Flexible-Time Receding Horizon Iterative Learning
Control with Application to Marine Hydrokinetic
Energy Systems

Mitchell Cobb'*, James Reed?*, Maxwell Wu?, Kirti D. Mishra?, Kira Barton®, and Chris Vermillion®

Abstract—This paper presents an iterative learning control
(ILC) framework for a class of repetitive control applications
characterized by (i) continuous operation, (ii) flexible iteration
time, and (iii) an economic performance metric. Specifically, the
effect of iteration-varying initial conditions, resulting from the
continuous nature of operation, is accounted for through an
iteration domain receding horizon formulation. To address the
need for flexible iteration times, the time-domain dynamics are
transformed into path-domain dynamics characterized by a non-
dimensional parameter spanning an iteration-invariant range.
The resulting model is used to derive learning filters that mini-
mize a multi-objective economic cost. The proposed methodology
is applied to the control of a Kkite-based marine hydrokinetic
(MHK) system, which executes high-speed, repetitive flight paths
with the objective of maximizing its lap-averaged power output.
The proposed approach is validated via simulations of a medium-
fidelity nonlinear model of a kite-based MHK system, and the
results demonstrate robust and fast convergence of the Kkite to
power-optimal flight patterns.

Index Terms—TIterative Learning Control, Receding Horizon
Control, Optimal Path Following, Repetitive Control, Renewable
Energy Systems, Marine Energy Systems

I. INTRODUCTION

He past several years have seen the advancement of

numerous technologies that exhibit continuous cyclic
operation and stand to benefit significantly from cycle-to-cycle
learning. For example, in the autonomous racing example of
[1], it is desirable to follow the predefined path (track) while
minimizing lap time. In the case of an actively controlled
prosthesis [2], the objective is to follow a spatially defined
reference path for the gait, while minimizing or maximizing an
energetic, metabolic, or rehabilitation-related metric. Lastly, a
kite-based marine hydrokinetic (MHK) energy system, shown

This brief was submitted for review on March 1%, 2021. This work was
funded by National Science Foundation grant number 1727779. Additionally,
the * symbol denotes equal contribution.

IMitchell Cobb is a controls
mcobb@ncsu.edu.

2James Reed is an a PhD student at North Carolina State University
jcreed2@ncsu.edu.

3Maxwell Wu is a PhD candidate at The University of Michigan
maxwu@umich.edu.

4Kirti D. Mishra is a Post-doctoral Research Associate in the Department
of Mechanical and Aerospace Engineering at North Carolina State University
kdmishra@ncsu.edu.

5Kira Barton is an Associate Professor in the Department of Mechanical
Engineering at The University of Michigan bartonkl@umich.edu.

6Chris Vermillion is an Associate Professor in the Department of Mechan-
ical and Aerospace Engineering at North Carolina State University, Raleigh,
NC 27695, USA cvermil@ncsu.edu. He is also a technical advisor
and equity stakeholder for Altaeros Energies, Inc. and Windlift, Inc.

engineer at Blue  Origin.

in Fig. 1, can generate more than an order of magnitude
more power than an equivalently-sized stationary MHK system
by executing high-speed, repetitive figure-eight flight patterns
perpendicular to the prevailing flow [3].

Fig. 1. Example of a kite-based marine hydrokinetic (MHK)
energy system from Minesto. Image credit: Minesto, Ltd.
Obtained with permission.

The aforementioned applications share three characteristics:
(i) an economic performance objective, (ii) flexible cycle time,
and (iii) continuous operation. It is not coincidental that the
second and third features tend to appear when the first feature
appears; restricting the cycle time severely restricts the space
of control trajectories/sequences that can be explored, and
requiring a pause between iterations can defeat the purpose
of the economic optimization if time is critical.

Interestingly, the class of systems under consideration does
not fall neatly within existing repetitive control (RC) or
iterative learning control (ILC) frameworks. On one hand,
the consideration of continuous operation (which causes non-
resetting initial conditions) deviates from traditional ILC as-
sumptions and satisfies RC assumptions. On the other hand,
the systems being considered do not lend themselves to an
internal model or a zero-error manifold, particularly owing to
the focus on flexible cycle time and an economic (rather than
tracking) performance objective.

Within the RC research community, techniques have been
successfully used for control of continuously operating repet-
itive systems (e.g., in [4] and [5], for example). However,
the focus largely has been on using cycle-to-cycle learning
for output trajectory tracking, or achieving a balance between
trajectory tracking and control input size via a quadratic cost
formulation (see [6], [7]), all assuming fixed cycle times.

Turning to the ILC literature, point-to-point and Pareto
optimal ILC approaches, such as those in [8]-[14], relax
tracking requirements between prescribed waypoints, which
can be leveraged to account for additional economic metrics to
be minimized or maximized. However, the point-to-point ILC
strategies described in the above-referenced papers all require



a fixed trial duration (while [15], [16], [17], and [18] allow
for iteration-to-iteration variation in intermediate waypoint
arrival times, they still fix the trial duration). While several
studies within the ILC community, such as [19]-[21], allow for
variable trial durations, they are restricted to tracking control.
Furthermore, all of the aforementioned formulations assume
an initial condition reset between iterations, which implies
discontinuous operation (i.e., a pause between iterations). In
fact, the existence of the pause and initial condition reset is
so ingrained within ILC frameworks that it has often been
deemed a defining distinction between RC and ILC.

A few research efforts from the ILC and model predictive
control (MPC) communities have also investigated receding
horizon approaches for repetitive tasks [22]-[29]. For example,
[22]-[24] utilize prediction to derive learning filters, but still
make classical assumptions of discontinuous operation, fixed
iteration time, and a tracking objective. The assumptions of
fixed iteration time and a tracking objective are lifted in
[25] and [26], which fuses time-domain MPC with iterative
learning, but an initial condition reset is assumed. In contrast,
the use of learning MPC for autonomous racing in [27] and
[28] does simultaneously address continuous operation, an
economic objective (lap time), and flexible iteration time, but
the formulation leverages a time-domain MPC optimization
that requires an online optimization and dispenses with the
attractive closed-form mathematical machinery present in tra-
ditional ILC formulations.

The present work proposes a flexible-time receding horizon
ILC technique that leverages the well-established mathemati-
cal machinery and closed-form update formulation of norm-
optimal ILC, with two new features that allow for flexible
iteration time and continuous operation:

1) The lifted system dynamics are re-parameterized in path

domain to allow for flexible cycle time.

2) Predictive control is performed in iteration domain,
which allows the ILC update to consider iteration-to-
iteration variation in initial conditions.

Ultimately, while the application of this algorithm falls closely
under the realm of RC, the controller structure and imple-
mentation are more similar to strategies commonly found in
the field of ILC. Hence, we refer to our approach as an ILC
algorithm, despite the fact that we are leveraging ideas from
both RC and ILC domains.

As a concrete case study, we focus on a kite-based MHK
system. Here, the economic control objective is lap-averaged
power output, which for a given path length and rotor power
coefficient translates to maximization of lap-averaged speed.
Given this correlation between the economic performance
metric of interest and speed, flexible cycle time is a necessity.
Furthermore, due to its continuous operation, the system’s
initial conditions vary from lap to lap. Consequently, the kite-
based MHK system contains all of the features present in the
class of systems targeted in the proposed ILC formulation. It
is worth noting that the present case study complements but
does not replace or duplicate earlier work from the authors,
including [30], [31], [32], and [33], which focus on using it-
erative learning techniques to adjust the parameters/waypoints
that define a flight path. In the present work, the focus lies on

optimally traversing a set of specified waypoints, taking into
account continuous operation.

II. FLEXIBLE-TIME, RECEDING HORIZON ITERATIVE
LEARNING CONTROL: MATHEMATICAL FORMULATION

As noted earlier, the proposed methodology uses a trans-
formation of the dynamic model from the time domain to
spatial domain for control design. Towards this end, the spatial
model is discretized and used to derive the lifted input-output
model. The resulting lifted model is used to derive predictive
and economically optimal learning filters, which are imple-
mented in an iteration-domain receding horizon manner for
improved robustness to inconsistent iteration-to-iteration initial
conditions. A schematic of the ILC methodology proposed in
this paper is shown in Fig. 2, wherein these learning filters
are used inside the ILC Update block. These learning filters
are spatial in nature and generate a control correction for the
next trial in the spatial domain, which is parameterized by
the non-dimensional path parameter s that spans an iteration-
invariant range during every trial. The control input computed
in the spatial domain for the next trial is transformed to the
time domain via the look-up table of Fig. 2, which stores
the control input values as functions of a set of waypoints.
More specifically, this transformation amounts to looking up
the control input value using the computed value of the non-
dimensional path parameter during an iteration.

Time Domain

1
1 1
1 1
i i
S ST S — :
i i
! Lookup |
H s(t) Table i
f uilc(t) I
i i
'[Feedback |4 o B
! | Controller u(t) i an i

1
N x(@):
1 1
i i

Fig. 2. Block diagram of the control structure used for the
path-parameterized ILC update law.

A. Path Domain Lifted Model

Obtaining a path domain lifted model requires spatial
re-parameterization of both the input-output dynamics of
the plant and the state and control trajectories from the
previous iteration. This was shown in [30]. Once the
this re-paramaterization is accomplished, a discrete path-
paramaterized system model is given by:

Tat1 = Tq + Aq (Tg41 — Tg) + By (ug+1 —ug), (1)

where ¢ € {1,2,...,ns} refers to a discrete index along the
path, A is the user-specified path discretization level and s,
represents the path position at path step ¢, i.e., s, = ¢A;. Note
that this relationship is derived assuming linearization around
a generic set of two sequences, x;(s) and u;(s). In subsequent
sections we will always choose to linearize our system around



the sequences achieved during the previous iteration, x7(s)
and u7 (s). Thus the discrete-path dynamics of (1) become

J+l _ g J(p T g I
woiy =xy+ Al (v —ay) + By (ug iy —ug) . (2)

Given these discrete-path dynamics, and these definitions of
the lifted vectors from the previous iteration 7,

jé{(x%)T (a?]l)T (xfzs—l)T (mi@)ﬂ:
Ujé[(uj)T (U{)T (uzls—l)T (“%)T} ’

it is now straightforward to derive a lifted system representa-
tion to relate the state sequence at the next iteration, it
(defined similarly to (3)), to the state sequence from the
previous iteration, Zj, the control sequence from the previous
iteration, u; the control sequence for the next iteration, Ujiq
(defined similarly to (3)), the initial condition for the previous
itf_:fraltion, :13%, and the initial condition for the next iteration,
)

8

3)

Tipg =2; + G; (Ej+1 _Ej) + Fj (Ep — EI)QJ', “)

where the n,, x n, block element in the m™ block row and
p™ block column of G are given by:

Qe X Moy m < P
AL AL .. AlB],  otherwise,

where 0 denotes the zero matrix. Similarly, the block element
in the m'™ block row of F7 is given by

) {l]nz XN
FJ = . .
n Al A?

m—1 -

m=1

.. AL Al otherwise,

(6)

where [ denotes the identity matrix. Lastly, note that in (4),
Er and E7 are designed to select the first or last state vector
from the lifted sequence, z;. Thus, they are defined as

(>

Er
EI L [ﬂnzxnz @nzxnz(ns—l)] . (8)

[@nzxnz (ns—1) Unran] (7)

Note here that because the initial conditions are not reset
between iterations, the final condition from iteration j is the
initial condition of iteration j + 1. Thus, the last term in (4)
expresses the deviation in initial conditions between iteration
7 and iteration j + 1.

B. Receding Horizon Iterative Learning Control

For many systems, it is suboptimal or infeasible to re-
set the initial conditions of the system between iterations.
Without an initial condition reset, the control sequence from
one iteration impacts the initial condition, and therefore the
achievable performance, for the next iteration. Therefore,
it is advantageous to account for this interdependence. To
quantify this interdependence, we first develop a dynamic
model that represents the behavior of the system over multiple
future iterations, which is subsequently used to estimate the
performance of the system over multiple future iterations and

derive learning filters for optimizing this estimated perfor-
mance. The procedure for deriving the update law and learning
filters leverages fundamental tools [14], which are extended to
account for multiple iterations. First, we write a performance
index in terms of the lifted model, then we take the gradient
of that performance index and set it equal to the zero vector,
rearranging the result to obtain an update law and expressions
for learning filters.

To clarify the following math and notation, we define a
standard of notation and nomenclature. In previous sections,
we referred to z; and u; as “lifted” vectors. That is, they
are formed by concatenating a set of state or control input
vectors ordered according to their path position (or time stamp)
as in (3). We also referred to the matrices G; and F} as
“lifted” system matrices. In this section, it will be necessary to
concatenate multiple instances of vectors and matrices that are
already lifted. We refer to these further concatenated vectors
and block matrices as “super-lifted” to emphasize that they
are different from but dependent upon vectors and matrices
from the previous section which themselves are already lifted.
These super-lifted vectors and matrices will be notated with a
bold-faced symbol.

In general, the lifted model of (4) can be used to predict the
state sequence resulting from any control input. Thus, if we
wish to predict the state sequence over the (j+n;)™ iteration,
we could write

Litn, = T +Gy (U, — ;) +F (B — Er) @y, -1 9)

Noting the recursive form of this relationship, (z;,,, depends
onx; +m_1), we can use it to derive a relationship between the
super-lifted state and control vectors x;q and u;4q, which

are defined as

Tjt1 Ujt1
Tjto Ujta
. ey . d ) L . 10
X+l = : ;oand Wiy = : ; (10)
LjtN;—1 Uit N;—1
LjpN; Uit N;

respectively. The relationship between x4 and u;1 is then
given as

Xjp1 = (Lo + Fj) 2 + Gy (wipn — Luwy) (1)
where ~ : ~
|]+ FjEF
F, 2 N—1 & , (12)
I+ Il FjEF
k=1 m=1
Ni k
I+ Il F,EF
L k=1m=1 J
Gj 0 . 0
F;EpGj G . 0
Gj 4 N;—1 N;—2
<m:1 Fj EF> Gj m111 F;Ep | G; G 0
N; N;—1
('m,:l FJEF> G mlll F;Ep | G; ... F;EpG; Gj
(13)



and Iy is defined as an appropriately sized identity matrix.
Similarly, we can calculate a super-lifted error vector as

ej11=Lr—x;41 (14)

where r is the lifted reference signal vector constructed from
an ordered set of reference states {ro, 71, ..., ,"n,—1, n, }»
where r, € R™ according to the same method as shown in
(3). Here, we assume that at every point along the path (or
in time), there is a reference state r with the same number of
elements as x. In practice, however, one can build a reference
state vector that contains the desired values of the states for
only the indices considered by the tracking penalty in the
subsequent learning filters.

We then select the following general form of performance
index:

N

J. j+N:Z (] Quit g (W71 ) Qo (401 )
k=1

+le+kQ ol gt (£j+k_£j+k—1 ) TQ& T @ﬁ_k—lj%—l )

T
Qs t(Ejnesin) Qoe (€ —€sun)

— Sm$]+k) (15)

The diagonal positive definite weighting matrices of the
quadratic terms, @y, Qsu, Qz> Qsz> Qe, and Qs are defined
in detail in [34], but they follow the standard norm-optimal
point-to-point structure detailed in other work such as [14].
In order to accommodate economic objectives, we introduce
the last term of (15), namely S, ;.. The quantity S, € R"="s
here is taken to be a weighted linear approximation (or exact
representation) of the economic objective to be maximized or
minimized. If the economic objective is described by J.(x, u),

then
T

_vx']e(xa u)|:v:a:l(81)

u=u;(s1)

Sy & Qsas (16)

_vae(-rv u)|x:mz(5ns)

u=u(sng)

where (), is a diagonal weighting matrix designed to weight
and also normalize the states in the overall performance.

The performance index of (15) can now be written in an
equivalent super-block structure using the super-lifted vectors
u;jy1, and ujqq:

T T T
Ji+n :uj+1Quuj+1 + uj+1Du QéuDuuj-H
T
+ (Euujrr —uj)" Qsu (Buujpr — uy)
T T T
+ X1 QXXJ‘+1 + Xj+1D:r Q&xDszJrl

+ (Boxjpr —25)" Qo (Baxjia — ;) (A7)
+ eJT—H Qeejt1 + ejT+1DZQ6eDeej+1
+ (Eceji1 — ej)T Qse (Ecejy1 —ej)
— SxXj+1
where D, c RNi—DnsnuxNinsnu c

R(Nifl)nsnuxN,;nsnu R(Nifl)nsnuxNinsnu
b

and D, €
are difference operator matrices designed to calculate the

difference between iterations

according to

sequences of subsequent

; (18)

where the identity matrix has dimensions of nyns X nyns.
Note that Dy has N; —1 block rows and NV; block columns.
Additionally, the matrices E,,, E,,, and E,, are defined in such
a way as to select the first lifted vector from the super-vector.
Specifically,

E() L [ﬂn(.)nsxn(.)ns @n(,)nsX(Nq‘,*l)n(,)ns] . (19)

By using (11) in (14) and (17), we can obtain an expression
for the performance index completely in terms of the known
quantities from the last iteration, u; and z;, along with the
control sequences over the next several iterations u;y;. By
then differentiating this expression for performance J;; with
respect to the elements of u;i, setting the result equal to
the zero vector, and re-arranging the resulting expression, we
obtain an update law of the form

llj+1 = LuUj + Leej -+ Lxl'j -+ LC, (20)
where
~ ~ ~ —1
Lo 2 (Qu+GT (Qu+Qe) Gy) @)
L Lo (ELQsu + GT (Qx+ Qo) GyL.) (22)
Ly 2 LGT (BQs — Qul, — QuF; — QoF;) - (23)
L. 2 LoGT (QeL — BT Qs.) 4)
1
L., 2 —§L0G]TSf (25)
and
Qu 2 Q. + DI Qs,D, + ETQ;,E, (26)
Qx é Qx + DZQéxDx + EzQéarEx (27)
Qe £ Qe + DI'QseD. + EL Q5. E.. (28)

It should be emphasized here that this update law pro-
duces the super-lifted vector u;4;, which contains control
sequences for multiple future iterations. Thus, while it would
be technically possible to perform multiple iterations based
on this single update law, a receding horizon framework is
used here, wherein the control input corresponding to the first
of multiple sequences computed is implemented for control.
Similar to MPC and other predictive control schemes, the
receding horizon framework results in increased robustness of
the ILC methodology presented here, particularly through its
ability to consider the impact on performance of iteration-to-
iteration variations in initial conditions.

Convexity of the cost function in (17) with respect to
u;41 (the decision variable) follows from statements: (i) the
welghmg matrices QU7 Q(Sua Q&ua QX7 Q6X7 Qéwz Qe» Q567 Qée
are positive definite, (ii) the selector matrices E,, E,, E,
and the difference operator matrix D,, D,,, D, have full row
ranks, (iii) the linearity of the lifted systems in (11), and



(iv) full rank of the input-output matrix G; in (11). Using
these, the cost function in (17) can be expressed as a quadratic
function of u;,; with a positive definite Hessian.

A convergence analysis for the proposed approach is de-
tailed in [35] and summarized here for self-containment. From
[35], a vector z; can be defined as

=5 | g0
Lj

where g? are the initial conditions at iteration j. The dynamic
equation governing z; can be written as

(29)

Zjy1 = Az,-éj + ﬂj (d) 30)

where A, describes the natural dynamics of the input se-
quence and initial conditions, and n; (d) captures the effects
of the environment on the dynamics. Under this setup, the
convergence of z; is established under two assumptions: (i)
The spectral radius of Azj must be less than 1 for all iterations,
and (i) A,; and d; must converge to constants A, and d,
respectively. Under those assumptions, the convergence result
is stated mathematically as:

lim z; = (I - AZ)*lnj(d).

lim 2, 31)

J—00
Hence, if conditions (i) and (ii) are satisfied, a closed-form
expression for the converged value of the input sequence and
initial conditions can be generated. In practice, assumption
(i) can be satisfied with a stabilizing lower-level controller,
which can be verified analytically or (for complex systems
such as the MHK kite) via simulation studies. Condition (ii)
is satisfied if the rate of change of the environment is slow
relative to the convergence of the controller. In practice, we
show in Section IV that convergence is actually quite robust
to the rate of change in the environment, at least for the kite
application.

III. CASE STUDY: A KITE-BASED MHK SYSTEM

To illustrate the effectiveness of the proposed flexible-time
receding horizon ILC framework, we consider a kite-based
MHK system, as described in Section I and Fig. 1 and 3.
As noted, kite-based MHK systems can generate significantly
more power than similarly sized stationary devices by flying
high-speed cross-current flight paths [3], perpendicular to the
prevailing flow as shown in Fig. 3.

Given the characteristics of the kite flight control problem,
the ILC strategy developed in previous sections of this work
allows us to address (i) an economic metric (lap-averaged
power output), (ii) continuous operation (the kite cannot stop
between laps), and (iii) flexible lap time (while the ultimate
objective is net power output, higher flight speeds will result in
increased power output, but higher flight speeds are associated
with decreased lap time).

To validate our proposed approach, we utilize a dynamic
model first introduced in [31] and [32]. In formulating the
ILC problem (in particular, in selecting the control signals
to be updated at each cycle), we note that successful cross-
current flight for a kite-based MHK system hinges upon three
requirements, namely (i) efficiently flying a cross-current path,

(ii) controlling the lifting body’s attitude (orientation) so that
it maximizes the apparent flow speed, and (iii) simultaneously
controlling the lifting body’s position and attitude so that it
tracks waypoints along the path. In order to address each of
these goals, we select the heading angle setpoint (¢)sp) as the
control variable for the ILC update. This setpoint is provided to
a lower level controller. By manipulating this control variable,
we are able to influence both power production and path
following.

To simplify the lower-level tracking control problem (related
to requirements ii and iii above), while preserving fundamental
attributes of the upper-level flight optimization problem (which
relates directly to requirement i), we utilize a model referred
to as the “unifoil” model. This model fully characterizes
the longitudinal dynamics of the undersea system, which
are critical to power production, while imposing a kinematic
constraint (a “unicycle” constraint) whereby the kite-based
MHK system is constrained to move only in the direction
that it is pointed. This allows us to solve the path following
problem relatively easily, which in turn allows us to focus on
validating the use of an iterative learning process to optimize
the control sequences.

Vertical stabilizer
with rudder

g
Line of Constant 7
G

Latitude Body Coordinate

System

Flow 4
Velocity 3
Uy \ e

Fig. 3. Schematic of numerical unifoil MHK model. The
top subfigure shows a close up of the system. The middle
subfigure shows a wide-angle view of the system including
the polar coordinate system characterized by ¢, and 6, an
example system path, the tether, the sphere on which the
system operates, and the heading angle, .

Turbine
Sweep
Areas

A. 3D “Unifoil” Model

This model is based on the design of a rigid wing system
with on-board turbines, similar to the system shown in Fig. 1
and shown schematically in Fig. 3. The complete mathematical
details of this dynamic model have been covered extensively
in prior work such as [30], [31], [32], and [34], but a brief
summary is provided here for completeness. The lower level
model reference controller actuates the rudder to generate a
turning or yawing moment. The system’s kinematics are sim-
plified through the following constraints, which are reflective
of a system with (i) stiff tethers, (ii) limited sideslip, and (iii)
a high lift/weight ratio:

1) The kite is constrained to lie on a sphere centered at the
origin with radius r. This is also equivalent to assuming
that the tether(s) is always perfectly taut.

2) The kite only translates on the sphere in the direction
that the fuselage is pointing. This is the familiar no-slip
kinematic constraint.



3) The body-fixed x-z plane (i.e., the longitudinal plane)
is constrained to be perpendicular to the sphere. This
assumption is appropriate when lift forces significantly
exceed gravitational forces. In these cases, the Kkite
system requires minimal roll, relative to the sphere, to
stay aloft.

Under these constraints, the system can be completely de-
scribed by ten variables: azimuth angle, ¢, elevation angle,
0, heading angle, 1, §pepd,. v, angular rotation rate, w, and
their first derivatives, ¢, 6, v, ¥, and w. Note that the heading
angle, v, is the complement of the velocity angle popularized
in work such as [36].

B. Path Following Rudder Controller

Because of the kinematic modeling constraints introduced
in section III-A, the rotational dynamics of this system are
dominated by the effects of the vertical stabilizer, whose
control surface is the rudder. The closed-loop controller for the
rudder is composed of two blocks, namely the path following
block, which is responsible for choosing a heading angle
setpoint, u{b, and the model reference controller, which is
responsible for selecting a rudder angle, w, to follow the
prescribed heading angle setpoint, ¥sp. This control strategy
has been used in [31] and [32]. However, a summary is
included here for completeness.

1) Definitions: Path Shape, Path Variable, and Path Posi-
tion: The path shape is a parametric curve in three dimensions,
with a radius equal to the current radial position of the system.
The other two spherical coordinate variables, azimuth, py, and
elevation, py, are described by the lemniscate of Gerono [37]:

[po(0) polo)] = [% sin (270)+¢1  —% sin (470)+64] .
(32)
Here, the constant scalars ¢g, ¢1, 8y and 6 are user-defined
parameters that define the overall shape of the path.The path
variable is a generic parametric variable, denoted here by o,
that corresponds to specific points in space along the path. In
this work, we have structured (32) so that ¢ is normalized, but
this is not required. The path position is the closest point on
the path, p(o), relative to the current position of the system.
Mathematically, the path position is defined as

s(t) = arg min ($(t) —py(0))” + (B(t) = po(0)”.

2) Path Following Controller: The path following con-
troller is implemented as a pure-pursuit type controller. At
every time step, this controller performs three steps:

1) It calculates the current path position by solving (33)
using the numerical techniques described in [30], [34],
and [38]. These techniques also apply the constraint
that the value of s must be within a finite range of the
previous value. This resolves many of the complexities
that arise from self-intersecting paths (i.e., the figure-
eight).

2) Then, given this path position s, it adds a user-specified
constant value to s to obtain a “target” path position.

3) Last, it calculates the great-sphere heading that connects
the current position and the target path position. This is
the heading angle setpoint, u°.

(33)

3) Model Reference Controller: Given a heading angle
setpoint, ¥ s p, this block computes a rudder deflection angle,
u,, using the same second order reference model detailed in
previous work such as [30], [34], and [38].

C. Kite-based MHK-Specific Implementation of Flexible-Time
Receding Horizon ILC

This section describes how the general algorithm of section
II is tailored to the kite-based MHK application. Because vari-
able iteration duration is imperative for the optimization of the
economic metric — the lap-averaged power generation — spatial
learning filters derived using the path-parameterized dynamic
model of section II-A are used. As the lifted form spatial
model is a function of the path used for model transformation,
and the path taken by the kite changes from one iteration to
the next, the learning filters are iteration-varying. The control
input sequence computed in the spatial domain for the next
trial is used to update the look-up table of Fig. 3 before the
start of the next trial, during which the path position, computed
in real time, is use to retrieve the corresponding control input,
thereby transforming the spatial domain control input to the
time domain.

The analytical, closed-form expressions for key quantities
relating to the linearization and reparamaterization of the
kite system’s dynamics are far too large to be included
in this paper. This is due to the combined effect of (i)
the highly nonlinear form of the dynamic model and (ii)
the complexity of the path shape in (32). However, the
full MATLAB, Simulink, and Mathematica code used to
generate the results in this section are available online at
https://github.com/NCSUCORE/unifoil FTILC.

IV. RESULTS

To test the effectiveness of this method, we simulated an
MHK unifoil system with a 10 meter tip-to-tip wingspan
in a spatiotemporally constant flow environment. All of the
parameters used in these simulations for the plant, environ-
ment and controller may be viewed in our online repository
at https://github.com/NCSUCORE/unifoilFTILC. In order to
maximize power generation, we select the weights of the
economic S, term of (15) to incentivize maximization of the
speed state of the model. For this work, we chose to place
waypoints at s =, s =3, s =3, and s = 1.

Fig. 4 shows how the shape of the achieved flight path
changes from the first iteration to the last iteration. Addition-
ally, the nominal path that is used to calculate path position and
waypoint locations is shown as a finely dotted gray line. The
waypoints are also indicated on the plot. We can see from this
figure that the achieved flight path over the first iteration does
not accurately track the waypoints, whereas the final flight path
does. We can also see that the final flight path starts and ends
at nearly the same point, suggesting that the initial conditions
have converged by the final iteration.

Fig. 5 shows how the total performance index changes from
iteration to iteration, the mean speed of the kite from iteration
to iteration, and illustrates the convergence of the waypoint
tracking term in the performance index, namely e?Qeej. Note




that this performance index is the actual achieved performance,
which is not the same as (15) or (17), which capture predicted
values of future performance over multiple iterations. Instead,
this plot shows the actual value of the performance index as
achieved by the system on the last iteration. Finally, Fig. 6
shows the power factor, defined as

tr s 13
Ug||2dt
Py = 7ft %l T (34)
(ty — ti)”f

This scalar valued function is the ratio of the power that
was produced during cross-current flight to the power that
would have been produced if the system had been sitting
still (non-cross-current flight). Thus, this number captures the
effectiveness of cross-current flight in augmenting the energy
generation of the system. Figures 4 through 6 were created
using a horizon length of two iterations.

To show the robustness of our receding horizon iterative
learning control (RHILC) algorithm, we simulated the system
with modeling uncertainty in a flow speed that was unknown to
the ILC algorithm. This uncertainty took the form of a constant
flow disturbance, with results shown in Fig. 7, and a turbulent
flow disturbance created using the turbulence model in [39],
with results shown in Fig. 8. In both cases the RHILC algo-
rithm can be seen to converge. For the constant disturbance
case, we compared the RHILC algorithm’s performance to the
performance of a converged control input, created by running
RHILC to convergence at a constant flow of 1 m/s. In Fig. 7,
RHILC can be seen to outperform the converged input under
a 1 m/s flow speed (which represents the performance of an
offline-optimized solution based on the incorrect flow speed).

To see the effect of horizon length on convergence speed,
horizon lengths of 2, 3, 4, 5 and 6 iterations are compared in
Fig. 9. It can be seen that as the horizon length increases, the
convergence speed also increases.

Path Shape Summar

Nominal Path
- - -Flight Path, j = L
P CERED —Flight Path, j = end
x Waypoint Location

40 -

Elevation, 6, [deg]

30 20 10 0 0 2 30

Azimuth, ¢, [deg]
Fig. 4. Path shape over the first and last iteration. Note that the
achieved flight path over the last iteration tracks the waypoints
much more closely than the first iteration.

V. CONCLUSIONS & FUTURE WORK

An iterative learning control (ILC) framework was presented
for repetitive control applications with continuous operation,
flexible iteration times, and economic performance metrics.
The framework was validated for kite-based MHK systems.
The use of prediction in the presented framework was shown
to result in iterative improvement of the economic metric in
the presence of iteration-varying initial conditions resulting
from the continuous operation of these systems, and the use

Performance

30 40 50

Mean

10 20 30 40 50

Tracking

=5 0 10 20 30 40 50
[teration Number, j
Fig. 5. Performance index, mean kite speed, and waypoint
tracking over the course of 50 iterations. Note that lower values
indicate better performance for performance and waypoint
tracking, and higher values indicate better performance for
mean speed.

1000 900008800000%000000

o0*®
o*

500 o

Power Factor, 1%
LJ

H

)
<
%

20 30 40 50
Iteration Number, j

Fig. 6. Power factor, P versus iteration number. A larger
power factor indicates better system performance.

of model transformation to a spatial domain was shown to
enable iterative learning using trials with different iteration
durations. Using medium-fidelity simulations, it was shown
that the ILC method converged to optimal motion patters in 10-
15 iterations, starting from different inaccurate initial control
input settings. Further, it was observed that convergence to the
optimal control setting was monotonic in nature.

REFERENCES

[1] Roborace, 2020. [Online]. Available: https://roborace.com/

[2] Locomotor Control Systems Laboratory at The University of Michigan,
2020. [Online]. Available: https://gregg.engin.umich.edu/

[3] M. Loyd, “Crosswind kite power,” Journal of Energy, vol. 4, no. 3, pp.
106-111, 1980.

[4] S. Hara, Y. Yamamoto, T. Omata, and M. Nakano, “Repetitive control
system: a new type servo system for periodic exogenous signals,” IEEE
Transactions on Automatic Control, vol. 33, no. 7, pp. 659—-668, 1988.

60 Performance Vs Iteration
)

F « 0 Perc., RHILC
« 20 Perc., RHILC
0 & e 50 Perc., RHILC

50 Perc.. Converged Input
20 Perc., Converged Input”
[ ] —— 0 Perc., Converged Input

Performance Index, ./
L

0 10 20 30 40 50
Iteration Number, j

Fig. 7. Results showing the RHILC’s performance as com-
pared to the “converged input” case.



™ Performance Vs Iteration
W 60
= L]
g 40t e
B [ )
s 20 L
= L)
0 b VO

Perfc
[s~3

10 20 30 40 50
Iteration Number, j

Fig. 8. Performance index when the kite is experiencing a
turbulence intensity of 30 percent at frequencies between 0.1
and 1 hz.

Performance Vs Iteration

® Horizon of 2
# Horizon of 3

Horizon of 4
+ Horizon of 5
x  Horizon of 6

Performance Index, .

0 10 20 30 40 50
Iteration Number, j

Fig. 9. Performance index over different horizon lengths, J
versus iteration number. Note that lower values indicate better
performance.

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Li Cuiyan, Zhang Dongchun, and Zhuang Xianyi, “A survey of repetitive
control,” in 2004 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS) (IEEE Cat. No.0O4CH37566), vol. 2, 2004,
pp. 1160-1166 vol.2.

L. Wang, C. T. Freeman, S. Chai, and E. Rogers, “Multivariable
repetitive-predictive control of a robot arm with experimental results,”
IFAC Proceedings Volumes, vol. 44, no. 1, pp. 7672 — 7677, 2011, 18th
IFAC World Congress.

L. Wang, S. Chai, and E. Rogers, “Predictive repetitive control based on
frequency decomposition,” in Proceedings of the 2010 American Control
Conference, 2010, pp. 4277-4282.

D. H. Owens, C. T. Freeman, and T. Van Dinh, “Norm-optimal iterative
learning control with intermediate point weighting: Theory, algorithms,
and experimental evaluation,” IEEE Transactions on Control Systems
Technology, vol. 21, no. 3, pp. 999-1007, 2013.

T. Duy Son, H.-S. Ahn, and K. Moore, “Iterative learning control
in optimal tracking problems with specified data points,” Automatica,
vol. 49, p. 1465-1472, 05 2013.

B. Chu, C. T. Freeman, and D. H. Owens, “A novel design framework
for point-to-point ILC using successive projection,” IEEE Transactions
on Control Systems Technology, vol. 23, no. 3, pp. 1156-1163, 2015.
C. Freeman and Y. Tan, “Iterative learning control with mixed constraints
for point-to-point tracking,” IEEE Transactions on Control Systems
Technology, vol. 21, no. 3, pp. 604-616, 2012.

C. Freeman, “Constrained point-to-point iterative learning control with
experimental validation,” Control Engineering Practice, vol. 20, no. 5,
pp. 489-498, 2012.

C. Freeman, Z. Cai, E. Rogers, and P. Lewin, “Iterative learning control
for multiple point-to-point tracking application,” IEEE Transactions on
Control Systems Technology, vol. 19, no. 3, pp. 590-600, 2010.

I. Lim and K. Barton, “Pareto optimization-based iterative learning
control,” Proceedings of the American Control Conference, 2013, Wash-
ington, D.C.

Y. Chen, B. Chu, and C. T. Freeman, “Spatial path tracking using
iterative learning control,” IEEE Conference on Decision and Control,
2016, Las Vegas, NV.

——, “Point-to-point iterative learning control with optimal tracking
time allocation,” IEEE Transactions on Control Systems Technology,
vol. 26, no. 5, pp. 1685-1698, 2018.

——, “Point-to-point iterative learning control with optimal tracking
time allocation,” IEEE Transactions on Control Systems Technology,
vol. 26, no. 5, pp. 1685-1698, 2018.

M. Wu, M. Cobb, C. Vermillion, and K. Barton, “A flexible-time
iterative learning control framework for linear, time-based performance

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

(31]

[32]

[33]

[34]

[35]

[36]

(371

[38]

[39]

objectives,” Proceedings of the American Control Conference, pp. 4792—
4797, 2020.

R. Longman and K. Mombaur, Investigating the Use of Iterative Learn-
ing Control and Repetitive Control to Implement Periodic Gaits. Berlin,
Heidelberg: Springer, 2006, pp. 189-218.

T. Seel, T. Schauer, and J. Raisch, “Monotonic convergence of itera-
tive learning control systems with variable pass length,” International
Journal of Control, vol. 90, no. 3, pp. 393-406, 2017.

P. M. Sammons, D. Hoelzle, and K. Barton, “Time scale transformed
ILC for a class of nonlinear systems with uncertain trial duration,” IEEE
Transactions on Control Systems Technology, vol. PP, pp. 1-8, 2019.
N. Amann, D. H. Owens, and E. Rogers, “Predictive optimal iterative
learning control,” International Journal of Control, vol. 69, no. 2, pp.
203-226, 1998.

L. Wang and E. Rogers, “Predictive iterative learning control using
laguerre functions,” IFAC Proceedings Volumes, vol. 44, no. 1, pp. 5747—
5752, 2011.

B. Chu, D. H. Owens, and C. T. Freeman, “Iterative learning control with
predictive trial information: convergence, robustness, and experimental
verification,” IEEE Transactions on Control Systems Technology, vol. 24,
no. 3, pp. 1101-1108, 2015.

P-C. Lu, J. Chen, and L. Xie, “Iterative learning control (ilc)-based
economic optimization for batch processes using helpful disturbance
information,” Industrial & Engineering Chemistry Research, vol. 57,
no. 10, pp. 3717-3731, 2018.

Y. Long, L. Xie, and S. Liu, “Nontracking type iterative learning control
based on economic model predictive control,” International Journal of
Robust and Nonlinear Control, vol. 30, no. 18, pp. 8564-8582, 2020.
U. Rosolina, A. Carvhalo, and F. Borrelli, “Autonomous racing using
learning model predictive control,” Proceedings of the 2017 IFAC World
Congress, 2017, Toulouse, France.

M. Brunner, R. Ugo, J. Gonzales, and F. Borelli, “Repetitive learning
model predictive control: An autonomous racing example,” Proceedings
of the 56th Conference on Decision and Control, 2017, Melbourne,
Australia.

N. Scianca, U. Rosolia, and F. Borrelli, “Learning model predictive con-
trol for periodic repetitive tasks,” in 2020 European Control Conference
(ECC), 2020, pp. 29-34.

M. Cobb, M. Wu, K. Barton, and C. Vermillion, ‘“Flexible-time economic
iterative learning control: A case study in airborne wind energy,” in 20719
IEEE 58th Annual Conference on Decision and Control (CDC), 12 2019.
M. K. Cobb, K. Barton, H. Fathy, and C. Vermillion, “Iterative learning-
based path optimization for repetitive path planning, with application to
3-d crosswind flight of airborne wind energy systems,” IEEE Transac-
tions on Control Systems Technology, pp. 1-13, 2019.

M. Cobb, K. Barton, H. Fathy, and C. Vermillion, “An iterative learning
approach for online flight path optimization for tethered energy systems
undergoing cyclic spooling motion,” in 2019 American Control Confer-
ence (ACC), 7 2019, pp. 2164-2170.

M. Cobb, J. Reed, J. Daniels, A. Siddiqui, M. Wu, H. Fathy, K. Barton,
and C. Vermillion, “Iterative learning-based path optimization with
application to marine hydrokinetic energy systems,” IEEE Transactions
on Control Systems Technology, 2021.

M. Cobb, “Economic iterative learning control with application to
tethered energy systems,” Ph.D. dissertation, North Carolina State Uni-
versity, 2020.

M. Wu, M. Cobb, J. Reed, K. Mishra, C. Vermillion, and K. Barton,
“Receding Horizon Iterative Learning Control for Continuously
Operated Systems,” arXiv:2108.06866 [cs, eess], Aug. 2021, arXiv:
2108.06866. [Online]. Available: http://arxiv.org/abs/2108.06866

L. Fagiano, A. Zgraggen, M. Morari, and M. Khammash, “Automatic
crosswind flight of tethered wings for airborne wing energy: Modeling,
control design, and experimental results,” IEEE Transactions on Control
Systems Technology, vol. 22, no. 4, pp. 1433-1447, 2014.

J. Delgado and J. M. Pena, “Progressive iterative approximation and
bases with the fastest convergence rates,” Computer Aided Geometric
Design, vol. 24, no. 1, pp. 10-18, 2007.

M. Cobb, K. Barton, H. Fathy, and C. Vermillion, “Iterative learning-
based waypoint optimization for repetitive path planning, with appli-
cation to airborne wind energy systems,” in 2017 IEEE 56th Annual
Conference on Decision and Control (CDC), Dec 2017, pp. 2698-2704.
P. Pyakurel, J. H. VanZwieten, M. Dhanak, and N. I. Xiros, “Numerical
modeling of turbulence and its effect on ocean current turbines,”
International Journal of Marine Energy, vol. 17, pp. 84-97, 2017.



