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Abstract

The ability to predict human phenotypes and identify biomarkers of disease from metage-

nomic data is crucial for the development of therapeutics for microbiome-associated dis-

eases. However, metagenomic data is commonly affected by technical variables unrelated

to the phenotype of interest, such as sequencing protocol, which can make it difficult to pre-

dict phenotype and find biomarkers of disease. Supervised methods to correct for back-

ground noise, originally designed for gene expression and RNA-seq data, are commonly

applied to microbiome data but may be limited because they cannot account for unmea-

sured sources of variation. Unsupervised approaches address this issue, but current meth-

ods are limited because they are ill-equipped to deal with the unique aspects of microbiome

data, which is compositional, highly skewed, and sparse. We perform a comparative analy-

sis of the ability of different denoising transformations in combination with supervised cor-

rection methods as well as an unsupervised principal component correction approach that is

presently used in other domains but has not been applied to microbiome data to date. We

find that the unsupervised principal component correction approach has comparable ability

in reducing false discovery of biomarkers as the supervised approaches, with the added

benefit of not needing to know the sources of variation apriori. However, in prediction tasks,

it appears to only improve prediction when technical variables contribute to the majority of

variance in the data. As new and larger metagenomic datasets become increasingly avail-

able, background noise correction will become essential for generating reproducible micro-

biome analyses.
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Author summary

The human gut microbiome is known to play a major role in health and is associated with

many diseases including colorectal cancer, obesity, and diabetes. The prediction of host

phenotypes and identification of biomarkers of disease is essential for harnessing the ther-

apeutic potential of the microbiome. However, many metagenomic datasets are affected

by technical variables that introduce unwanted variation that can confound the ability to

predict phenotypes and identify biomarkers. Currently, supervised methods originally

designed for gene expression and RNA-seq data are commonly applied to microbiome

data for correction of background noise, but they are limited in that they cannot correct

for unmeasured sources of variation. Unsupervised approaches address this issue, but cur-

rent methods are limited because they are ill-equipped to deal with the unique aspects of

microbiome data, which is compositional, highly skewed, and sparse. We perform a com-

parative analysis of the ability of different denoising transformations in combination with

supervised correction methods as well as an unsupervised principal component correction

approach and find that all correction approaches reduce false positives for biomarker dis-

covery. In the task of predicting phenotypes, different approaches have varying success

where the unsupervised correction can improve prediction when technical variables con-

tribute to the majority of variance in the data. As new and larger metagenomic datasets

become increasingly available, background noise correction will become essential for gen-

erating reproducible microbiome analyses.

Introduction

The human gut microbiome is associated with a number of host phenotypes including colorec-

tal cancer [1], obesity [2,3], and antibiotic consumption [4–7], among other traits [8,9].

Despite the promise of the microbiome as a diagnostic tool, significant challenges remain for

predicting phenotypes and finding reproducible biomarkers of human phenotypes from

microbiome data. One major challenge is that technical covariates, including sample storage

[10], cell lysis protocol [11,12], extraction method [13,14], DNA preservation and storage pro-

tocol [15], preparation kit [16,17], and primer choice [11], are known to introduce unwanted

variation and systematically bias the relative abundances of taxonomic features in microbiome

samples [12,18–24].

These covariates, when differentially distributed across phenotypes, can act as confounders.

There are two potential outcomes of confounding in prediction accuracy: increased accuracy

when confounders are consistently correlated with the phenotype, or decreased prediction

accuracy when the confounder is oppositely correlated with phenotype from one subset of the

data to another. In either scenario, confounding is problematic for detecting true associations

between the microbiome and phenotype. The pooling of datasets is a major contributor of

confounding yet combining datasets is an increasingly common [1,25–28] and powerful

means to validate associations [8,29] in a discovery dataset with held out datasets [1,30,31].

Recent studies have shown that confounding covariates are widespread in genomic datasets.

Gibbons et al. [32] found that combining datasets to detect members of the microbiome that

are associated with colorectal cancer resulted in false positive detection of differentially abun-

dant taxa. Confounding covariates were also pervasive [33] in one of the largest metagenomic

datasets available, the American Gut Project (AGP) [34].
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Despite the widespread effects of background noise in microbiome data, there is currently a

dearth of methods specially equipped for removing unwanted variation in microbiome data.

Initial steps in processing microbiome data often involve addressing differences in library sizes

across samples by applying the variance-stabilizing transformation (VST) from DESeq2 [35]

or the log2-counts per million (logCPM) from EdgeR [36] on taxonomic counts data [37–42].

However these transformations do not sufficiently address other contributors of unwanted

variance such as study-specific covariates, which neccessatates explicit methods for correction.

Existing methods repurposed from other domains for this purpose, including gene expres-

sion39,40 and methylation [43–45], generally fall into two categories: supervised methods,

where the sources of variation must be explicitly specified, and unsupervised methods, where

the sources of variation are first inferred and then removed before association or prediction

analyses. The most popular supervised methods are batch mean centering (BMC)43, which

centers data batch by batch, and ComBat44 and limma45, which both use empirical Bayes.

Many studies will apply a supervised method after applying one of the above transformations

in microbiome data. However, since many sources of variation may be unknown, and more-

over, the extent of variation they introduce may vary from dataset to dataset [20,32,46–48],

unsupervised approaches [49–51] for covariate correction may be more effective in removing

background noise. Among the unsupervised approaches are ReFactor [51], Surrogate Variable

Analysis (SVA) [49], and Remove Unwanted Variation (RUV) [50] which were designed for

methylation or gene expression data. These methods quantify “surrogate variables” that repre-

sent study-specific effects and regress them out of the data.

Despite their promise, the repurposed supervised and unsupervised approaches [49–51] are

not suitable for microbiome data because most of them rely on assumptions that the data is

normally distributed. However, taxonomic features are often sparse [52,53] due to taxa having

abundances below the detection limit of sequencing [52], or taxa being absent in certain sam-

ples, resulting in skewed non-normal distributions. Additionally, because the microbiome

data is usually transformed into measures of relative abundances, the data is compositional, or

in other words, represented as relative frequencies of taxonomic features within a sample that

sum to one. This representation also causes non-normal distributions.

Supervised methods proposed explicitly for microbiome data to reduce background noise

include percentile normalization [27], Partial Least Squares Discriminant Analysis [54], and

multiplicative bias correction [22]. Both percentile normalization [27] and Partial Least

Squares Discriminant Analysis [54] aim to find predictive features in fully labeled data with

known batches and known phenotypes, and are not designed for prediction of phenotypes in

unlabeled data, while multiplicative bias correction [22] requires either a reference sample in

which the species abundance distribution is known or a term specifying the experiment label,

and thus cannot account for multiple sources of background noise simultaneously. Given that

these methods are supervised and thus cannot be applied to unlabeled data, there still remains

a need in the microbiome field for unsupervised approaches that can adjust for both measured

and unmeasured variables. Additionally, there is little published research comparing adapted

approaches head-to-head in microbiome data.

To address the need for unsupervised approaches applicable to microbiome data, we exam-

ined a popular approach used in the field of population genetics known as Principal Compo-

nents Analysis (PCA) correction. Population structure is often strongly reflected in the first

principal components (PCs) calculated from genotype data [55–57]. By removing the effect of

the first few PCs in a regression approach, association testing can be done to find potential

genetic biomarkers of phenotype rather than biomarkers of population structure [55–57].

PCA correction has been effective in correcting for confounding covariates in human genetic

data [55,57] and morphological data[58], but to date has not been applied to microbiome data.
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Yet, we and others find that top principal components in multiple datasets are correlated with

numerous confounding variables like host genetics [59], ethnicity of the host [60], and also abi-

otic factors like temperature [61], suggesting that PCA correction may be an effective unsuper-

vised correction approach.

In this paper, we evaluated the ability of PCA correction to remove background noise in

microbiome data and compared its performance to supervised background noise correction

approaches [62–64] that are commonly used for microbiome data. Specifically, we tested the

impact of regressing out principal components (PCs) from microbiome data featurized as abun-

dances of taxonomic features or k-mers. Abundance of taxonomic units are determined by

aligning or binning reads based on reference genomes, whereas k-mer abundances are calcu-

lated by counting appearances of short substrings of length k in raw sequences. While taxo-

nomic features have immediate biological interpretability, the use of k-mers is beneficial

because they do not rely on a reference genome. Additionally, we assess the impact of applying

a variance stabilizing transformation (VST) or logCPM (log counts per million), and compare

this to application of the centered log ratio (CLR). CLR is more widely used for compositional

data, particularly in microbiome contexts [29,65–70], and is a suggested transformation prior to

factor analysis such as PCA because it breaks the dependence between features [66] and makes

data more normally distributed [54]. This transformation can make the PCs more interpretable

because the transformed value is the abundance relative to the mean value for a sample.

By performing a comparative analysis of PCA correction and existing supervised correction

approaches, we evaluate the merits of repurposing the PCA correction approach from the field

of population genetics to the microbiome, as well as assess the strengths and limitations of var-

ious methods. Throughout this study, we highlight important considerations for phenotype

association studies from large cohort and cross-study metagenomic analyses, which we hope

paves the way for higher reproducibility across microbiome studies.

Results

We analyzed four metagenomic datasets for evidence of technical covariates that could intro-

duce noise or confounding that, as a result, interfere with biomarker discovery and prediction

accuracy. We evaluated the ability of three popular supervised approaches for microbiome

data (ComBat [64], limma [63], and batch mean centering (BMC) [62]), three transformations

(CLR, VST from DESeq2 [35] and logCPM from EdgeR [36]), and an unsupervised approach,

PCA correction, to correct for noise and confounding. We focused on three phenotypes of

interest: body mass index (BMI), colorectal cancer (CRC), and antibiotic consumption

(Table 1). The datasets we analyzed included: (i) the American Gut Project [34] (AGP), which

has known confounding variables [33], (ii) a pooled dataset composed of three 16S datasets

with healthy and CRC individuals (hereafter referred to as ‘CRC-16S’) [27], (iii) a pooled data-

set composed of seven whole metagenome sequenced datasets (WGS) with healthy and CRC

individuals (hereafter referred to as ‘CRC-WGS’) [1,71], and (iv) the Hispanic Community

Table 1. Datasets used in this study. Two pooled datasets composed of multiple studies are abbreviated as CRC-16S [73–75] and CRC-WGS [1,74,76–79], whereas the

American Gut Project (AGP) [34] and the Hispanic Community Health Study (HCHS) [72] are each from a single source study and have several potential confounders

[33].

Phenotype Joined dataset Number of samples Number of studies Sequencing method Published Sources

Body mass index American Gut Project (AGP) 6,722 1 (multiple sequencing batches) 16S [34]

Antibiotic history American Gut Project (AGP) 12,619 1 (multiple sequencing batches) 16S [34]

Body mass index Hispanic Community Health Study (HCHS) 1,769 1 (multiple sequencing batches) 16S [72]

Colorectal Cancer CRC-16S 574 3 16S [73–75]

Colorectal Cancer CRC-WGS 813 7 WGS [1,74,76–79]

https://doi.org/10.1371/journal.pcbi.1009838.t001
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Health Study (HCHS) [72] consisting of 16S samples from over one thousand individuals

from several Hispanic countries. These datasets allowed us to assess noise and confounding

both within datasets (AGP and HCHS) and across pooled datasets (CRC-16S and CRC-WGS).

Background noise detected by principal component analysis

To assess the extent of microbiome variation attributable to technical covariates, we performed

PCA on CLR-transformed (see Methods) taxonomic abundance profiles and short k-mers

(between sizes 5 and 8) derived from the raw metagenomic reads (see Methods). In most

cases, for the first two PCs, samples cluster by dataset and not the primary phenotype of inter-

est (Figs 1 and S1), consistent with previous findings [13] that technical factors have a strong

effect on the microbiome.

More generally, the top 15 PCs in each dataset are more correlated with technical variables

than the phenotypes of interest (Figs 2A and S2). For example, in the CRC-WGS dataset, PCs one

through five on average have a 0.28 mean correlation with dataset label but only 0.072 mean cor-

relation with CRC status (Fig 2A). It is worth noting that these first five PCs collectively explain

84% of the variance in the CRC-WGS data and that the strongest correlations with CRC status are

in the first five PCs. In the HCHS dataset, the top 5 PCs have significant correlation with demo-

graphic information such as place of birth (0.13 mean correlation of top 5 PCs) and sequencing

center (0.09 mean correlation of top 5 PCs), but only a mean 0.04 correlation with BMI. In this

dataset, the first five PCs collectively explain 59% of the variance in the HCHS dataset but only the

first PC is significantly correlated with BMI, where PC1 explains 24% of variance (Fig 2D).

We next assessed the impact of CLR-transformation on the correlation of top PCs with tech-

nical and biological covariates, and compare the correlations using a two-sample Wilcoxon

signed-rank test. Firstly, across all datasets, CLR-transformation of taxonomic abundance and k-

mer data results in more normally distributed data (S3 Fig), making the data more suitable for

PCA. However, the change in correlation of the top PCs with technical and biological covariates

after application of the CLR transformation varies from dataset to dataset. In the case of both

AGP and CRC-WGS datasets, the CLR transformation results in siginificantly increased correla-

tion of the top PCs with both biological and technical covariates (Figs 2A and 2B and S4) (in the

CRC-WGS dataset, median correlation of PCs with CRC increased from 0.05 to 0.14 with Wil-

coxon signed-rank p-value = 0.03 and median correlation with technical covariates increased

from 0.19 to 0.32 with Wilcoxon signed-rank p-value < 2.22 x 10−3; in the AGP dataset, median

correlation of PCs with BMI and antibiotic history increased from 0.16 to 0.31 with Wilcoxon

signed-rank p-value = 1 x 10−4 and median correlation with technical covariates increased from

0.05 to 0.07 with Wilcoxon signed-rank p-value = 8.7 x 10−3) (Fig 2B and 2C). In the CRC-16S

dataset, neither biological or technical variates showed significantly increased correlation after

CLR transformation variables (CRC median correlation increased from 0.05 to 0.10 with Wil-

coxon signed-rank p-value 0.084; technical covariate median correlation changed from 0.09 to

0.08 with Wilcoxon signed-rank p-value 0.12). Unlike all the other datasets, application of the

CLR transformation to the taxonomic abundances of the HCHS dataset results in a significantly

increased correlation with technical variables, but not biological variables (BMI median correla-

tion increased from 0.029 to 0.033 with Wilcoxon signed-rank p-value = 0.36; technical covariate

mean correlation increased from 0.03 to 0.07 with Wilcoxon signed-rank p-value < 2.22 x 10−3)

(Fig 2E and 2F). These correlations are all the more striking given the high percentage of vari-

ance explained by the first five PCs alone: 80% of variance in the CRC-WGS dataset, 64% of vari-

ance in the AGP dataset, and 65% of variance in the HCHS dataset. We similarly assessed the

impact of logCPM and VST transformations on the correaltions of the top 15 PCs with technical

and biological variables in S6 Fig and found that correlations with study covariates also increase.
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We also assessed the impact of k-merization on the correlation of variables with top PCs.

Unlike for taxonomic abundances, CRC-WGS does not show significant change as a result of

CLR transformation on k-mers (S5 Fig). In the AGP dataset, median correlations with BMI

and antibiotic history increase from 0.55 to 0.57 (Wilcoxon signed-rank p-value = 8 x 10−4),

Fig 1. First two principal components of across datasets. PCA applied to CLR-transformed taxonomic abundance data from the four datasets of the

study. Each point represents a single microbiome sample colored by either study or batch and by phenotype group.

https://doi.org/10.1371/journal.pcbi.1009838.g001
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and in the HCHS and CRC-16S datasets, correlations with technical variables increase from a

median of 0.04 to 0.07 (Wilcoxon signed-rank p-value = 0.001) and a median of 0.1117 to

0.1125 (Wilcoxon signed-rank p-value = 0.0498) after the CLR transformation. Through these

analyses on taxonomic abundance and k-mers, we show that technical variables introduce con-

siderable variation in microbiome data sets, that this variation is often larger than variation

explained by phenotypes of interest. Transformations like CLR can additionally make this vari-

ation explained by technical variables more apparent.

Reduction of false positive biomarker discovery as a metric of background

noise correction

Pooling of datasets is frequently done to augment power to detect associations with or make

predictions about host phenotype [1,25,26,28,71]. However, this practice can also result in

Fig 2. Microbiome data is affected by technical and biological variables. (A-D) Heatmaps of canonical correlations between the first 15 PCs and study

covariates in CRC-WGS with (A) no transformation and (B) after CLR transformation; and in HCHS with (C) no transformation and (D) after CLR

transformation. (E,F) Histograms of the correlations in (A-D) where the distributions were compared using a paired Wilcoxon signed-rank test to test whether

the distribution of correlations from PCs of CLR-transformed are greater than the untransformed. The size and color of the circles in each cell in A-D indicate

the magnitude of correlation and black asterisks indicate the significance of the Pearson correlation of the PCs with each of the variables. The color bar at right

represents the range of correlations observed across all datasets. [�,��,��� indicate Wilcoxon signed-rank p-values as follows: 10−2 < p < 0.05, 10−3 < p < 10−2,

p < 10−3]. See S2 and S5 Figs for similar analyses for the other datasets, and S6 Fig for other transformations.

https://doi.org/10.1371/journal.pcbi.1009838.g002
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false positive associations due to confounding between study-specific variables and phenotype

[27]. Thus, we tested the ability of different background noise correction methods to reduce

false positive biomarker discoveries. To do so, we performed a titration experiment similar to

that described in Gibbons et al. [32] in which control groups from two different studies in the

CRC-WGS dataset were mixed at different proportions to create a new control group of equal

size that was then compared with cases to identify taxa significantly associated with disease

using a Wilcoxon rank sum test with false discovery rate correction (q-value < 5%). Without

correction, spurious associations are expected to increase with increasing proporion of control

samples coming from a different study (Fig 3). We compare correction approaches by ascer-

taining the number of likely false positive associations at different titration levels (proportions

of control samples from another study) ranging from 0% to 100%. In the scenario where 100%

Fig 3. Spurious association of taxa with case-control status without appropriate correction. (A) We tested the number of associations identified after

replacing the controls from the CRC-WGS study sequenced by [1] referred to as Thomas et al. 2018a with controls from Feng et al. at increasing proportions

and vice versa. (B) Similarly, controls in the CRC-WGS study Hannigan et al. [79] were replaced with controls from Zeller et al.[74] and vice versa (S7 Fig).

BMC + CLR was an outlier and excluded for clarity of visualization, but the summary of mean associations of BMC + CLR is in S1 Table.

https://doi.org/10.1371/journal.pcbi.1009838.g003
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of controls are from a second study, the study variable is a complete confounder for case-con-

trol status.

To asses the efficacy of transformations to reduce false positive associations, we first com-

pared the untransformed and uncorrected relative abundance data to each of three data

denoising transformations: logCPM, VST and CLR applied to feature counts. As expected,

when the data is untransformed, the number of new taxa identified that are likely false posi-

tives steadily increases as the number of control samples added from a second study increases,

reaching 42 when 100% of controls are from the second study. When the data is transformed

with logCPM, VST, or CLR, the number of likely false positives reaches 20, 52, and 44, respec-

tively (Figs 3A and 3B and S7 and S1 Table), indication that transformation alone does not

always reduce false positives.

Next, we assessed the ability of supervised background noise correction methods to suppress

false positives. These methods included percentile normalization [27], BMC [62], ComBat [64],

and limma [63] which require a batch variable to be specified. Thus, in these cases we corrected

for the variables that are the most correlated with the top PCs in each dataset: sequencing instru-

ment in the AGP dataset, processing robot in the HCHS dataset, and source study in the CRC

dataset. We additionally included a supervised correction approach in which these same primary

contributors of heterogeneity were directly regressed out, an approach we term in this paper as

Direct Covariate Correction (DCC) (see Methods). When 100% of controls are from the second

study, the number of likely false positives drops to 5, 0, 5, and 6 respectively for the DCC, percen-

tile normalization, ComBat, and BMC methods (Figs 3C and 3D and S7 and S1 Table).

Next, we evaluated the effectiveness of applying the logCPM, VST, and CLR tranformations

in combination with the supervised approaches ComBat, limma, and BMC (Fig 3E and 3F), a

practice which is currently done in the literature for microbiome studies [37–42]. We also

compared these approaches to two variants of unsupervised correction in which PCA correc-

tion is applied after CLR: one in which the optimal number of top PCs are identified via cross-

validation and regressed out from the data and another in which data is corrected for a fixed

and arbitrary number of PCs. We refer to these two variants as tuned PCA and fixed PCA,

respectively (see Methods). Tuned PCA uses a validation set to determine the optimal number

of PCs that maximize prediction accuracy while fixed PCA correction corrects for the first

three PCs (Methods). The choice of three PCs for this analysis was arbitrarily selected to avoid

completely throwing away the signal associated with the phenotype of interest.

When 100% of controls are from the second study, logCPM applied prior to ComBat,

limma, or BMC results in 1, 2, and 2 likely false positive associations, respectively (Figs 3D and

3E and S7 and S1 Table). When the VST transformation is applied prior to ComBat, limma, or

BMC, we find 45, 55, and 25 likely false positive associations (Figs 3D and 3E and S7 and S1

Table). When the CLR transformation is applied prior to ComBat, limma, or BMC, we find 26,

35, and 173 likely false positive associations (Figs 3D and 3E and S7 and S1 Table). Lastly,

when Fixed PCA and Tuned PCA is applied along with CLR, we find 14 and 11 likely false pos-

itive associations, respectively.

Overall, these results suggest that data transformations should not be applied alone and that

a transformation like logCPM can be applied before applying a supervised correction in order

to reduce the appearance of false positive associations. Alternatively, unsupervised approaches

where CLR is applied prior to PCA correction can also reduce false positive associations.

Cross-study prediction after background noise correction

A successful predictive model is transferable across datasets. To assess the impact of back-

ground noise correction on phenotype prediction, we performed a leave-one-dataset-out
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(LODO) analysis. For this analysis, we utilized a nested cross-validation scheme where one

dataset was set aside for testing of a prediction model that was trained and validated on the

remaining datasets using either a Random Forest classifier or linear regression model (see

Methods). We evaluated the impact of supervised and unsupervised background noise correc-

tion approaches, with and without data transformations, on prediction of host phenotype

using taxonomic abundance profiles and k-mers (see Methods), where binary phenotype pre-

diction accuracy is assessed by Area Under the Curve (AUC) and continuous phenotype pre-

diction accuracy is assessed by Pearson correlation.

We first compared the effect of the different transformation and corrections on prediction

of BMI, a continuous phenotype. When applying a transformation only to taxonomic abun-

dances, logCPM and CLR resulted in significantly better Pearson correlations between the true

and predicted BMI (0.04 under uncorrected increased to 0.14 and 0.13 median Pearson across

batches with one-sided Wilcoxon rank-sum p-value = 0.014 for both), but VST did not show

any significant improvement (one-sided Wilcoxon rank-sum p-value = 0.443) (Figs 4A and

S8). When applying supervised correction approaches without transformations to taxonomic

abundance data, we found that ComBat and limma significantly improved prediction to 0.13

median Pearson (one-sided Wilcoxon rank-sum p-value = 0.014 for both) while DCC and

BMC did not (one-sided Wilcoxon rank-sum p-value = 0.557). Finally, applying a transforma-

tion followed by supervised correction, logCPM or CLR followed by ComBat, limma, or BMC

resulted in significantly improved prediction (one-sided Wilcoxon rank-sum p-value = 0.014

for all). Applying Fixed or Tuned PCA correction, which includes a CLR transformation prior

to regressing on PCs, also significantly improves prediction (one-sided Wilcoxon rank-sum p-

value = 0.014 for both). Because DCC is the only method that explicitly adjusts for primary

confounders, we also compared Fixed PCA correction directly to DCC and found that Fixed

PCA is significantly better than DCC with median Pearson increasing from 0.045 to 0.089

(one-sided Wilcoxon rank-sum p-value = 0.014) suggesting that unsupervised correction may

more broadly correct for noise that interferes with BMI prediction.

We next assessed the prediction performance using k-mers instead of taxonomic abun-

dances. Uncorrected k-mer abundances have worse prediction accuracy than taxonomic abun-

dances. However, when k-mer abundances are transformed with logCPM, CLR, ComBat or

limma alone, or a combination of VST or CLR with a supervised correction, the prediction

improves significantly compared to using taxonomic abundance with the highest median

Pearson of 0.21 resulting from applying CLR alone (one-sided Wilcoxon rank-sum p-

value = 0.014) (Figs 4A and S8). In particular, the use of k-mers with a CLR transformation

and any correction method, supervised or unsupervised, surpasses prediction accuracy using

taxonomic abundance. CLR combined with supervised correction results in a median Pearson

correlation of 0.21 and CLR combined with Tuned PCA correction results in a median correla-

tion of 0.17 (one-sided Wilcoxon rank-sum p-value = 0.014 for comparison with uncorrected

k-mers) (Figs 4A and S8). As with taxonomic abundance, Fixed PCA is significantly better

than DCC applied to k-mers with median Pearson increasing from 0.018 to 0.13 (one-sided

Wilcoxon rank-sum p-value = 0.029).

Next, we evaluated prediction ability with two binary phenotypes: whether an individual

had consumed an antibiotic in the previous year and whether an individual has been diag-

nosed with colorectal cancer (CRC). For the taxonomic abundance profiles of the AGP,

CRC-WGS and CRC-16S datasets, applying a data transformation alone did not significantly

change the AUC results with the exception of logCPM in the CRC-WGS dataset where accu-

racy decreased significantly (median AUC went from 0.80 to 0.66, one-sided Wilcoxon rank-

sum p-value = 0.0055) (Figs 4B–4D and S8). Applying any supervised correction method by

itself or after a data transformation did not result in any change in prediction ability, except
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Fig 4. Phenotype prediction models generalize across studies after application of noise correction methods. Cross-study prediction of (A) body mass index

(BMI) in the HCHS dataset across different extraction robots (B) antibiotic consumption in the past year in the AGP dataset across different Illumina

sequencing models, (C) CRC status in the CRC-WGS dataset across different studies and (D) CRC status in the CRC-16S dataset across different studies. The

boxplots in (A) indicate leave-one-dataset-out Pearson correlation between true and predicted BMI, for each batch. (B-D) indicate leave-one-dataset-out AUC

for each held-out study or batch. p-values comparing each boxplot were computed using a one-sided Wilcoxon signed-rank test. A red � indicates a significant

difference in prediction ability compared to uncorrected data in the respective taxonomic or k-mer group. A grey � indicates a significant difference in
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when logCPM was applied with any supervised correction method to the CRC-WGS dataset,

resulting in decreased accuracy (median AUC went from 0.80 in uncorrected to 0.76 for all

supervised methods, one-sided Wilcoxon rank-sum p-value = 2 x 10−3, 3.5 x 10−3, 2 x 10−3 for

ComBat, limma, BMC) (Figs 4C and S8).

Unlike for the BMI phenotype, k-mers showed significantly lower prediction accuracy than

taxonomic abundances irrespective of correction method in the CRC-WGS and AGP datasets

(Figs 4C and S8). Fixed and Tuned PCA correction on k-mers were able to maintain prediction

accuracy of uncorrected k-mers for all three binary phenotype datasets (Figs 4B–4D and S8).

For the CRC-16S dataset, application of both data transformation and correction methods to

k-mer abundances resulted in increased accuracy of CRC prediction, but there is insufficient

data to find significant increases, with both PCA corrections resulting in the highest accuracy

(Fig 4D). The benefit of utilizing k-mers is most apparent in predicting BMI in HCHS, whereas

in other datasets, taxonomic abundance data is better. These results indicate that for some phe-

notypes, correction can improve prediction accuracy, and in most cases accuracy is at least

maintained.

Discussion

The ability to predict human phenotypes from metagenomic data is important for the discov-

ery of biomarkers of disease and the subsequent development of therapeutics. However, a

major issue that impacts prediction and biomarker discovery is the presence of confounders

and systemic background noise both within [33] and across studies [22,27]. In this paper, we

investigated the ability of different denoising transformations in combination with supervised

correction methods to correct for sources of background noise in microbiome data and evalu-

ated the utility of an unsupervised approach–PCA correction on CLR-transformed data. We

recognize that fully correcting for background noise and population-specific factors, particu-

larly in an unsupervised manner, is extremely difficult if not impossible. Further, biological

variables associated with population-specific factors can be helpful for prediction of phenotype

and applying correction approaches can potentially remove the effect of these variables. For

that reason, we do not advocate for one approach over the other, but instead we highlight the

issues that can arise when study-specific effects are not appropriately accounted for and dem-

onstrate several approaches to combat these effects.

In this study, we analyze four datasets: AGP, HCHS, CRC-WGS, and CRC-16S. The AGP

and HCHS datasets provided the opportunity to evaluate intra-study heterogeneity, whereas

the CRC-WGS and CRC-16S datasets provided the opportunity to evaluate inter-study hetero-

geneity. These are particularly unique datasets because they are either very large (AGP and

HCHS), or they are comprised of several datasets measuring the same phenotype (CRC-WGS

and CRC-16S), which is uncommon. For example, our decision to focus on CRC-WGS was

motivated by important findings in Wirbel et al. [71] and Thomas et al. [1], two studies which

compiled a collection of metagenomic samples from healthy and CRC individuals across a

total of seven cohorts. Both these studies were able to find a core set of CRC-associated

microbes despite differences in ethnicity, diets, and other host factors across studies. Both Wir-

bel et al. [71] and Thomas et al. [1] found that CRC classification models generalized effectively

across studies and reported similar mean LODO AUCs of 0.81. We were able to also predict

CRC with a similar accuracy of AUC 0.79 both before and after correction. In addition to

prediction between the k-mer (k) and taxonomic abundance (t) groups for a given approach. A green � indicates a significant difference in prediction between

the Fixed PCA correction and DCC for a given data type. Due to the low number of folds in LODO prediction (3 to 7 values per box plot), many tests did not

yield a p-value.

https://doi.org/10.1371/journal.pcbi.1009838.g004
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CRC, we found prediction of BMI to be a useful analysis because it is notoriously difficult to

predict accurately [80–82].

Given the diverse range of datasets available, there is not one data denoising transformation

or correction method that outperforms the others universally, and multiple methods should be

tested for phenotype analysis. This motivated a broad comparison of popular transformations

and correction approaches. PCA correction has been effective in correcting for unwanted vari-

ation in human genetic data and morphological data [55–58], but to date has not been evalu-

ated for correction of such noise in microbiome data. Yet, we and others have shown that top

principal components in multiple datasets are correlated with numerous potential sources of

unwanted noise such as host genetics [59], ethnicity of the host [60], and also abiotic factors

like temperature [61], suggesting that PCA correction may be an effective unsupervised cor-

rection approach. We found that regressing out the top PCs after applying a CLR transforma-

tion may address multiple issues simultaneously: first, this approach can prevent inflation of

false positives associations (Fig 3), second, can maintain and, in the case of BMI, increase pre-

diction accuracy of host-associated phenotypes in a LODO analysis (Fig 4).

Our comparison of correlations between PCs and study covariates sheds light on which

datasets are good candidates for PCA correction. In the HCHS dataset, where PCA correction

was most successful, correlation of technical covariates and not biological covariates with the

top PCs increased significantly after CLR transformation (Figs 2 and S2 and S4). This poten-

tially allowed for removal of technical noise without sacrificing phenotype signal, perhaps even

enhancing the phenotype signal. The result was that application of CLR along with any correc-

tion method to both taxonomic abundances and k-mers was successful in increasing predic-

tion accuracy (Fig 4A). On the other hand, the CRC-WGS and AGP datasets had an increased

correlation of both biological and technical covariates with the top PCs after CLR transforma-

tion (S4 Fig), making the removal of technical noise without removing phenotypic signal diffi-

cult. In these cases, applying any transformation or correction approach did not improve

accuracy and instead in most cases resulted in similar performance to uncorrected data. Thus,

the extent of background noise differs from one dataset to another, and the success of an unsu-

pervised versus supervised method varies for each dataset (Table 2).

Despite correction approaches having limited effect on prediction ability for most datasets,

these same correction approaches had a large impact on reducing false positive biomarker

associations in our titration analysis. Specifically, we found that when performing association

analyses, a supervised correction applied after a denoising transformation may be best and

that transformations alone are insufficient to reduce false positive discoveries (Fig 3).

In this work, we show that CLR has comparable ability to other denoising transformations

both when used alone and in combination with other correction approaches. The application

of CLR transformation can address many attributes of microbiome data that make it difficult

to model including sparsity and non-normality, which existing unsupervised approaches

designed for non-microbiome data [49–51] are ill-equipped to deal with (Table 2). As PCA

assumes features are normally distributed, we produced Q-Q plots (S3 Fig) showing that the

quantiles of CLR-transformed data are close to the quantiles of a theoretical normal distribu-

tion. The application of CLR to microbiome data has been broadly recommended [66,83] and

is part of a suite of methods known as Compositional Data Analysis (CoDA) [84,85] to address

the dependency between features inherent to compositional data. However, the adoption of

CLR in the microbiome field has not been uniform. Recently, McLaren at al. [22] discussed

that CoDA methods’ ability to make microbiome data invariant to multiplicative bias has been

underappreciated within the field. Specifically, McLaren et al. [22] found that that ratio-based

analyses could remove intra-study bias, though did not address its effect on multiple datasets

that are pooled together or large datasets with heterogeneous sampling procedures such as the
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AGP. Here, we provide the first systematic investigation into the effect of how CLR in combi-

nation with PCA can remove inter-study and intra-study bias. We hypothesized that applying

CLR transformation will more readily reveal the covariates that introduce technical back-

ground noise across and within heterogeneous datasets because these contributors of bias (e.g.

DNA extraction method, sequencing instrument, etc.) have a multiplicative effect on relative

abundances [22]. We found that indeed relationships between the microbiome and such vari-

ables is more apparent after CLR transformation, our observation of this in taxa abundance

profiles makes sense in the context of multiplicative bias expounded by McLaren et al. [22]

because the multiplicative bias becomes additive in log space, such that PCA is able to capture

the bias in the top PCs as a shift in the centroid of samples plotted for a given dataset (Fig 2).

Just as we found CLR transformation can significantly effect PC correlations with covariates,

the application of data transformations like variance-stabilizing from DESeq2 [35] and the log

counts-per-million (logCPM) transformation from EdgeR [36] applied to taxonomic abun-

dance also affect the correlation of variables with top PCs (S6 Fig). Simiarly, these transforma-

tions can be helpful for phenotype prediction (Figs 4 and S8).

We also compared the impacts of correction on k-mers and taxonomic features (Table 2).

K-mers are a useful way to featurize data because they are not dependent on reference

genomes. Moreover, short k-mers of size 5–8 have the added benefit of a Gaussian-like distri-

bution (S5 Fig) and low sparsity, unlike taxonomic features. However, k-mers have inherent

limitations because they are usually not directly interpretable biological features. This limita-

tion may be a reason why taxonomic feature abundance outperforms k-mers in phenotype

prediction accuracy (Figs 4 and S8). It is crucial to note however, that k-mers may provide a

better signature of technical artifacts like PCR bias [86,87] and are also known to be protocol

specific [88]. Thus, this may explain why for both 16S and WGS data, k-mers had higher corre-

lations with technical variables compared to taxonomic features (Figs 2 and S2 and S5). This

aspect of k-mers offers a potential explanation for why PCA correction was particularly

Table 2. Key considerations when performing background noise correction in metagenomic data.

Taxonomic features K-mer features

• Pro: Find directly interpretable biomarkers of

phenotype

• Pro: May be better for prediction of binary phenotypes

like colorectal cancer

• Con: features are often rare, resulting in a sparse feature

matrix unless features we are grouped to genus or family

level

• Pro: Not reliant on reference genomes

• Con: Features not immediately interpretable

• Pro: May be better for prediction of certain

continuous phenotypes like BMI

• Pro: Short k-mer sizes are more Gaussian distributed

and non-sparse

No transformation of features CLR transformation of features

• Pro: Useful for compositional analysis. Sufficient when

feature distribution meets assumptions regarding

normality

• Con: Compositional data does not meet assumptions of

many types of differential abundance analyses.

• Pro: Useful to apply to compositional data before PCA

for interpretability [93]

• Pro: Produces a Gaussian-like distribution (log

transformation may also accomplish this)

• Con: May be problematic for correlation-based

analyses [94]

• Note: Other transformations (edgeR and DESeq2)

may be useful

Supervised Correction Unsupervised Correction

• Pro: Correction is targeted and most influential batch

effects are explicitly accounted for

• Con: Need metadata on experimental setup (batches or

study-effect groups)

• Pro: Do not need information on batches or study-

effect groups, but helpful for assessing signal of study

effects

• Pro: Multiple sources of noise can be corrected for

simultaneously

• Con: Correction is less targeted and biological signal

may be sacrificed.

https://doi.org/10.1371/journal.pcbi.1009838.t002
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effective with k-mers for the HCHS dataset. Of note, these correlation analyses may reveal

associations between linear effects of PCs and covariates, but not for non-linear effects. Other

have also found that k-mers performed poorly compared to counts of reads aligned to refer-

ence genomes [89]. In predicting CRC and antibiotic consumption status, species profiles

were more predictive whereas in predicting BMI, k-mers were more predictive under the

majority of correction approaches when compared to application of the same approach to tax-

onomic abundance.

The supervised approaches [62–64] are beneficial in that they directly remove known con-

founding, potentially at the cost of phenotype prediction, while unsupervised approaches are

can correct for both measured and unmeasured factors of microbiome (Table 2). Correcting

for confounders and PCs both can result in the removal of phenotype signal, as is the case in

ComBat [64] and fixed PCA (Figs 4 and S8). Tuned PCA may reduce the removal of pheno-

typic variance by removing up to, but not including, the first PC that would significantly

impact phenotype signal. However, caution must be taken when using tuned PCA in the pres-

ence of strong confounding as it may not remove all confounding to protect the phenotype

effect. In these scenarios, one should consider either a liberal correction of confounding by

correcting for more PCs or subsampling the data such that cases and controls are matched for

known confounders as is done in Vujkovic-Cvijin et al. [33].

Background noise correction is becoming increasingly important as the microbiome field

matures and new datasets become available. One exciting future application of correction that

we foresee is in microbiome wide association studies in which microbiome genomic polymor-

phisms are associated with human phenotypes [90,91]. Such a scenario may benefit from back-

ground noise correction since population structure may play a considerable confounding role

[92]. As researchers consider the best approach for background noise correction for their spe-

cific research questions, they must weigh the tradeoffs between addressing confounding while

also maintaining as much of the phenotype signal as possible. There is no single solution that

will address all problems, but at minimum researchers should perform careful forensics to

investigate the nature and pervasiveness of confounders in their data. In this manner, consis-

tent and robust inferences can be made across multiple studies, moving us towards the goal of

accurate phenotype prediction from microbiome data.

Methods

Datasets

Raw 16S fastq files were downloaded from the NCBI Sequence Read Archive (SRA) with study

accessions PRJEB11419 for the American Gut Project, and PRJNA290926 [73] and PRJEB6070

[74] for CRC-16S. Fastq files for [75] from CRC-16S were obtained from http://mothur.org/

MicrobiomeBiomarkerCRC/. The raw WGS fastq files for CRC-WGS were downloaded from

SRA with study accessions PRJEB12449 [78], PRJEB10878 [77], PRJEB7774 [76],

PRJNA447983 [1], PRJEB6070 [74], and PRJNA389927 [79]. Processed OTU data for the AGP

was obtained from Qiita study id 10317 (EBI submission ERP012803). OTU profiles from

CRC-16S were obtained from the MicrobiomeHD database [8]. Taxonomic profiles for

CRC-WGS were obtained through the R package curatedMetagenomicData [30] which used

MetaPhlAn2 [95]. In both MicrobiomeHD and curatedMetagenomicsData, taxonomic abun-

dances were computed in the same pipeline for each set of studies.

k-mer processing

Features in metagenomic data can be defined in two broad ways, both high-dimensional: refer-

ence-based approaches and reference-free approaches. Reference-based approaches cluster
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sequenced reads based on a defined threshold and assign taxonomy by aligning reads to refer-

ence genomes. Reference-free approaches, sort reads into bins that are defined independently

of known genomes, i.e. k-mers, short strings of length k that can be obtained directly from

read sequences, which are increasingly popular in microbiome data analyses and have been

used by several studies to do prediction. K-mers offer a powerful alternative approach to more

commonly used taxonomic features, because they do not rely on a reference database of

genomes and do not require identifying a set of parameters to determine taxonomic features.

To compute k-mer abundances, raw sequences from either 16S or whole metagenome

sequencing were input into the k-mer counting algorithm Jellyfish 2.3.0[96] with default

parameters except for a hash of 10 million elements and canonical k-mers with size of 5, 6, 7 or

8. Prior work has shown that k-mer sizes of 6 and 7 are predictive of phenotype[69]. The

resulting k-mer abundance table is then converted to a composition such that each sample

sums to 1 to account for different reads depths across samples. Taxonomic profiles were simi-

larly converted to compositions.

Centered log ratio transformation

The centered log ratio (CLR) transformation is a compositional data transformation that takes

the log ratio of between observed frequencies and their geometric means. This is done within

each sample where relative frequencies of different taxa are measured and sum to 1. This can

be written in mathematical form as:

clr xð Þ ¼ log
x1

GðxÞ
; log

x2

GðxÞ
; . . . ; log

xn
GðxÞ

� �

¼ logx1 � log GðxÞ; logx2 � log GðxÞ; . . . ; logxn � log GðxÞ½ �

GðxÞ ¼
YN

i¼1

xi

 !1=N

Here, x is a vector representing the abundance of microbiome features in a single sample, and

G(x) represents the geometric mean. The Gaussian-like distribution of CLR-transformed

microbiome compositional data is shown in S3 Fig. We added a pseudocount equal to 0.65

times the minimum non-zero relative abundance, following zero-replacement strategies as

suggested by, prior to applying the CLR transformation.

Background noise correction methods

The existing supervised approaches for background noise correction compared in this study

include percentile normalization[32], batch mean centering (BMC)[62], ComBat[64], and

limma[63] applied to relative abundance data. ComBat[64] assumes data is cleaned and nor-

malized prior to batch effect removal. We added a pseudocount equal to 0.65 times the mini-

mum non-zero relative abundance, following zero-replacement strategies as suggested by. It’s

common to add a pseudocount to 0 relative abundance observations so that one can apply a

log transform in the normalization prior to ComBat[64] (as described in Gibbons et al.[27]).

We followed this same procedure with both OTU and k-mer, and applied ComBat[64] and

limma[63] to the log of relative abundance data. For percentile normalization, batch mean

centering (BMC), and Direct Covariate Correction (DCC) we used the relative abundance.

For phenotype prediction and titration analysis, a relative-abundance feature is needed.

ComBat, limma, and PCA corrected data will often produce non-positive data that does not
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resemble counts. To create count-like data we took the exponent of the resulting ComBat and

limma corrected data produces count like features.

The CLR transformation and PCA-Correction used the relative abundance of k-mers and

taxonomic features. The equation used to regress out confounding covariates in DCC is as fol-

lows:

Xm�n � b
m�bCb�n þ �m�n

Where the original feature matrix X with m features and n samples is the outcome of a linear

model with covariate associated coefficient matrix β, dummy matrix C with each row repre-

senting one of the b possible values of the confounding covariate, and �, the residual matrix.

The residual matrix � is the covariate-corrected feature matrix. To perform titration and down-

stream prediction analysis on PCA-corrected data, we performed an inverse-clr as imple-

mented in the compositions R package to convert data to relative abundance.

In PCA correction, top PCs computed from the CLR transformed k-mer or OTU relative

abundance tables are regressed out. The CLR transformation cancels out the multiplicative

bias within each study by taking a ratio of features to the geometric mean of features that are

all impacted by the same study-specific multiplicative bias. The transformation accentuates the

difference in bias across studies by smoothing out the intra-study bias, thereby allowing PC

regression to account for the confounding across studies. In the fixed PCA correction, a set

number of PCs are regressed out from the microbiome data. In the main figures we show

results after regressing up to three PCs. Alternatively, the tuned PCA correction uses a train-

validation-test approach to tune two hyperparameters: the optimal number of PCs to regress

out p, and, when using k-mers, the optimal k. The same portion of data used for validation in

the Random Forest tuning is used for tuning the PCA correction hyperparameters, where the

tuned Random Forest hyperparameters are fixed before tuning p and k. To determine the

number of PCs that optimize phenotype prediction, PCs 1 through p were regressed out of the

input data with p ranging from 1 to 20. The p that produces the highest AUC or Pearson corre-

lation in phenotype prediction (method of prediction model described below) in validation

was selected. The same procedure is done with k where values between 5 and 8 are tested (only

k-mer sizes 6 and 7 were tested for CRC-WGS) The reported performance is based on the

remaining 20% set aside for testing.

Correlation analyses

To compute the correlation of PCs with covariates before and after CLR correction, we used

canonical correlation analysis using the ‘canCorPairs’ function in the R package varianceParti-

tion[97]. We used canonical correlation because several covariates were categorical, with the

result that only positive correlation values can be calculated. The distribution of correlations

before and after CLR transformation were statistically compared using the two-sample Wil-

coxon signed-rank test.

Phenotype prediction

In CRC-16S and CRC-WGS, we predicted whether a sample comes from a host with colorectal

cancer or a healthy host. For the American Gut Project, we predicted whether a sample comes

from a host who took antibiotics in the previous year or a host who has not taken antibiotics in

the previous year. We also use the American Gut Project to predict body mass index (BMI).

We performed prediction of binary traits using Random Forest implemented in Scikit-

learn [98], which has been previously employed successfully for predicting binary outcomes

from microbiome data [1,30,99,100]. We tuned four hyper-parameters of the Random Forest
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model in a grid search using a train-validation-test strategy. In the LODO framework, one

study was reserved for testing while the remaining studies were split such that 70% of samples

were used for training and 30% for validation of model hyper-parameters. In the non-LODO

framework, 56% of samples in the meta-cohort were used for training, 24% for validation of

model hyper-parameters, and 20% reserved for testing, where the distribution of studies or

sub-cohorts were similar in the test, train, and validation sets. Six hyperparameters where four

were tuned in a grid search: estimator trees (100, 1000, or 1500), criterion (entropy only), min-

imum samples per split (2, 5, or 10), minimum samples per leaf (1, 5, or 10). Two hyperpara-

meters were trained using the following settings: max depth of trees was set at ‘None’ (nodes

are expanded until all leaves contain only one class or until all leaves contain less than min_-

samples_split samples [98]) and maximum features was set to “auto” (set to square root of

number estimator trees [98]), and default parameters otherwise. This was performed in five-

fold cross validation repeated ten-times to obtain confidence intervals on the area under the

ROC curve (AUC), our metric of prediction accuracy. A similar train-validation-test strategy

was used for the linear regression model to select coefficients of the model where accuracy was

measured using Pearson correlation of the true BMI to the predicted BMI. The difference in

the distribution of prediction accuracy for both prediction tasks was quantified statistically

using a Wilcoxon rank-sum test.

Titration

Following the procedure from Gibbons et al. [32], samples from different studies were pooled

together to assess the inflation of false positive associations. The minimum class membership

across two studies was used as the set sample size drawn from the case and controls for each

study for a given titration experiment. A fraction of 0, 25, 50, and 100% controls in the first

study were replaced with controls from a second study. The filtering of features as imple-

mented in Gibbons et al. required features resembling relative abundance, and we therefore,

applied the appropriate transformations to convert ComBat, limma, and PCA-corrected data

to relative abundance. For ComBat and limma, we applied the natural exponent of the matrix.

For CLR-transformed data (including PCA-corrected data), we applied the ‘inverse clr trans-

form’ as implemented in the ‘compositions’ package in R [70].

Supporting information

S1 Fig. First two principal components from microbiome dataset studied. PCA was applied

to taxonomic abundance profiles and 6-mer data from the AGP, CRC-WGS merged dataset,

CRC-16S merge datasets, and Hispanic Community Health Cohort. Samples were plotted

along the first 2 PCs with colors indicating (A) dataset or batch membership and (B) pheno-

type label.

(TIF)

S2 Fig. Top principal components from the CRC-16S dataset correlate with technical and

biological covariates. The first 15 PCs in the CRC-16S taxonomic abundance joined datasets

are correlated with variables measured in each of the studies, including phenotype, sex, age,

race, dataset label, sequencing method, library size and several others in (A, B) AGP, (C, D)

CRC-16S. The size and color of the circles in each cell indicate the magnitude of correlation

while black asterisks indicate the significance of the Pearson correlation of the PCs with each

of the variables. The color bar at right of each plot represents the range of correlations

observed across all datasets. [�,��,��� indicate p-values as follows: 10−2 < p < 0.05, 10−3 <
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p < 10−2, p < 10−3].

(TIF)

S3 Fig. Quantile-Quantiles plot for AGP, CRC-WGS, and CRC-16S before and after the

CLR-transformation. The quantiles of 100 randomly-selected taxonomic features or k-mers,

that were converted to z-scores, ranked against the expected quantiles from a normal distribu-

tion of mean 0 and variance 1. The R-squared values are reported in the annotated text.

(TIF)

S4 Fig. Histogram of correlation between top 15 PCs and various measured variables. His-

tograms show the distribution of correlation values computed between the top 15 PCs of taxo-

nomic features in each dataset and the phenotype covariates and technical covariates. Shown

in black text are the Kolmogorov-Smirnov test p-values for the test of the null hypothesis that

the distribution of correlations in the non-transformed data is no different from the correla-

tions in the CLR-transformed data. HCHS is the only dataset with significant increase in corre-

lation in the technical covariates but not the phenotype of interest.

(TIF)

S5 Fig. Top principal components from 6-mers correlate with technical and biological

covariates. The first 15 PCs before (a, c, e, and g) and after (b, d, f, and h) the CLR-transforma-

tion are correlated with variables measured in each of the studies, including dataset label,

library size, DNA extraction kit used, country of origin, age, body mass index (BMI), sex, and

colorectal cancer status (CRC). The size and color of the circles in each cell indicate the magni-

tude of correlation while black asterisks indicate the significance of the Pearson correlation of

the PCs with each of the variables. The color bar at right of each plot represents the range of

correlations observed across all datasets. [�,��,��� indicate p-values as follows: 10−2 < p < 0.05,

10−3 < p < 10−2, p < 10−3].

(TIF)

S6 Fig. Top principal components from LogCPM and VST transformed taxonomic abun-

dance correlate with technical and biological covariates. The first 15 PCs from data trans-

formed with the (A) EdgeR log counts per million (LogCPM) transformation[36] and (B)

DESeq2 Variance Stabilizing (VS) transformation are correlated with variables measured in

each of the studies, including dataset label, library size, DNA extraction kit used, country of

origin, age, body mass index (BMI), sex, and colorectal cancer status (CRC). The size and

color of the circles in each cell indicate the magnitude of correlation while black asterisks indi-

cate the significance of the Pearson correlation of the PCs with each of the variables. The color

bar at right of each plot represents the range of correlations observed across all datasets.

[�,��,��� indicate p-values as follows: 10−2 < p < 0.05, 10−3 < p < 10−2, p < 10−3].

(TIF)

S7 Fig. Titration analysis for new false positive associations. For each study in CRC-WGS,

an equal number of cases and controls were drawn to determine significant taxa associated

with CRC. Then, at proportions of 25%, 50% and 100%, control samples were replaced with

controls from a second study. This experiment was repeated after applying (A) transforma-

tions, (B) corrections, or (C) a combination of both (including unsupervised methods) to com-

pare the extent to which new false positive associations arise with increasing confounding

between CRC and study label.

(TIF)

S8 Fig. Impact of correction approaches on phenotype prediction accuracy. Heatmap show-

ing AUC or Pearson correlation in a cross-validated prediction model using either
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uncorrected data or data after applying one of the following covariate correction approaches:

DCC, ComBat[64], limma[63], BMC[62], and Fixed PCA correction with three PCs regressed

out, and Tuned PCA correction where the number of PCs regressed out is a tuned hyperpara-

meter. The testing accuracy mean shown is obtained from a five-fold cross validation repeated

10 times.

(TIF)

S1 Table. Mean number of new associations in titration experiment. Shown is the mean

number of likely false positive associations with respect to the original study 1 case and con-

trols before adding control samples from study two, across all pairs of studies within

CRC-WGS and across all five-fold replicates of titration at each mixing proportion of 0%,

25%, 50%, 75%, and 100% controls from study two.

(DOCX)
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