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Abstract. This paper studies the geometry and combinatorics of three interrelated varieties:

Springer fibers, Steinberg varieties, and parabolic Hessenberg varieties. We prove that each

parabolic Hessenberg variety is the pullback of a Steinberg variety under the projection of the

flag variety to an appropriate partial flag variety and we give three applications of this result.

The first application constructs an explicit paving of all Steinberg varieties in Lie type A in

terms of semistandard tableaux. As a result, we obtain an elementary proof of a theorem of

Steinberg and Shimomura that the well-known Kostka numbers count the maximal-dimensional

irreducible components of Steinberg varieties. The second application proves an open conjecture

for certain parabolic Hessenberg varieties in Lie type A by showing that their Betti numbers equal

those of a specific union of Schubert varieties. The third application proves that the irreducible

components of parabolic Hessenberg varieties are in bijection with the irreducible components

of the Steinberg variety. All three of these applications extend our geometric understanding of

the three varieties at the heart of this paper, a full understanding of which is unknown even for

Springer varieties, despite over forty years’ worth of work.

1. Introduction

In this paper, we study the geometric and combinatorial structure of three interrelated varieties,

using properties of one variety to infer new information about the others. We now introduce these

varieties in Lie type A though much of the paper treats arbitrary Lie type. Two of these varieties

are subvarieties of the flag variety G/B, which in type A is the collection of nested complex vector

spaces V1 ⊆ V2 ⊆ · · · ⊆ Vn−1 ⊆ Cn where each Vi is i-dimensional. The third is a subvariety of

the partial flag variety G/P , which in type A is a family that includes the Grassmannian G(k, n)

of k-dimensional subspaces of a fixed Cn. The three main objects we consider are the following.

(1) Springer fibers: Defined by a nilpotent linear operator X, the Springer fiber BX is

the family of flags that are fixed by X in the sense that XVi ⊆ Vi for all i. Springer

proved that the cohomology of the Springer fibers carries an action of Sn in what is

often considered a first example of a geometric representation theory [Spr78, Spr76]. The

geometry of Springer fibers is deeply connected to the combinatorics of permutations and

Sn-representations. However, little is known about Springer fibers for general X except the

Betti numbers [Fre09, Tym06] and that they are are pure dimensional with components

indexed by standard tableaux [Spa76]. More is known about the components themselves

for particular X, e.g. if X2 = 0 [FM10], the Jordan type of X has two blocks [Fre10,

Fun03, Wil18, ILW19], or when the irreducible components of BX are smooth [GZ11].

(2) Parabolic Hessenberg varieties: Hessenberg varieties loosen the condition used to

define Springer fibers. Given a linear operator X and a nondecreasing function h :

{1, 2, . . . , n} → {1, 2, . . . , n} the Hessenberg variety B(X,h) consists of the flags that X

moves by no more than h, in the sense that XVi ⊆ Vh(i) for all i. Motivated by Hessen-

berg matrices and algorithms for efficiently calculating eigenvalues in numerical analysis,

Hessenberg varieties in the flag variety of GLn(C) were first introduced by De Mari and

Shayman [DMS88] and later defined in all Lie types by De Mari, Procesi, and Shayman
1
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[DMPS92]. Independently, Peterson and Kostant used them to construct the quantum co-

homology of the flag variety [Kos96] (see also [Rie03]). When X has n distinct eigenvalues,

the equivariant cohomology of the corresponding Hessenberg variety carries an Sn-action

[Tym08] that can be described by certain quasisymmetric functions (see the conjecture

by Shareshian and Wachs [SW16] and recent proof from Brosnan and Chow [BC18] and

independently Guay-Paquet [GP16]). As with Springer fibers, this endows the Betti num-

bers of Hessenberg varieties with combinatorial and representation-theoretic significance.

Many people have analyzed these Betti numbers and cohomology rings for special cases

of X and h (see [Tym06, Pre18, Mbi10, AHHM14, AHM+16] for just a few examples),

though as with Springer fibers, the general geometric structure of Hessenberg varieties

remains mysterious.

This paper considers the case when h corresponds to a parabolic subalgebra, which

occurs when the image of h consists of precisely those i that are fixed by h. (If i1 < i2 are

two consecutive fixed points of h then h(i1 + 1) = h(i1 + 2) = · · · = h(i2) = i2. This means

h describes the column-heights of a block-upper-triangular collection of matrices, namely

a parabolic subalgebra of the n× n matrices.)

(3) Steinberg varieties: Steinberg varieties loosen the condition used to define Springer

fibers in a different way. Given a linear operator X and an integer 1 ≤ k < n the Stein-

berg variety associated to X and k is the collection of k-planes Vk with XVk ⊆ Vk. More

generally, if X is a linear operator and J is the index set of any partial flag variety G/PJ
with elements Vi1 ⊆ Vi2 ⊆ · · · ⊆ Cn then the Steinberg variety corresponding to X and

J is the image πJ(BX) under the standard projection πJ : G/B → G/PJ obtained by

forgetting subspaces not indexed by i ∈ J . (We denote Steinberg varieties thus through-

out this paper.) Steinberg proved that the irreducible components of πJ(BX) of maximal

dimension are counted by the Kostka numbers, a well-known quantity in algebraic combina-

torics [Ste88]. Borho and MacPherson computed the cohomology of the Steinberg variety

πJ(BX), identifying it with the subspace of WJ -invariants of the Springer representation

on H∗(BX) where WJ is generated by the simple reflections si for i /∈ J [BM83]. More

recently, Fresse proved all Steinberg varieties are paved by affines [Fre16]. Little else is

known about the geometry of Steinberg varieties.

This paper analyzes the topological structure of parabolic Hessenberg varieties. Our main

result proves that each parabolic Hessenberg variety is the pull-back of a Steinberg variety under

the projection to a partial flag variety (c.f. Theorem 3.5 below.)

Theorem 1. Let h : {1, 2, . . . , n} → {1, 2, . . . , n} be a parabolic Hessenberg function with fixed

points J = {i1, i2, . . . , ik} and let πJ : G/B → G/PJ be the corresponding projection of the full

flag variety to the partial flag variety obtained by forgetting subspaces Vi with i 6∈ J . The parabolic

Hessenberg variety B(X,h) is the pull-back of the Steinberg variety πJ(BX) under πJ .

We use this theorem to give an explicit formula for the Poincaré polynomial of a parabolic

Hessenberg variety for those X that satisfy the assumptions of Theorem 2.10. Theorem 3.11 proves

it is the product of the Poincaré polynomial of the Steinberg variety and Poincaré polynomial of a

smaller flag variety. As a corollary, we show that the Poincaré polynomial of a parabolic Hessenberg

variety is the shifted sum of the Poincaré polynomial of the Steinberg variety, with shifts determined

by h.

Moreover our results explicitly lay out the combinatorics of a paving for both Steinberg varieties

and parabolic Hessenberg varieties when X satisfies the assumptions of Theorem 2.10. This allows
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us to specify Betti numbers for Steinberg and parabolic Hessenberg varieties, and to recover Fresse’s

proof that pavings of Steinberg varieties exist by explicitly producing a paving for these X.

We give three main applications of these results.

First, we develop an explicit combinatorial description of the paving of Steinberg varieties in

type A in terms of certain semistandard tableaux. We recover a theorem of Steinberg [Ste88]

and Shimomura [Shi80, Shi85] that computes the number of irreducible and maximal-dimensional

components of a Steinberg variety in terms of the well-known Kostka numbers. However, our proof

is more streamlined, grounded in the combinatorics of semistandard (versus standard) tableaux.

Second, we show that the Betti numbers of parabolic Hessenberg varieties for three-row or

two-column nilpotent operators are equal to the Betti numbers of a specific union of Schubert

varieties. Schubert varieties are the closures of cells in the best-known CW-decomposition of the

flag variety; they induce a cohomology basis for the flag variety, and their combinatorics and

geometry are deeply intwined (see, for example, the books [BL00, Ful97]). Varieties whose Betti

numbers are those of a union of Schubert varieties admit a particularly simple construction of

equivariant cohomology, as proven by Harada and the second author [HT17] and applied to certain

Hessenberg varieties [HT11]. Conjecturally, this applies to all nilpotent Hessenberg varieties. The

conjecture was confirmed for Hessenberg varieties when X has a single Jordan block by Mbirika

[Mbi10], who computed the Betti numbers, and Reiner, who recognized them as those of a Schubert

variety called the Ding variety [Din97, DMR07]. More recently, it was also proven for three-row

or two-column Springer fibers by the authors of the current paper [PT19].

Third and last, we give a new analysis of the irreducible components of parabolic Hessenberg

varieties in Section 6. We prove that the irreducible components of parabolic Hessenberg varieties

are in bijection with those of the corresponding Steinberg variety, and state some consequences in

the type A case.

This paper is structured as follows. The second section covers background information and

notation. The third analyzes the structure of parabolic Hessenberg varieties. All the results in

Section 3, including our main result, hold for Hessenberg varieties defined using any complex

algebraic reductive group. The rest of the paper contains applications of this result. The fourth

section specializes to the case G = GLn(C) and describes a paving of Steinberg varieties obtained

by intersecting with Schubert cells. The fifth section then proves in type A that the Betti numbers

of parabolic Hessenberg varieties are equal to those of a specific union of Schubert varieties. An

analogous result holds for Steinberg varieties, except that the union of Schubert varieties is taken

in the partial flag variety (which makes a significant difference). Finally, Section 6 concludes by

studying the irreducible components of parabolic Hessenberg varieties.

Acknowledgements. The first author was partially supported by an AWM-NSF mentoring

grant during this work. The second author was partially supported by National Science Foundation

grants DMS-1248171 and DMS-1362855.

2. Preliminaries

This section establishes key definitions, as well as some results that restate past work in the

form that is most useful in what follows. We fix the following notation:

• G is a complex algebraic reductive group with Lie algebra g.

• B is a fixed Borel subgroup of G with Lie algebra b.

• Φ is the root system of g.

• U is the maximal unipotent subgroup of B with Lie algebra u.

• T ⊂ B is a fixed maximal torus with Lie algebra t.
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• W = NG(T )/T denotes the Weyl group.

• We fix a representative w ∈ NG(T ) for each w ∈W and use the same letter for both.

• Φ+, Φ−, and ∆ are the positive, negative and simple roots associated to the previous data.

• Given γ ∈ Φ we write gγ for the root space in g corresponding to γ and fix a generating

root vector Eγ ∈ gγ .

• We denote by sγ the reflection in W corresponding to γ ∈ Φ and write sαi = si when

αi ∈ ∆.

In Section 3 we specialize to the case when G = GLn(C) is the group of n×n invertible matrices

and g = gln(C) is the collection of n× n matrices. This is also our main example throughout. In

this setting, B is the subgroup of invertible upper-triangular matrices, T is the diagonal subgroup,

and W ∼= Sn is the symmetric group on n letters. The positive roots in this case are

Φ+ = {αi + αi+1 · · ·+ αj−1 | 1 ≤ i < j ≤ n}

where αi = εi − εi−1 and εi(X) = Xii for all X ∈ gln(C). Let Eij denote the elementary matrix

with 1 in the (i, j)-entry and 0 in every other entry. The root vector corresponding to the root

γ = αi + αi+1 · · ·+ αj−1 for each 1 ≤ i < j ≤ n is Eγ = Eij . When working in the type A setting

we sometimes identify (i, j) with the root αi + αi+1 · · ·+ αj−1.

Definition 2.1. The inversion set of the Weyl group element w is the set

N(w) = {γ ∈ Φ+ | w(γ) ∈ Φ−}

This generalizes to arbitrary Lie type the classical definition of an inversion, where the pair

(i, j) is an inversion of w ∈ Sn if i < j and w(i) > w(j). If we identify (i, j) with the root

αi + αi+1 + · · · + αj−1 ∈ Φ+ then (i, j) is an inversion of w in the classical sense if and only if

αi +αi+1 + · · ·+αj−1 ∈ N(w). Note that if `(w) denotes the (Bruhat) length function on W then

`(w) = |N(w)|.
The projective variety G/B is called the flag variety. When G = GLn(C) the flag variety can

be identified with the set of full flags V• = (V1 ⊆ V2 ⊆ · · · ⊆ Vn−1 ⊆ V ) in a complex n-dimensional

vector space V as in the Introduction. Hessenberg varieties are parametrized by two objects: a

Hessenberg space H ⊆ g and an element X ∈ g.

Definition 2.2. A linear subspace H ⊆ g is a Hessenberg space if b ⊆ H and [b, H] ⊆ H.

The condition that [b, H ] ⊆ H implies that this subspace of g can be written as

H = t⊕
⊕
γ∈ΦH

gγ

over an index set ΦH ⊆ Φ determined by (and determining) H. Let Φ−H = ΦH ∩ Φ− denote the

negative roots in this index set. When g = gln(C), the set of indices ΦH forms a “staircase” shape,

in the sense that if (i, j) corresponds to a root in ΦH then so do all (k, j) with 1 ≤ k ≤ i and all

(i, k) with j ≤ k ≤ n. In other words if matrices in H are not identically zero in the entry (i, j),

then they can be nonzero in any entry above or to the right of (i, j).

Each Hessenberg spaceH ⊆ gln(C) is uniquely associated to a Hessenberg function h : {1, ..., n} →
{1, ..., n} by the rule that h(i) equals the number of entries that are not identically zero in the i-th

column of H. This is precisely the map h from the Introduction. The condition that h(i) ≥ i is

equivalent to the requirement that b ⊆ H while the condition h(i) ≥ h(i− 1) is equivalent to the

requirement [b, H] ⊆ H.

We remark that the condition b ⊆ H is typically, but not logically, necessary. It is in any case

implied when H is a parabolic subalgebra, which is the main focus of this paper.
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Example 2.3. We give a Hessenberg function h and the corresponding Hessenberg space H when

n = 5. The space of matrices H is described by indicating where the zeroes must be in each matrix;

the entries designated ∗ can be filled freely with any element of C.

H =


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗

 ←→ h(i) =


2 if i = 1, 2

4 if i = 3

5 if i = 4, 5

This paper focuses on a family of subvarieties of the flag variety called Hessenberg varieties.

Definition 2.4. Fix a Hessenberg space H ⊂ g and an element X ∈ g. The Hessenberg variety

associated to X and H is the subvariety of the flag variety given by

B(X,H) = {gB ∈ G/B | g−1 ·X ∈ H}

where g ·X := Ad(g)X = gXg−1.

In this paper, we assume X ∈ g is nilpotent, in which case we say that the corresponding variety

B(X,H) is a nilpotent Hessenberg variety. A key example is the case in which H = b and

X ∈ g is nilpotent. Then B(X, b) consists of all flags gB such that g−1 · X ∈ b or equivalently

X ∈ g · b. This is called the Springer fiber and is denoted by BX .

Hessenberg varieties have an affine paving, which is like a CW-complex structure but with less

restrictive closure conditions.

Definition 2.5. A paving of an algebraic variety Y is a filtration by closed subvarieties

Y0 ⊂ Y1 ⊂ · · · ⊂ Yi ⊂ · · · ⊂ Yd = Y.

A paving is affine if every Yi−Yi−1 is a finite disjoint union of affine spaces. In this case, we say

that these affine spaces pave Y .

Like CW-complexes, affine pavings can be used to compute the Betti numbers of a variety.

Remark 2.6. Let Y be an algebraic variety with an affine paving and let nk denote the number of

affine components of dimension k, or zero if nk is zero. Then the compactly-supported cohomology

groups of Y are given by H2k
c (Y ) = Znk . (For more, see e.g. [Ful98, 19.1.1].)

The Bruhat decomposition of the flag variety induces a well-known paving by affines [BL00, Sec-

tion 2.6]. Decompose the flag variety as G/B =
⊔
w∈W Cw where Cw = BwB/B is the Schubert

cell indexed by w ∈W and the closure Cw is a Schubert variety. The paving of G/B given by

(G/B)i =
⊔

`(w)=i

Cw

is affine because Cw =
⊔
y≤w Cy where ≤ denotes the Bruhat order and because Cw ∼= C`(w) for

each w.

Calculating the Poincaré polynomial of a Schubert variety or a union of Schubert varieties is a

application of this combinatorial description.

Example 2.7. Let G = GL4(C) and consider w = s3s2s1s3. The set {v ∈ W | v ≤ w} is the set

of all possible subwords of w. When w = s3s2s1s3 this set is

{s3s2s1s3, s2s1s3, s3s2s3, s3s2s1, s3s2, s3s1, s2s1, s2s3, s1, s2, s3, e}

Therefore the Poincaré polynomial of Cw is P (Cw, t) = 1 + 3t+ 4t2 + 3t3 + t4.
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Intersecting the Hessenberg variety B(X,H) with certain choices of Schubert cells gives an

affine paving of B(X,H). We call these intersections Hessenberg Schubert cells (or Springer

Schubert cells if the underlying Hessenberg variety is in fact a Springer fiber). We now describe

the Hessenberg Schubert cells that we use in this paper. Note that B(X,H) and B(g ·X,H) are

homemorphic (see, for example, the one-line proof in [Tym06, Proposition 2.7]).

Let X ∈ g be nilpotent and fix H. The previous paragraph says that we can choose X within

its conjugacy class to make computations as convenient as possible. We now describe one such

choice when g = gln(C). This particular operator will play an important role in the combinatorial

results of Sections 4 and 5. Recall that the conjugacy classes of nilpotent matrices in gln(C) are

determined by the sizes of their Jordan blocks. Let λ be a partition of n. We first construct a

representative for the nilpotent conjugacy class of Jordan type λ as in [Tym06, §4].

Definition 2.8. Let λ = (λ1, λ2, . . . , λk) be a partition of n, drawn as a Young diagram with λi
boxes in the i-th row from the top. Fill the boxes of λ with integers 1 to n starting at the bottom

of the leftmost column and moving up the column by increments of one. Then move to the lowest

box of the next column and so on. This is called the base filling of λ. Let X be the matrix such

that Xkj = 1 if j fills a box directly to the right of k in the base filling and Xkj = 0 otherwise.

These matrices will play a key role in the combinatorial results of subsequent sections.

Example 2.9. Let n = 5 and λ = (3, 2). Definition 2.8 gives the following base filling of λ and

nilpotent representative X of Jordan type λ,

2 4 5
1 3

and X =


0 0 1 0 0

0 0 0 1 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

 .

Now we consider the case in which g is an arbitrary complex reductive Lie algebra. In this

general setting, it is still possible to choose a representative for a nilpotent X within its conjugacy

class so that X is a sum of positive root vectors; moreover, if X is regular in some Levi subalgebra

of g then it is possible to make this choice so that the Hessenberg Schubert cells form a paving.

The details of this construction are not necessary for our arguments so we refer the interested

reader to [Pre13, Section 4].

Our proofs require the existence of a Hessenberg Schubert paving, which is guaranteed by the

following theorem (that combines results of the two authors [Pre13, Tym06]).

Theorem 2.10. Fix a Hessenberg space H ⊆ g. Let X ∈ g be a nilpotent element such that X is

regular in some Levi subalgebra of g and:

(1) if g is type A and X has Jordan type λ, then X is the matrix constructed from the base

filling of λ as in Definition 2.8, or

(2) if g is a complex reductive Lie algebra of arbitrary Lie type, then choose X within its

conjugacy class as in Section 4 of [Pre13] (c.f. Corollary 4.9 of [Pre13]).

Let X =
∑
γ∈ΦX

Eγ for a subset ΦX of positive roots. Then the intersection Cw ∩ B(X,H)

is nonempty if and only if wB ∈ B(X,H) or equivalently w−1ΦX ⊆ ΦH . If Cw ∩ B(X,H) is

nonempty then Cw ∩B(X,H) ∼= Cdw for some nonnegative integer dw. In particular the nonempty

Hessenberg Schubert cells pave B(X,H).
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Remark 2.11. If X ∈ gln(C) then X can be conjugated into Jordan form, and Jordan form is

regular in the Levi of block-diagonal matrices given by the Jordan blocks. Results of the first au-

thor [Pre13] and second author in [Tym06] both prove that a Hessenberg Schubert paving exists in

this case. However, these pavings are obtained by different methods: more precisely, the represen-

tative X ∈ gln(C) used by the first author is not always equal to the matrix from Definition 2.8.

We use the latter in this paper, as the matrices associated to the base filling of a Young diagram

play a key role in the combinatorial results of subsequent sections.

3. Parabolic Hessenberg varieties are pullbacks of Steinberg varieties

In this section we specialize to the case where the Hessenberg space H is a parabolic subalgebra.

After some preliminary discussion, we prove the geometric relationship between parabolic Hessen-

berg varieties and Steinberg varieties in Theorem 3.5. We then use this result to give an explicit

formula for the Poincaré polynomial of a parabolic Hessenberg variety whenever the Hessenberg

Schubert cells form a paving of that variety.

When G = GLn(C), a standard parabolic subalgebra consists of all matrices with a particular

block upper triangular form. More generally, a parabolic subalgebra is any Lie subalgebra of g

containing a Borel subalgebra and similarly for parabolic subgroups. A classical result states that

the subgroups of G containing B are precisely the parabolic subgroups of the form

PJ = BWJB =
⊔

w∈WJ

BwB

where J ⊆ ∆ is a subset of simple roots and WJ is the subgroup of W generated by {si | αi ∈ J}
[Hum75, Theorem 29.3]. Let pJ = Lie(PJ) denote the corresponding parabolic subalgebra. Every

parabolic subalgebra of this form is a Hessenberg space containing b.

Denote the projection from the full flag variety B = G/B to the partial flag variety G/PJ by

πJ : G/B → G/PJ . The variety

πJ(BX) = {gP | g−1 ·X ∈ pJ} ⊆ G/PJ

is called the Steinberg variety. Steinberg first studied these varieties [Ste88], followed by Shi-

momura [Shi80, Shi85], and more recently Fresse [Fre16]. We will recover some of Fresse’s results

below using a more explicit method that permits us to identify Betti numbers, among other things.

For the rest of the paper we assume H = pJ for some J ⊆ ∆. We call the corresponding

Hessenberg variety a parabolic Hessenberg variety.

3.1. Background on parabolics. We begin with a summary of notation and key structural

aspects of parabolics.

Let ΦJ ⊆ Φ be the subsystem of roots spanned by J and denote its positive roots by Φ+
J and

negative roots by Φ−J . The subalgebra pJ has Levi decomposition

pJ = mJ ⊕ uJ where mJ = t⊕
⊕
γ∈ΦJ

gγ and uJ =
⊕

γ∈Φ+−Φ+
J

gγ .

There is a corresponding decomposition of P into the semidirect product MJUJ where MJ and UJ
are subgroups of G with Lie(MJ) = mJ and Lie(UJ) = uJ . Let MJ/BJ := MJ/(B ∩MJ) denote

the flag variety of the Levi subgroup MJ .

Each coset in W/WJ contains a unique minimal-length representative. Denote the set of

minimal-length representatives by W J . This coset decomposition respects lengths; when w ∈ W
is written as w = vy with v ∈ W J and y ∈ WJ then `(w) = `(v) + `(y) [BB05, Proposition 2.4.4].

The set W J can be characterized in the following different ways [Kos61, Remark 5.13].
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Remark 3.1. Fix a Weyl group element v. The following statements are equivalent:

(1) The Weyl group element v is in W J .

(2) Every positive root γ with v−1(γ) ∈ Φ− in fact satisfies v−1(γ) ∈ Φ− − Φ−J .

(3) For all αi ∈ J , we have αi /∈ N(v).

The decomposition W = W JWJ makes the task of identifying inversion sets particularly simple.

This is the context in which we usually use the following lemma, which is also a well-known result

[Kos61, Equation (5.13.2)].

Lemma 3.2. Suppose that v and y are reduced words in W whose product w = vy is also a

reduced word. Then `(w) = `(v) + `(y) and the inversion set of w is the disjoint union N(w) =

N(y) t y−1N(v).

The next lemma explicitly describes the projection map πJ : G/B → G/PJ . It is a short

reformulation of the previous statements together with classical results that allow us to factor the

unipotent subgroup as we wish. Recall that each Schubert cell Cw can be written as UwwB/B

where Uw ⊆ U is the maximal subgroup such that w−1Uww is contained in the opposite unipotent,

that is Uw = U ∩ wU−w−1.

Lemma 3.3. Suppose that w = vy with y ∈WJ and v ∈W J and that uwB ∈ G/B is any element

of the Schubert cell Cw. Then:

(1) There is a unique way to write uw as u1vu2y where u1 ∈ Uv, u2 ∈ Uy.

(2) The image of uwB under the map πJ : G/B → G/PJ is u1vPJ .

(3) The preimage of u1vPJ under the map π is
⊔
y∈WJ

u1vU
yyB.

(4) The projection πJ restricts to an isomorphism on Cv.

Proof. Recall that a root subgroup of U is the one-dimensional unipotent subgroup Uγ = exp(gγ)

for each γ ∈ Φ. The subgroup Uw is the product Uw =
∏
γ∈N(w−1) Uγ . Moreover the unipotent

subgroup U can be factored as a product of root subgroups in any order [Hum75, §28.1]. Applying

Lemma 3.2 to the factorization w−1 = y−1v−1 gives N(w−1) = N(v−1)t vN(y−1). The definition

of Uw thus implies Uw ∼= Uv×vUyv−1 proving the first claim. Since y ∈WJ we know Uy ⊆ U∩MJ

and thus u2y ∈ PJ . This means πJ(uwB) = u1vPJ proving the second claim. It now follows that

π−1
J (u1vPJ) ⊆

⊔
y∈WJ

u1vU
yyB.

Remark 3.1 states that for each u1 ∈ Uv we have v−1u1v /∈ PJ and so the containment is an

equality, proving the third claim. When restricted to Cv the map πJ is surjective (by Claim (2))

and injective (by Claim (3)), completing the proof. �

Remark 3.4. Claim (4) of the lemma implies that πJ(Cv) is the Schubert cell indexed by v ∈W J

in G/PJ . We denote this Schubert cell by CPJv .

3.2. The main pullback result. The next theorem establishes a geometric relationship between

the parabolic Hessenberg variety B(X, pJ) and the Springer fiber BX . It is the main result of this

manuscript and holds for all nilpotent X ∈ b and in all Lie types.

Theorem 3.5. Suppose X ∈ b is nilpotent. The pullback of the Steinberg variety πJ(BX) under

the projection πJ : G/B → G/PJ is the parabolic Hessenberg variety B(X, pJ).

Proof. Since BX ⊆ B(X, pJ) we know πJ(B(X, pJ)) contains the Steinberg variety. We need only

confirm that each gB ∈ B(X, pJ) is sent to an element πJ(gB) ∈ πJ(BX) in the Steinberg variety.
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Let gB ∈ B(X, pJ) and write g = uvp for some u ∈ Uv, v ∈ W J , and p ∈ PJ per Lemma 3.3. We

will show uvB ∈ BX . Lemma 3.3 says πJ(gB) = πJ(uvB) so this will prove the claim.

By definition of parabolic Hessenberg varieties we know p−1v−1u−1 ·X ∈ pJ . The parabolic pJ
is stable under adjoint action of PJ so v−1u−1 · X ∈ pJ . Since X ∈ b and u ∈ U , we can write

u−1 ·X =
∑
γ∈ΦY

cγEγ for some subset ΦY of positive roots and coefficients cγ ∈ C. Thus

v−1 · (u−1 ·X) =
∑
γ∈ΦY

cγEv−1(γ).

If this sum is not in b then there is γ ∈ ΦY with v−1(γ) ∈ Φ−. We know v−1 · (u−1 ·X) ∈ pJ so

v−1(γ) ∈ Φ−J . But Remark 3.1 tells us v−1(γ) ∈ Φ− − Φ−J . From this contradiction we conclude

v−1(γ) ∈ Φ+ for all γ ∈ ΦY so v−1u−1 ·X ∈ b and uvB ∈ BX as desired. �

We obtain the following corollary, which gives a formula for the dimension of each Hessenberg

Schubert cell in terms of a corresponding Springer Schubert cell (or Steinberg Schubert cell in the

partial flag variety G/PJ) .

Corollary 3.6. Fix J ⊆ ∆ and X ∈ b. Let w ∈ W and write w = vy with v ∈ W J and y ∈ WJ .

If wB ∈ B(X, pJ) then

dim(Cw ∩ B(X, pJ)) = dim(Cv ∩ BX) + `(y) = dim(CPJv ∩ πJ(BX)) + `(y).

Proof. Let gB ∈ Cw and write gB = u1vu2yB for some u1 ∈ Uv and u2 ∈ Uy using Lemma 3.3.

Theorem 3.5 shows

u1vu2yB ∈ Cw ∩ B(X, pJ)⇔ u1vB ∈ Cv ∩ B(X, pJ)⇔ u1vB ∈ Cv ∩ BX .

Together with Lemma 3.3, this shows that πJ restricts to an isomorphism Cv∩BX ' CPJv ∩πJ(BX)

and proves the second desired equality. The first equality also follows from Lemma 3.3, since the

map gB 7→ (u2, u1vB) defines an isomorphism of varieties Cw ∩ B(X, pJ)→ Uy × (Cv ∩ BX). �

3.3. Combinatorial corollaries. We end this section with a collection of combinatorial corollar-

ies of the pullback result. The key is the following observation that the permutation flags in the

parabolic Hessenberg variety B(X, pJ) are precisely the WJ -cosets of the permutation flags in the

Springer fiber BX .

Corollary 3.7. Let X ∈ b and w = vy with v ∈ W J and y ∈ WJ . Then wB ∈ B(X, pJ) if and

only if vB ∈ BX .

We denote the subset of WJ -coset representatives of permutation flags in BX by

W (X, J) := {v ∈W J | vB ∈ BX}

Example 3.8. Let X ∈ gl4(C) be a nilpotent element of Jordan type λ = (2, 2). If X is in highest

form as in Definition 2.8 then

X =


0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0


and ΦX = {α1 +α2, α2 +α3}. If J = {α1, α3} then WJ is the subgroup of Sn generated by {s1, s3}
and W J = {e, s2, s1s2, s3s2, s1s3s2, s2s1s3s2}. We find the set W (X, J) by checking whether v−1 ·X
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is upper triangular for each v ∈ W J , or equivalently whether v−1ΦX ⊆ Φ+
J . The following table

computes v−1α for each v ∈WJ and α ∈ ΦX .

e s2 s1s2 s3s2 s1s3s2 s2s1s3s2

α1 + α2 α1 −α2 α1 + α2 + α3 α3 −α1 − α2

α2 + α3 α3 α1 + α2 + α3 −α2 α1 −α2 − α3

We conclude W (X, J) = {e, s2, s1s3s2}.

We can use W (X, J) to describe a paving of the Steinberg variety πJ(BX) using the projection

of the paving by Hessenberg Schubert cells of the parabolic Hessenberg variety B(X, pJ). When

X is in a nilpotent conjugacy class satisfying the assumptions of Theorem 2.10, this extends and

improves on Fresse’s result: he proved a paving exists for all Steinberg varieties [Fre16], but we

add explicit information about the cells and their dimensions. Our results apply to all nilpotents

in type A, all nilpotents that are regular in a Levi in general type, and some other cases.

Corollary 3.9. Suppose X ∈ b is a nilpotent element satisfying the assumptions of Theorem 2.10.

Then the intersection CPJv ∩ πJ(BX) is nonempty if and only if v ∈ W (X, J). Furthermore, if

v ∈W (X, J) then CPJv ∩ πJ(BX) ' Cdv where dv = dim(Cv ∩ BX).

Proof. Let v ∈ W J . By Theorem 2.10 the cell Cv ∩ BX is nonempty if and only if vB ∈ BX .

The condition vB ∈ BX is equivalent to v ∈ W (X, J) by definition and to vP ∈ πJ(BX) by

Lemma 3.3. The map πJ restricts to an isomorphism Cv∩BX ' CPJv ∩πJ(BX) so CPJv ∩πJ(BX) is

nonempty if and only if v ∈W (X, J) in which case it has the same dimension as Cv ∩BX . Finally,

if v ∈W (X, J) then Cv ∩ BX ' Cdv by Theorem 2.10. �

Remark 3.10. A priori, Corollary 3.9 only applies to those X ∈ gln(C) corresponding to the base

filling of the partition λ obtained by recording the sizes of the Jordan blocks of X (see Definition 2.8).

However each X ′ ∈ gln(C) is conjugate to an X ′ of the desired form. Conjugating X ′ is equivalent

to translating the Springer fiber, in the sense that Bg−1·X′ = g−1BX . Since pavings are preserved

under translation, we conclude that all Steinberg varieties πJ(BX′) are paved by affines in type A.

Using these results, we prove the second main theorem of this section: a factorization of the

Poincaré polynomial of a parabolic Hessenberg variety into the product of the Poincaré polynomials

of a Steinberg variety and the flag variety of the Levi subgroup MJ . We denote the Poincaré

polynomial in variable t of a variety X by P(X , t). Recall that MJ/BJ = MJ/(B ∩MJ) denotes

the flag variety of the Levi subgroup MJ . Note that the permutation flags of MJ/BJ are precisely

y(B ∩MJ) for y ∈WJ .

Theorem 3.11. Suppose X ∈ b is a nilpotent element satisfying the assumptions of Theorem 2.10.

Let J ⊆ ∆. Then

P(B(X, pJ), t) = P(πJ(BX), t)P(BJ , t).

Proof. By Corollary 3.9, the intersections Cv ∩ πJ(BX) with v ∈ W (X, J) pave πJ(BX) and

thus give the Betti numbers of the Steinberg variety (see Remark 2.6). Since πJ restricts to an

isomorphism on Cv ∩ BX we write

P(πJ(BX), t) =
∑

v∈W (X,J)

tdim(Cv∩πJ (BX)) =
∑

v∈W (X,J)

tdim(Cv∩BX).(3.12)

Theorem 2.10 says that the nonempty intersections Cw ∩ B(X, pJ) pave the Hessenberg variety

B(X, pJ). Corollary 3.7 says Cw∩B(X, pJ) 6= ∅ if and only if w = vy with y ∈WJ and v ∈W (X, J).
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Applying Corollary 3.6, we obtain:

P(B(X, pJ), t) =
∑

v∈W (X,J)

∑
y∈WJ

tdim(Cv∩BX)t`(y)

=
∑

v∈W (X,J)

tdim(Cv∩BX)
∑
y∈WJ

t`(y)

= P(πJ(BX), t)P(MJ/BJ , t)

which proves the desired result. �

The next section strengthens these combinatorial results in the case of type A. Example 4.4

below demonstrates how Theorems 3.5 and 3.11 can be used in that setting.

4. Application in type A: Betti numbers of Steinberg varieties

We give two main applications in type A. The first, given in this section, computes the Betti

numbers of Steinberg varieties using the combinatorics of row-semistrict tableaux. The second,

given in the next section, will show that the Betti numbers of parabolic Hessenberg varieties and

Steinberg varieties match those of specific unions of Schubert varieties whenever the Jordan form

of X corresponds to a partition with at most three row or two columns.

We begin with a subsection that summarizes the key combinatorial objects in the case of type A,

especially tableaux and the kinds of inversions within tableaux that count dimensions in pavings

of Springer fibers. The second subsection adapts these combinatorial descriptions to partial flag

varieties, combining them with the results in Section 3 to give an explicit description of the Betti

numbers of Steinberg varieties.

4.1. Notation for type A. When g = gln(C) both X and PJ are determined by partitions. Let

µ = (µ1, µ2, . . . , µk) be a partition of n. Associate a subset of simple roots to µ by the rule that

Jµ = ∆ \ {αµ1
, αµ1+µ2

, . . . , αµ1+···+µk−1
}.

The corresponding parabolic subalgebra pJ for J = Jµ is the subalgebra of block-upper-triangular

matrices whose block-sizes are determined by J . Every subset J ⊆ ∆ has the form J = Jµ for

some composition µ. However we gain no generality by using compositions for µ since reordering

blocks corresponds to conjugating the parabolic, which in turn induces an isomorphism G/P '
G/(wPw−1).

Let λ be a partition of n. We let X be the highest form representative of the conjugacy class of

nilpotent matrices of Jordan type λ, as given in Definition 2.8.

The permutation flags wB in the Springer fiber BX are in bijection with the row-strict tableaux,

namely tableaux whose entries increase from left to right in each row. The following result describes

this bijection explicitly [Tym06, Theorem 7.1].

Lemma 4.1. The permutation flag wB is an element of BX if and only if the tableau T of shape

λ given by labeling the i-th box in the base filling of Definition 2.8 by w−1(i) is a row-strict tableau.

For example, the identity permutation corresponds to the base filling of λ. More generally, note

that if i labels a box in T then the corresponding box in the base filling of λ is labeled by w(i).

Not only do the row-strict tableaux of shape λ index the nonempty Springer Schubert cells

Cw ∩ BX but they encode the dimensions dim(Cw ∩ BX). The next lemma explains how, by

counting certain inversions in the tableau T . (It is an amalgamation of several earlier results that

are itemized in the proof.)
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Let RST(λ) denote the set of all row-strict tableaux of shape λ. Let T be a row-strict tableau and

T [i] be the diagram obtained by restricting T to the boxes labeled 1, . . . , i. (Since T is row-strict,

the diagram T [i] consists of rows of boxes without gaps in rows—in other words if a box is deleted,

all boxes in the same row and to the right of that box must also have been deleted.)

Lemma 4.2. Suppose wB ∈ BX and let T ∈ RST(λ) be the row-strict tableau corresponding to w

as in Lemma 4.1. Let 2 ≤ q ≤ n and `q−1 be the sum of

• the number of rows in T [q] above the row containing q and of the same length, plus

• the total number of rows in T [q] of strictly greater length than the row containing q.

Then

dim(Cw ∩ BX) =
n∑
i=2

`i−1

We call `q−1 the number of q-row inversions of the diagram T .

Proof. Springer dimension pairs are a subset of the inversions in a filled tableau; the total number

of Springer dimension pairs is equal to dim(Cw ∩ BX) by work of the second author [Tym06,

Theorem 7.1]. A Springer dimension pair (p, q) satisfies:

(1) 1 ≤ p < q ≤ n and

(2) q occurs in a box below p and in the same column or in any column strictly to the left of

p in Tv and

(3) if the box directly to the right of p in Tv is filled by rp then q ≤ rp.
The quantities `q−1 count the number of Springer dimension pairs of the form (p, q) for 1 ≤
p < q ≤ n and so the sum of the `q−1 also gives the total number of Springer dimension pairs

[PT19, Mbi10]. �

Example 4.3. Continuing Example 3.8, let λ = (2, 2) and X ∈ gl4(C) be the corresponding

nilpotent matrix. The following table displays all row-strict tableaux of shape (2, 2), records the

corresponding permutation w ∈ S4 such that wB ∈ BX , and computes dim(Cw ∩ BX).

2 4
1 3

3 4
1 2

1 4
2 3

2 3
1 4

1 3
2 4

1 2
3 4

T

w ∈ S4 e s2 s1 s3 s1s3 s1s3s2

dim(Cw ∩ BX) 0 1 1 1 2 2

For example, to see dim(Cs1s3s2 ∩ BX) = 2 we compute `3 = 1 (since T = T [4] has one row of

length ≥ 2 other than the row containing 4), `2 = 1 (since T [3] has one row of length ≥ 1 other

than the row containing 3), and `1 = 0 (since T [2] has only one row).

Example 4.4. We use Example 4.3 to give an explicit example of the results from Section 3.

As in Example 3.8, take J = J(2,2) = {α1, α3} so W (X, J) = {e, s2, s1s3s2}. The Poincaré

polynomial of the Steinberg variety πJ(BX) is determined by the dimensions dim(Cv ∩ BX) above

when v ∈W (X, J). Thus we have P(πJ(BX), t) = 1 + t+ t2.

Since WJ = {e, s1, s3, s1s3} Theorem 3.11 gives the Poincaré polynomial of B(X, p(2,2)):

P(B(X, pJ), t) = (1 + t+ t2)(1 + 2t+ t2) = 1 + 3t+ 4t2 + 3t3 + t4.

4.2. Betti numbers of Steinberg varieties. Using the main theorems of Section 3, we prove

that the Betti numbers of Steinberg varieties are enumerated by row-semistrict tableaux.
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Definition 4.5. Let λ and µ be partitions of n. A row-semistrict tableau of shape λ and

weight µ is a tableau T of shape λ with µ1 many 1’s, µ2 many 2’s, and so on, such that the entries

in each row are weakly increasing. Let RSST(λ, µ) denote the set of all row-semistrict tableaux of

λ and weight µ. If the entries in each column of T are strictly increasing, then we say that T

is a semistandard tableau of shape λ and weight µ and let SST(λ, µ) denote the subset of

RSST(λ, µ) of semistandard tableaux.

There is a natural map from row-strict tableaux of shape λ to row-semistrict tableaux of shape

λ and content µ obtained simply by repeating entries. More precisely, relabel the first µ1 integers

1, the next µ2 integers 2, the next µ3 integers 3, and so on. For example, if µ = (3, 2) then

1, 2, 3 7→ 1 and 4, 5 7→ 2. The degeneration map φλ,µ : RST(λ) → RSST(λ, µ) is induced on

row-strict tableaux by this relabeling.

Example 4.6. If λ = µ = (2, 2) then 1, 2 7→ 1 and 3, 4 7→ 2 and thus:

φ(2,2),(2,2)

(
1 3
2 4

)
= 1 2

1 2
and φ(2,2),(2,2)

(
1 2
3 4

)
= 1 1

2 2
.

The degeneration map is not typically injective. However, the next lemma tells us that when

restricted to the row-strict tableaux corresponding to W (X, Jµ), the degeneration map is bijective.

Let RST(λ, µ) denote the set of all row-strict tableaux of shape λ corresponding to v ∈ W (X, Jµ),

namely obtained by labeling the i-th box in the base filling of λ by v−1(i) for each i. We have the

following four related objects, which we collect here for the reader’s convenience:

• RST(λ) is the set of all row-strict tableaux of shape λ

• RST(λ, µ) is the set of all row-strict tableaux of shape λ corresponding to v ∈W (X, Jµ)

• RSST(λ, µ) is the set of all row-semistrict tableaux of shape λ and weight µ

• SST(λ, µ) is the set of semistandard tableaux of shape λ and weight µ.

The next result shows that φλµ is bijective on RST(λ, µ) while a later result studies the preimage

under φλµ of SST(λ, µ).

Lemma 4.7. The restriction of the degeneration map to RST(λ, µ) is bijective:

φλ,µ : RST(λ, µ)
∼−−−→ RSST(λ, µ)

Proof. We define a map ψλ,µ : RSST(λ, µ)→ RST(λ, µ) and prove that it is the inverse of φλ,µ.

Let T ∈ RSST(λ, µ). The boxes of T that are labeled by a fixed i ∈ [k] are totally ordered by the

base filling of λ. Label these boxes, in order, with the integers µ0+µ1+· · ·+µi−1+1, . . . , µ1+· · ·+µi.
Proceeding in this fashion for each i ∈ [k] gives a row-strict tableau, denoted ψλ,µ(T ) ∈ RST(λ, µ).

By construction φλ,µ ◦ ψλ,µ(T ) = T for all T ∈ RSST(λ, µ).

To complete the proof, we show ψλ,µ(T ) corresponds to v ∈W (X, Jµ) (in the sense of Lemma 4.1)

for each T ∈ RSST(λ, µ). By construction, writing the numbers that fill ψλ,µ(T ) in order of the

base filling of λ gives the sequence [v−1(1), v−1(2), · · · , v−1(n)] that is the one-line notation for

v−1. Also by construction, the first µ1 numbers in this sequence are in increasing order, as are the

next µ2, the µ3 after that, and so on. Thus given a pair p < q with v−1(p) > v−1(q) we know that

p, q are in different “blocks”, meaning they cannot be a pair of the following form:

{(i, j) | µ0 + · · ·+ µi−1 + 1 < p, q ≤ µ1 + · · ·+ µi for some i ∈ [k]},

But the pairs (p, q) in those “blocks” are precisely the indices corresponding to the roots ΦJ . We

have confirmed the condition in statement (2) of Remark 3.1 holds for v so v ∈ W Jµ and hence

v ∈W (X, Jµ). Thus ψλ,µ ◦ φλ,µ restricts to the identity on RST(λ, µ), as desired. �
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Example 4.8. Continuing the previous example, we observe that ψλ,µ sends

1 2
1 2

7→ 2 4
1 3

and 1 1
2 2

7→ 1 2
3 4

In both cases we have φλ,µ(ψλ,µ(T )) = T .

The following proposition is a version of Lemmas 4.1 and 4.2 for Steinberg varieties. Although

similar descriptions of the irreducible components of Steinberg varieties have appeared in the

literature [Shi80, Shi85, Ste88], the formula below computes the entire Poincaré polynomial. There

are similar formulas for the Betti numbers of a different generalization of Springer fibers to partial

flag varieties called Spaltenstein varieties [Fre18, BO11].

Proposition 4.9. Let λ and µ be partitions of n and assume µ has k rows. Let X be the matrix

in the nilpotent conjugacy class associated to λ given in Definition 2.8 and J = Jµ. For each

T ∈ RSST(λ, µ) let dT be the number of pairs (p, q) ∈ [k] × [k] counted with multiplicity such

that

(1) p < q and

(2) q occurs in a box below p and in the same column or in any column strictly to the left of

p in T and

(3) if the box directly to the right of p in T is filled by rp then q ≤ rp
Then

P(πJ(BX), t) =
∑

T∈RSST(λ,µ)

tdT .

Proof. By Corollary 3.9, the intersections {Cv∩πJ(BX) | v ∈W (X, J)} pave πJ(BX) and moreover

dim(Cv ∩ πJ(BX)) = dim(Cv ∩ BX). Lemma 4.7 shows that each T ∈ RSST(λ, µ) corresponds to a

unique v ∈ W (X, J) since φ−1
λ,µ(T ) ∈ RST(λ, µ). Thus it suffices to show that dim(Cv ∩ BX) = dT

for each T ∈ RSST(λ, µ) whenever v ∈ W (X, Jµ) is the permutation corresponding to the tableau

Tv = φ−1
λ,µ(T ).

By definition φλ,µ(Tv) = T . The conditions on (p, q) in Proposition 4.9 are precisely those from

the proof of Lemma 4.2 counting inversions in Tv. Thus dim(Cv∩BX) ≥ dT for each v ∈W (X, Jµ).

By Proposition 4.9 if p′ < q′ satisfy µ0 + µ1 + · · · + µi < p′, q′ ≤ µ1 + · · · + µi for some i ∈ [k]

then v−1(p′) < v−1(q′). Thus the degeneration map sends each inversion (p′, q′) in Tv to a pair

(p, q) ∈ [k] × [k] with p 6= q and so (p, q) contributes to dT . This means dim(Cv ∩ BX) = dT and

the claim is proved. �

Example 4.10. Let λ = µ = (2, 2) as in Example 4.3. The table below displays the three row-

semistrict tableaux in RSST(λ, µ) and the pairs counted by dT in each case.

T ∈ RSST(λ, µ) 1 2
1 2

2 2
1 1

1 1
2 2

pairs counted by dT ∅ (1, 2) (1, 2), (1, 2)

The pair (1, 2) is counted twice for the last row-semistrict tableau since there are two pairs satisfying

the given conditions—one for each 2 appearing in the second row of T .

By Corollary 3.9, the dimension of the Steinberg variety πJ(BX) is

max{dim(Cv ∩ BX) | v ∈W (X, J)} ≤ dim(BX).
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Steinberg first counted the irreducible components of πJ(BX) with maximal dimension dim(BX)

in [Ste88]. The following corollary is a simpler proof of Steinberg’s theorem, using only the affine

paving and combinatorics of row-strict tableaux. Recall that the Kostka number Kλµ is the number

of semistandard tableaux of shape λ and weight µ. The Kostka number is an important quantity

in algebraic combinatorics and representation theory.

Corollary 4.11. Let λ and µ be partitions of n, X ∈ gln(C) the nilpotent matrix of Jordan type

λ fixed in Definition 2.8, and J = Jµ. There are exactly Kλµ irreducible components of πJ(BX) of

dimension dim(BX).

Proof. First we identify the irreducible components of πJ(BX) of dimension dim(BX). Corol-

lary 3.9 showed that CPJv ∩πJ(BX) is isomorphic to affine space so CPJv ∩ πJ(BX) is irreducible and

nonempty for all v ∈W (X, J). Furthermore if dim(CPJv ∩πJ(BX)) = dim(BX) then CPJv ∩ πJ(BX)

must be an irreducible component. If v ∈W (X, J) then Corollary 3.9 said dim(CPJv ∩ πJ(BX)) =

dim(Cv ∩ BX). Finally, the dimension of Cv ∩ BX is maximal if and only if the corresponding

row-strict tableau T ∈ RST(λ) is in fact a standard tableau (e.g. [PT19, Theorem 3.5]). Thus we

need to find the set of v ∈W (X, J) that correspond to standard tableaux.

To complete the proof, we argue that there are Kλµ many such v. We know that φλ,µ :

RST(λ, µ)→ RSST(λ, µ) is a bijection by Lemma 4.7. If T ∈ RSST(λ, µ) is not semistandard–namely

there is a column in which some i appears twice–then its row-strict preimage is not column-strict,

since the base filling of λ increases bottom-to-top in columns. If T is semistandard then its

row-strict preimage is column-strict by construction of the inverse map, and hence is standard.

Thus the unique preimage in RST(λ, µ) of each semistandard T of shape λ and weight µ must be

standard. The tableaux in RST(λ, µ) are precisely those corresponding to W (X, J) so this proves

the claim. �

Example 4.12. Example 4.10 showed that when λ = µ = (2, 2) the Steinberg variety B(X, pJ) has

a single irreducible component of dimension dim(BX) = 2. A key property of Kostka numbers is

that Kλλ = 1 for all λ. This confirms the results of Corollary 4.11 in this case.

We can use other classical properties of Kostka numbers to infer data about Steinberg varieties.

For instance, recall that Kλµ = 0 whenever µ 6E λ, where E denotes the dominance order on

partitions of n. Corollary 4.11 implies that the dimension of the Steinberg variety πJ(BX)) is

strictly less than that of the Springer fiber BX whenever J = Jµ, X is of Jordan type λ, and

µ 6E λ. In Section 6 we give an explicit example in which this occurs.

5. Applications in type A: Parabolic Hessenberg varieties have the same Poincaré

polynomial as unions of Schubert varieties

Our second application of the main theorem identifies specific unions of Schubert varieties

whose Poincaré polynomials agree with those of parabolic Hessenberg varieties. We use the same

notation as in the previous section, again just treating type A. Our strategy is to associate to

each flag wB ∈ B(X, pJ) a permutation wT whose length is the dimension dim(Cw ∩ B(X, pJ))

of the Hessenberg Schubert cell for wB. We call wT the Schubert point corresponding to w.

We will show that the map w 7→ wT preserves the set W J . We use this together with the

decomposition wT = vT y into a product of vT ∈ W J and y ∈ WJ to construct Schubert varieties

whose permutation flags are a union of WJ -cosets. Theorem 5.12 proves that if X ∈ gln(C) is a

matrix whose Jordan form corresponds to a partition with at most three rows or two columns, the
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Betti numbers of B(X, pJ) match those of ⋃
v∈W (X,J)

CvTwJ

where wJ ∈ WJ denotes the longest element of WJ . The theorem also gives an analogue for

πJ(BX).

Any parabolic Hessenberg variety that is not irreducible will correspond to the union of more

than one Schubert variety. The Schubert cells in their intersection are counted only once, not with

multiplicity, which is the main subtlety of this theorem.

We begin with a canonical factorization of W = Sn following Björner-Brenti’s presentation

[BB05, Corollary 2.4.6]. Recall that the roots associated to the ith row of an upper-triangular

matrix are

Φi = {αi, αi + αi+1, ..., αi + αi+1 + · · ·+ αn−1} for each 1 ≤ i ≤ n− 1.

Lemma 5.1 (Björner-Brenti). Each w ∈ W can be written uniquely as w = wn−1wn−2 · · ·w2w1

where

wi = skiski+1 · · · si−1si for each i = 1, ..., n− 1

and either wi = e or ki is a fixed integer with 1 ≤ ki ≤ i. We call wi the i-th string of w. Moreover

w−1
1 w−1

2 · · ·w
−1
i−1N(wi) ⊆ Φi for each i = 1, ..., n− 1.

For example the longest word in S4 can be written as s1s2s3s1s2s1. In this case the strings are

• w3 = s1s2s3

• w2 = s1s2 and

• w1 = s1

so ki = 1 for all i = 1, 2, 3. Note that if wi 6= e then `(wi) = i− ki + 1.

In previous work the authors studied a bijection between wB ∈ BX and certain permutations

wT ∈ W whose lengths are the dimension of the corresponding Springer Schubert cells [PT19,

Definition 3.2]. We define those permutations now.

Definition 5.2. Let wB ∈ BX and let T denote the corresponding row-strict tableau as in

Lemma 4.1. For each 2 ≤ q ≤ n let `q−1 be the number of q-row inversions of T given in

Lemma 4.2. Define a string wq−1 by

wq−1 =

{
sq−`q−1sq−`q−1+1 · · · sq−2sq−1 if `q−1 6= 0

e if `q−1 = 0

so wq−1 is a string of length `q−1 by construction. Then

wT = wn−1wn−2 · · ·w2w1

is the Schubert point associated to wB ∈ BX .

By construction

`(wT ) = `n−1 + `n−2 + · · ·+ `1 = dim(Cw ∩ BX).

In fact not only are the permutations wT in bijection with row-strict tableaux, but the set of

Schubert points {wT | T is row-strict} forms a lower order ideal in the Bruhat graph whenever λ

has at most three rows or two columns—namely the Schubert points index a union of Schubert

varieties [PT19, Theorem 4.4].



HESSENBERG VARIETIES OF PARABOLIC TYPE 17

Lemma 5.3 (Precup-Tymoczko). For each wB ∈ BX there exists a unique Schubert point wT ∈
W . In addition, if the Jordan form of X corresponds to a partition with at most three rows or two

columns then every permutation w′ ≤ wT in Bruhat order corresponds to a unique yB ∈ BX such

that w′ = yT ′ for the row-strict tableau T ′ corresponding to y.

Our plan to extend this result is to show that the Schubert points respect the decomposition

W JWJ . More precisely we will show that v ∈W J if and only if the Schubert point vT corresponding

to v is an element of W J . We begin with an alternate characterization of W J .

Proposition 5.4. Let w ∈W and write w = wn−1wn−2 · · ·w2w1 where wi denotes the i-th string

of w for each i = 1, 2, . . . , n− 1. Then w ∈W J if and only if `(wi) ≤ `(wi−1) for all αi ∈ J .

Proof. We will prove the contrapositive statement using Remark 3.1, which says that w is not in

W J if and only if there is a simple root αi ∈ J for which αi ∈ N(w). In particular we prove that

for each simple root αi ∈ J , the root αi ∈ N(w) if and only if `(wi) > `(wi−1).

Since `(w) = `(wn−1) + `(wn−2) + · · ·+ `(w2) + `(w1) we can write

N(w) = N(w1) t w−1
1 N(w2) t · · · t w−1

1 w−1
2 · · ·w

−1
n−2N(wn−1)

by Lemma 3.2. Given αi ∈ J consider wi = skiski+1 · · · si−1si and wi−1 = ski−1
ski−1+1 · · · si−2si−1.

Note that

N(wi) = {αi, si(αi−1), ..., sisi−1 · · · ski+1(αki)}.(5.5)

By Lemma 5.1 we know αi ∈ N(w) if and only if αi ∈ w−1
1 w−1

2 · · ·w
−1
i−2w

−1
i−1N(wi). Since `(wi) =

i− ki + 1 we know

`(wi) > `(wi−1) ⇔ i− ki + 1 > i− 1− ki−1 + 1.

This in turn is equivalent to ki ≤ ki−1 and implies that the reflection ski−1 must occur in the word

wi = skiski+1 · · · si−1si. The description of N(wi) in Equation (5.5) shows that this is the case if

and only if

sisi−1 · · · ski−1+1(αki−1
) = αki−1

+ αki−1+1 + · · ·+ αi−1 + αi ∈ N(wi).

Thus ki ≤ ki−1 if and only if

w−1
1 w−1

2 · · ·w
−1
i−2w

−1
i−1(αki−1 + αki−1+1 + · · ·+ αi−1 + αi) ∈ N(w)

But

w−1
i−1(αki−1 + αki−1+1 + · · ·+ αi−1 + αi) =

si−1si−2 · · · ski−1+1ski−1
(αki−1

+ αki−1+1 + · · ·+ αi−1 + αi) = αi

and w1, w2, ..., wi−2 stabilize αi. Putting this together, we conclude `(wi) > `(wi−1) if and only if

αi ∈ N(w) as desired. �

The previous lemma is the key step in the next proposition, which shows that if v ∈W J indexes

a permutation flag vB ∈ BX then the corresponding Schubert point vT is also in W J .

Proposition 5.6. Let vB ∈ BX . Then v ∈W J if and only if vT ∈W J .

Proof. Let T denote the row-strict tableau associated to v. We decompose vT into i-strings as

vT = vn−1vn−2 · · · v2v1. Throughout this proof, assume i satisfies 1 ≤ i ≤ n− 1 and αi ∈ J .

By definition `(vi) = `i and `(vi−1) = `i−1 so by Proposition 5.4 and Remark 3.1 we have only

to show that αi /∈ N(v) if and only if `i ≤ `i−1. First αi /∈ N(v) if and only if v(i) < v(i + 1) by

definition of inversions. Since i fills the box labeled by v(i) in the base filling of λ, the inequality

v(i) < v(i+ 1) holds if and only if i occurs in a box of T
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• in the same column and below i+ 1, or

• in a column to the left of i+ 1.

Now consider T [i] and T [i+ 1]. We obtain T [i] from T [i+ 1] by removing the box containing i+ 1.

Lemma 4.2 states that `i counts the number of rows in T [i+ 1] above the row containing i+ 1 and

of equal length plus the total number of rows in T [i + 1] of length strictly greater than the row

with i + 1. These rows each have the same length in T [i] since they do not contain i + 1; denote

the set of rows by R. If i satisfies either bulleted condition above then each row in R contributes

one i-row inversion of T to the count of `i−1 so by Lemma 4.2 we have `i = |R| ≤ `i−1. Conversely

if i satisfies neither bulleted condition then `i−1 counts only a subset of R since R includes the

row containing i. Therefore `i−1 < |R| = `i. This proves the claim. �

Corollary 5.7. Suppose X corresponds to a partition with at most three rows or two columns.

Then the set {vT ∈ W J | v ∈ W J and vB ∈ BX} is a lower order ideal with respect to Bruhat

order on W J . In other words if v′ ∈ W J and v′ ≤ vT for some vT in the set, then v′ is also an

element of the set.

Proof. To prove this, we show that for each v′ ∈ W J such that v′ ≤ vT there exists y ∈ W J with

yB ∈ BX and row-strict tableau T ′ such that v′ = yT ′ . By Proposition 5.3, there exists a unique

yB ∈ BX and corresponding row-strict tableau T ′ such that v′ = yT ′ . By Proposition 5.6 this y

must also be an element of W J since yT ′ is. �

Remark 5.8. It’s also important to note what this corollary does not say: this set is a lower order

ideal in W J but not necessarily in W . The next example shows how this can happen.

Example 5.9. Continue our example when λ = µ = (2, 2). Example 4.4 gave the set W (X, J(2,2)) =

{e, s2, s1s3s2}. Example 4.3 listed the row-strict tableaux corresponding to the elements in W (X, J(2,2)).

The permutation s1s3s2 corresponds to T = 1 2
3 4

and Example 4.3 explained that `3 = `2 = 1 were

the only nonzero contributions to the dimension. By definition we obtain vT = s3s2. Similarly the

row-strict tableau corresponding to s2 is T ′ = 3 4
1 2

with vT ′ = s2 and e corresponds to the base

filling, so {vT : v ∈ W (X, J)} = {s3s2, s2, e} in this case. Note that s3 is not in this set, though

s3 < s3s2 in Bruhat order. This is because s3 6∈W J .

Corollary 5.7 immediately implies that the Poincaré polynomial of the Steinberg variety agrees

with that of a union of Schubert varieties in the partial flag variety.

Corollary 5.10. Suppose X ∈ gln(C) is nilpotent with Jordan form corresponding to a partition

λ with at most three rows or two columns. Then the following Poincaré polynomials are equal:

P(πJ(BX), t) = P
(
∪v∈W (X,J)C

PJ
vT , t

)
where C

PJ
vT is a Schubert variety in the partial flag variety G/PJ .

Proof. Corollary 3.9 tells us that the Steinberg variety is paved by the cells CPJv ∩ πJ(BX) for

v ∈ W (X, J) and that dim(CPJv ∩ πJ(BX)) = dim(Cv ∩ BX) for each of these cells. In addition

dim(Cv ∩ BX) = `(vT ) by construction. Corollary 5.7 now tells us that {vT ∈W J : v ∈W (X, J)}
is a lower order ideal. Since W J indexes the permutation flags in G/PJ this means the union of

Schubert varieties C
PJ
vT in the partial flag variety G/PJ has the same Poincaré polynomial as the

Steinberg variety, as desired. �

Example 5.11. Continuing our running example, Example 4.4 showed that when λ = µ = (2, 2)

the Poincaré polynomial of the Steinberg variety πJ(BX) is 1 + t + t2. This is also the Poincaré
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polynomial of the Schubert variety C
PJ
s3s2 in G/PJ . (In contrast, the Poincaré polynomial of the

Schubert variety Cs3s2 ⊆ G/B is 1 + 2t+ t2.)

We are now ready to state and prove the main theorem of this section.

Theorem 5.12. Suppose X ∈ gln(C) is nilpotent with Jordan form corresponding to a partition

λ with at most three rows or two columns. Then the following Poincaré polynomials are equal:

P(B(X, pJ), t) = P
(
∪v∈W (X,J)CvTwJ , t

)
where wJ denotes the longest word in WJ .

Proof. Note that the union of Schubert varieties is the disjoint union of Schubert cells⋃
v∈W (X,J)

CvTwJ =
⊔

v∈W (X,J)

⊔
y∈WJ

CvT y

because Schubert points are distinct and because W (X, J) is a subset of coset representatives for

W/WJ . Recall that MJ/BJ denotes the flag variety MJ/(B ∩MJ) of MJ and in particular that

P(MJ/BJ , t) =
∑
y∈WJ

t`(y). Thus we have

P(∪v∈W (X,J)CvTwJ , t) =
∑

v∈W (X,J)

t`(vT )P(MJ/BJ , t)

=
∑

v∈W (X,J)

tdim(Cv∩BX)P(MJ/BJ , t)

= P(B(X, pJ), t)

where the last two equalities follow from Definition 5.2 and Corollary 3.11, respectively. �

Example 5.13. Example 4.4 studied the parabolic Hessenberg variety when X is nilpotent of

Jordan type λ = (2, 2) and J corresponds to the partition (2, 2) and found its Poincaré polynomial:

P(B(X, pJ), t) = (1 + t+ t2)(1 + 2t+ t2) = 1 + 3t+ 4t2 + 3t3 + t4.

This is precisely the Poincaré polynomial of the Schubert variety Cs3s2s3s1 computed in Exam-

ple 2.7.

6. Components of parabolic Hessenberg varieties

One natural follow-up question is whether the combinatorial results of Proposition 4.9, Corol-

lary 5.10, and Theorem 5.12 reflect an underlying geometric property. We now give one result

in this direction, proving that the irreducible components of parabolic Hessenberg varieties are in

bijection with the irreducible components of a Steinberg variety. The following is the main result

of this section, and holds in all Lie types.

Theorem 6.1. Fix X ∈ b. Let πJ : G/B → G/PJ be the projection πJ(gB) = gPJ . Under

this map, the irreducible components of parabolic Hessenberg variety B(X, pJ) are in bijection with

those of the Steinberg variety πJ(BX).

Proof. Let B(X, pJ) = ∪i∈IXi be the decomposition of B(X, pJ) into irreducible components.

The map πJ is continuous so each πJ(Xi) is irreducible. Theorem 3.5 showed that πJ(B(X, pJ)) =

πJ(BX) so πJ(BX) can be written as a union ∪i∈IπJ(Xi). To show that each πJ(Xi) is a component,

we prove that if πJ(Xi) ⊆ πJ(Xj) then i = j. If πJ(Xi) ⊆ πJ(Xj) then naturally π−1
J πJ(Xi) ⊆

π−1
J πJ(Xj). Thus it suffices to show that π−1

J πJ(Xi) = Xi since the Xi are by definition components.
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Suppose g1B ∈ π−1
J (πJ(Xi)). Since πJ(g1B) ∈ πJ(Xi) there exists g2B ∈ Xi with πJ(g1B) =

πJ(g2B). By statements (2) and (3) of Lemma 3.3 we can write g1 = uvu1y1 and g2 = uvu2y2

where v ∈W J , y1 and y2 are both in WJ , and u ∈ Uv, u1 ∈ Uy1 , u2 ∈ Uy2 .

Let Z = {uvmB | m ∈ MJ} ⊆ B(X, pJ). Then g1B, g2B ∈ Z and Z is isomorphic to the flag

variety MJ/BJ . Therefore Z is an irreducible subvariety of B(X, pJ), and must be contained in a

single irreducible component of B(X, pJ). This implies Z ⊆ Xi so g1B ∈ Xi as desired. �

As an immediate corollary, we conclude that in type A, the number of irreducible components

of B(X, pJ) with dimension dim(BX) + `(wJ) is the Kostka number Kλµ. The proof just applies

Corollary 4.11, namely Steinberg’s result on πJ(BX).

Corollary 6.2. Let λ and µ be partitions of n, X ∈ gln(C) be a nilpotent matrix with Jordan form

determined by λ, and J = Jµ. The number of irreducible components of B(X, pJ) of dimension

dim(BX) + `(wJ) equals the Kostka number Kλµ.

Corollary 6.2 tells us that some of the irreducible components of parabolic Hessenberg vari-

eties are indexed by certain standard tableaux, specifically, the standard tableaux that become

semistandard under the degeneration map. However, this description does not characterize all

irreducible components, as the following example demonstrates.

Example 6.3. Let X ∈ gl4(C) be a nilpotent matrix of Jordan type λ = (2, 1, 1) so dim(BX) = 3.

Let µ = (2, 2) so J = Jµ = {α1, α3} and wJ = s1s3. Note that Kλµ = 0 in this case, meaning

dim(B(X, pJ)) < dim(BX) + `(wJ) = 5 by Corollary 6.2. Taking X as in Definition 2.8 we obtain

ΦX = {α3} and

W (X, J) = {e, s2, s1s2, s2s1s3s2}.
Consider the points v1 = s1s2 and v2 = s2s1s3s2. The table below displays the corresponding

elements of RST(λ) and RSST(λ), and computes vTwJ in each case.

v ∈W (X, J) T ∈ RST(λ) φλ,µ(T ) ∈ RSST(λ) vT vTwJ

2 4
1
3

1 2
1
2

v1 = s1s2 s1s2 s1s2s1s3

1 2
4
3

1 1
2
2

v2 = s2s1s3s2 s3s2 s3s2s1s3

We claim that Cv1wJ ∩ B(X, pJ) and Cv2wJ ∩ B(X, pJ) are the irreducible components of B(X, pJ).

We know dim(Cv1wJ ∩ B(X, pJ)) = `(vT ) + `(wJ) = 4 from our analysis of parabolic Hessenberg

varieties. This is the same as dim(Cv1wJ ) so in fact Cv1wJ ⊆ B(X, pJ). Thus

Cv1wJ ∩ B(X, pJ) = Cv1wJ =
⊔

w≤v1wJ

Cw =
⊔

w≤v1wJ

Cw ∩ B(X, pJ).

Since v2wJ � v1wJ and the Hessenberg Schubert cells corresponding to v2wJ and v1wJ have the

same dimension, neither of Cv1wJ ∩ B(X, pJ) and Cv2wJ ∩ B(X, pJ) can contain the other. Since

vwJ ≤ v1wJ for all other v ∈W (X, J), we conclude

B(X, pJ) = Cv1wJ ∪ (Cv2wJ ∩ B(X, pJ)).

In particular, note that neither irreducible component corresponds to a standard (or semistandard)

tableau of shape λ.

Our partial description of the irreducible components of B(X, pJ) leads to the following question.
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Question 6.4. Suppose πJ(BX) is paved by Steinberg Schubert cells. Give a combinatorial descrip-

tion of those v ∈ W (X, J) for which CPJv ∩ πJ(BX) is an irreducible component of the Steinberg

variety.

Any answer to this question would also compute the irreducible components of the corresponding

parabolic Hessenberg variety. Motivated by Example 6.3, one possibility is that Cv ∩ πJ(BX) is

an irreducible component of πJ(BX) if the Schubert point vT corresponding to v is a maximal in

the set {vT | v ∈ W (X, J)}. We have not been able to find a counterexample to this conjecture,

but suspect that there is one.

In addition, an answer to Question 6.4 would extend the known characterization of components

of the Springer fibers in type A. It appears, too, to require a deep analysis of the set W (X, J) as

well as its connection to the geometry of the Steinberg variety.
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