induced map HG

∗ (X;R) → HG′
∗ (X ′;R).

Map to a point. If {p0} is a single point on which G acts trivially, then HG
∗ ({p0};R) =

H∗(G;R). For an arbitrary semisimplicial set X on which G acts, the projection X → {p0}
thus induces a map HG

∗ (X;R) → H∗(G;R). For this map, we have the following lemma.

Lemma 6.1. Let X be an n-connected semisimplicial set on which a group G acts and let R
be a ring. Then then natural map HG

k (X;R) → Hk(G;R) is an isomorphism for k ≤ n and a
surjection for k = n+ 1.

Proof. See [5, Proposition VII.7.3]. This reference assumes that X is contractible, but its
proof gives the desired conclusion when X is assumed to be merely n-connected.
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The spectral sequence. One of the main calculational tools for equivariant homology is as
follows.

Lemma 6.2. Let X be a semisimplicial set on which a group G acts and let R be a ring.
For each simplex σ of X/G, let ˜︁σ be a lift of σ to X and let G˜︁σ be the stabilizer of ˜︁σ. Then
there is a spectral sequence

E1
pq

∼=
⨁︂

σ∈(X/G)(q)

Hp(G˜︁σ;R) ⇒ HG
p+q(X;R).

Proof. See [5, VII.(7.7)].

Group actions on equivariant homology. Now let Γ be a group acting on a semisimplicial
set X and let G be a normal subgroup of Γ. For γ ∈ Γ, the maps G → G and X → X
taking g ∈ G to γgγ−1 and x ∈ X to γx induce a map HG

∗ (X;R) → HG
∗ (X;R). This recipe

gives an action of Γ on HG
∗ (X;R). The restriction of this action to G is trivial (this can be

proved just like [5, Proposition III.8.1], which proves that inner automorphisms act trivially
on ordinary group homology), so we get an induced action of Γ/G on HG

∗ (X;R). It is clear
from its construction that the spectral sequence in Lemma 6.2 is a spectral sequence of
R[Γ/G]-modules.

6.2 The complex of lines

Let O be the ring of integers in a number field K and let P be a finite-rank projective
O-module. Assume that O× has an element of norm −1, so we can talk about the group
CL(P ). This group acts on the following space.

Definition 6.3. Let O be the ring of integers in a number field K and let P be a finite-rank
projective O-module. A line decomposition of P is an ordered sequence (L1, . . . , Ln) of
rank-1 projective submodules of P such that P = L1 ⊕ · · · ⊕ Ln. The complex of lines in
P , denoted L(P ), is the semisimplicial set whose (k − 1)-simplices are ordered sequences
(L1, . . . , Lk) of rank-1 projective submodules of P that can be extended to a line decomposition
(L1, . . . , Ln).

We thus have the equivariant homology groups H
CL(P )
k (L(P );Q). Our main result about

these equivariant homology groups is as follows.

Lemma 6.4. Let O be the ring of integers in a number field K and let P be a finite-rank
projective O-module. Assume that O× has an element of norm −1. Then the natural map
H

CL(P )
k (L(P );Q) → Hk(CL(P );Q) is a surjection for 0 ≤ k ≤ rk(P )− 1.

Proof. If L(P ) were (rk(P )− 2)-connected, then this would follow from Lemma 6.1. Unfor-
tunately, this is not known and is likely to be false2 – a slight strengthening of this would

2In [12, Proposition 2.12], it is proven that L(O2) is not connected when O is quadratic imaginary but not
a PID; however, such O cannot contain an element of norm −1, so this does not quite give a counterexample
under our given hypotheses.
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allow one to run the argument used to prove [7, Theorem A] and prove a result contradicting
[7, Theorem B′ in §5.3]. We will need an alternative approach.

Let n = rk(P ). By the classification of finitely generated projective modules over Dedekind
domains (see, e.g. [13, §1]), there exist a nonzero ideal I ⊂ O such that P = On−1⊕ I. Using
this identification, we see that every element of GL(P ) is of the form(︃

A B

C D

)︃
with A ∈ Matn−1,n−1(O), B ∈ Matn−1,1(I

−1), C ∈ Mat1,n−1(I), D ∈ O.

Here I−1 ⊂ K is the inverse of I using the usual multiplication of fractional ideals in a
Dedekind domain. Define Γ′ = GL(P ) ∩ CLn(O), so Γ′ is finite-index in both CL(P ) and
CLn(O). Modulo I, the last row of an element of Γ′ is of the form (0, . . . , 0, ∗). Define Γ to
be the subgroup of matrices in Γ′ whose last row equals (0, . . . , 0, 1) modulo I. The group Γ
is thus finite-index in Γ′.

We now construct a space for Γ to act on. Define Bn(O, I) to be the semisimplicial set whose
(m− 1)-simplices are ordered sequences (v1, . . . , vm) of elements of On that can be extended
to a sequence (v1, . . . , vn) with the following properties:

• The vi form a free O-basis for On.
• The last coordinate of each vi equals either 0 or 1 modulo I.
• Precisely 1 of the vi has a last coordinate equal to 1 modulo I.

The action of the group Γ on On fixes the last coordinate modulo I. It follows that Γ acts
on Bn(O, I). We will prove in Lemma 6.5 below that Bn(O, I) is (n− 2)-connected; in fact,
this result was almost proved in [7], and we will show how to derive it from results in this
paper. For now we will continue with the proof of Lemma 6.4 assuming that Bn(O, I) is
(n− 2)-connected.

We now come to the key fact that relates the above to L(P ) and CL(P ):

Claim. There is a simplicial map Ψ: Bn(O, I) → L(P ) taking a vertex v of Bn(O, I) to the
O-submodule P ∩ (O · v) of P .

Proof of claim. It is enough to prove that if (v1, . . . , vn) is a top-dimensional simplex of
Bn(O, I), then (P ∩ (O · v1), . . . , P ∩ (O · vn)) is a line decomposition of P . In other words,
letting Li = P ∩ (O · vi) we must prove that P = L1 ⊕ · · · ⊕ Ln.

Consider x ∈ P . We must prove that x can be uniquely expressed as x = x1 + · · ·+ xn with
xi ∈ Li for 1 ≤ i ≤ n. Since the vi form a free O-basis of On and P ⊂ On, there exists
unique λ1, . . . , λn ∈ O such that x = λ1v1 + · · ·+ λnvn. We have to show that λivi ∈ P for
all 1 ≤ i ≤ n.

Let 1 ≤ i0 ≤ n be the unique index such that the last coordinate of vi0 equals 1 modulo I.
For 1 ≤ i ≤ n with i ̸= i0, the last coordinate of vi thus equals 0 modulo I, so vi ∈ P and
thus λivi ∈ P . As for λi0vi0 , we have

λi0vi0 = x−
∑︂
i ̸=ii

λivi.

Each term on the right hand side is an element of P , so λi0vi0 is as well.
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The map Ψ along with the inclusion Γ ↪→ CL(P ) induces a map HΓ
k (Bn(O, I);Q) →

H
CL(P )
k (L(P );Q). This map fits into a commutative diagram

HΓ
k (Bn(O, I);Q) −−−−→ H

CL(P )
k (L(P );Q)⏐⏐↓ ⏐⏐↓

Hk(Γ;Q) −−−−→ Hk(CL(P );Q).

Since Γ is a finite-index subgroup of CL(P ), the existence of the transfer map (see [5,
Proposition III.10.4]) implies that the bottom row of this diagram is a surjection. Since
Bn(O, I) is (n− 2)-connected by Lemma 6.5 below, Lemma 6.1 implies that the left column
of this diagram is a surjection. We conclude that the right column of this diagram is a
surjection, as desired.

It remains to prove the following result, which was promised during the above proof.

Lemma 6.5. Let O be the ring of integers in a number field K and let I ⊂ O be a nonzero
ideal. Assume that O has a real embedding (which hold, for instance, if O× has an element
of norm −1). Then the space Bn(O, I) defined in the proof of Lemma 6.4 above is (n− 2)-
connected.

Proof. We start by introducing an auxiliary space. Define ˆ︁Bn(O, I) to be the simplicial
complex whose (m − 1)-simplices are unordered sets {v1, . . . , vm} of elements of On such
that some (equivalently, any) ordering is an (m− 1)-simplex of Bn(O, I).

Recall that a simplicial complex X is said to be weakly Cohen—Macaulay of dimension r if
it satisfies the following two properties:

• X is (r − 1)-connected.
• For all m-dimensional simplices σ of X, the link lkX(σ) of σ in X is (r − m − 2)-

connected.
These two conditions can be combined if you regard σ = ∅ as a −1-simplex of X with
lkX(σ) = X.

By definition, the only difference between Bn(O, I) and ˆ︁Bn(O, I) is that the vertices in a
simplex of Bn(O, I) are ordered. In [15, Proposition 2.14], it is proved that in this situation, ifˆ︁Bn(O, I) is weakly Cohen–Macaulay of dimension (n−1), then Bn(O, I) is (n−2)-connected.
To prove the lemma, therefore, it is enough to prove that ˆ︁Bn(O, I) is weakly Cohen–Macaulay
of dimension (n− 1).

We now introduce yet another space. Define ˆ︁B′
n(O, I) to be the simplicial complex whose

(m− 1)-simplices are unordered sets {v1, . . . , vm} of elements of On that can be extended to
an unordered set {v1, . . . , vn} with the following properties:

• The vi form a free O-basis for On.
• The last coordinate of each vi equals either 0 or 1 modulo I.

We thus have ˆ︁Bn(O, I) ⊂ ˆ︁B′
n(O, I). In [7, Theorem E′ from §2.3], Church–Farb–Putman

proved that ˆ︁B′
n(O, I) is weakly Cohen–Macaulay of dimension (n− 1). This is where we use

the assumption that O has a real embedding.
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We now show how to use the fact that ˆ︁B′(O, I) is weakly Cohen–Macaulay of dimension
(n− 1) to prove the same fact for ˆ︁B(O, I). Let σ be an m-simplex of ˆ︁Bn(O, I), where we
allow σ = ∅ and m = −1. We then have

lk ˆ︁B(O,I)
(σ) ⊂ lk ˆ︁B′(O,I)

(σ).

Since ˆ︁B′
n(O, I) is weakly Cohen-Macaulay of dimension (n − 1), the space lk ˆ︁B′(O,I)

(σ) is
(n−m−3)-connected. To prove the same for lk ˆ︁B(O,I)

(σ), it is enough to construct a retraction
ρ : lk ˆ︁B′(O,I)

(σ) → lk ˆ︁B(O,I)
(σ). There are two cases.

Case 1. There exists a vertex w of σ whose last coordinate equals 1 modulo I.

Proof of case. In this case, the complex lk ˆ︁B(O,I)
(σ) is the full subcomplex of lk ˆ︁B′(O,I)

(σ)

spanned by vertices whose last coordinates equal 0 modulo I. For all vertices v of lk ˆ︁B′(O,I)
(σ),

we define

ρ(v) =

{︄
v − w if the last coordinate of v equals 1 modulo I,

v otherwise.

The last coordinate of ρ(v) thus equals 0 modulo I. This extends to a simplicial retraction
ρ : lk ˆ︁B′(O,I)

(σ) → lk ˆ︁B(O,I)
(σ) due to the following fact:

• If {v1, . . . , vn} is a free O-basis of On and c2, . . . , cn ∈ O, then {v1, v2 + c2v1, . . . , vn +
cnv1} is a free O-basis of On.

This completes the proof for this case.

Case 2. The last coordinate of all vertices of σ equals 0 modulo I.

Proof of case. In this case, the complex lk ˆ︁B(O,I)
(σ) is the subcomplex of lk ˆ︁B′(O,I)

(σ) consist-
ing of simplices that contain no edges between vertices both of whose last coordinates equal
1 modulo I. We remark that this is not a full subcomplex.

Let E be the set of edges of lk ˆ︁B′(O,I)
(σ) joining vertices both of whose last coordinates equal

1 modulo I. The retraction we will construct will depend on two arbitrary choices:
• An enumeration E = {e1, e2, . . .}.
• For each i ≥ 1, an enumeration ei = {wi, w

′
i} of the two vertices of ei. Since wi and

w′
i are distinct vertices of lk ˆ︁B′(O,I)

(σ) whose last coordinates are 1 modulo I, we have
that wi − w′

i is a vertex of lk ˆ︁B′(O,I)
(σ) whose last coordinate is 0 modulo I.

For each i ≥ 1, we define a map ρi : lk ˆ︁B′(O,I)
(σ) → lk ˆ︁B′(O,I)

(σ) as follows. First, let Si be
the result of subdividing the edge ei of lk ˆ︁B′(O,I)

(σ) with a new vertex κi. We then define a
simplicial map ρ′i : Si → lk ˆ︁B′(O,I)

(σ) via the formula

ρ′i(v) =

{︄
wi − w′

i if v = κi,

v if v ̸= κi.
(v a vertex of Si).

This is a simplicial map for the following reason. It is clear that ρ′i extends over the simplices
of Si that do not contain κi. The simplices of Si that do contain κi are of the form

{wi, κi, v3, . . . , vm} and {κi, w′
i, v3, . . . , vm}
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for a simplex {wi, w
′
i, v3, . . . , vm} of lk ˆ︁B′(O,I)

(σ). The images under ρ′i of these two simplices
are

{wi, wi − w′
i, v3, . . . , vm} and {wi − w′

i, w
′
i, v3, . . . , vm},

both of which are simplices of lk ˆ︁B′(O,I)
(σ). The map ρi is then the composition of ρ′i with

the (nonsimplicial) subdivision map lk ˆ︁B′(O,I)
(σ)

∼=→ Si.

Now define ρ : lk ˆ︁B′(O,I)
(σ) → lk ˆ︁B′(O,I)

(σ) to be the composition

lk ˆ︁B′(O,I)
(σ)

ρ1−→ lk ˆ︁B′(O,I)
(σ)

ρ2−→ lk ˆ︁B′(O,I)
(σ)

ρ3−→ · · · .

This infinite composition makes sense and is continuous since for each simplex σ of lk ˆ︁B′(O,I)
(σ),

the sequence
σ, ρ1(σ), ρ2 ◦ ρ1(σ), ρ3 ◦ ρ2 ◦ ρ1(σ), . . .

of subsets eventually stabilizes. These images are not simplices, but rather finite unions
of simplices. From its construction, it is clear that ρ is a retraction from lk ˆ︁B′(O,I)

(σ) to
lk ˆ︁B(O,I)

(σ).

This completes the proof of the lemma.

6.3 The proof of Proposition 4.4

We finally prove Proposition 4.4, which completes the proof Theorem A.

Proof of Proposition 4.4. We start by recalling the setup. Let O be the ring of integers in a
number field K and let P be a finite-rank projective O-module. Assume that O× has an
element of norm −1, and let r and 2s be the numbers of real and complex embeddings of K.
We must prove that the action of GL(P ) on its normal subgroup CL(P ) induces the trivial
action on Hk(CL(P );Q) for 0 ≤ k ≤ min(r + s, rk(P )) − 1. This action factors through
GL(P )/CL(P ) ∼= Z/2.

The group GL(P ) acts on both CL(P ) and on the complex of lines L(P ). We thus get an
induced action of GL(P )/CL(P ) on H

CL(P )
k (L(P );Q). The natural map H

CL(P )
k (L(P );Q) →

Hk(CL(P );Q) is GL(P )/CL(P )-equivariant, and by Lemma 6.4 is also surjective for 0 ≤ k ≤
rk(P )− 1. We deduce that to prove that the action of GL(P )/CL(P ) on Hk(CL(P );Q) is
trivial for 0 ≤ k ≤ min(r+ s, rk(P ))−1, it is enough to prove that the GL(P )/CL(P )-action
on H

CL(P )
k (L(P );Q) is trivial for 0 ≤ k ≤ r + s− 1.

By Lemma 6.2 (and the paragraph following that lemma), we have a spectral sequence of
Q[GL(P )/CL(P )]-modules of the form

E1
pq =

⨁︂
σ∈L(P )(q)/CL(P )

Hp((CL(P ))˜︁σ;Q) ⇒ H
CL(P )
p+q (L(P );Q). (6.1)

Here ˜︁σ ∈ L(P )(k) is an arbitrary lift of σ. The key to the proof is the following.

32



Claim. The group GL(P )/CL(P ) acts trivially on E1
pq for 0 ≤ p ≤ r + s− 1.

Proof of claim. The group GL(P )/CL(P ) acts trivially on the set L(P )(q)/CL(P ), so it
does not permute the terms in (6.1). Let ˜︁σ = (L1, . . . , Lq−1) be a q-simplex of L(P ) such that
Hp((CL(P ))˜︁σ;Q) is one of the terms in (6.1). We must prove that the group GL(P )/CL(P )
acts trivially on Hp((CL(P ))˜︁σ;Q). Since GL(P )/CL(P ) ∼= Z/2, it is enough to find a
single element of GL(P ) \ CL(P ) that acts trivially. Extend ˜︁σ to a line decomposition
(L1, . . . , Lrk(P )) of P . Set P ′ = L1 ⊕ · · · ⊕Lq−1 and P ′′ = Lq ⊕ · · · ⊕Lrk(P ), so P = P ′ ⊕P ′′.
Let x be an element of GL(L1) that does not lie in CL(L1) and let

X = (x, 1, . . . , 1) ∈ GL(L1)×GL(L2)× · · · ×GL(Lq−1)×GL(P ′′) ⊂ GL(P ).

Since GL(Li) ∼= O× is abelian, the element X commutes with the subgroup

Λ = CL(L1)× CL(L2)× · · · × CL(Lq−1)× CL(P ′′)

of CL(P ). It follows that X acts trivially on the image of Hp(Λ;Q) in Hp((CL(P ))σ;Q). It
is enough, therefore, to prove that the map Hp(Λ;Q) → Hp((CL(P ))˜︁σ;Q) is surjective.

It follows from Lemma 5.1 that the GL(P )-stabilizer of ˜︁σ can be written as

Hom(P ′′, P ′)⋊
(︁
GL (L1)× · · · ×GL (Lq−1)×GL

(︁
P ′′)︁)︁ .

From this, we see that

Λ′ = Hom(P ′′, P ′)⋊
(︁
CL (L1)× · · · × CL (Lq−1)× CL

(︁
P ′′)︁)︁

is a finite-index subgroup of CL(P )˜︁σ. The existence of the transfer map (see [5, Proposition
III.10.4]) implies that the map Hp(Λ

′;Q) → Hp(CL(P )˜︁σ;Q) is surjective. Finally, Lemma
5.2 (with G = CL(L1) × · · · × CL(Lq−1)) implies that the map Hp(Λ;Q) → Hp(Λ

′;Q) is
surjective (this is where we use the assumption that 0 ≤ p ≤ r + s− 1). We conclude that
the map Hp(Λ;Q) → Hp((CL(P ))˜︁σ;Q) is surjective, as desired.

Now, the spectral sequence (6.1) computes the associated graded of a filtration F• of
Q[GL(P )/CL(P )]-modules on H

CL(P )
k (L(P );Q) for each k. The above claim implies that

GL(P )/CL(P ) acts trivially on E∞
pq for 0 ≤ p ≤ r + s − 1, so for 0 ≤ k ≤ r − s − 1 the

GL(P )/CL(P )-action on the associated graded terms for the filtration F•H
CL(P )
k (L(P );Q)

are trivial. Since GL(P )/CL(P ) = Z/2 is a finite group, Maschke’s theorem implies that the
category of Q[GL(P )/CL(P )]-modules is semisimple, so this implies that the GL(P )/CL(P )-
action on H

CL(P )
k (L(P );Q) for 0 ≤ k ≤ r + s− 1 is also trivial. The lemma follows.
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