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Abstract— For many emerging repetitive control applications
such as wind and marine energy generation systems, gait-cycle
following in legged locomotion, remote sensing, surveillance,
and reconnaissance, the primary objective for repetitive control
(RC) is optimization of a cycle cost such as the lap-averaged
power generated and metabolic cost of locomotion, as opposed
to the classical requirement of tracking a known reference
trajectory by the system output. For this newer class of
applications, only a range of reference trajectories suitable
for cyclic operation is known a priori, the range potentially
encapsulating various operational constraints, and as part of
repetitive control, it is desired that over a number of operation
cycles, the cycle cost, or the economic metric, is optimized. With
this underlying motivation, a hierarchical solution is presented,
wherein the inner loop includes a classical repetitive controller
that tracks a reference trajectory of known period, and the
outer loop iteratively learns the desired reference trajectory
using a combination of the system and cost function models
and the measured cycle cost. This approach results in optimum
steady-state cyclic operation. A steepest descent type algorithm
is used in the outer loop, and via Lyapunov-like arguments,
the existence of tuning parameters resulting in robust and
optimal steady-state cyclic operation is discussed. Appropriate
guidelines for parameter tuning are presented, and the proposed
method is numerically validated using an example of an inverted
pendulum.

I. INTRODUCTION
A. Motivation

A wide class of engineered systems has benefited from the
theory of, and design procedures for, repetitive control (RC)
[1]. In particular, note the first application to a power-supply
control system [2]. A common theme shared by the research
efforts cited in [1] is the a-priori knowledge of the desired
reference trajectory to be tracked by the system output.
While many systems are characterized by a clearly defined
reference signal (for instance, consider the application of
contouring control in multi-axis motion systems [3]), there
exist a host of systems for which the optimal reference signal
is not at all obvious. Consider, for example, the applications
of legged robots, exoskeletons, and powered prosthetic limbs,
wherein repetitive gait following with optimized metabolic
cost or reduced mechanical effort is desired, and the task
of tuning the parameters (performed manually) is laborious
and time-consuming [4]. For numerous energy generation
systems such as wind turbines, airborne wind and marine
hydrokinetic energy systems that operate cyclically to gener-
ate power, and robotic systems such as autonomous vehicles
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that are required to repetitively follow approximate closed-
shaped paths for surveillance and monitoring in minimum
time, the process of tuning the desired reference trajectory
manually can be very difficult. In these applications, the
power generated, the mission time required for surveillance,
and metabolic costs are examples of economic metrics to be
maximized or minimized during cyclic operation.

For the aforementioned applications, the repetitive control
problem should include the relevant economic objective
function, and repetitive controllers should be designed to
maximize or minimize the objective function of interest
over a number of system operation cycles. However, this
requirement is not accommodated by the existing framework
of RC [5], as discussed in [6] (which focused on bipedal
walking; however, the overarching conclusion that existing
RC is not tailored toward economic metrics is applicable to a
large span of applications). This need motivates the primary
contribution of the current study. In addition, the requirement
of economic operation in these systems typically translates
into two other requirements of (i) continuous operation and
(i1) flexible cycle times. The need for continuous system op-
eration emerges from the fact that an offline phase in between
cycles, potentially required for resetting the system to some
initial condition, as is the case in iterative learning control
(ILC) [7], will result in reduced productivity, and reduced
cycle times indicate a further increase in this productivity.
In order to achieve these reduced cycle times, or cycle-time
optimality, starting from a sub-optimal cycle-time, the cycle
time should be allowed to be flexible during operation.

B. Relevant Literature

The class of systems characterized in the preceding para-
graph has been the focus of many research efforts lately,
with control methodologies being adopted from both the
iterative learning control (ILC) framework [8], [9], [10] and
the model predictive control (MPC) framework [11], [12],
[13]. The choice of an ILC framework in [8], [9], [10] is
an interesting one, as the assumption of an initial condition
reset is central to the classical formulation of ILC [5], [7].
Despite the challenges involved in using ILC for control
of continuously operating systems (see for instance [14]),
useful methods are proposed in [8], without any theoretical
guarantees, and in [9], with theoretical results that rely on
the somewhat artificial assumption of an initial condition
reset. While a flexible-time ILC formulation is presented in
[10], the proposed approach is again restricted to systems
satisfying the assumption of an initial condition reset. This
is especially problematic since the requirement of reduced
cycle-times for economic operation necessitates that a system



finishes a cycle of operation faster than it started, which in
turn requires that the initial conditions be different from one
cycle to the next.

The solutions presented in [11], [12], [13], which adapt
tools from the MPC community for use in economic repeti-
tive control, share the idea of constructing safe terminal sets
using historic system data from previous trials. Similar to
the research efforts cited in the preceding paragraph, the
assumption of an initial condition reset is posited in [12]. In
contrast to [12], this assumption is relaxed in [11]. In order
to implement these MPC-based approaches, a good process
model and computational capabilities to perform real-time
optimization is required. Also, the required computational
effort increases exponentially for nonlinear systems, as a
nonlinear optimization problem is required to be solved in
real-time [15], which is too massive to handle for many on-
board microprocessors across different application domains.

C. Proposed Solution

Motivated by the need for a new framework of repetitive
control (RC) that can accommodate economic metrics, and
the idea of economic ILC presented in [8], a hierarchical
method for economic repetitive control is presented in the
current study. The method is represented using a block-
diagram in Fig. 1A, wherein a hierarchical structure consist-
ing of (i) a repetitive control system in the inner loop and
(ii) an iterative learning method for learning economically
optimal reference trajectories in the outer loop. As is clear
from Fig. 1A, the inner loop is required to follow the
reference trajectory generated by the outer loop and is
therefore executed in the time domain, whereas the outer loop
iteratively learns the most profitable reference trajectories
using trial-to-trial feedback of the measured system variables
and the economic cost and is therefore executed in the
iteration domain.
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Fig. 1. (A) A block diagram representation of, and (B) a representative
evolution of reference and system output trajectories in, economic repetitive
control systems

The outer loop, which is expanded in Fig. 1A, ultimately

updates the reference trajectory based on the observed eco-
nomic cost and cycle tracking error. Specifically, an update
is triggered (via the “Reference trajectory update check”
block) whenever the cycle tracking error falls below a
specified threshold, the number of cycles executed for a
particular reference trajectory exceeds a specified threshold,
or a combination of the two conditions. Instances where the
trigger is based entirely on tracking error are referred to as
patient economic RC, whereas instances where the trigger
is forced based on a specified number of cycles are referred
to as restless economic RC. When triggered, the reference
trajectory is updated based on the performance over the
most recent cycle corresponding to the previous reference
trajectory, referred to as the trial. A typical evolution of the
reference trajectory and system output in time is shown in
Fig. 1B, from where the relationship of a cycle and a trial
may be noted. In Fig. 1B, the intervals of cyclic operation are
separated by the vertical dotted lines. It is important to note
that in ILC, a trial is defined by the duration of the desired
(trial-invariant) reference trajectory, and even for systems
with the trial-varying trial duration [16], the existence of an
offline phase clearly differentiates any two consecutive trials.
The continuous nature of the applications considered in this
study requires a clear economic-operation-centric definition
of a trial.

There are three major contributions of this work: (i) a sys-
tematic framework for addressing repetitive control of sys-
tems with the primary objective of optimizing an economic
metric, (ii) a procedure for judiciously updating the reference
trajectory in the outer loop of the proposed hierarchical
structure, and (iii) theoretical results that guarantee that the
parameters of the corresponding algorithm can be tuned to
asymptotically achieve economically optimal operation. In
addition to these, guidelines are discussed for designing the
inner loop, and the proposed method is validated numerically
for a nonlinear system - the inverted pendulum.

II. ECONOMIC REPETITIVE CONTROL

In this section, the method of economic RC is detailed for
nonlinear and linear systems. For the outer loop, an approach
similar to iterative solution algorithms for static optimization
problems is used here. An a-priori known range of reference
trajectories to which the optimum solution belongs forms the
set of candidate solutions, and iterative reference trajectory
update laws must be designed that mimic the mentioned
class of static optimization solution methods. For the inner
loop, repetitive controllers are designed such that all of the
candidate reference trajectories’ solutions can be tracked.

A. Problem formulation

The class of (potentially nonlinear) systems considered in
this study is described in (1), wherein x, € R"=»*! y €
Rl 2 € RP=* y € R™>*! denote the system state,
control input, performance variables, and system output
respectively:

ip = f(mjnu)a z = g(.Tp,U), y= h(xp) (1)



The functions f, g, and h are assumed to be smooth.
Additionally, it is further assumed that the solution is unique
and exists for all time, a bare minimum requirement for
analysis and control of steady-state system operation. The
cost function J is a function of the performance variable z,
which is assumed to be measured. In turn, z is a function of
(a subset of) the state variable x,, and control input u. For the
system in (1), assumptions on invertibility and uncertainty
are posited in Al and A2.

Al. The system in (1) is assumed to be invertible, i.e., for
a given desired reference trajectory r, 3 unique steady-state
solutions z4 and ug such that x, = 4,4 = uq, and y = r
which satisfy (1). Similar to r, z4 and u4 are also functions
with the same (fundamental and higher order) periodicity as
T.

A2. The functions f,g, and h are known to belong to
the uncertain sets F,G, and #, respectively, known only
approximately for control design, the approximations being
f , g, and h respectively.

In addition, we allow the desired reference 7, a periodic
function of time, to be parameterized by " € R" *!, For
instance, if r = a, sinwt, 6, = [a, w|T, and n, = 2. Such
parameterization of the reference trajectory can reduce the
number of variables that are adjusted by the outer loop.

As the goal of economic RC here is optimal (steady-state)
cyclic performance, the idea of a cycle is central to this
study. In contrast to the traditional RC literature, wherein a
cycle is typically defined to be the same as the time-invariant
period of the reference trajectory to be tracked, owing to
the requirement of flexible cycle times here, as described
in Section I, the cycle-time itself is time-varying. In order
to ensure that the comparison of economic performance for
any two operational cycles is fair, a cycle in this study is
defined using a non-dimensional path parameter p that spans
the range [0 1], similar to [8], [9]. The parameter p is equal
to 0 when the system state x is at the start line, and as x
traverses through a closed orbit (a periodic solution) in the
state space, the desired trajectory x4 being one such closed
orbit, p increases from O to 1, and is equal to 1 when x
returns to the start line [12]. The start line for a closed-orbit
solution is defined as the line joining the center of the closed
orbit to some arbitrarily fixed point on it.

B. Outer loop design

As part of outer loop design in economic RC, the goal is to
develop optimization algorithms and associated update rules
for 6 such that the economic cost J, which is computed
over one cycle of system operation, is optimized in real-
time, ultimately resulting in economically optimum steady-
state cyclic operation. For an operation cycle with the initial
conditions x,(t;"") for the system in (1), where ¢;’“ denote
the time at which the operation cycle starts, the cost function
is a function of the commanded reference 6" and z,(t;"), as
these uniquely determine the performance variables z over
the cycle being analyzed.

As the cumulative tracking error over the cycle, or cycle
tracking error, approaches zero asymptotically, the initial

condition z,(tY“) of a cycle is uniquely determined by the

steady state solution x4, which in turn, uniquely depends
on 0" (per Al). As will be discussed shortly, it is useful
to express the economic cost function as described in (2),
wherein the term ¢ diminishes to zero as the cycle tracking
error approaches zero. So, as t — oo, § — 0. In order to
arrive at (2), the cost function is assumed to be smooth,
allowing for a Taylor series expansion of J about #" and
za(te’e).

O, 2, (157°)) = J(0", walty))+(0"  walt5") —a, (15"))

2
In (2), as zq4(t;Y°) is uniquely determined by 67, it is
reasonable to drop the second argument of J during steady
state and, consequently, the cost function with only one
argument should be understood to be the steady-state cost
function.

It is noteworthy that if the system (1) and economic
cost J are accurately known, the steady-state optimization
problem, which is a nonlinear programming problem, can be
solved offline. However, for practical applications of interest,
the system and the cost are only partially known at best.
Therefore, there is a need to include trial-to-trial feedback
from the system during cyclic operation. These arguments
lead into the following set of assumptions for the system
and economic cost.

A3. 3 a convex set O such that the cost function J(6")
is convex in ©p, where the unique optimizer is denoted as
9: € Og.

A4. The cost function available for outer loop design, which
is denoted as J’, is also convex in O with the unique
minimizer 0, and |0} — 6% < A*. Here, A* is not known
a priori.

In A3, convexity of the steady-state cost function J(0") is
assumed, and in A4, the cost function used for control design
is characterized.

Remark 1 The economic cost will typically be a nonlinear
function of the system state x,, and control input u, and
the exact dependence J(0") during steady state operation
depends on the system (1) and the repetitive controller of
the inner loop. As long as the inner loop converges to a
steady state, potentially with non-zero tracking error (see
Remark 3), the mapping J(0") is well defined. The mapping
J(0") and, in particular, J(6%), is a function of the inner
loop that includes the system and the repetitive controller to
be designed. The method presented and formally discussed
for the case of zero steady-state tracking error in this section
easily extends to the case of non-zero steady-state tracking
error.

The reference trajectory update check and reference tra-
jectory update law blocks, the tuning guidelines for the
proposed method, and details of the method used here for
computing the cost function gradient are described next.

1) Reference trajectory update check: As briefly alluded
to earlier, an approach similar to iterative solution algorithms
for static nonlinear optimization is used here for designing
the outer loop. More specifically, the economic cost to be



optimized, a static (in time) nonlinear function, is optimized
iteratively using the same principle as that used by iterative
solution algorithms such as steepest descent with the key
difference that trial-to-trial feedback is used to compensate
for uncertainty in the system model and/or cost function
model. Central to any iterative approach is the definition of
an iteration or a trial. In general, after the desired reference
trajectory parameter 6" is updated, there will exist initial
transients over one or more cycles, as the system output
seeks to track the newly defined trajectory. In order to
conduct a meaningful reference trajectory at the outer loop,
it is essential to wait until these transients have sufficiently
died off before triggering an update; however, there exists
a tradeoff between waiting many iterations for all transients
to settle and aggressively adjusting the reference trajectory
with the goal of converging quickly to the optimal trajectory.

To balance these two goals, a reference trajectory update is
performed whenever one of the following two conditions are
satisfied, (i) fol lle(p)||?dp < €., where p denotes the path
parameter defined earlier, and €. represents a threshold on
tracking error below which a reference trajectory change will
be triggered, or (ii) Nwait > Mmax> Where Ny, represents the
number of cycles that have occurred since the last reference
trajectory update, and n,,x represents a specified number of
cycles beyond which a reference trajectory change will be
triggered. We will refer to the first condition as a patient RC
trigger (owing to the fact that we are waiting for the error to
fall below a threshold) and the latter condition as a restless
RC trigger (owing to the fact that we are forcing a reference
trajectory change, irrespective of the error). In Fig. 1B, a trial
is defined according to the patient RC trigger, which may be
noted from the fact that the first two intervals are three cycles
long whereas the third interval is only two cycles long.

Typically, the threshold €. will be small for economic RC
systems with zero steady-state tracking error, but not equal to
zero, implying that the measured cost .J7, after the j*" trial is
equal to the cost J (60", z,(t;"")) in (2), wherein 4 represents
a transient cost that vanishes as e. — 0. If the repetitive
controller of the inner loop results in a quick convergence of
the tracking error to zero, a small value of e, may be used.
However, if the convergence is slow, a larger €. may be
required for reasonable convergence times, the larger value
resulting in more frequent updates. In such a setting, the
magnitude of €. should be tuned to ensure such that the cost
improves before every reference trajectory update, thereby
ensuring that the closed loop orbit (periodic solution) in the
state space is closer to the true optimal closed loop orbit.

2) Reference trajectory update method: After every trial,
the reference trajectory is updated as per the steepest descent
type algorithm of (3), wherein j denotes the trial index,
I' € R *"r denotes the step length matrix, and ¢; denotes
the estimated gradient, which is used to establish a suitable
descent direction for optimization, the computation of which
is described shortly. Here, I' = diag(y1 ... Yn,)-

0541 =05 —T'q; 3)

There are three distinct phases in the iterative solution
proposed here for optimization of the cost function. During
the first phase, at the start of this iterative process, only
the gradient computed using the system and cost function
models is available. A minimum of two trials are required
in this phase to create an estimate of the cost function
gradient using the measured cycle cost values. Let ¢; =
000" |gr—gr » @ = OJ'/00"|gr_p, , and gj" denote, at
9" = 07, the true gradient, the gradient computed using
the system and cost function models, and the gradient
estimated using the measurements J jm of the economic cost,
respectively. During the second phase, the gradients q; and
q;" are used in combination for iterative optimization. During
the third phase, 6" is in between 6 and é; (see A4), and the
gradients q;- and ¢;" provide opposite directions for descent.
Based on these considerations, the cost function gradient g;
is estimated using (4), wherein 0 < a; < 1.

. — a)a™ ; A m
4 = { ;i + (1 —aj)qf*, If sign ¢} = sign ¢j @

qa", otherwise
Regarding initialization of iterative learning, 6; should be
chosen to be different than §%, as the gradient ¢, = 0 at 67,
implying that the search cannot continue, and for practical
applications, é: # 07,

In what follows, it will be shown that the steepest-descent
type algorithm of (3) and (4) with the patient RC trigger
can be tuned effectively to robustly optimize the steady-state
operation of nonlinear repetitive systems with uncertain mod-
els and uncertain economic cost functions. These arguments
easily extend to economic RC with the restless RC trigger.
Let v = min{vy; ... v, }

Theorem 1. There exists 7,€. Nmax, and a sequence of
weighing parameters o such that starting from any 0y €
OR, as j — oo, the economic cost J(07) of the closed-loop
system defined by (1)-(4) converges to J(6).

Proof: The proof consists of two parts. First, using a
Lyapunov-like function 86077667 (5657 = 67 — ¢7) and
convexity of J in Op, robust convergence will be shown
possible for a sufficiently small v and some sequence «; for
which 3 some j’ such that Vj > 5/, the sign of q;" can be
ensured to be the same as the sign of ¢;. Second, it will be
shown that the condition on the sign of ¢;* can always be
ensured for sufficiently small €. and ~.

Let V; = 59§T59§ denote the (Lyapunov-like) distance
function between 67 and ;. To analyze the evolution of 667
in the trial-domain, the discrete-time derivative of V; or the
difference of V; and Vj4; is evaluated along an arbitrary
closed-loop trajectory of (1)-(4), as shown in (5) and (6).

Vigr = (07 —05,)7 (0 —07,)) o)
Vier =V + 2967 —07)7d4; + 2245 4 (6)

As v — 0, the term y2¢7

ol Tq; < 29(05—05)"g; for any given
¢ (no matter how small), implying that the relative values of
Vj and V1 may be evaluated by analyzing 2+(6y — 9;7)T(jj.
As an assumption for this first part, let the sign of §¢; be
the same as that of ¢; Vj > j’ for some j’. Owing to this



assumption, and A3 - 67 € © and J is convex in Op, the
term 2(6; —67)"g; < 0, where < denotes the element-wise
inequality operator, as long as 07 € © g. Now consider j = 0,
as 0 € Or, V1 <V which, in turn, implies that 7 € Op.
Extending this argument through j — oo, 67 — 07.

For the second part, in order to show that 3 ;5 such that
V j > j', the sign of §; can be ensured to be the same as
the sign of ¢;, consider that as €. — 0, J(0", z,(t;’)) —

J(O7, zq(ts”)) = J(67) in (2). In addition, if + is small (not
necessarily v — 0, i.e. arbitrarily small), implying that 67
and 07_; are close, using a simple finite- dlfference method
the measured cost function values JQT , Jey ,and j' = 2, q;"
is easily computed such that the s1gn of’ qj is the same as
the sign of g;. Now let the sequence of weighing parameters
aj = a, and o — 0. From (4), it can be noted that under
such a choice of «;, the sign of §; is the same as the sign
of gj Vj>j'. ]
Remark 2 As the reference trajectory parameter 9; ap-
proaches the true optimal 0}, the cost function gradient
reduces in magnitude, implying an increasingly small change
in 07. In the limit, the change is so small that the cycle
tracking error asymptotically goes to zero as 87 — 0}. More
generally, the cycle tracking error goes to a minimum steady-
state value (see Remark 1).

3) Tuning guidelines: During the first phase, the gradient
qg- should be used with smaller values of the step lengths
Yi ... Yn,. On the one hand, the smaller step lengths allow
simple computation of ¢7* via the finite-difference method.
On the other hand, these prevent larger, and potentially
incorrect, changes in 7. The nominal models of the system
and cost function are recommended to be used for tuning
Y1 ... 7Yn, via simulations. Specifically, by using a 0
sufficiently different from é,f , it can be ensured that the sign
of q;. (the gradient computed using uncertain models) and g;
are the same for 07 close to 6 (see A3). The implication
here is that (sufficiently small) v; ... 7,. may be tuned
using the simulated cycle costs.

During the second and third phases, where the gradient
q;* computed via measurements is available, higher values
of 71 ... 7y, may be used. In these phases, it is desirable
to progresswely weight ¢ higher as j — oo. Consequently,
a potential choice for a; = a~ " with a < 1. While the
desired value of « is application dependent, a good initial
value for further tuning is 0.5, which (at j = j' + 1) weighs
q; and g} equally.

The value of €. required for successful economic RC is
heavily dependent on the inner loop, and more specifically,
on its tracking performance. As was discussed in the second
part of the proof of Theorem 1, €. should be chosen such that
0 in (2) is small, ensuring that the sign of the true gradient g;
is estimated accurately. If the tracking error of the inner loop
converges quickly to a non-zero steady-state value, €. may be
set slightly larger than this value. If the convergence is slow,
a higher value of e, may be used, and the tuning of e, should
proceed using models or experiments. The true gradient, g;,
should first be estimated by setting e. close to the non-zero
steady-state tracking error and setting y; ... 7y, to small

values. Once the sign of the estimated true gradient, g;, is
known, using a few more trials with small v; ... ,,, the
size of €. should be progressively increased while ensuring
that the sign of ¢j* is the same as this sign. This tuning
process must be repeated for a few randomly chosen 6], and
the minimum of all such tuned €. should be retained. It is
noted here that for economic RC systems characterized by
non-zero steady-state tracking error of the inner loop (see
Remark 1), e, should always be set higher than the non-zero
steady-state cycle tracking error, else the static optimization
problem being solved here iteratively will be ill-posed in the
sense that every initial candidate solution 6 will be a local
optimum.

4) Cost function gradient estimation: In addition to the
tuning parameters discussed in the preceding paragraphs,
successful implementation of economic RC requires accurate
computation of the gradients qJ and ¢;". Using the models for
the system and cost function, the gradlent q;- is proposed to
be computed numerically using sensitivity simulations with
respect to 9; = ¢", and the method of finite difference. As
it may be challenging to simulate nonlinear systems online,
a wide range of simulations may be performed offline, and
the corresponding economic cost can stored in the form of a
map. In this method, the system is simulated until it reaches
steady-state operation. Online estimation of the gradient of
a cost function has been a focus of study for many research
efforts, as gradients plays an important role in many fields of
control theory [17], [18]. While a wide range of techniques
ranging from simple finite-difference-based to those using
time-varying Kalman filters are available for this purpose
[19], in this study, a method that uses n,,, past measurements
of the cycle cost Ji*, J™, ...J", ., for computing a
local polynomial approx1mat10n of the cost function J is
used, the approximation subsequently being used to evaluate
the gradient ¢;* at 07 = 0".

C. Inner loop design

Output tracking of periodic reference trajectories is an
established sub-field of control theory. A brief discussion
on repetitive controllers for trajectory tracking is included
here for nonlinear and linear systems. The mathematical for-
mulation of nonlinear repetitive control falls under the class
of nonlinear output regulation or servomechanism problems
[20], wherein the asymptotic tracking or rejection of (not
necessarily periodic) signals generated by exo-systems are
studied. Isidori & Byrnes introduced the much celebrated
idea of zero error manifolds in [20], and derived the neces-
sary condition for the existence of a solution to the nonlinear
regulation problem. Per this necessary condition, every state
and (feedforward) input trajectory (z4,ugq) on this zero
error manifold satisfies the nonlinear regulator equations. A
feedback (linear) controller that locally stabilizes this zero
error manifold, i.e. z—x4, is guaranteed to ensure asymptotic
convergence of the tracking error to zero.

For linear systems, an internal model is included in the
closed-loop (see Fig. 1) and the feedback controller is
designed such that the resulting closed-loop is asymptotically



stable. The internal model here is a function of the periodicity
of the reference trajectory and, thus, for the application of
economic RC, the feedback controller should stabilize the
set of closed-loop systems resulting from a range of possible
time periods of the reference trajectory.

III. ECONOMIC RC OF AN INVERTED PENDULUM

The method of economic RC described in Section II is
validated numerically here using an inverted pendulum ex-
ample, the governing equation for which is described in (7),
wherein I,, ¢, m, and L denote the effective inertia, rotation
angle, mass, and length of the pendulum respectively, and
g,b and 7 denote the damping coefficient, acceleration due
to gravity, and control input torque respectively. The rotation
angle ¢ is measured from the vertical downwards position —
the stable equilibrium of a simple pendulum.

Ioég = —mgLsin ¢ — b(;lﬁ +7 7

The inverted pendulum example has been used widely in
the controls literature. In addition to being theoretically
interesting, it is reflective of the basic characteristics of
several dynamical systems, including for example bipedal
walking motion [21].

As part of control objectives, it is desired that the inverted
pendulum oscillates about the unstable equilibrium ¢ = =
with the amplitude of oscillation ¢, and cycle time T" such
that ¢ < ¢ < ¢, and ' < T' < T. An economic cost
that penahzes the distance between the system trajectories
of (7) and an unknown desired reference trajectory is to be
minimized in steady-state operation.

A model of the cost function that measures the distance
between the system trajectories of (7) and a decent guess of
this desired reference trajectory is used for computing q;-.
Typically, such a guess is known from experience. Using the
procedure of harmonic balance described in Section II, the
internal model, i.e. the coefficients of the (truncated) Fourier
series representation of the desired state-space trajectory
z4 and the corresponding feed-forward control input g,
is computed for a discretized 2-d grid in the space of ¢,
and T and is stored in the form of a look-up table as part
of the economic RC implementation. The linear controller
K in (??) is designed using the linear quadratic regulator
(LQR) technique. Through the relative weighting in the LQR
cost function, the rate of convergence of the system state
@ = [¢ T to the desired trajectory x4 may be manipulated.

An instance of the simulation results is shown in Figs. 2-
4, wherein the economic RC method with the patient RC
trigger described in Section II is demonstrated to be effective
in iteratively optimizing the cycle cost over time for the
ongoing example of inverted pendulum oscillations. Figs. 2-
4 represent results corresponding to one of many simulations
with randomly chosen system parameters belonging to an un-
certainty range of 20% that were performed for validation. In
addition, via these figures, the role of the gradient estimated
via measurements of the cycle cost is also highlighted. More
specifically, two cases are compared: (i) o; = 0 V j and (ii)
a; = ad~7" In Fig. 2, the unknown true optimal trajectory

in the state-space and a guess of it are represented by blue
and red solid lines respectively, the system trajectories are
represented by the yellow and green solid lines for the cases
a; = 0 and a; = /=7 respectively, and the converged
cycle trajectories for the two cases are represented by the
dashed red and blue lines respectively. For both the cases, the
same initial condition is used, which is shown by the black
marker in Fig. 2, and the system trajectories correspond to
a time duration of 175 s. During this duration, the reference
trajectory parameter ¢ is updated when the cycle tracking
error is computed to be less than e, = 1, and the trajectory
of 07 in the plane of T — ¢, is shown in Fig. 3, wherein
the contour plot of the unknown true cost function J is
used to indicate the progress made during cyclic operation.
As can be noted from Fig. 2 (and Fig. 3), the commanded
reference trajectory is updated such that the system trajectory
(green) for the case a; = af~ 7’ converges to the desired
economically optimal trajectory (blue).
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System trajectory: uj—()
@ Initial condition
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w

2.6 32 3.8
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Fig. 2. Economic repetitive motion in the state space.

The two cases being compared in Fig. 2 are use the
same initial reference parameter value 0 = [¢g Tp]T with
@G = 36.5 deg and T, = 7.5 s, which is represented by the
black circular marker in Fig. 3. In this figure, the unknown
true optimal value, 0 = [27.5 deg 10 s]7, and the guess
of it, 0 = [15.25 deg 12.5 s]T, are represented by the blue
and red circular markers respectively, and the trajectories of
¢} are represented by red asterisk and blue square markers
for the cases a; = 0 and o = ol respectively. It
is noted here that 6 is chosen sufficiently far from 6,
per the discussion regarding initialization presented before
(4). Specifically, choosing 6 close to é; may result in the
convergence of ¢ during the first phase to the red marker on
the contour plot in Fig. 3 or, alternatively, a greater distance
allows for the true descent direction to be figured out during
cyclic operation.

As briefly alluded to earlier in Section II, the cost function
model ensures reasonable (sub-optimal) progress during the
first phase or, in general, whenever the gradient ¢} estimated
using measurements is not very accurate. For the results
shown, « = 0.5 and j° = 4, implying that V j > 5,
the computed gradient ¢7* is used in conjunction with q§-
as described in (4), and at j = 5, the two gradients are
weighted equally. It may also be noted in this figure that
that the commanded amplitude angle ¢, and the cycle time



T remain within the bounds of ¢° = 10 deg, 50 = 45 deg
and T =5s, T =15 s respectively.

The evolution of cycle cost with respect to time is repre-
sented by the blue cross and red circular markers in Fig. 4
for the cases aj = a7 and ; = 0 respectively. It may be
verified from this figure that (i) the cost reduces initially for
the case a; = 0, but as 07 approaches é:, the cost starts to
increase, and (ii) the cost improvement is (almost) monotonic
for the case aj = ad =",
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Fig. 3. Optimization of the reference trajectory parameter 0;.
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Fig. 4. Evolution of the cycle cost

IV. CONCLUSIONS

Motivated by the need for a repetitive control (RC)
framework and associated design methods that result in
economically optimal steady-state cyclic operation, this study
presents a hierarchical solution with the inner loop using
the conventional repetitive controllers for tracking a periodic
reference, and the outer loop using a steepest-descent type
iterative algorithm that updates the reference trajectory such
that the optimum cyclic operation results. It has been shown
that the proposed algorithm can be tuned to result in robust
convergence of the reference trajectory to the economically
optimal one, and appropriate tuning guidelines are discussed.
The economic RC method is numerically validated for the
example of an inverted pendulum, and the results presented
demonstrate that the developed RC method is effective
in iteratively learning and tracking the optimal reference
trajectory.
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