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HESSENBERG VARIETIES OF PARABOLIC TYPE

MARTHA PRECUP AND JULIANNA TYMOCZKO

ABSTRACT. This paper studies the geometry and combinatorics of three interrelated varieties:
Springer fibers, Steinberg varieties, and parabolic Hessenberg varieties. We prove that each
parabolic Hessenberg variety is the pullback of a Steinberg variety under the projection of the
flag variety to an appropriate partial flag variety and we give three applications of this result.
The first application constructs an explicit paving of all Steinberg varieties in Lie type A in
terms of semistandard tableaux. As a result, we obtain an elementary proof of a theorem of
Steinberg and Shimomura that the well-known Kostka numbers count the maximal-dimensional
irreducible components of Steinberg varieties. The second application proves an open conjecture
for certain parabolic Hessenberg varieties in Lie type A by showing that their Betti numbers equal
those of a specific union of Schubert varieties. The third application proves that the irreducible
components of parabolic Hessenberg varieties are in bijection with the irreducible components
of the Steinberg variety. All three of these applications extend our geometric understanding of
the three varieties at the heart of this paper, a full understanding of which is unknown even for
Springer varieties, despite over forty years’ worth of work.

1. INTRODUCTION

In this paper, we study the geometric and combinatorial structure of three interrelated varieties,

using properties of one variety to infer new information about the others. We now introduce these
varieties in Lie type A though much of the paper treats arbitrary Lie type. Two of these varieties
are subvarieties of the flag variety G/B, which in type A is the collection of nested complex vector
spaces V3 C Vo C --- C V,,_1 C C™ where each V; is i-dimensional. The third is a subvariety of
the partial flag variety G/P, which in type A is a family that includes the Grassmannian G(k,n)
of k-dimensional subspaces of a fixed C™. The three main objects we consider are the following.

(1)

Springer fibers: Defined by a nilpotent linear operator X, the Springer fiber BX is
the family of flags that are fixed by X in the sense that XV; C V; for all i. Springer
proved that the cohomology of the Springer fibers carries an action of S, in what is
often considered a first example of a geometric representation theory [Spr78, Spr76]. The
geometry of Springer fibers is deeply connected to the combinatorics of permutations and
Sp-representations. However, little is known about Springer fibers for general X except the
Betti numbers [Fre09, Tym06] and that they are are pure dimensional with components
indexed by standard tableaux [Spa76]. More is known about the components themselves
for particular X, e.g. if X? = 0 [FM10], the Jordan type of X has two blocks [Frel0,
Fun03, Will8, ILW19], or when the irreducible components of BX are smooth [GZ11].

Parabolic Hessenberg varieties: Hessenberg varieties loosen the condition used to
define Springer fibers. Given a linear operator X and a nondecreasing function h :
{1,2,...,n} — {1,2,...,n} the Hessenberg variety B(X,h) consists of the flags that X
moves by no more than 5, in the sense that XV; C Vj,(;) for all i. Motivated by Hessen-
berg matrices and algorithms for efficiently calculating eigenvalues in numerical analysis,
Hessenberg varieties in the flag variety of GL,,(C) were first introduced by De Mari and
Shayman [DMS88] and later defined in all Lie types by De Mari, Procesi, and Shayman
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[DMPS92]. Independently, Peterson and Kostant used them to construct the quantum co-
homology of the flag variety [Kos96] (see also [Rie03]). When X has n distinct eigenvalues,
the equivariant cohomology of the corresponding Hessenberg variety carries an S,-action
[TymO8] that can be described by certain quasisymmetric functions (see the conjecture
by Shareshian and Wachs [SW16] and recent proof from Brosnan and Chow [BC18] and
independently Guay-Paquet [GP16]). As with Springer fibers, this endows the Betti num-
bers of Hessenberg varieties with combinatorial and representation-theoretic significance.
Many people have analyzed these Betti numbers and cohomology rings for special cases
of X and h (see [Tym06, Prel8, Mbil0, AHHM14, AHM"16] for just a few examples),
though as with Springer fibers, the general geometric structure of Hessenberg varieties
remains mysterious.

This paper considers the case when h corresponds to a parabolic subalgebra, which
occurs when the image of h consists of precisely those ¢ that are fixed by h. (If i; < iy are
two consecutive fixed points of h then h(iy +1) = h(i; +2) = -+ - = h(i2) = i. This means
h describes the column-heights of a block-upper-triangular collection of matrices, namely
a parabolic subalgebra of the n x n matrices.)

(3) Steinberg varieties: Steinberg varieties loosen the condition used to define Springer
fibers in a different way. Given a linear operator X and an integer 1 < k < n the Stein-
berg variety associated to X and k is the collection of k-planes Vi with XV; C V. More
generally, if X is a linear operator and J is the index set of any partial flag variety G/ Py
with elements V;; C V;, C ... C C" then the Steinberg variety corresponding to X and
J is the image m;(BX) under the standard projection 7; : G/B — G/Pj; obtained by
forgetting subspaces not indexed by i € J. (We denote Steinberg varieties thus through-
out this paper.) Steinberg proved that the irreducible components of 7;(B%) of maximal
dimension are counted by the Kostka numbers, a well-known quantity in algebraic combina-
torics [Ste88]. Borho and MacPherson computed the cohomology of the Steinberg variety
77(BX), identifying it with the subspace of W -invariants of the Springer representation
on H*(BX) where W; is generated by the simple reflections s; for i ¢ J [BM83]. More
recently, Fresse proved all Steinberg varieties are paved by affines [Frel6]. Little else is
known about the geometry of Steinberg varieties.

This paper analyzes the topological structure of parabolic Hessenberg varieties. Our main
result proves that each parabolic Hessenberg variety is the pull-back of a Steinberg variety under
the projection to a partial flag variety (c.f. Theorem 3.5 below.)

Theorem 1. Let h : {1,2,...,n} — {1,2,...,n} be a parabolic Hessenberg function with fizxed
points J = {iy,ia,...,ix} and let 75 : G/B — G/Pj be the corresponding projection of the full
flag variety to the partial flag variety obtained by forgetting subspaces V; with i & J. The parabolic
Hessenberg variety B(X, h) is the pull-back of the Steinberg variety 7 ;(BX) under ;.

We use this theorem to give an explicit formula for the Poincaré polynomial of a parabolic
Hessenberg variety for those X that satisfy the assumptions of Theorem 2.10. Theorem 3.11 proves
it is the product of the Poincaré polynomial of the Steinberg variety and Poincaré polynomial of a
smaller flag variety. As a corollary, we show that the Poincaré polynomial of a parabolic Hessenberg
variety is the shifted sum of the Poincaré polynomial of the Steinberg variety, with shifts determined
by h.

Moreover our results explicitly lay out the combinatorics of a paving for both Steinberg varieties
and parabolic Hessenberg varieties when X satisfies the assumptions of Theorem 2.10. This allows
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us to specify Betti numbers for Steinberg and parabolic Hessenberg varieties, and to recover Fresse’s
proof that pavings of Steinberg varieties exist by explicitly producing a paving for these X.

We give three main applications of these results.

First, we develop an explicit combinatorial description of the paving of Steinberg varieties in
type A in terms of certain semistandard tableaux. We recover a theorem of Steinberg [Ste88]
and Shimomura [Shi80, Shi85] that computes the number of irreducible and maximal-dimensional
components of a Steinberg variety in terms of the well-known Kostka numbers. However, our proof
is more streamlined, grounded in the combinatorics of semistandard (versus standard) tableaux.

Second, we show that the Betti numbers of parabolic Hessenberg varieties for three-row or
two-column nilpotent operators are equal to the Betti numbers of a specific union of Schubert
varieties. Schubert varieties are the closures of cells in the best-known CW-decomposition of the
flag variety; they induce a cohomology basis for the flag variety, and their combinatorics and
geometry are deeply intwined (see, for example, the books [BL00, Ful97]). Varieties whose Betti
numbers are those of a union of Schubert varieties admit a particularly simple construction of
equivariant cohomology, as proven by Harada and the second author [HT17] and applied to certain
Hessenberg varieties [HT11]. Conjecturally, this applies to all nilpotent Hessenberg varieties. The
conjecture was confirmed for Hessenberg varieties when X has a single Jordan block by Mbirika
[Mbi10], who computed the Betti numbers, and Reiner, who recognized them as those of a Schubert
variety called the Ding variety [Din97, DMRO07]. More recently, it was also proven for three-row
or two-column Springer fibers by the authors of the current paper [PT19].

Third and last, we give a new analysis of the irreducible components of parabolic Hessenberg
varieties in Section 6. We prove that the irreducible components of parabolic Hessenberg varieties
are in bijection with those of the corresponding Steinberg variety, and state some consequences in
the type A case.

This paper is structured as follows. The second section covers background information and
notation. The third analyzes the structure of parabolic Hessenberg varieties. All the results in
Section 3, including our main result, hold for Hessenberg varieties defined using any complex
algebraic reductive group. The rest of the paper contains applications of this result. The fourth
section specializes to the case G = GL,,(C) and describes a paving of Steinberg varieties obtained
by intersecting with Schubert cells. The fifth section then proves in type A that the Betti numbers
of parabolic Hessenberg varieties are equal to those of a specific union of Schubert varieties. An
analogous result holds for Steinberg varieties, except that the union of Schubert varieties is taken
in the partial flag variety (which makes a significant difference). Finally, Section 6 concludes by
studying the irreducible components of parabolic Hessenberg varieties.

Acknowledgements. The first author was partially supported by an AWM-NSF mentoring
grant during this work. The second author was partially supported by National Science Foundation
grants DMS-1248171 and DMS-1362855.

2. PRELIMINARIES

This section establishes key definitions, as well as some results that restate past work in the
form that is most useful in what follows. We fix the following notation:

G is a complex algebraic reductive group with Lie algebra g.
B is a fixed Borel subgroup of G with Lie algebra b.

® is the root system of g.

U is the maximal unipotent subgroup of B with Lie algebra u.
T C B is a fixed maximal torus with Lie algebra t.
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W = Ng(T)/T denotes the Weyl group.
We fix a representative w € Ng(T) for each w € W and use the same letter for both.
®T & and A are the positive, negative and simple roots associated to the previous data.

Given v € ® we write g, for the root space in g corresponding to v and fix a generating
root vector £, € g,.
e We denote by s, the reflection in W corresponding to v € ® and write s, = s; when
a; € A,

In Section 3 we specialize to the case when G = GL,,(C) is the group of n x n invertible matrices
and g = gl,,(C) is the collection of n x n matrices. This is also our main example throughout. In
this setting, B is the subgroup of invertible upper-triangular matrices, T is the diagonal subgroup,
and W 2 S, is the symmetric group on n letters. The positive roots in this case are

Ot ={oy+ a1 ta; | 1<i<j<n}

where a; = €, — ¢;_1 and ¢;(X) = X;; for all X € gl,(C). Let E;; denote the elementary matrix
with 1 in the (i, j)-entry and 0 in every other entry. The root vector corresponding to the root
Y=o+ aip1--+ojoq foreach 1 <i < j<nis E, = E;;. When working in the type A setting
we sometimes identify (¢, j) with the root o; + a1+ + 1.

Definition 2.1. The inversion set of the Weyl group element w is the set
N(w)={y€ @ [w(y) € 27}

This generalizes to arbitrary Lie type the classical definition of an inversion, where the pair
(4,7) is an inversion of w € S, if ¢ < j and w(i) > w(j). If we identify (i,75) with the root
@ + g1 + -+ aj_; € @ then (i,7) is an inversion of w in the classical sense if and only if
a; +a;p1+ -+ aj_1 € N(w). Note that if /(w) denotes the (Bruhat) length function on W then
{(w) = [N (w)].

The projective variety G/B is called the flag variety. When G = GL,,(C) the flag variety can
be identified with the set of full flags Vo = (V4 C V5 C -+ C V,_1 C V) in a complex n-dimensional
vector space V as in the Introduction. Hessenberg varieties are parametrized by two objects: a
Hessenberg space H C g and an element X € g.

Definition 2.2. A linear subspace H C g is a Hessenberg space if b C H and [b,H] C H.

The condition that [b, H] C H implies that this subspace of g can be written as

H=to @ g,

YEPH

over an index set &y C ¢ determined by (and determining) H. Let ®; = &z N &~ denote the
negative roots in this index set. When g = gl,,(C), the set of indices ® 5 forms a “staircase” shape,
in the sense that if (¢, 7) corresponds to a root in @y then so do all (k,j) with 1 < k < and all
(i, k) with 7 < k < n. In other words if matrices in H are not identically zero in the entry (4, 7),
then they can be nonzero in any entry above or to the right of (3, j).

Each Hessenberg space H C gl,, (C) is uniquely associated to a Hessenberg function h : {1,...,n} —
{1, ...,n} by the rule that h(i) equals the number of entries that are not identically zero in the i-th
column of H. This is precisely the map h from the Introduction. The condition that h(i) > i is
equivalent to the requirement that b C H while the condition h(7) > h(i — 1) is equivalent to the
requirement [b, H] C H.

We remark that the condition b C H is typically, but not logically, necessary. It is in any case
implied when H is a parabolic subalgebra, which is the main focus of this paper.
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Example 2.3. We give a Hessenberg function h and the corresponding Hessenberg space H when
n =5. The space of matrices H is described by indicating where the zeroes must be in each matrix;
the entries designated x can be filled freely with any element of C.

x ok k k ok
* k% k% 2 ifi=1,2

H=10 0 % * =x — h(i)=¢ 4 ifi=3
0 0 *x * =x 5 ift=4,5
0 0 0 = =

This paper focuses on a family of subvarieties of the flag variety called Hessenberg varieties.

Definition 2.4. Fiz a Hessenberg space H C g and an element X € g. The Hessenberg variety
associated to X and H is the subvariety of the flag variety given by

B(X,H)={¢gBe€G/B|g ' XeH}
where g - X := Ad(g)X = gXg~*.

In this paper, we assume X € g is nilpotent, in which case we say that the corresponding variety
B(X,H) is a nilpotent Hessenberg variety. A key example is the case in which H = b and
X € g is nilpotent. Then B(X,b) consists of all flags gB such that g=! - X € b or equivalently
X € ¢g-b. This is called the Springer fiber and is denoted by BX.

Hessenberg varieties have an affine paving, which is like a CW-complex structure but with less
restrictive closure conditions.

Definition 2.5. A paving of an algebraic variety Y is a filtration by closed subvarieties
YoV C---CY,C---CYy=Y.

A paving is affine if every Y; —Y;_1 is a finite disjoint union of affine spaces. In this case, we say
that these affine spaces pave Y .

Like CW-complexes, affine pavings can be used to compute the Betti numbers of a variety.

Remark 2.6. Let Y be an algebraic variety with an affine paving and let ny denote the number of
affine components of dimension k, or zero if ny is zero. Then the compactly-supported cohomology
groups of Y are given by H**(Y) = Z"*. (For more, see e.g. [Ful98, 19.1.1].)

The Bruhat decomposition of the flag variety induces a well-known paving by affines [BL0O, Sec-
tion 2.6]. Decompose the flag variety as G/B = | |, ¢y Cw where C, = BwB/B is the Schubert
cell indexed by w € W and the closure C,, is a Schubert variety. The paving of G/B given by

@/B)= || Cu

L(w)=1

is affine because Cy, = | J, <, C, where < denotes the Bruhat order and because C,, = C*®) for

each w.

y<w
Calculating the Poincaré polynomial of a Schubert variety or a union of Schubert varieties is a

application of this combinatorial description.

Example 2.7. Let G = GL4(C) and consider w = s3sas183. The set {v € W | v < w} is the set
of all possible subwords of w. When w = s3s25183 this set is

{53525133, 525183, 535283, 535251, $352, 351, S251, S253, S1, S2, 53, e}

Therefore the Poincaré polynomial of Cy, is P(Cy,t) = 1+ 3t + 4% + 3t3 + t*.
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Intersecting the Hessenberg variety B(X, H) with certain choices of Schubert cells gives an
affine paving of B(X, H). We call these intersections Hessenberg Schubert cells (or Springer
Schubert cells if the underlying Hessenberg variety is in fact a Springer fiber). We now describe
the Hessenberg Schubert cells that we use in this paper. Note that B(X, H) and B(g- X, H) are
homemorphic (see, for example, the one-line proof in [Tym06, Proposition 2.7]).

Let X € g be nilpotent and fix H. The previous paragraph says that we can choose X within
its conjugacy class to make computations as convenient as possible. We now describe one such
choice when g = gl,,(C). This particular operator will play an important role in the combinatorial
results of Sections 4 and 5. Recall that the conjugacy classes of nilpotent matrices in gl,(C) are
determined by the sizes of their Jordan blocks. Let A be a partition of n. We first construct a
representative for the nilpotent conjugacy class of Jordan type A as in [TymO06, §4].

Definition 2.8. Let A = (A1, A2, ..., Ag) be a partition of n, drawn as a Young diagram with \;
bozes in the i-th row from the top. Fill the boxes of A with integers 1 to n starting at the bottom
of the leftmost column and moving up the column by increments of one. Then mowve to the lowest
boz of the next column and so on. This is called the base filling of A. Let X be the matriz such
that Xy; =1 if j fills a box directly to the right of k in the base filling and Xj; = 0 otherwise.

These matrices will play a key role in the combinatorial results of subsequent sections.

Example 2.9. Let n =5 and A = (3,2). Definition 2.8 gives the following base filling of A and
nilpotent representative X of Jordan type A,

00100
000710
%35‘ and X=10 0 0 0 0
00001
00000

Now we consider the case in which g is an arbitrary complex reductive Lie algebra. In this
general setting, it is still possible to choose a representative for a nilpotent X within its conjugacy
class so that X is a sum of positive root vectors; moreover, if X is regular in some Levi subalgebra
of g then it is possible to make this choice so that the Hessenberg Schubert cells form a paving.
The details of this construction are not necessary for our arguments so we refer the interested
reader to [Prel3, Section 4].

Our proofs require the existence of a Hessenberg Schubert paving, which is guaranteed by the
following theorem (that combines results of the two authors [Prel3, TymO06]).

Theorem 2.10. Fiz a Hessenberg space H C g. Let X € g be a nilpotent element such that X is
reqular in some Levi subalgebra of g and:

(1) if g is type A and X has Jordan type X, then X is the matriz constructed from the base
filling of X\ as in Definition 2.8, or

(2) if g is a complex reductive Lie algebra of arbitrary Lie type, then choose X within its
conjugacy class as in Section 4 of [Preld] (c.f. Corollary 4.9 of [Preld]).

Let X = > g, By for a subset ®x of positive roots. Then the intersection Cy, N B(X, H)
is nonempty if and only if wB € B(X,H) or equivalently w'®x C ®y. If C, N B(X, H) is
nonempty then C,, NB(X, H) = C% for some nonnegative integer d,,. In particular the nonempty
Hessenberg Schubert cells pave B(X, H).
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Remark 2.11. If X € gl,(C) then X can be conjugated into Jordan form, and Jordan form is
reqular in the Levi of block-diagonal matrices given by the Jordan blocks. Results of the first au-
thor [Prel3] and second author in [TymO06] both prove that a Hessenberg Schubert paving exists in
this case. However, these pavings are obtained by different methods: more precisely, the represen-
tative X € gl,,(C) used by the first author is not always equal to the matrix from Definition 2.8.
We use the latter in this paper, as the matrices associated to the base filling of a Young diagram
play a key role in the combinatorial results of subsequent sections.

3. PARABOLIC HESSENBERG VARIETIES ARE PULLBACKS OF STEINBERG VARIETIES

In this section we specialize to the case where the Hessenberg space H is a parabolic subalgebra.
After some preliminary discussion, we prove the geometric relationship between parabolic Hessen-
berg varieties and Steinberg varieties in Theorem 3.5. We then use this result to give an explicit
formula for the Poincaré polynomial of a parabolic Hessenberg variety whenever the Hessenberg
Schubert cells form a paving of that variety.

When G = GL,(C), a standard parabolic subalgebra consists of all matrices with a particular
block upper triangular form. More generally, a parabolic subalgebra is any Lie subalgebra of g
containing a Borel subalgebra and similarly for parabolic subgroups. A classical result states that
the subgroups of GG containing B are precisely the parabolic subgroups of the form

P; = BW,;B = |_| BuwB
weW
where J C A is a subset of simple roots and W is the subgroup of W generated by {s; | a; € J}
[Hum75, Theorem 29.3]. Let p; = Lie(P;) denote the corresponding parabolic subalgebra. Every
parabolic subalgebra of this form is a Hessenberg space containing b.
Denote the projection from the full flag variety B = G/B to the partial flag variety G/P; by
7y : G/B — G/P;. The variety

7, (BY)={gP|g" - X €p,;} CG/Py

is called the Steinberg variety. Steinberg first studied these varieties [Ste88], followed by Shi-
momura [Shi80, Shi85], and more recently Fresse [Frel6]. We will recover some of Fresse’s results
below using a more explicit method that permits us to identify Betti numbers, among other things.

For the rest of the paper we assume H = p; for some J C A. We call the corresponding
Hessenberg variety a parabolic Hessenberg variety.

3.1. Background on parabolics. We begin with a summary of notation and key structural
aspects of parabolics.

Let ®; C @ be the subsystem of roots spanned by J and denote its positive roots by <I>‘} and
negative roots by ®7. The subalgebra p; has Levi decomposition

ps=my duy where my =t® @ g, and uy = EB -
YEDP, yEDT @7

There is a corresponding decomposition of P into the semidirect product M ;U; where M; and Uy
are subgroups of G with Lie(M;) = m; and Lie(Uy) = uy. Let M;/By := M;/(B N Mj) denote
the flag variety of the Levi subgroup M.

Each coset in W/W; contains a unique minimal-length representative. Denote the set of
minimal-length representatives by W7. This coset decomposition respects lengths; when w € W
is written as w = vy with v € W7/ and y € W then £(w) = ¢(v) + £(y) [BBO5, Proposition 2.4.4].
The set W7 can be characterized in the following different ways [Kos61, Remark 5.13].
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Remark 3.1. Fiz a Weyl group element v. The following statements are equivalent:

(1) The Weyl group element v is in W.
(2) Every positive root v with v='(v) € ®~ in fact satisfies v='(y) € = — ®7.
(3) For all a; € J, we have a; ¢ N(v).

The decomposition W = W7 makes the task of identifying inversion sets particularly simple.
This is the context in which we usually use the following lemma, which is also a well-known result
[Kos61, Equation (5.13.2)].

Lemma 3.2. Suppose that v and y are reduced words in W whose product w = vy is also a
reduced word. Then {(w) = £(v) + €(y) and the inversion set of w is the disjoint union N(w) =
N(y) Uy 'N(v).

The next lemma explicitly describes the projection map n; : G/B — G/P;. It is a short
reformulation of the previous statements together with classical results that allow us to factor the
unipotent subgroup as we wish. Recall that each Schubert cell C,, can be written as UYwB/B
where U™ C U is the maximal subgroup such that w~'U%w is contained in the opposite unipotent,
that is U¥ = U NwU w1,

Lemma 3.3. Suppose that w = vy withy € Wy andv € W7 and that vwB € G/B is any element
of the Schubert cell Cy,. Then:

(1) There is a unique way to write uw as uivusy where uy € UV ug € UY.
(2) The image of uwB under the map 7wy : G/B — G/Pj is uyvPy.
(3) The preimage of uyvPy under the map 7 is | |, ey, uioU%yB.
(4)

The projection my restricts to an isomorphism on C,.

Proof. Recall that a root subgroup of U is the one-dimensional unipotent subgroup U, = exp(g.)
for each v € ®. The subgroup U" is the product U" = HWGN(M,l) U,. Moreover the unipotent
subgroup U can be factored as a product of root subgroups in any order [Hum?75, §28.1]. Applying
Lemma 3.2 to the factorization w=! = y~1v=! gives N(w™!) = N(v=!) UvN(y~1). The definition
of U™ thus implies U¥ = U? x vUY%v ™! proving the first claim. Since y € W we know UY C UNM;
and thus uoy € Pj. This means 7 (uwB) = uvP; proving the second claim. It now follows that

7T;1('LL1’UPJ) C |_| uyvUY%yB.
yeW,
Remark 3.1 states that for each u; € U? we have v~ luqv ¢ Pjy and so the containment is an
equality, proving the third claim. When restricted to C,, the map m; is surjective (by Claim (2))
and injective (by Claim (3)), completing the proof. O

Remark 3.4. Claim (4) of the lemma implies that 7 ;(C,) is the Schubert cell indezed by v € W7
in G/Py. We denote this Schubert cell by C7.

3.2. The main pullback result. The next theorem establishes a geometric relationship between
the parabolic Hessenberg variety B(X,ps) and the Springer fiber BX. It is the main result of this
manuscript and holds for all nilpotent X € b and in all Lie types.

Theorem 3.5. Suppose X € b is nilpotent. The pullback of the Steinberg variety m;(BX) under
the projection wy : G/B — G/ Py is the parabolic Hessenberg variety B(X,py).

Proof. Since BX C B(X,p,;) we know 7;(B(X,ps)) contains the Steinberg variety. We need only
confirm that each gB € B(X,py) is sent to an element 7;(gB) € 7;(B%X) in the Steinberg variety.
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Let gB € B(X,p) and write g = uvp for some u € U”, v € W”, and p € Py per Lemma 3.3. We
will show uwvB € BX. Lemma 3.3 says m;(gB) = m;(uvB) so this will prove the claim.

By definition of parabolic Hessenberg varieties we know p~*v~'u~!- X € p;. The parabolic p;
is stable under adjoint action of P; so v~ 'u~!-X € p;. Since X € b and u € U, we can write
X = > nedy CyEy for some subset @y of positive roots and coefficients ¢, € C. Thus

’U_1 . (U_l . X) = Z C,YEvfl(,},).
yEDPY

If this sum is not in b then there is v € ®y with v=1(y) € ®~. We know v~ - (u=!- X) € p; so
v~1(y) € ®;. But Remark 3.1 tells us v=!(y) € &~ — ®;. From this contradiction we conclude
v 1(y) € T for all v € Py so v lu"t - X € b and wvB € BX as desired. O

We obtain the following corollary, which gives a formula for the dimension of each Hessenberg
Schubert cell in terms of a corresponding Springer Schubert cell (or Steinberg Schubert cell in the
partial flag variety G/Py) .

Corollary 3.6. Fiz J C A and X € b. Let w € W and write w = vy withv € W’ and y € Wj.
If wB € B(X,py) then

dim(C,, NB(X,ps)) = dim(C, N BX) + L(y) = dim(CH N7 (BX)) + £(y).

Proof. Let gB € C,, and write gB = ujvusyB for some u; € UY and uy € UY using Lemma 3.3.
Theorem 3.5 shows

urvugyB € Cp NB(X,py) & wvB € C, NB(X,ps) & wvB € C, N BX.

Together with Lemma 3.3, this shows that 7 restricts to an isomorphism C, NBX ~ C¥7 N ;(BY)
and proves the second desired equality. The first equality also follows from Lemma 3.3, since the
map gB + (uz,u1vB) defines an isomorphism of varieties C,, N B(X,ps) — UY x (C, N BX). O

3.3. Combinatorial corollaries. We end this section with a collection of combinatorial corollar-
ies of the pullback result. The key is the following observation that the permutation flags in the
parabolic Hessenberg variety B(X,ps) are precisely the W;-cosets of the permutation flags in the
Springer fiber BX.

Corollary 3.7. Let X € b and w = vy withv € W/ and y € W;. Then wB € B(X,ps) if and
only if vB € BX.

We denote the subset of W ;-coset representatives of permutation flags in BX by
W(X,J):={veW’|vBecBX}

Example 3.8. Let X € gl,(C) be a nilpotent element of Jordan type A = (2,2). If X is in highest
form as in Definition 2.8 then

0 010
X:OOOl
0 0 0O
00 0O

and ®x = {a1 +ag,as+az}. If J = {ay, a3} then Wy is the subgroup of S,, generated by {s1,s3}
and W7 = {e, 52, 5152, 5352, 515352, 52515352 }. We find the set W (X, J) by checking whether v=1- X
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is upper triangular for each v € WY, or equivalently whether v~ ®x C ‘If}'. The following table
computes v o for each v € Wy and a € ®x.

(& ‘ S2 ‘ 5182 ‘ 5382 ‘ 518382 ‘ 5285153852
o) +ag | o —Q a1+ ag +as a3 -1 — Qg
oo +a3 | asz | a1 + a2 + as —Qi2 (e%1 —Qg — Qg

We conclude W (X, J) = {e, s2, 515352} .

We can use W (X, J) to describe a paving of the Steinberg variety m;(B~) using the projection
of the paving by Hessenberg Schubert cells of the parabolic Hessenberg variety B(X,p;). When
X is in a nilpotent conjugacy class satisfying the assumptions of Theorem 2.10, this extends and
improves on Fresse’s result: he proved a paving exists for all Steinberg varieties [Frel6], but we
add explicit information about the cells and their dimensions. Our results apply to all nilpotents
in type A, all nilpotents that are regular in a Levi in general type, and some other cases.

Corollary 3.9. Suppose X € b is a nilpotent element satisfying the assumptions of Theorem 2.10.
Then the intersection CF7 N w;(BX) is nonempty if and only if v € W(X,J). Furthermore, if
veW(X,J) then CE7 N7 ;(BX) ~ C¥ where d, = dim(C, N BX).

Proof. Let v € WY. By Theorem 2.10 the cell C, N BX is nonempty if and only if vB € BX.
The condition vB € BX is equivalent to v € W(X,J) by definition and to vP € m;(B¥) by
Lemma 3.3. The map 7 restricts to an isomorphism C, N\BX ~ CFP Nr;(BX) so CF7 Nm;(BY) is
nonempty if and only if v € W (X, J) in which case it has the same dimension as C,, N\ BX. Finally,
if v € W(X,J) then C, N BX ~ C% by Theorem 2.10. O

Remark 3.10. A priori, Corollary 3.9 only applies to those X € gl,,(C) corresponding to the base
filling of the partition X obtained by recording the sizes of the Jordan blocks of X (see Definition 2.8).
However each X' € gl,,(C) is conjugate to an X' of the desired form. Conjugating X' is equivalent
to translating the Springer fiber, in the sense that Bs X = g 'BX. Since pavings are preserved
under translation, we conclude that all Steinberg varieties WJ(BX/) are paved by affines in type A.

Using these results, we prove the second main theorem of this section: a factorization of the
Poincaré polynomial of a parabolic Hessenberg variety into the product of the Poincaré polynomials
of a Steinberg variety and the flag variety of the Levi subgroup M ;. We denote the Poincaré
polynomial in variable t of a variety X by P(X,t). Recall that M;/B; = M;/(B N Mj) denotes
the flag variety of the Levi subgroup M ;. Note that the permutation flags of M;/B; are precisely
y(B N MJ) for Yy € WJ.

Theorem 3.11. Suppose X € b is a nilpotent element satisfying the assumptions of Theorem 2.10.
Let J C A. Then

P(B(X7PJ)vt) = P(W.](Bx)at)P(B-ht)'
Proof. By Corollary 3.9, the intersections C, N 7;(BX) with v € W(X,J) pave m;(B¥X) and

thus give the Betti numbers of the Steinberg variety (see Remark 2.6). Since 7; restricts to an
isomorphism on C, N BX we write

(3.12) P(WJ(BX),t) — Z tdim(C,,ﬂﬂJ(Bx)) — Z tdim(C,,ﬁBX).
veEW (X, J) veEW (X, J)

Theorem 2.10 says that the nonempty intersections Cy, N B(X,ps) pave the Hessenberg variety
B(X,ps). Corollary 3.7 says Cy,, NB(X, p ) # () if and only if w = vy withy € Wy and v € W(X, J).
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Applying Corollary 3.6, we obtain:
P(B(X?pJ)7t) = Z Z tdim(cvax)té(y)

veEW(X,J) yeW,

_ Z tdim(CvﬁBX) Z e

veEW (X,J) yeW,
= P(m;(BX),t)P(M;/By,t)

which proves the desired result. O

The next section strengthens these combinatorial results in the case of type A. Example 4.4
below demonstrates how Theorems 3.5 and 3.11 can be used in that setting.

4. APPLICATION IN TYPE A: BETTI NUMBERS OF STEINBERG VARIETIES

We give two main applications in type A. The first, given in this section, computes the Betti
numbers of Steinberg varieties using the combinatorics of row-semistrict tableaux. The second,
given in the next section, will show that the Betti numbers of parabolic Hessenberg varieties and
Steinberg varieties match those of specific unions of Schubert varieties whenever the Jordan form
of X corresponds to a partition with at most three row or two columns.

We begin with a subsection that summarizes the key combinatorial objects in the case of type A,
especially tableaux and the kinds of inversions within tableaux that count dimensions in pavings
of Springer fibers. The second subsection adapts these combinatorial descriptions to partial flag
varieties, combining them with the results in Section 3 to give an explicit description of the Betti
numbers of Steinberg varieties.

4.1. Notation for type A. When g = gl,,(C) both X and P, are determined by partitions. Let
= (p1, 2, ..., 1K) be a partition of n. Associate a subset of simple roots to u by the rule that

‘]H =A \ {au1’au1+u27 ey aH1+"'+Hk—1}'

The corresponding parabolic subalgebra p; for J = J,, is the subalgebra of block-upper-triangular
matrices whose block-sizes are determined by J. Every subset J C A has the form J = J, for
some composition p. However we gain no generality by using compositions for p since reordering
blocks corresponds to conjugating the parabolic, which in turn induces an isomorphism G/P ~
G/(wPw™1).

Let A be a partition of n. We let X be the highest form representative of the conjugacy class of
nilpotent matrices of Jordan type A, as given in Definition 2.8.

The permutation flags wB in the Springer fiber BX are in bijection with the row-strict tableaux,
namely tableaux whose entries increase from left to right in each row. The following result describes
this bijection explicitly [Tym06, Theorem 7.1].

Lemma 4.1. The permutation flag wB is an element of BX if and only if the tableau T of shape
A given by labeling the i-th box in the base filling of Definition 2.8 by w™1(i) is a row-strict tableau.

For example, the identity permutation corresponds to the base filling of A. More generally, note
that if 7 labels a box in T then the corresponding box in the base filling of A is labeled by w(i).

Not only do the row-strict tableaux of shape A\ index the nonempty Springer Schubert cells
C, N BX but they encode the dimensions dim(C,, N BX). The next lemma explains how, by
counting certain inversions in the tableau 7. (It is an amalgamation of several earlier results that
are itemized in the proof.)



12 MARTHA PRECUP AND JULIANNA TYMOCZKO

Let RST(A) denote the set of all row-strict tableaux of shape A. Let T be a row-strict tableau and
T'[i] be the diagram obtained by restricting 7' to the boxes labeled 1,...,7. (Since T is row-strict,
the diagram T'[i] consists of rows of boxes without gaps in rows—in other words if a box is deleted,
all boxes in the same row and to the right of that box must also have been deleted.)

Lemma 4.2. Suppose wB € BX and let T € RST(\) be the row-strict tableau corresponding to w
as in Lemma 4.1. Let 2 < g <n and {4_; be the sum of

o the number of rows in T[q] above the row containing q and of the same length, plus
e the total number of rows in T[q] of strictly greater length than the row containing q.

Then

dim(C,, N BX) =Y iy
i=2
We call £,_1 the number of q-row inversions of the diagram T.

Proof. Springer dimension pairs are a subset of the inversions in a filled tableau; the total number
of Springer dimension pairs is equal to dim(C, N B%X) by work of the second author [TymO06,
Theorem 7.1]. A Springer dimension pair (p, q) satisfies:

(1) 1<p<g<nand

(2) g occurs in a box below p and in the same column or in any column strictly to the left of
pin T, and

(3) if the box directly to the right of p in T, is filled by 7, then ¢ < 7).

The quantities ¢;,_; count the number of Springer dimension pairs of the form (p,gq) for 1 <
p < ¢ < n and so the sum of the £,_; also gives the total number of Springer dimension pairs
[PT19, Mbil0]. O

Example 4.3. Continuing Ezample 3.8, let X = (2,2) and X € gl,(C) be the corresponding
nilpotent matriz. The following table displays all row-strict tableaux of shape (2,2), records the
corresponding permutation w € Sy such that wB € BX, and computes dim(C,, N BX).

T 2141 13|4(|11/4](/2[3]]]1]3 12
113 |1)2](|2]3]|]]1]4||]2|4 314

w E Sy e So S1 S3 81583 | 818359

dim(C,, N BX) 0 1 1 1 2 2

For exzample, to see dim(Cs,s,s, N BX) = 2 we compute €3 = 1 (since T = T[4] has one row of
length > 2 other than the row containing 4), 5 = 1 (since T[3] has one row of length > 1 other
than the row containing 3), and €1 = 0 (since T[2] has only one row).

Example 4.4. We use Example 4.3 to give an explicit example of the results from Section 3.
As in Example 3.8, take J = Jp9) = {a1,a3} so W(X,J) = {e,s2,515352}. The Poincaré
polynomial of the Steinberg variety wy(BX) is determined by the dimensions dim(C, N BX) above
when v € W(X,J). Thus we have P(m;(BX),t) =1+t + 2.

Since Wy = {e, 51,53, 5153} Theorem 3.11 gives the Poincaré polynomial of B(X,p(2,2)):

P(B(X,ps),t) = (1 4+t +12)(1+2t +1%) = 1+ 3t + 462 + 3> + t*.

4.2. Betti numbers of Steinberg varieties. Using the main theorems of Section 3, we prove
that the Betti numbers of Steinberg varieties are enumerated by row-semistrict tableaux.
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Definition 4.5. Let A and p be partitions of n. A row-semistrict tableau of shape \ and
weight p is a tableau T' of shape A\ with puy many 1’s, ps many 2’s, and so on, such that the entries
in each row are weakly increasing. Let RSST(A, p) denote the set of all row-semistrict tableaux of
A and weight p. If the entries in each column of T are strictly increasing, then we say that T
is a semistandard tableau of shape A\ and weight p and let SST(\, ) denote the subset of
RSST(\, i) of semistandard tableaux.

There is a natural map from row-strict tableaux of shape A to row-semistrict tableaux of shape
A and content p obtained simply by repeating entries. More precisely, relabel the first u; integers
1, the next uo integers 2, the next us integers 3, and so on. For example, if u = (3,2) then
1,2,3 — 1 and 4,5 — 2. The degeneration map ¢, , : RST(A\) — RSST(A, ) is induced on
row-strict tableaux by this relabeling.

Example 4.6. If A\ = p=(2,2) then 1,2 — 1 and 3,4 — 2 and thus:

113 112 112 1|1
¢(2,2),(2,2)< 204 ): 112 and ¢(2,2),(2,2)( 314 ) = 219"

The degeneration map is not typically injective. However, the next lemma tells us that when

restricted to the row-strict tableaux corresponding to W (X, J,,), the degeneration map is bijective.
Let RST(A, i) denote the set of all row-strict tableaux of shape A corresponding to v € W (X, J,),
namely obtained by labeling the i-th box in the base filling of A by v=1(i) for each i. We have the
following four related objects, which we collect here for the reader’s convenience:

e RST(\) is the set of all row-strict tableaux of shape A

e RST(A, i) is the set of all row-strict tableaux of shape A corresponding to v € W(X, J,)
e RSST(A, ) is the set of all row-semistrict tableaux of shape A and weight u

e SST(A, ) is the set of semistandard tableaux of shape A and weight p.

The next result shows that ¢, is bijective on RST(A, ) while a later result studies the preimage
under ¢y, of SST(A, u).

Lemma 4.7. The restriction of the degeneration map to RST(\, ) is bijective:
G, RST(A, ) —— RSST(A, p)

Proof. We define a map 1y ,, : RSST(A, 1) — RST(A, i) and prove that it is the inverse of ¢, ,,.

Let T € RSST(A, ). The boxes of T that are labeled by a fixed 7 € [k] are totally ordered by the
base filling of A\. Label these boxes, in order, with the integers pg+p1+- - -+ pi—1+1, ..., p1+- -+ ;.
Proceeding in this fashion for each i € [k] gives a row-strict tableau, denoted 1 (1) € RST(A, p).
By construction ¢y, 0 ¥ ,(T) =T for all T € RSST(\, p).

To complete the proof, we show 1 ,,(T") corresponds to v € W (X, J,,) (in the sense of Lemma 4.1)
for each T' € RSST(A, u). By construction, writing the numbers that fill ¢ ,(7") in order of the
base filling of A gives the sequence [v=1(1),v71(2), .- ,v~%(n)] that is the one-line notation for
v~1. Also by construction, the first ©1; numbers in this sequence are in increasing order, as are the
next pg, the u3 after that, and so on. Thus given a pair p < g with v=1(p) > v=1(q) we know that
p, q are in different “blocks”, meaning they cannot be a pair of the following form:

{(,9) | po+ -+ pi-1 +1<p,q < py + - + p; for some i € [k]},

But the pairs (p, q) in those “blocks” are precisely the indices corresponding to the roots ® ;. We
have confirmed the condition in statement (2) of Remark 3.1 holds for v so v € W7+ and hence
v € W(X,J,). Thus v, o ¢y, restricts to the identity on RST(A, i), as desired. O
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Example 4.8. Continuing the previous example, we observe that 1y, sends

12r—>24 and ALl [1]2

1|2 13 212 314
In both cases we have ¢y, (Yxu(T)) =T.

The following proposition is a version of Lemmas 4.1 and 4.2 for Steinberg varieties. Although
similar descriptions of the irreducible components of Steinberg varieties have appeared in the
literature [Shi80, Shi85, Ste88], the formula below computes the entire Poincaré polynomial. There
are similar formulas for the Betti numbers of a different generalization of Springer fibers to partial
flag varieties called Spaltenstein varieties [Frel8, BO11].

Proposition 4.9. Let A\ and p be partitions of n and assume p has k rows. Let X be the matriz
in the nilpotent conjugacy class associated to A given in Definition 2.8 and J = J,. For each
T € RSST(A\, p) let dr be the number of pairs (p,q) € [k] X [k] counted with multiplicity such
that

(1) p<qand

(2) q occurs in a box below p and in the same column or in any column strictly to the left of

pinT and

(3) if the box directly to the right of p in T is filled by v, then ¢ <1,

Then
P(r,(BY),t)= >t
TERSST(A, 1)
Proof. By Corollary 3.9, the intersections {C,Nm;(BX) | v € W(X, J)} pave m;(B%X) and moreover
dim(C, N7 ;(BYX)) = dim(C, N BX). Lemma 4.7 shows that each T € RSST(\, i) corresponds to a
unique v € W(X, J) since (bXL(T) € RST(\, 1). Thus it suffices to show that dim(C, N BX) = dr
for each T' € RSST(A, 1) whenever v € W(X, J,,) is the permutation corresponding to the tableau
By definition ¢y ,(T3) = T. The conditions on (p, ¢) in Proposition 4.9 are precisely those from

the proof of Lemma 4.2 counting inversions in 7,,. Thus dim(C,NBX) > dr for each v € W(X, J,,).
By Proposition 4.9 if p’ < ¢’ satisfy po +p1 + -+ pi < p',¢ < g1 + -+ + p; for some i € [k]
then v=1(p') < v71(¢’). Thus the degeneration map sends each inversion (p’,q’) in T, to a pair
(p,q) € [Kk] x [k] with p # q and so (p, q) contributes to dz. This means dim(C, N BX) = dr and
the claim is proved. O

Example 4.10. Let A = p = (2,2) as in Ezample 4.3. The table below displays the three row-
semistrict tableauz in RSST(A, 1) and the pairs counted by dr in each case.

1121122 1]1
112 1)1 2|2

T € RSST(\, 1)

pairs counted by dr 0 | (1,2)|(1,2),(1,2)

The pair (1,2) is counted twice for the last row-semistrict tableau since there are two pairs satisfying
the given conditions—one for each 2 appearing in the second row of T.

By Corollary 3.9, the dimension of the Steinberg variety m;(BX) is
max{dim(C, N BX) | v € W(X,J)} < dim(BY).
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Steinberg first counted the irreducible components of 7;(BX) with maximal dimension dim(B%)
in [Ste88]. The following corollary is a simpler proof of Steinberg’s theorem, using only the affine
paving and combinatorics of row-strict tableaux. Recall that the Kostka number K, is the number
of semistandard tableaux of shape A and weight y. The Kostka number is an important quantity
in algebraic combinatorics and representation theory.

Corollary 4.11. Let A and p be partitions of n, X € gl,,(C) the nilpotent matriz of Jordan type
A fized in Definition 2.8, and J = J,,. There are exactly Ky, irreducible components of 77(BX) of
dimension dim(BX).

Proof. First we identify the irreducible components of 7;(B%) of dimension dim(B*). Corol-
lary 3.9 showed that CF7 N7 ;(B%X) is isomorphic to affine space so C47 N 77 (BX) is irreducible and
nonempty for all v € W (X, J). Furthermore if diim(C N7 ;(BX)) = dim(BY) then C7 N 77 (BX)
must be an irreducible component. If v € W (X, J) then Corollary 3.9 said dim(CH7 N ;(BX)) =
dim(C, N BX). Finally, the dimension of C, N BX is maximal if and only if the corresponding
row-strict tableau T € RST()) is in fact a standard tableau (e.g. [PT19, Theorem 3.5]). Thus we
need to find the set of v € W (X, J) that correspond to standard tableaux.

To complete the proof, we argue that there are K, many such v. We know that ¢, , :
RST(A, ) — RSST(A, p1) is a bijection by Lemma 4.7. If T' € RSST(A, p1) is not semistandard—namely
there is a column in which some ¢ appears twice—then its row-strict preimage is not column-strict,
since the base filling of A increases bottom-to-top in columns. If T is semistandard then its
row-strict preimage is column-strict by construction of the inverse map, and hence is standard.
Thus the unique preimage in RST(A, ) of each semistandard T of shape A and weight p must be
standard. The tableaux in RST(), ) are precisely those corresponding to W (X, J) so this proves
the claim. 0

Example 4.12. FEzxample 4.10 showed that when A = p = (2,2) the Steinberg variety B(X,py) has
a single irreducible component of dimension dim(BX) = 2. A key property of Kostka numbers is
that Ky =1 for all \. This confirms the results of Corollary 4.11 in this case.

We can use other classical properties of Kostka numbers to infer data about Steinberg varieties.
For instance, recall that K, = 0 whenever p # A, where < denotes the dominance order on
partitions of n. Corollary 4.11 implies that the dimension of the Steinberg variety m;(BX)) is
strictly less than that of the Springer fiber BX whenever J = Ju, X is of Jordan type A, and
1 4 A In Section 6 we give an explicit example in which this occurs.

5. APPLICATIONS IN TYPE A: PARABOLIC HESSENBERG VARIETIES HAVE THE SAME POINCARE
POLYNOMIAL AS UNIONS OF SCHUBERT VARIETIES

Our second application of the main theorem identifies specific unions of Schubert varieties
whose Poincaré polynomials agree with those of parabolic Hessenberg varieties. We use the same
notation as in the previous section, again just treating type A. Our strategy is to associate to
each flag wB € B(X,ps) a permutation wr whose length is the dimension dim(C,, N B(X,ps))
of the Hessenberg Schubert cell for wB. We call wy the Schubert point corresponding to w.
We will show that the map w ~ wp preserves the set W7/. We use this together with the
decomposition wy = vy into a product of vy € W7 and y € W to construct Schubert varieties
whose permutation flags are a union of Wj-cosets. Theorem 5.12 proves that if X € gl (C) is a
matrix whose Jordan form corresponds to a partition with at most three rows or two columns, the
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Betti numbers of B(X, ps) match those of
U é'UT’LUJ
veW (X,J)

where w; € W denotes the longest element of W;. The theorem also gives an analogue for
FJ(BX).

Any parabolic Hessenberg variety that is not irreducible will correspond to the union of more
than one Schubert variety. The Schubert cells in their intersection are counted only once, not with
multiplicity, which is the main subtlety of this theorem.

We begin with a canonical factorization of W = S, following Bjorner-Brenti’s presentation
[BB05, Corollary 2.4.6]. Recall that the roots associated to the i*" row of an upper-triangular
matrix are

O, = {ay, 0 + i1, -y 4 + Qg +---+an_1} foreach1 <i<n-—1.

Lemma 5.1 (Bjorner-Brenti). Fach w € W can be written uniquely as w = Wy _1Wp_2 -+ - Walq
where

W; = S, Sk;+1 - Si—15; foreach i =1,...n—1
and either w; = e or k; is a fized integer with 1 < k; <i. We call w; the i-th string of w. Moreover
w twy - w L N(w;) € @; for each i = 1,...,n — 1.
For example the longest word in S; can be written as s1s253515251. In this case the strings are

® W3 = 515283

we = S182 and

w1 = 81
so k; =1 for all i = 1,2, 3. Note that if w; # e then f(w;) =i — k; + 1.

In previous work the authors studied a bijection between wB € BX and certain permutations
wr € W whose lengths are the dimension of the corresponding Springer Schubert cells [PT19,
Definition 3.2]. We define those permutations now.

Definition 5.2. Let wB € BX and let T denote the corresponding row-strict tableau as in
Lemma 4.1. For each 2 < q < n let £4_1 be the number of g-row inversions of T given in
Lemma 4.2. Define a string wg—1 by

Wy 1 = Sq—Ly_1Sq—Ly_1+1 """ Sq—28¢—1 if gq—l 7é 0
1 (& Zf fq,1 =0
50 Wq—1 @5 a string of length £,y by construction. Then
Wr = Wp—-1Wp—2 -+ - WaW1

is the Schubert point associated to wB € BX.

By construction
Uwr) =Lyt +Lly_o+---+ £ = dim(Cy, N BY).

In fact not only are the permutations wr in bijection with row-strict tableaux, but the set of
Schubert points {wr | T is row-strict} forms a lower order ideal in the Bruhat graph whenever A
has at most three rows or two columns—namely the Schubert points index a union of Schubert
varieties [PT19, Theorem 4.4].



HESSENBERG VARIETIES OF PARABOLIC TYPE 17

Lemma 5.3 (Precup-Tymoczko). For each wB € BX there exists a unique Schubert point wr €
W. In addition, if the Jordan form of X corresponds to a partition with at most three rows or two
columns then every permutation w' < wy in Bruhat order corresponds to a unique yB € BX such
that w' = yp for the row-strict tableau T' corresponding to y.

Our plan to extend this result is to show that the Schubert points respect the decomposition
WIW ;. More precisely we will show that v € W if and only if the Schubert point v7 corresponding
to v is an element of W*”. We begin with an alternate characterization of W.

Proposition 5.4. Let w € W and write w = w,_1Wn_o - - - waw1 where w; denotes the i-th string
of w for eachi=1,2,...,n— 1. Then w € W7 if and only if £(w;) < £(w;_1) for all a; € J.

Proof. We will prove the contrapositive statement using Remark 3.1, which says that w is not in
W if and only if there is a simple root a; € J for which a; € N(w). In particular we prove that
for each simple root «; € J, the root a;; € N(w) if and only if £(w;) > £(w;—1).

Since f(w) = l(wp—1) + l(wp—2) + - - + L(wz) + £(w1) we can write

N(w) = N(w) Uw] "N (w) U - Uwy twy - w, Lo N(w, 1)
by Lemma 3.2. Given o; € J consider w; = Sk, Sk;+1 - Si—15; and W;—1 = Sk, Sk; 141" Si—25i—1-
Note that
(55) N(wl) = {Oéi, Si(Oél'_l), ey 85851 SkH_l(Olki)}.
By Lemma 5.1 we know o; € N(w) if and only if a; € wy 'wy -+ w; yw; ! N(w;). Since £(w;) =
i — k; + 1 we know
E(wl) >€(wi,1) S i—ki+1>i—1—k_1+1.

This in turn is equivalent to k; < k;_1 and implies that the reflection sg, , must occur in the word

Wi = Sk, Sk;+1 -+ Si—15i- The description of N(w;) in Equation (5.5) shows that this is the case if

i—1

and only if

SiSi—1 - Sky_141(Qy_y) = Qs F Ok 41+ F i1 + a; € N(w;).
Thus k; < k;_1 if and only if

wi twy - w Y (ag, g1 o i o) € N(w)
But

wi_,ll(aki,l +oag, 41+t o) =
8i—18i—2 " Ski_y 415k, (U, F 41+ F i o) =

and wy, we, ..., w;_o stabilize a;. Putting this together, we conclude £(w;) > £(w;_1) if and only if

a; € N(w) as desired. O

The previous lemma is the key step in the next proposition, which shows that if v € W indexes
a permutation flag vB € BX then the corresponding Schubert point vy is also in W7.

Proposition 5.6. Let vB € BX. Then v € WY if and only if vp € W7.

Proof. Let T denote the row-strict tableau associated to v. We decompose vp into i-strings as
VP = Up—1VUp—2 - - v2v1. Throughout this proof, assume i satisfies 1 <i<n—1and o; € J.

By definition ¢(v;) = ¢; and £(v;—1) = £;—1 so by Proposition 5.4 and Remark 3.1 we have only
to show that o; ¢ N(v) if and only if ¢; < ¢;_y. First a; ¢ N(v) if and only if v(i) < v(i + 1) by
definition of inversions. Since i fills the box labeled by v(#) in the base filling of A, the inequality
v(i) < v(i+ 1) holds if and only if ¢ occurs in a box of T



18 MARTHA PRECUP AND JULIANNA TYMOCZKO

e in the same column and below i + 1, or

e in a column to the left of 7 + 1.
Now consider T'[i] and T'[i + 1]. We obtain T[i] from T'[i + 1] by removing the box containing i + 1.
Lemma 4.2 states that £; counts the number of rows in T'[i + 1] above the row containing 7+ 1 and
of equal length plus the total number of rows in T[i + 1] of length strictly greater than the row
with ¢ + 1. These rows each have the same length in T'[i] since they do not contain ¢ + 1; denote
the set of rows by R. If i satisfies either bulleted condition above then each row in R contributes
one i-row inversion of T to the count of ¢;_; so by Lemma 4.2 we have ¢; = |[R| < £;_;. Conversely
if ¢ satisfies neither bulleted condition then ¢;_; counts only a subset of R since R includes the
row containing i. Therefore ¢;_1 < |R| = ¢;. This proves the claim. O

Corollary 5.7. Suppose X corresponds to a partition with at most three rows or two columns.
Then the set {vr € W’ | v € W/ and vB € BX} is a lower order ideal with respect to Bruhat
order on W7. In other words if v € WY and v' < vy for some vr in the set, then v' is also an
element of the set.

Proof. To prove this, we show that for each v/ € W such that v/ < vy there exists y € W7 with
yB € BX and row-strict tableau 7" such that v = y7+. By Proposition 5.3, there exists a unique
yB € BX and corresponding row-strict tableau 7” such that v' = y7». By Proposition 5.6 this y
must also be an element of W since yz is. d

Remark 5.8. [It’s also important to note what this corollary does not say: this set is a lower order
ideal in W7 but not necessarily in W. The next example shows how this can happen.

Example 5.9. Continue our example when X = p = (2,2). Ezample 4.4 gave the set W (X, J(3.9)) =
{e, $2,818382}. Ezample 4.3 listed the row-strict tableaux corresponding to the elements in W (X, J(g,g)).

1/2
314
the only nonzero contributions to the dimension. By definition we obtain vy = s3sy. Similarly the
34
112
filling, so {vr : v € W(X,J)} = {s352,82,e} in this case. Note that s3 is not in this set, though
s3 < $359 in Bruhat order. This is because s3 & W

The permutation s183S89 corresponds to T = and Example 4.8 explained that {3 = f5 = 1 were

row-strict tableau corresponding to sy is T' = with vy = so and e corresponds to the base

Corollary 5.7 immediately implies that the Poincaré polynomial of the Steinberg variety agrees
with that of a union of Schubert varieties in the partial flag variety.

Corollary 5.10. Suppose X € gl (C) is nilpotent with Jordan form corresponding to a partition
A with at most three rows or two columns. Then the following Poincaré polynomials are equal:

—P
P(ms(BY),t) = P (Uuew(x.n i )
where Uf; is a Schubert variety in the partial flag variety G/Py.

Proof. Corollary 3.9 tells us that the Steinberg variety is paved by the cells CF7 N 7 ;(BX) for
v € W(X,J) and that dim(CH’ N 7;(BX)) = dim(C, N BX) for each of these cells. In addition
dim(C, N BX) = {(vr) by construction. Corollary 5.7 now tells us that {vT € W’ :v € W(X,J)}
is a lower order ideal. Since W7 indexes the permutation flags in G//P; this means the union of
Schubert varieties 65; in the partial flag variety G/P; has the same Poincaré polynomial as the
Steinberg variety, as desired. O

Example 5.11. Continuing our running example, Example 4.4 showed that when A\ = p = (2,2)
the Poincaré polynomial of the Steinberg variety w;(BX) is 14t + t2. This is also the Poincaré
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polynomial of the Schubert variety 62‘;2 in G/Py. (In contrast, the Poincaré polynomial of the

Schubert variety 63332 CG/Bis1+2t+1t2.)
We are now ready to state and prove the main theorem of this section.

Theorem 5.12. Suppose X € gl,,(C) is nilpotent with Jordan form corresponding to a partition
A with at most three rows or two columns. Then the following Poincaré polynomials are equal:

P(B(Xa pJ)7 t) =P (UUEW(X,J)évaJ 5 t)
where wy denotes the longest word in Wy.

Proof. Note that the union of Schubert varieties is the disjoint union of Schubert cells

U 6vaJ = |_| |_| Cva

veEW (X,J) veW (X,J)yeW,
because Schubert points are distinct and because W (X, J) is a subset of coset representatives for

W/W;. Recall that M;/B; denotes the flag variety M;/(B N Mj) of M; and in particular that
P(M;/By,t) =3, cw, t"Y). Thus we have

P(Uvew(x./)Cogw,nt) = Y t"WIP(M;/By.1)
vEW (X, J)
= Y 1 m@EOp(a, /Byt
veEW (X,J)
= P(B(XapJ)vt)

where the last two equalities follow from Definition 5.2 and Corollary 3.11, respectively. g

Example 5.13. FEzample 4.4 studied the parabolic Hessenberg variety when X is nilpotent of
Jordan type A = (2,2) and J corresponds to the partition (2,2) and found its Poincaré polynomial:

P(B(X,ps),t) = (1+t+t2)(1+2t +t2) =1+ 3t +4t> + 3¢5 + t*.

This is precisely the Poincaré polynomial of the Schubert variety Cs,s,s,s, computed in Ezam-
ple 2.7.

6. COMPONENTS OF PARABOLIC HESSENBERG VARIETIES

One natural follow-up question is whether the combinatorial results of Proposition 4.9, Corol-
lary 5.10, and Theorem 5.12 reflect an underlying geometric property. We now give one result
in this direction, proving that the irreducible components of parabolic Hessenberg varieties are in
bijection with the irreducible components of a Steinberg variety. The following is the main result
of this section, and holds in all Lie types.

Theorem 6.1. Fiz X € b. Let 7y : G/B — G/P; be the projection w;(gB) = gP;. Under
this map, the irreducible components of parabolic Hessenberg variety B(X,py) are in bijection with
those of the Steinberg variety 7 ;(BX).

Proof. Let B(X,p;) = UierX; be the decomposition of B(X,p;) into irreducible components.
The map 7 is continuous so each 7 (X;) is irreducible. Theorem 3.5 showed that 7;(B(X,ps)) =
77(BX) so w7 (BYX) can be written as a union U;c ;75 (&;). To show that each 77(X;) is a component,
we prove that if 77(X;) C m;(X;) then i = j. If 7;(X;) C m;(&;) then naturally 75 '7;(X;) C
7T;17TJ<XJ‘). Thus it suffices to show that W;lﬂj(XZ‘) = X, since the X; are by definition components.
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Suppose g1 B € 75" (7;(X;)). Since m;(g1B) € 7;(X;) there exists g2 B € X; with 7;(g1B) =
m7(g2B). By statements (2) and (3) of Lemma 3.3 we can write g1 = uvuiy; and go = wvusys
where v € W7, y; and v, are both in W, and u € U, uy € UYt, uy € UY=.

Let Z = {uvmB | m € M;} C B(X,ps). Then g1 B,g92B € Z and Z is isomorphic to the flag
variety M;/By. Therefore Z is an irreducible subvariety of B(X,p;), and must be contained in a
single irreducible component of B(X,p;). This implies Z C X; so g1 B € X; as desired. d

As an immediate corollary, we conclude that in type A, the number of irreducible components
of B(X,ps) with dimension dim(B%X) + ¢(w,) is the Kostka number K,. The proof just applies
Corollary 4.11, namely Steinberg’s result on 77 (B%X).

Corollary 6.2. Let A and p be partitions of n, X € gl,,(C) be a nilpotent matriz with Jordan form
determined by A\, and J = J,. The number of irreducible components of B(X,ps) of dimension
dim(BX) + L(wy) equals the Kostka number K,,.

Corollary 6.2 tells us that some of the irreducible components of parabolic Hessenberg vari-
eties are indexed by certain standard tableaux, specifically, the standard tableaux that become
semistandard under the degeneration map. However, this description does not characterize all
irreducible components, as the following example demonstrates.

Example 6.3. Let X € gl,(C) be a nilpotent matriz of Jordan type A = (2,1,1) so dim(B%X) = 3.
Let p =(2,2) so J =J, = {a1,a3} and wy = sys3. Note that Ky, = 0 in this case, meaning
dim(B(X,py)) < dim(BX) + £(ws) =5 by Corollary 6.2. Taking X as in Definition 2.8 we obtain
Ox = {as} and

W(X,J) = {e, s2, $152, $2518352 }.
Consider the points vi = s1S2 and vy = S95183S2. The table below displays the corresponding
elements of RST(A) and RSST(N), and computes vrwy in each case.

v e VV()(7 J) T e RST()\) (ZSA,/L(T) € RSST(/\) v VW g
2[4] 1]2]
U1 = 5152 11 11 5152 | 51525183
3] 2]
1]2] 1]1]
Vg = 9515352 14 12 5382 | 53525153
3 2

We claim that Cyy o, N B(X,ps) and Cy,w, NB(X,ps) are the irreducible components of B(X,p).
We know dim(Cy, v, NB(X,py)) = L(vr) + L(wy) = 4 from our analysis of parabolic Hessenberg
varieties. This is the same as dim(Cly,w,) so in fact Cy 0, € B(X,py). Thus

Cvle mB(XapJ):évle = |_| C(w: |_| Cme(vaJ)
w<viwy w<lviw,y
Since vowy f viwy and the Hessenberg Schubert cells corresponding to vowy and viwjy have the
same dimension, neither of Cy ., NB(X,ps) and Cyyw, NB(X,ps) can contain the other. Since
vwy < vywy for all other v e W(X,J), we conclude

B(XapJ) = me.] U (C’UZ’[UJ N B(vaJ))

In particular, note that neither irreducible component corresponds to a standard (or semistandard)
tableau of shape .

Our partial description of the irreducible components of B(X, p ) leads to the following question.
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Question 6.4. Suppose m;(BX) is paved by Steinberg Schubert cells. Give a combinatorial descrip-

tion of those v € W(X,.J) for which C¥7 Nw;(BX) is an irreducible component of the Steinberg
variety.

Any answer to this question would also compute the irreducible components of the corresponding
parabolic Hessenberg variety. Motivated by Example 6.3, one possibility is that C, N (BX) is
an irreducible component of 7;(B%X) if the Schubert point vz corresponding to v is a maximal in
the set {vp | v € W(X,J)}. We have not been able to find a counterexample to this conjecture,
but suspect that there is one.

In addition, an answer to Question 6.4 would extend the known characterization of components
of the Springer fibers in type A. It appears, too, to require a deep analysis of the set W (X, J) as
well as its connection to the geometry of the Steinberg variety.
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