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Abstract— This paper presents a new iterative learning
control (ILC) methodology, termed library-based norm-optimal
ILC, which optimally accounts for variations in measurable
disturbances and plant parameters from one iteration to the
next. In this formulation, previous iteration-varying disturbance
and/or plant parameters, along with the corresponding control
and error sequences, are intelligently maintained in a dynam-
ically evolving library. The library is then referenced at each
iteration, in order to base the new control sequence on the
most relevant prior iterations, according to an optimization
metric. In contrast with the limited number of library-based
ILC methodologies pursued in the literature, the present work
(i) selects provably optimal interpolation weights, (ii) presents
methods for starting with an empty library and intelligently
truncating the library when it becomes too large, and (iii)
demonstrates convergence to an optimal performance value.
To demonstrate the effectiveness of our new methodology, we
simulate our library-based norm-optimal ILC method on a
linear time-varying model of a micro-robotic deposition system.

I. INTRODUCTION

For systems that perform tasks repetitively, iterative learn-
ing control (ILC) can serve as an effective mechanism for
leveraging past control and corresponding error sequences to
inform control decisions at future trials (see [1]).

Traditional ILC is predicated on the plant, external distur-
bances, initial conditions, trial time, and reference trajectory
being invariant from trial to trial. Some of these assumptions
have been lifted as in [2], where the fixed trial duration
assumption was removed, and in [3], the trial-invariant initial
condition assumption was removed. Additionally, in [4]
and [5], good learning performance was realized when the
reference trajectory was allowed to change after a few trials.

In terms of lifting the assumptions of a trial-invariant
plant and disturbance, there are two avenues that have
been pursued, separately or in combination: (i) designing
the trial-domain closed-loop dynamics to be robust in the
presence of variations in the plant or disturbance, and (ii)
explicitly accounting for measurable variations in the plant
and disturbance within the ILC update law.

The first avenue has been pursued in a variety of robust
ILC literature, such as in [6], and is appropriate in scenarios
where trial-varying plant parameters and disturbances cannot
be measured. However, it can be possible to estimate or
directly measure the value of the disturbance or change in
plant parameters at the outset of the next trial. For instance,
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in micro-robotic deposition systems, the structure of the
printed colloidal material can be estimated [7]. Additionally,
for undersea kite energy systems (see [8]) where kites
are controlled to follow figure-eight paths while fulfilling
economic objectives, the current speed for the next trial can
be estimated given the last trial’s current speed. In these
scenarios, it stands to reason that the intelligent use of the
measurements or estimates of plant parameters or distur-
bances within the ILC update law can result in improved
performance, relative to a robust ILC law that does not make
use of this information.

In fact, a relatively small collection of work, including
[9], [10], and [11], has fused concepts from higher-order
ILC (described in [12]) with the maintenance of a library
of past trials’ measured disturbances/plant parameters to
tailor the ILC update law. Rather than basing each new
control sequence entirely on the most recent trial, the new
control sequence is updated based on the prior trial(s) whose
measured disturbances/plant parameters are deemed most
relevant based on the disturbance/plant parameters at the
outset of the new trial. Thus, the techniques in [9], [10], and
[11] leverage the idea from higher-order ILC of weighting
multiple past trials in the learning process, but they select
the weights based on the similarity of the trial-varying
disturbance/plant parameters at those past trials compared
to the current value of the trial-varying disturbance/plant
parameters. A work shown in [13] designed a multipoint it-
erative learning model predictive controller which employed
interpolation using a combination of iterative learning control
and model predictive control. While this work presents a
controller which chooses interpolation weights to interpolate
between multiple system models to reduce model uncertainty,
we chose to focus on explicitly using past control and
error sequences stored as a function of measured changing
plant/disturbance parameters.

While the aforementioned library-based schemes in [9],
[10], and [11] reveal promise, they also leave room for
advancement in terms of the optimization of the interpolation
process (where parameters of the interpolation process can
be selected to minimize/maximize an objective function),
the process for dynamically maintaining (and truncating) the
library, and the derivation of associated theory. Several recent
efforts have begun to address these needs for advancement.
Specifically, [9] presents a method of initializing the ILC
training process from a library of control signals categorized
by a “drift parameter,” which varies between trials. While this
methodology provides an effective mechanism for interpolat-
ing between control sequences indexed by the trial-varying
parameter, the paper does not address the optimization of



the interpolation weights, assumes a pre-populated static
library, and assumes a slowly varying plant (such that it can
be approximated as constant) in its associated theory. The
work in [10] performs PD-ILC on a weighted sum of the
past trial’s control inputs, where the weights are determined
not only based on the value of the measured disturbance
for each library entry, but also the associated performance.
While this method fuses a dynamically evolving library with
a weighting scheme that has been shown to be effective
on a manufacturing application, the weighting scheme is
entirely heuristic, and the methodology is not accompanied
with any associated theory. Finally, in [11], a parametric ILC
formulation is presented that allows for the tracking of both
trial-invariant and trial-varying references in the presence
of a trial-varying disturbance. While this paper presents a
method for updating the look-up table used for selecting
feed-forward control parameters as a function of the external
disturbance, it does not store complete control signals or
error sequences in a library. It instead stores a set of feed-
forward parameters. Additionally, the library size is fixed,
causing information from trials with disturbances that do
not lie on library indices to be forced onto the surrounding
indices sub-optimally.

In the present paper, we introduce a norm-optimal library-
based ILC formulation with three unique advancements that
differentiate it from prior library-based ILC efforts:

1) Based on the framework of norm-optimal ILC ([14]),
and tailored to the case of measurable and trial-varying
plant parameters/disturbances, the formulation selects
provably optimal interpolation weights, which mini-
mize a quadratic objective function in terms of the error
sequence, control sequence, and trial-to-trial deviation
in the control sequence.

2) The formulation allows for a dynamically evolving
library, which allows the algorithm to start with an
empty library and intelligently truncate the library once
it has reached a threshold size.

3) The formulation is accompanied by associated theory
that demonstrates the convergence of the performance
to its optimal value.

Using a simulation study based on an extrusion system orig-
inally introduced in [9], we compare our ILC interpolation
method against the library-based ILC methods used in [9]
and [10]. Finally, we validate our method for continuously
updating the error and control libraries in simulation by
showing the convergence of the objective function to the
objective function value of traditional norm-optimal ILC run
for 20 trials with trial-invariant parameters.

II. PROBLEM FORMULATION

A class of linear parameter varying systems is considered
in this study, the discrete-time state-space representation of
which is described by:

xk+1 = A(k, λk)xk +B(k, λk)uk

yk = C(k, λk)xk
(1)

The discrete-time index k ranges from 0 ... N − 1, where
N denotes the trial-invariant trial length. The system state,

control input, and system output at k are denoted by xk, uk
and yk respectively, and the parameter and time-varying
state, input, and output matrices are denoted by A(k, λk),
B(k, λk), and C(k, λk) respectively. It is assumed that the
initial condition x0 for (1) is trial-invariant. In addition,
a constant external disturbance may be assumed in (1),
which is set to zero here without loss of generality. The
discrete-time evolution of the parameter λk ∈ Rnλ×1 is
assumed here to be parameterized by a constant (in time)
trial-varying parameter vector λ′j ∈ Rnλ′×1, where j denotes
the trial index. In one such parameterization method, λk
evolves according to the nonlinear differential equation in
(2), wherein λ′j serves the role of the trial-varying initial
value.

λk+1 = fλ(λk), λ0 = λ′j (2)

A special case of this corresponds to fλ = λ′j , for which
λk = λ′j ∀k.

For the combined system defined by (1) and (2), the
parameter λ′j characterizes the system dynamics and, as part
of repetitive system operation, is expected to vary from one
trial to the next. The following assumptions regarding λk and
λ′j are posited:
A1. The trial-varying parameter λ′j is assumed to be known

prior to the start of the jth trial.
A2. The dependence of λk on λ′j is known ∀ k, j. Specifi-

cally, with respect to (2), the function fλj is known.
A3. The trial-varying parameter λ′j randomly varies in the

closed and bounded interval [λ′, λ
′
].

Assumptions A1 and A2 ensure that prior to a trial, λk is
known ∀ k, which allows computation of the matrices in
(1) to be used subsequently for designing optimal learning
filters, and assumption A3 restricts the problem to physically
relevant systems, where randomly varying environmental
factors are often at play during iterative learning.

A lifted form representation [1] of the system in (1) in the
trial domain is described in (3)-(5), where Yj , Uj , Dj(λ

′
j) ∈

RN×1 denote the discrete-time trajectories for the system
output, control input, and the contribution of the initial
condition to the system output during the jth trial respec-
tively, G(λ′j) ∈ RN×N denotes the lifted system matrix, and

Ak
∆
= A(k, λk), k = 1 . . . N − 1.

Yj = G(λ′j)Uj +D(λ′j) (3)

D(λ′j) = [A1x0 . . . Πk−1
i=1 Aix0 . . . ΠN−1

i=1 Aix0]T (4)

G(λ′j)(p,q)=


C(p, λp)B(q, λq) p = q

C(p, λp)
∏p−1
i=qA(i, λi)B(q − 1, λq−1) p < q

0 p > q.
(5)

Assuming that the system in (1) has relative degree equal
to 1, which is uniform with respect to λ′j ∀j, the lifted
system matrix is described in (5). If this is not the case,
the relative degree of (1) should be known as a function
of λ′ ∈ [λ′ λ

′
]. It is also noted here that the contribution

D(λ′j) of the initial condition to the system output is trial-
varying even if the initial condition is trial-invariant. As



noted earlier, in addition to the contribution of the initial
condition to the system output Yj , the term D(λ′j) may also
represent the contribution of a constant disturbance to Yj . In
such a case, for many applications, this constant disturbance
may be heavily influenced by the parameter λ′j characterizing
the trial-varying system environment. Motivated by this, the
following condition on D(λ′j) is assumed:
A4. For any sequence of random iλ′, i = 1 . . . n (see

A3) with n sufficiently high (−→ ∞ in the limit), and
the sequence belonging to the set [λ′ λ

′
], ∃ ki ≥

0 and
∑n
i=1 ki = 1 such that ∀ λ′ ∈ [1λ′ nλ′], D(λ′) =∑n

i=1 kiD(iλ′).
Note that assumption A4 is trivially satisfied when x0 = 0,
which is applicable for a large class of systems that start the
trial un-energized. Further, note that for A4 (and A5, to be
described shortly), as n −→ ∞, λ′ is almost equal to one of
the iλ′, say for i = i′, and the assumption is trivially satisfied
by setting all ki = 0 except for ki′ , which is set equal to 1.

As part of iterative learning, it is desired here that a multi-
objective cost function similar to that used in the literature
on norm-optimal ILC is minimized over a small number of
trials. One of the objectives traded off in the cost function for
norm-optimal ILC is the output tracking error. For the class
of systems considered in this study, it is expected that as the
parameter λ′j changes, representing a change in the system
environment, the discrete-time desired trajectory Yd ∈ RN×1

to be tracked may also change. Motivated by this, the desired
trajectory is allowed to be a function of the λ′j , and is denoted
by Y λ

′

d . Similar to A4, the following assumption is posited
for the desired reference to be tracked:
A5. For any sequence of random iλ′, i = 1 . . . n (see

A3) with n sufficiently high (−→ ∞ in the limit), and
the sequence belonging to the interval [λ′ λ

′
], ∃ ki ≥

0 and
∑n
i=1 ki = 1 such that ∀ λ′ ∈ [1λ′ nλ′], Yd

λ′
=∑n

i=1 kiYd
iλ′

.
Note that A5 is trivially satisfied when the desired reference
trajectory is independent of λ′, i.e. Y λ

′

d = Yd.

III. LIBRARY-BASED NORM-OPTIMAL ILC
A. Traditional Norm-optimal ILC

In traditional norm-optimal ILC ([14]), it is desired that
the objective function in (6) is minimized during every trial.

Jj+1 = ETj+1QEj+1 + UTj+1SUj+1 + . . .

(Uj+1 − Uj)TR(Uj+1 − Uj)
(6)

In doing so, the tracking error Ej+1 = Yd−Yj+1, control in-
put effort, and incremental control input effort are optimally
traded off, resulting in a small tracking error and control
input effort as j −→ ∞, and good learning transients during
iterative learning. More specifically, as j −→ ∞, the cost
function converges to its minimum value J? = ET∞QE∞ +
UT∞SU∞, wherein E∞ and U∞ represent the converged
tracking error and control input trajectories. Note that the
third term in (6) reduces to zero as j −→ ∞. The learning
control law and the associated learning filters for traditional
norm-optimal ILC are computed by setting the derivative of

Jj+1 with respect to Uj+1 equal to zero, with the resulting
law and filters shown in (7)-(9), wherein G ∈ RN×N denotes
the lifted system matrix for the underlying linear system.

Uj+1 = LuUj + LeEj (7)

Lu = (GTQG+ S +R)−1(GTQG+R) (8)

Le = (GTQG+ S +R)−1(GTQ) (9)

Owing to assumption A1, the idea of norm-optimal ILC
summarized in the preceding paragraph can be straight-
forwardly extended to the class of systems considered in
this study if (7)-(9) can be implemented for every λ′j ∈
[λ′ λ′], i.e. prior to a trial, using λ′j = λ, compute G(λ)
and, using which, Lu and Le, per (8) and (9) respectively,
and implement (7) using the trajectories Uλj and Eλj that
correspond to the trials with λ′j = λ. Clearly, as λ′j varies
continuously in [λ′ λ′], an infinite number of Uλj and Eλj
trajectories must be stored and used in (7) for parametric
iterative learning [11], which is not possible in practice.
However, a sufficiently granular library that stores and up-
dates a finite number of control input and tracking error
trajectories can be effective in parameterizing norm-optimal
ILC to approximately account for this full range of λ′j .

B. Library-based Norm-optimal ILC
Our library based norm-optimal ILC method can be seen

depicted in Figure 1, where a library is updated in the
iteration domain as a function of the control and error
sequences as well as the trial and time-varying disturbances
or plant parameters, and used to create interpolation filters
which are then multiplied by norm-optimal learning filters
to create the next control input.

Fig. 1: Diagram of proposed library-based norm-optimal ILC
method.

With the underlying motivation of formulating an objective
function that is equivalent to the objective function used in
traditional norm-optimal ILC and described in (6), the central
ideas of a library and interpolation are introduced next. For
simplicity, it will be assumed that λ′j ∈ R; however, the
arguments that follow can be extended to the vector case.
A library of control input and tracking error trajectories
is denoted by the pair of matrices Luλ′ ,Leλ′ ∈ RN×N

L
j ,

which are defined as Luλ′ = [U1
j . . . U

NL
j

j ] and Leλ′ =

[E1
j . . . E

NL
j

j ] respectively, the corresponding λ′ values
iλ′, i = 1 . . . NLj are ordered from the minimum 1λ′ to



maximum NL
j λ′. It is noted here that for library-based norm-

optimal ILC, these library matrices are updated iteratively,
and consequently, the number of columns as well as the
columns themselves are trial-varying.

Interpolation of the columns of Luλ′ ,Leλ′ is referred to
as the method for computing control input and tracking
error trajectories corresponding to a λ′ ∈ [1λ′ NL

j λ′] and
6= 1λ′ . . . N

L
j λ′. Interpolated control input and tracking error

trajectories U intj and Eintj are described in (10), wherein kuj
and kej denote the interpolation weights:

U intj =

NL
j∑

i=1

ikujG
−1(λ′j)G(iλ′j)U

i
j , E

int
j =

NL
j∑

i=1

ikejE
i
j .

(10)
To gain physical insight into interpolation, consider a rep-
resentative interpolation method that uses the trajectories
corresponding only to the neighboring points iλ′ and i+1λ′,
with iλ′ < λ′j <

i+1 λ′ and the distance-based interpolation

weights ikuj = ikej =

i+1
λ′ − λ′j

i+1λ′ − iλ′
and i+1kuj = i+1kej =

λ′j − iλ′

i+1λ′ − iλ′
. Such distance-based interpolation weights were

used in [11] for parametric ILC.
It is noteworthy that if λ′j = λ′ ∀j, the optimum value

J? of (6) resulting from the use of (7)-(9) will be a function
of λ′, and is more appropriately represented as J?λ′ , which
is equal to Eλ

′

∞
T
QEλ

′

∞ + Uλ
′

∞
T
SUλ

′

∞ , wherein Eλ
′

∞ and Uλ
′

∞
represent the converged tracking error and control input
trajectories corresponding to λ′j = λ′ ∀j. As λ′j varies
randomly in [λ′ λ′], per assumption A3, it is desired that
as j −→ ∞, the new objective function to be formulated
should converge to J?λ′ ∀λ′ ∈ [λ′ λ′]. As will be discussed
shortly, it is useful to transform this specification into an
equivalent form. To this end, let jλ′ denote the trial index
corresponding to λ′, i.e. jλ′ counts the number of trials for
which λ′j = λ′. It is not difficult to see that, owing to A3,
as j −→ ∞, jλ′ −→ ∞ ∀ λ′ ∈ [λ′ λ′]. The equivalent
specification requires that as jλ′ −→∞, the objective function
to be formulated converges to J?λ′ ∀ λ′.

Using the ideas of library and interpolation, and motivated
by the specification described in the preceding paragraph,
the objective function for library-based norm-optimal ILC is
formulated in (11), wherein Ejλ′+1 = Y λ

′

d − Yjλ′+1, and
U intj is defined in (10):

Jjλ′+1 = ETjλ′+1QEjλ′+1 + UTjλ′+1SUjλ′+1 + . . .

(Ujλ′+1 − U intj )TR(Ujλ′+1 − U intj )
(11)

The major difference between the traditional and library-
based norm-optimal objective functions lies in the third term
that penalizes the incremental control input effort. While
in traditional norm-optimal ILC, it is reasonable to desire
that a large correction to the control input never results
during iterative learning, for parametric or library-based
norm-optimal ILC, the system dynamics and the desired
reference trajectory change every trial, thereby potentially
necessitating a larger change in the control input across any

two consecutive trials. In library-based norm-optimal ILC, it
makes more sense to penalize (Ujλ′+1 −U intj ), where U intj

serves as a proxy for Ujλ′ .
There are two questions that remain to be answered: (i)

akin to (7) for traditional norm-optimal ILC, what is the
optimal structure of Ujλ′+1 in terms of U intj and Eintj ,
and (ii) what are the optimal interpolation weights for
computing the interpolated vectors U intj and Eintj ? The
first of these is addressed in Theorem 1, and the second
of these is addressed after Theorem 1 in Proposition 1. In
the following theorem, ∀j such that λ′j = λ′, we define

Gλ′
∆
= G(λ′) and Dλ′

∆
= D(λ′).

Theorem 1. For an arbitrarily fixed sufficiently high j, the
learning control law of (12)-(14), with U intj and Eintj defined
in (10), minimizes the objective function in (11) for the
combined system (1) and (2) satisfying A1-A5 ∀λ′j ∈ [λ′ λ′]
and for a sufficiently high NLj (−→ ∞ in the limit) if
ikuj = ikej ≥ 0 ∀ i = 1 . . . NLj and

∑NL
j

i=1
ikuj = 1.

Ujλ′+1 = Luλ′U intj + Leλ′Eintj (12)

Luλ′ = (Gλ′
TQGλ′ + S +R)−1(GTλ′QGλ′ +R) (13)

Leλ′ = (GTλ′QGλ′ + S +R)−1(GTλ′Q) (14)

Proof: When the cost function in (11) is differentiated with
respect to Ujλ′+1, and set equal to the zero vector, the
operation results in (15), wherein Ŷ λ

′

d
∆
= Y λ

′

d −Dλ′ :

Ujλ′+1 = (GTλ′QGλ′ + S +R)−1(GTλ′QŶ λ
′

d +RU intj )
(15)

Now, consider the interpolated error Eintj of (10), which is
transformed to (16) using (3):

Eintj =

NL
j∑

i=1

ikej (Y
iλ′
j

d −Giλ′
j
U ij −Diλ′

j
) (16)

Using ikej = ikuj ∀ i = 1 . . . NLj in (16), (17) is derived:

Eintj =

NL
j∑

i=1

ikuj Y
iλ′
j

d −
NL
j∑

i=1

ikujGiλ′
j
U ij −

NL
j∑

i=1

ikujDiλ′
j

(17)

By pre-multiplying the second term in (17) by Gλ′G−1
λ′ , and

using the fact that
∑NL

j

i=1
ikuj = 1, along with assumption A4,

assumption A5, and the definition (10) of U intj , the equality
in (18) is derived:

Eintj = Y
λ′
j

d −Gλ′U intj −Dλ′
j

(18)

Rearranging (18), and substituting Y
λ′
j

d from (15), the equal-
ity in (19) is derived.

Ujλ′+1 = (GTλ′QGλ′ + S +R)−1 . . .

(GTλ′Q(Eintj +Gλ′U intj ) +RU intj )
(19)

On rearranging (19), the control law in (12)-(14) results. �



Remark 1. It is recalled here that the assumptions A4 and
A5 trivially hold ∀ j if the initial condition x0 = 0 (a zero
vector) and Y λ

′

d = Yd respectively, implying that optimality
of the library-based norm-optimal ILC law in (12)-(14)
is optimal ∀ j. For systems with x0 6= 0, Y λ

′

d 6= Yd, the
assumptions A4 and A5 hold for a sufficiently large library,
i.e. for a sufficiently large NLj , thereby implying that
(12)-(14) may be sub-optimal for the first few trials.

Let ikuj = ikej = ikj ∀ j and i = 1 . . . NLj , and U intj
∆
=

ĀV,Eintj
∆
= H̄V , wherein V = [1kj . . .

NL
j kj ]

T ∈ RN
L
j ×1,

Ā and H̄ are easily computed using (10). An optimal
method for computation of the interpolation weights ikj is
presented in Proposition 1, wherein the second of the two
questions posed earlier is investigated.

Proposition 1. The solution that minimizes the optimization
problem:

min
[1kj ...

NL
j kj ]T

Jjλ′+1 of (11) (20)

s.t.
NL
j∑

i=1

ikj = 1, 0 ≤ ikj ≤ 1, ∀ i = 1 . . . NLj (21)

and system dynamics (3)− (5) (22)

represents a unique global optimum within the feasible
solution set described in (21).
Proof: The proof follows from noting that the cost function
in (11) is quadratic in V = [1kj . . .

NL
j kj ]

T for the (linear)
lifted form system dynamics of (3)− (5), the quadratic form
being shown in (23).

Jjλ′+1 = V̄ T W̄1V̄ + W̄2V̄ + W̄3, (23)

W̄1 = FTQF + PTQP + TTST + ĀTRĀ+ TTRT+

ZTSZ + ZTRZ + FTQP + TTRZ + TTSZ

− TTRĀ+ PTQF + ZTRT + ZTST − ĀTRT
W̄2 = −2MTQF − 2MTQP, W̄3 = MTQM.

(24)
where M = (Y λ

′

d − Dλ′), F = Gλ′Luλ′Ā, P = Gλ′Leλ′H̄ ,
T = Luλ′Ā, and Z = Leλ′H̄ . The constraints appearing
in the optimization problem can be written as shown in
(25), wherein Aeq ∈ RN

L
j ×1, Aineq ∈ R2NL

j ×N
L
j , and

Bineq ∈ R2NL
j ×1 are defined in (26). In equation (26),

0̄NL
j ×1 represents a column of zeros and 1̄NL

j ×1 represents
a column of ones.

AeqV̄ = 1, AineqV̄ ≤ B̄ineq (25)

Aeq = [1, . . . , 1], Aneq =

[
−INL

j ×NL
j

INL
j ×NL

j

]
, Bneq =

[
0̄NL

j ×1

1̄NL
j ×1

]
.

(26)
The objective function in equation (23) and the constraints
shown in equations (25) are now posed in the form of
a quadratic program that when solved gives the globally
and uniquely optimal solution (where the solution is
a vector of interpolation weights) to the optimization

problem. �

As was alluded to earlier, if λ′j = λ′ ∀ j, the optimal cost is

given by J?λ′ = Eλ
′

∞
T
QEλ

′

∞+Uλ
′

∞
T
SUλ

′

∞ . The formulation of
the library-based objective function in (11) was motivated by
the fact that when λ′j varies according to A3, the associated
norm-optimal ILC method should result in convergence of
the cost function Jjλ′ to J?λ′ ∀λ′ ∈ [λ′ λ

′
] as jλ′ −→ ∞ or

j −→ ∞. With this underlying motivation, the convergence
of Jjλ′ as jλ′ −→∞ is studied next for the optimal learning
control law of (12)-(14) and the optimal interpolation method
(20)-(22). In particular, the case of S = 0 is considered, for
which the tracking error converges to zero as j −→ ∞, i.e.
Eλ

′

∞ = 0, implying that the equality in (27) holds.

Y λ
′

d = Gλ′Uλ
′

∞ +Dλ′ ∀λ′ ∈ [λ′ λ′] (27)

We begin with the following lemma:

Lemma 1. For the library-based norm-optimal control law
(12)-(14) with S = 0, ETjλ′+1QEjλ′+1 ≤ Eintj

TQEintj , and
|Uλ′

∞ − Ujλ′+1| ≤ |Uλ
′

∞ − U intj | for a sufficiently large j.
Proof: For a sub-optimal choice of Ujλ′+1 = U intj ,
Jjλ′+1 = (Ŷ λ

′

d − Gλ′U intj )TQ(Ŷ λ
′

d − Gλ′U intj ). Using
(27), Jjλ′+1 = (Gλ′δU intj )TQ(Gλ′δU intj ), with δU intj =

Uλ
′

∞ −U intj . For the optimal choice of Ujλ′+1 (12)-(14), the
cost δU intj

T
GTλ′QGλ′δU intj ≥ δUTjλ′+1G

T
λ′QGλ′δUjλ′+1 +

(Ujλ′+1−U intj )TR(Ujλ′+1−U intj ), where δUjλ′+1 = Uλ
′

∞−
Ujλ′+1, and as (Ujλ′+1 − U intj )TR(Ujλ′+1 − U intj ) > 0,
δU intj

T
GTλ′QGλ′δU intj ≥ δUTjλ′+1G

T
λ′QGλ′δUjλ′+1. Noting

that Q > 0 in norm-optimal ILC and Gλ′ is full rank
∀ λ′, implying that GTλ′QGλ′ > 0, the inequality implies
|Uλ′

∞ − Ujλ′+1| ≤ |Uλ
′

∞ − U intj |. �
Lemma 1 suggests that the library must be updated after

every trial using the corresponding control input and error
trajectories such that the interpolated trajectories Eintj and
δU intj converge to 0 ∀ λ′, which in turn will imply that
Ejλ′+1, δUjλ′+1 −→ 0 ∀ λ′. Towards this end, the library
update law of adding Ujλ′+1 computed for the next trial
and the resulting Ejλ′+1 to Luλ′ and Leλ′ respectively is
introduced here. Per this law, the library-based norm-optimal
learning law of (12)-(14) with the interpolated U intj and
Eintj computed using (20)-(22) is used. In addition, it will
be required that some existing entries of the library are
dropped in order to keep the size of the library manageable
– see Algorithm 1 presented shortly, which is based on
this library update law. In Theorem 2, the convergence of
Ejλ′+1, δUjλ′+1 −→ 0 ∀ λ′ as j −→ 0 under assumption A3,
according to which λ′ varies randomly in [λ′ λ′], is shown.

Theorem 2. For the combined system dynamics of (1) and
(2) that satisfy A1 through A5, the library-based norm-
optimal ILC, i.e. the optimal learning control law of (12)-
(14), the optimal interpolation method of (20)-(22), and the
library update law described earlier, result in the conver-
gence of Ejλ′+1, δUjλ′+1 −→ 0 ∀ λ′ ∈ [λ′ λ′] as jλ′ −→∞.
Proof: Lemma 1 suggests that it is sufficient to show that



Eintj , δU intj −→ 0 ∀ λ′ ∈ [λ′ λ′] as j −→ ∞. Moreover, due
to (27), only δU intj will be considered. The proof follows
from (i) ∀ k = 0 . . . N − 1 and ∀ λ′ ∈ [λ′ λ′], the
distance between the kth elements of the desired control
input Uλ

′

∞(k) and the interpolated control input U intj (k)
computed using the optimal interpolation method of (20)-
(22) is less than the distance |Uλ′

∞(k) − p|, where p lies
in the convex hull formed by the kth elements of the
control input trajectories in the library at the jth trial, i.e.
p ∈ conv(U1

j (k) . . . U
NL
j

j (k)) (in particular, p represents
the library entries U ij(k) at the jth trial), (ii) assumption A3,
which ensures that (i) holds ∀ λ′ ∈ [λ′ λ′], (iii) Lemma 1,
which ensures that |Uλ′

∞ − Ujλ′+1| ≤ |Uλ
′

∞ − U intj |, and
(iv) the library update described earlier, which ensures that
Ujλ′+1 computed using (12)-(14) and (20)-(22) is stored in
the library, implying that the convex hull formed by the
library entries at the next trial j + 1 is closer to Uλ

′

∞ .
In order to see the argument in (i), consider the

following sub-optimal solution of (20)-(22) for the
interpolation weights. Set all but any two arbitrarily chosen
interpolation weights equal to zero in (21). Using an
argument similar to that presented in Lemma 1, it can
be seen that for any such sub-optimal solution Û intj (i.e.
for any combination of these two non-zero weights),
|Uλ′

∞ − U intj | < |Uλ
′

∞ − Û intj |. Extending this argument to
any pair of the interpolation weights, the argument in (i) is
obtained. �

To update the libraries Luλ′ and Leλ′ , control and error
trajectories are added into the library, indexed by λ′ at each
trial. To prevent the libraries from getting too large as many
trials occur, the columns of the libraries are sorted into bins
with Ne number of edges, indexed by their associated iλ′

at the end of each trial. From these bins, the Nk most
recent Uj+1 and Ej+1 vectors are kept. The total number
of elements in each bin is NLj = NeNk − 1. This causes
the libraries Luλ′ and Leλ′ to be ∈ RN×N

L
j . For an initial

parameter λ′ that is randomly trial varying, starting from an
empty library, the process can be seen in Algorithm 1.

IV. RESULTS

In this section, we perform an assessment of our norm-
optimal library-based ILC approach, using a micro-robotic
extrusion system as a case study. The results demonstrate (i)
the effectiveness of our interpolation method as compared
to the methods shown in [9] and [10], along with (ii)
convergence of the objective function to the norm-optimal
value when the initial drift parameter λ′ is constant from
trial to trial.

A. Simulation Model

To test our new library-based ILC interpolation method,
we consider an additive manufacturing system: a micro-
robotic deposition model that extrudes thixotropic ink. This
is the same system model that was used in [9], which enables
a fair comparison to the algorithm used in [9].

Algorithm 1 Library-based norm-optimal ILC

Input: Plant model as a function of λ′, reference trajectory
Yd, minimum and maximum values λ′ can take (λ′− ,
λ′+), λ dynamics (equation (2)), a finite sequence of λ′j
where j = 1, . . . , jend, the number of bin edges Ne,
total number of elements to keep per bin, Nk.
Initialization : Select any control input that stabilizes
the plant and perform one trial. Store the control input
and corresponding error sequence into the libraries Luλ′

and Leλ′ indexed by the value of λ′ at the first trial. Bin
the space between [λ′ λ

′
] by using Ne edges.

1: while j ≤jend do
2: λ′ = λ′j+1

3: Compute learning filters Luλ′ and Leλ′ using (13) and
(14)

4: Compute U intj and Eintj using (20)-(22)
5: Create Ujλ′+1 = Uj+1 using (12)
6: Perform the j + 1st trial using the computed Uj+1.
7: Store the control input and error trajectories Uj+1 and

Ej+1 into the libraries Luλ′ and Leλ′ indexed by λ′.
8: Perform the library truncation process by keeping only

the Uj+1 and Ej+1 vectors from the Nk most recent
trials per bin and per library.

9: j = j + 1
10: end while

B. Interpolation Results
In this section, the new interpolation method shown in

Section III is compared to the Gaussian interpolation filter
method used in [9] and the heuristic weighting method
used in [10]. The methodology for testing the interpolation
methods was to create partially converged libraries (Luλ′ ,Leλ′ )
corresponding to λ′ = [0.2, 0.6, 1.0] by running traditional
norm-optimal ILC for three trials. Then, using each method,
the interpolation weights were computed with a correspond-
ing control sequence for a set of test λ′. The objective
function value was then calculated for each test case, Jintrp,
resulting from the control sequence. Lastly, it was compared
to the objective function value achieved by traditional norm-
optimal ILC run for 20 trials where λ′ is equal to the test λ′

and is trial-invariant. These results can be seen in Figure 2.
In this figure, it is clear that the new interpolation method
shown in Section III yields a better interpolated control input
because it has the lowest value of Jintrp − JILC20 for each
parameter λ′.

C. Continuous Interpolation Starting from an Empty Library
In this section, the results are generated via Algorithm 1.

The results of this can be seen in Figure 3. To visualize
the convergence of the objective function value per trial to
the converged value of the objective function achieved by
traditional ILC run for 20 trials where λ′ is trial-invariant, the
value of JILC20 was computed for a discretized range of λ′

between 0 and 1. The range was then divided into 6 “optimal
cost sections”. The optimal cost values corresponding to the
maximum and minimum value of λ′ per section were used to



Fig. 2: Objective function value after interpolation for each of the
three methods, starting from a partially converged library, minus
the objective function value of ILC run for 20 trials with a trial-
invariant λ′. A lower value of Jintrp − JILC20 is better.

create the shaded rectangles seen in Figure 3. A simulation
was then run for 100 trials, and the objective function values
were binned by the corresponding λ′ value at each trial and
given a similar color to the sections in which the λ′ values
per trial corresponded to. From this figure, it can be seen
that the objective function values in each bin converge to
the section showing the converged value of the objective
function. Additionally, in Figure 4, we show time traces of
the output being tracked. From this figure, the error between
the desired output and output per trial can be seen to decrease
as the trial number increases, due to the trials plotted being
chosen for the proximity of their λ′ values to each other.

Fig. 3: Convergence of the library-based norm-optimal ILC method
starting from a empty library to the optimal cost sections, when the
value of the initial parameter λ′

j ∈ [λ′ λ′] varies randomly at each
trial.

Fig. 4: System outputs over multiple trials with similar λ′ values
compared to the reference trajectory.

V. CONCLUSIONS AND FUTURE WORK

In this work, we have presented a new methodology,
termed library-based norm-optimal ILC, for systems where
a trial-varying disturbance or change in plant parameters
can be estimated or measured at the outset of each trial.
Additionally, we presented a library generation strategy, and
a library interpolation strategy for generating new control
signals once a new initial parameter is encountered, with

a proof showing that the interpolation weights calculated
by this method globally and uniquely minimize the objec-
tive function at the next trial within a set of constraints.
Additionally, we presented associated theory for the conver-
gence of the performance to its optimal value. Finally, we
showed the efficacy of our methodology on a micro-robotic
deposition system. In these results, we demonstrated that
our interpolation method outperforms prior library-based ILC
techniques and showed the effectiveness of our library-based
norm-optimal ILC method in continuous use, starting from
an empty library. In the future, investigations into optimal
methods for selecting the bin parameters used in Algorithm
1 will be performed. Additionally, methods for selecting the
optimal number of past control and error trials to keep in
each bin will be investigated. Finally, theoretical insights
into the robustness of this control algorithm as well as the
convergence rate will be explored.
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