Meta-Scheduling for the Wireless Downlink
through Learning with Bandit Feedback

Jianhan Song, Gustavo de Veciana, Fellow, IEEE and Sanjay Shakkottai, Fellow, IEEE

Abstract—In this paper, we study learning-assisted multi-user
scheduling for the wireless downlink. There have been many
scheduling algorithms developed that optimize for a plethora
of performance metrics; however a systematic approach across
diverse performance metrics and deployment scenarios is still
lacking. We address this by developing a meta-scheduler — given a
diverse collection of schedulers, we develop a learning-based over-
lay algorithm (meta-scheduler) that selects that “best” scheduler
from amongst these for each deployment scenario. More formally,
we develop a multi-armed bandit (MAB) framework for meta-
scheduling that assigns and adapts a score for each scheduler to
maximize reward (e.g., mean delay, timely throughput etc.). The
meta-scheduler is based on a variant of the Upper Confidence
Bound algorithm (UCB), but adapted to interrupt the queuing
dynamics at the base-station so as to filter out schedulers that
might render the system unstable. We show that the algorithm
has a poly-logarithmic regret in the expected reward with respect
to a genie that chooses the optimal scheduler for each scenario.
Finally through simulation, we show that the meta-scheduler
learns the choice of the scheduler to best adapt to the deployment
scenario (e.g. load conditions, performance metrics).

Index Terms—Online Learning, Bandit Algorithms, Upper
Confidence Bound, Wireless Networks, Scheduling

I. INTRODUCTION

ULTI-USER scheduling for wireless downlink systems

is a particularly challenging task for two key reasons.
First, mobile users and services may have diverse performance
goals/requirements that should ideally be optimized over a
wide variety of traffic loads/mixes and heterogeneous user
service rates that can vary by over an order of magnitude.
Second, because mobile users’ see time-varying service rates,
it is desirable to incorporate some form of opportunistic
scheduling, favoring scheduling users when their service rates
are high. To address these challenges wireless schedulers use
a combination of the current channel conditions (e.g., obtained
through channel quality feedback from mobile users) and
current queue backlogs to dynamically assign users to channel
resources so as to meet the desired various performance
objectives including, e.g., throughput optimality (stability),
mean packet/flow delay, delay tails, timely throughput, video
quality of experience, etc.

Although a substantial number of scheduling algorithms
have been proposed, solutions that are able to systematically
address the above mentioned challenges are still lacking. In-
deed, an algorithm best suited for a given scenario may depend
on a variety of factors including traffic load/mix and users’
channels, or more generally on the usage patterns associated

An earlier version of this paper appeared in the Workshop on Machine
Learning and Communications (WMLC) at WiOpt 2020 [1].

with the time of day.! Moreover in some cases the desired
performance metrics for a subset of users may not be easily
pre-specified, e.g., measures of video quality, whence it is not
clear what type of scheduler to deploy. Furthermore, even if
one has access schedulers which are fine tuned to particular
scenarios (e.g., learned through a reinforcement learning (RL)
algorithm), we typically have no performance guarantees over
the wide range of settings typical of wireless systems. Whence
it is unclear that it is safe to deploy such scheduling policies.

In this paper, we propose a meta-scheduler — an online
learning (bandit) algorithm which for a given operational
scenario dynamically selects the best scheduler from a set
of predefined policies (e.g., MaxWeight, Log rule, Exp rule,
Priority rule, RL schedulers, etc.). The scheduler in turn, deter-
mines user-to-channel assignments. In our approach, schedul-
ing policies are viewed as bandit arms, and the meta-scheduler
dynamically chooses the scheduler (aka plays an arm) based on
the mobile users’ feedback. The goal is to provide a learning
framework that efficiently identifies the best among a pre-
selected set of state-of-the-art policies for a given underlying
scenario (characterized by traffic, channel states, user metrics,
etc.)

In adapting the bandit framework to our queueing setting,
we need to address two challenges: (i) Arbitrarily switching
among schedulers over time can lead to queue instability, even
if each of the schedulers is stable. Indeed, one can show that
switching between two MaxWeight schedulers with different
weights can lead to unstable queues. (ii) If one or more of
the possible schedulers is unstable for a given scenario (e.g. a
round-robin scheduler in a high-load wireless setting), then a
poor choice may lead to long term instability.

Our approach uses the fact that stable queueing systems
typically exhibit cyclical sample-paths associated with busy
periods for the overall system. Under appropriate assumptions,
the queue dynamics in a busy period are conditionally (given
the scheduling policy) independent. Our meta-scheduler thus
determines which scheduler (arm to play) only at the beginning
of cycles and the chosen scheduler is maintained for the
duration of the cycle ensuring independent reward samples
across cycles). Further to ensure that cycles do not have
infinite durations, the meta-scheduler interrupts® cycles that
have exceedingly long durations. These decisions have to be

! As an example, consider a set of users with different latency requirements.
When the traffic load is low, it may be desirable to give scheduling priority
to users with stricter packet deadlines without degrading other users’ perfor-
mance; when the load increases, however, a fairer scheduler may be preferred.

2A cycle is interrupted by forcibly making all queues to be zero, e.g., by
dropping packets in the buffers.

properly designed such that cycles due to unstable schedulers
(which have unbounded cycle lengths) are played infrequently,
and when played, get interrupted (truncated) as soon as pos-
sible. Further “good” cycles associated with stable schedulers
should not get interrupted. As we will see, designing a sound
interruption mechanism in conjunction with online learning
through bandit feedback is crucial designing a meta-scheduler
which achieves a low regret with respect to a genie algorithm
(baseline that always plays the best/highest-reward scheduler
for a particular scenario).

Finally, it is worth noting that there are possibly two
parallel methodologies to systemically address the scheduling
problem for various environments/applications. The first one
is to formulate scheduling as an MDP problem for any given
performance metric, and utilize a data-driven method to train
and learn the optimal strategy for the given model, i.e., the
reinforcement learning approach. Although this is a powerful
method to generate new schedulers, the training process typ-
ically requires considerable exploration of different regimes
and a large computational effort, and is often conducted offline
(i.e., before deployment). Therefore, it is essential to properly
model the performance metric and traffic environment where
the scheduler will be deployed, which further raises difficulty
and safety concerns (due to the mismatch between the training
and deployment environments). By contrast, in this paper
we tackle the problem from the second perspective. We will
answer the following question: Given a set of existing policies
(which could include one or more pre-trained RL sched-
ulers optimized for specific settings), how one can determine
the best scheduler among these candidates without assum-
ing prior knowledge on the current environment/performance
metric. Our bandit framework learns in an online manner
with light-weight computation and relatively low convergence
time needed, and can in principle keep re-optimizing to
changing scenarios (through re-running the meta-scheduling
algorithm when the environment significantly changes). When
the optimal policy is unclear, which is common in many real
applications given all the uncertainties, our approach transfers
the burden of choosing the best suited environment-specific
state-of-the-art scheduler to a learning algorithm.

A. Contribution
Our main contributions are the following:

e Meta-scheduler: We develop a meta-scheduler algorithm
based on (UCB + Interruptions). At the beginning of each
queuing cycle, the meta-scheduler determines a scheduler
to be used for that cycle using a variant of the Upper
Confidence Bound (UCB) Algorithm. This consists of (i)
determining a score for each scheduler (empirical reward
+ confidence bonus) that is multiplied by a indicator that
estimates if each scheduler is stable (meaning the cycle
times are finite), and choosing the scheduler with the
highest score; and (ii) determining an interrupt threshold
for the cycle, at which time all packets in the queues are
dropped if the cycle has not ended before then.

o Theoretical guarantees: For the meta-scheduler, we show
that the regret (expected cumulative difference in reward)

with respect to a genie algorithm that chooses the optimal
(highest expected reward) scheduler scales as O(logn),
where n is the number of cycles® and correspondingly
O(log® 7) where 7 is the time-slot index. Further, the
expected number of packets dropped due to interruptions
also scales as O(log® 7). When packet drop is forbidden,
an alternative mechanism to clear up the queueing system
is introduced at a slight expense of the total regret.

o Simulation Results: We simulate the meta-scheduler in
a variety of wireless settings. These include different
reward for performance metrics such as mean delay,
delivering packets on time, and penalizing bursty service,
and various schedulers including the MaxWeight, Exp,
Log, max-rate and round-robin and opportunistic priority,
and different load conditions. Our simulations show that
as conditions vary (e.g. different loads, or different per-
formance metrics), the meta-scheduler adapts to choose
a different scheduler that maximizes the reward for each
scenario.

B. Related Work

Wireless Scheduling. The design of multi-user wireless
schedulers has received substantial attention, see e.g., [2]
and references therein. For infinitely backlogged user queues
researchers have devised various classes of opportunistic
schedulers that optimize the sum user utility (fairness criteria)
of their long-term throughputs or so called timely throughput,
see e.g., [3]-[7]. For settings where user queues are subject
to stochastic arrivals e.g., packet streams, initial work focused
on characterizing throughput-optimal schedulers which ensure
queue stability if indeed stability can be achieved without
prior knowledge of the traffic load and service capacity. These
include, for example the MaxWeight rule [8], [9], Exp rule
[10] and Log rule [11], which in addition to throughput
optimality achieve different user-level performance objectives.
Meanwhile, non-throughput-optimal policies can in certain
load scenarios provide better performance, e.g., max-rate,
proportionally fair, round-robin and the priority-based rules.
Although there is substantial work in this area, the question
of how to realize the best performance tradeoffs among
heterogeneous users with diverse performance goals remains
open and challenging.

Not surprisingly recently, reinforcement learning (RL) ap-
proaches have been proposed to address complex scheduling
problems, including job scheduling for data centers [12]
and wireless scheduling in various settings [13]-[16]. RL
algorithms provide a general approach to determine good
schedulers for specific scenarios and possibly, but substantially
more challenging, ones that are good for a range scenarios in
terms of the user traffic, service capacity and or performance
objectives. Despite showing great potential in several appli-
cations, providing theoretical performance guarantees for RL
based schedulers remains an open question. Limited success
has been achieved in some simple settings (in terms of

3The regret scaling is slightly weaker under weaker assumptions on the
cycle tail distributions, please see Section IV for details.

traffic model or user metrics) — see e.g., [17]-[19]. How-
ever, advanced RL methods, especially those involving neural
networks which have attracted the most attention in practice,
typically lack rigorous performance guarantees, and thus it
is unclear they are safe to deploy. The goal of this paper
differs from the common focus of designing practically or
theoretically good RL schedulers in current RL-networking
literature. Instead, our framework aims at better utilizing the
knowledge of existing schedulers (including RL schedulers)
to address various scheduling scenarios (in particular those
with complicated performance metrics or traffic models), while
ensuring queueing stability.

In the literature, some authors proposed scheduling policies
that utilize online statistical learning, e.g., [20], [21], which in-
volve learning system statistics online to improve performance
of certain schedulers. We note that the above methodology is
different from the bandit-based online learning framework we
propose in this paper. Our framework is adaptive to statistics,
but by learning the best scheduler among a predefined candi-
date set of policies for a specific scenario, instead of refining
specific policies.

Multi-armed Bandits. Multi-armed Bandits (MAB) prob-
lems have been studied for many decades, with applications to
clinical trials, recommendation systems and online advertising;
see [22] and [23] for a comprehensive discussion on the state-
of-art. In our model, each time we choose a new arm, the
corresponding (random) cycle time can be interpreted as a
cost. Such problems where each action costs non-unit amount
of resources is referred to as budgeted bandits. Unlike classical
MAB settings, the regret is not parameterized by a time
horizon; instead the regret parameterization (and thus, the
best arm) involves both the reward and cost variables, which
significantly increases the complexity of the problem. This line
of work was started by [24] and has been followed in many
directions by [25]-[27].

A recent study on budgeted bandits in [28] introduces the
idea of MAB with interruptions. At each time, a server works
on a single task that has a heavy-tailed service completion
time. A task can be interrupted if it is taking too long (but
with loss in reward). The authors in [28] develop a variant
of the Upper Confidence Bound (UCB) algorithm [29] that
selects over (a finite set of) tasks as well as a finite set of
task interrupt thresholds to discard ongoing tasks, i.e. arms are
(task, interrupt-threshold) pairs. Their motivation is to interrupt
a task that takes too long so as to start a new one to collect
more rewards, and thereby benefit the total reward. Our model
is inspired by their work, but significantly differs in the way
that we deal with interruptions. In contrast to [28], our goal is
to eventually avoid any interruptions, thus, we do not treat
interruptions as arms of a bandit. Instead, we dynamically
increase the threshold for each task (aka scheduling policy) to
ensure we quickly filter out unstable policies for which the cy-
cle times are infinite, while leaving stable policies (eventually)
uninterrupted. Algorithmically, our approach modifies UCB
with a multiplicative censoring that penalizes interruptions
from occurring too often, which ensures that unstable arms
(with infinite expected cycle completion times) are aggres-
sively eliminated.

Finally, bandit algorithms have also been applied to wireless
resource allocation problems more broadly. These include
studies in cognitive radio probing [30], spectrum access [31],
decentralized wireless computing [32], [33] and most recently,
cellular scheduling [34]. An earlier version of this paper was
presented in [1].

C. Notation

Throughout this paper, we use characters in bold font to
denote vectors and normal font to denote scalars. Random vari-
ables are indicated by capital letters unless stated otherwise.
We adopt the following technical abbreviations: “w.h.p.” for
“with high probability”, “a.s.” for “almost surely” and “i.i.d.”
for “independently and identically distributed”. Finally, we use

1 for the {0,1} indicator function.

II. MODEL SETTINGS

In this section, we consider a multi-arm bandit model for
the wireless scheduling problem. The goal is to formulate a
meta-scheduler that can explore different scheduling policies
and learn in an online manner which among the candidate
policies is the best, given a certain performance metric. Before
introducing the meta-scheduler in detail, we first describe the
traffic model and then describe the system from a perspective
of regenerative processes. We will see it is natural to allow
the meta-scheduler to switch policies only when the system
“regenerates”. Formal definitions of a meta-policy (policy of
a meta-scheduler) and its regret are given at the end of this
section.

A. Traffic and Service Model

We consider a packet-based queuing system with a set
of w different users, denoted by U, and a single server
(base station). The system operates in discrete time slots. For
simplicity, suppose all packets have the same size. At any time
t, define the random vector Q[t] = (Q1[t],- -, Qu[t]) € ZY,
where Q;[t] denotes the number of packets of the i-th user at
the beginning of time slot t.

The random packet arrivals at time ¢ are denoted by
Alt] = (Aq[t],--- , Au[t]) where A;[t] has a integer-valued
distribution bounded by a for any user ¢ € . We assume
(A[t])1>0 are i.i.d. across time and denote its expectation by A.
The wireless channels’ service rates at time ¢ are modeled by
arandom vector S[t] = (S1[t],- - , Su[t]) where S;[t] denotes
the service rate available to the i-th user at ¢. (S[t]);>o are
i.i.d. over time and also independent of the queue lengths and
arrival process. A scheduling policy will decide which user to
serve at each time slot based on the queue and channel state.

Let C denote the long-term capacity of the system (see [2]).
This means for any arrival rate that lies in C° (the interior of
C), there exists at least one policy that stabilizes the system
(the average queue lengths are finite). We require A € C°. We
say a policy is stable (with respect to A) if it stabilizes the
system.

Now suppose there is a finite set of scheduling policies (or
arms in the bandit context), denoted by A. For a fixed A € C°,
A consists of both stable and unstable policies, denoted by
A®(X) and A%(X). Assume that A°(A) # ¢.

B. Regenerative Dynamics

Suppose the arrival always occurs right after the beginning
of a slot while the transmission happen right before the end of
a slot. We say the system returns idle when the sum of users’
queue lengths is down to O from some positive value at the
end of a time slot. A cycle is defined as the interval of time
slots between two consecutive points in time when the system
returns idle.* Further, without loss of generality, we assume
the system starts empty at the beginning of the first slot. We
can describe the system’s dynamics based on such cycles as
follows. The notation and definitions in this section follows
[28], with appropriate modifications to reflect our setting.

Each arm % is associated with a stochastic process
((C™®)(n),U® (n))),>1 where n denotes the index of cycles.
If arm k is implemented after n-th time the system returns idle,
the system observes a random cycle length C' (k)(n) (before it
returns idle again), and receives a sequence of non-negative
rewards U (n) = (U® (n,i) : i=1,2,---,C*)(n)) for
each time slot in the cycle. Note that C*)(n) for n > 1 are
iid and C®)(n) > 1a.s. .

Remark 1. To be precise, in order to make C*)(n) i.id.
over cycles, in addition to i.i.d. arrivals and channels assumed
in our traffic and service model, it is necessary to assume
the scheduling policy k only uses information associated with
its current cycles. For example, a Markovian policy which
chooses a service vector at time t only based on the current
system states (e.g., S[t] and Q|t]), such as MaxWeight, Log
rule, etc., naturally satisfies this requirement. For a policy
that keeps internal states which utilize information from the
past, e.g., a proportionally fair scheduler using an exponential
moving average of past throughput, we need to additionally
reset internal states when a cycle begins.

We consider a reward scheme where the generated rewards
are i.i.d. over cycles and grow no faster than linearly with
corresponding time, which is formally stated in the next
assumption.

Assumption 1. The cycle reward sequence (U*)(n)),>1
for all k € A are i.id. over m, and such that for | =
1,...,C%(n),

I
0< Z U (n,i) <7l almost surely (1)
i=1

for some 7 > 0.

Remark 2. This assumption holds, for instance, if each
packet is associated a bounded reward (e.g., over [0,1]) upon
reception, and the cumulative reward over a time period is
thus bounded by the maximal number of packets transmitted
within that period, i.e., ¥ = au. In practice, for example,
the cycle reward evaluated by a latency-sensitive user can
be the number of packets that arrive on time within a cycle.
It should be noted that the manner in which rewards are

4In technical terms, a cycle consists of an idle period plus a busy period.
When the system stays empty for a whole time slot, this slot is part of the
idle period rather than a new cycle.

calculated/defined is not necessarily known by the base station
in our model, which allows for more flexible user-customized
reward schemes.

We denote the (total) cycle reward by U (n) =
(k)
SO MW U@ (n, i), Thus, it follows that U®) (n) for n > 1
are i.i.d. across cycles and bounded as follows:

0 < UM (n) <rCc®(n), almost surely. ()

One question regarding the process is how frequently a pol-
icy forces the system to finish a cycle, i.e., the distribution of
C*)(n), which is vital for the meta-scheduler discussed in the
sequel. When is a stable arm, we have P(C®)(n) <o0)=1
and the system will start a new cycle infinitely often. In
addition, we have the following assumption on the cycle length
of a stable arm.

Assumption 2. For a given A € C°, we assume if arm k €
A*(N), C®)(n) is a sub-exponential random variable. This
implies that, there exist (possibly \-dependent) non-negative
parameters (Vi ay), such that for all n > 1,

)

2e=*/(20}) 0 < o< Vi
ag

26_5/(20‘k) e > ﬁ
ag

P(IC™) (n)~E[C™M (n)]| 2¢) < {

3)

Remark 3. This assumption implies that for stable arms
k € A*(X), C%)(n) has a light tail on the right (the left side is
bounded). When the system has bounded arrival and channel
distributions, and the policies considered are Markovian, this
assumption holds true following an argument of [35]. One can
then show that the empirical average (1/n)3Y 1 C¥)(i) is
sub-exponential with parameters (Vi /n,ay/n). By Assump-
tion 1, i.e., (2), U*)(n) is also sub-exponential (with possibly
larger parameters). Without loss of generality, we will assume
both C*)(n) and U®) (n) are (v}, ou,)-sub-exponential, as-
suming the rewards are properly normalized.

If an unstable arm is applied, however, the system is
transient and there is a chance that the system will never start
a new cycle as P(C®)(n) = c0) > 0 for all k& € A*(N).
This suggests that an additional stopping mechanism is needed
when an unstable arm is explored by the meta-scheduler.

When k& € A°(X), observe that ((C(’C)(n),U(’“)(n)))n>1
form a well-defined renewal-reward process. We next define
the renewal reward rate of a stable policy.

(k) _ E[U® (1)]
E[C*)(1)]

By Renewal Theory, this rate captures the rate of rewards
generated by a policy.

Vk e A%(N). “)

C. Meta-Scheduler, Feedback and Interruptions

A meta-scheduler makes decisions on which arms to use and
when, so as to maximize the rate of rewards of the system. In
this paper, we will only consider meta-schedulers that comply
with the following rules:

(1) A meta-scheduler can switch to another arm when the
system returns idle;

(2) A meta-scheduler can interrupt a cycle, i.e., discarding
all packets currently in the system and forcing the system
to start a new cycle, so as to prevent unstable arms from
occupying the system indefinitely. Furthermore, as in [28], we
only consider conditions triggering such interruptions solely
based on cycle time: a cycle gets interrupted when its length
exceeds a threshold pre-selected before the cycle starts.

Remark 4. To allow for simpler analysis, we require that
all packets to be discarded when a cycle is interrupted. As
is shown later, a good meta-scheduler should be designed
such that this event occurs rarely. If such packet drops are
unacceptable, instead of interrupting and dropping, we can
switch to a default policy that is guaranteed to be stable (e.g.,
MaxWeight) when an interruption is triggered, and a cycle can
be restarted when the system returns to the idle state. Later
we will show that the loss of rewards induced by this extra
process grows logarithmically in time.

There are several advantages in adopting those two rules.
First, even scheduling policies that might result in unstable
queues can be added to the mix, since the interruptions ensure
that cycle times remain bounded. Moreover, they simplify the
design of a meta-scheduler, since the system can be fully
characterized by cycle lengths and rewards, i.e., the collection
of processes {((C*)(n),U® (n))),>1 : k € A}, from the
meta-scheduler’s point of view regardless of how the actual
queues and channels vary with time. This guarantees the
independence of statistics for different arms and allows us
to apply classical MAB methodologies. Furthermore, such a
meta-scheduler preserves properties of regenerative processes
that help analysis.

According to the rules mentioned above, a meta-scheduler
can only make a decision when the system returns idle, which
consists of two selections: the arm and the interruption thresh-
old. Formally, we let 7 = (m,,)n>1 be a meta-policy (policy of
a meta-scheduler), where 7, = (A4,, L,) € Ax(ZTU{+0}).
A decision 7, = (k,l) implies that arm k is selected for n-th
cycle, and the cycle will be interrupted immediately if it lasts
over [time slots.

In order to model cycles under our interruption policy, we
let C*:D(n) = min[C®¥) (n),] and TFED (n) = (UF) (n, i) :
i=1,2,-- ,Ch(k’l)(n)). The observed (total) cycle reward
U*D(n) = Zg?l)(n) U (n,i). Note that it still holds that
0 < U®D(n) < 7C®D(n) almost surely.

If m,, = (k, 1), we assume stochastic feedback Z,, is received
for n-th cycle by the meta-scheduler as follows,

Zn = (CED (), TED (n), LoD (ny<c® (n)}).

An illustration of the meta-policy dynamics is shown in
Figure 1. Note that the reward for each single time slot is not
required in the feedback. This suggests that if performance is
evaluated at the user side, additional communication cost only
occurs at the end of a cycle.

We assume 7, is solely based on the history of actions and
feedback up to the decision. Thus, an admissible meta-policy
considered in this paper is formally defined as follows. This
is analogous to a similar notion in [28].

Definition 1 (Admissible Meta-Policy). We call a meta-policy
m = (Tp)n>1 admissible if m,, € F, where F, = o(m1, Z1,
oy Loy s T, Ln1) IS the o-field induced by all the ran-
dom decisions and feedback before n-th cycle.

Our goal is to design a good meta-policy that satisfies the
following two objectives: (1) it suffers negligible throughput
loss, i.e., the number of packets discarded due to interruptions
by the meta-scheduler is sub-linear in time, and (2) it has a
sub-linear regret over a given time horizon. We will define
the regret in the next section.

D. Regret

As in the traditional MAB setting, we are interested in the
regret of a meta-policy as compared to an optimal over a given
time horizon 7. The regret for the meta-policy 7 stems from
two reasons: (i) playing suboptimal arms (schedulers), and (ii)
interrupting ongoing cycles. To formally define the regret, we
follow a similar approach as in [28]. First, note that the number
of cycles within a time horizon 7 is a random variable, which
can be viewed as a counting process.

Definition 2 (Counting Process). Consider a meta-policy m
that is admissible. The total time of the first n-th cycle can be
written as

Sr=> Y Im=tpC®h).

i=1 (k) EAXZ+
Define a counting process (N [7]);>1 as follows.
Ny[r] = max{n : S} <7}

Note that N, [r| indicates the number of completed cycles
within time horizon T.

Definition 3 (Cumulative Reward). Given a time horizon T,
the cumulative reward for an admissible meta-policy w is a
random variable given as follows. (Denote N := N, [T] for
notation simplicity.)

N
Rew,[7] = Z Z 1=k} U5V (4)
i=1 (k1)

&)

7r
T=S%

+) Trga=eny Y UP(N+1,5).
(kD) j=1

The cumulative reward is the sum of (observed) cycle rewards
from the first N, [7] completed cycles and the reward from the
next uncompleted cycle up to time 7.

We call a meta-policy simple-static if the meta-scheduler
consistently selects an arm with no cycle interruption. Let
7(%) be the simple-static meta-policy selecting arm k, i.e.,
= (k,+00),Vn > 1. In this paper, we define the regret
with respect to the best simple-static meta-policy 7°P* that is
stable and generates the most rewards (in expectation) within a
given time. By the renewal theorem, lim, _, oo Rew . [7]/7 =
r(®) a.s. for all k € A*(\). This implies that 7°P* = 7(k")
where k* = argmaxc 4s(x) r(®). The regret is formally
defined as follows.

Sum of Queues
Cycle Feedback A

(é(m)(l)‘ ﬁ(k‘m(l)- Liew s, })

--> Interruption

[C(LV,)(Q) > 1y

Zh
4
T Time
F> Cycle 1 "'l"’ Cycle 2
L Meta-Policy
m = (k1) my = (K, 1y) m3 = (k,l3) - Decisions

Fig. 1.

Illustration of a meta-policy selecting arms from A = {k, k’}. At the start of the process, the meta-scheduler makes decision w1 = (k,[1), and

receives feedback Zp after the system experiences a full cycle. Then the meta-scheduler decides mo = (k’,l2), but has to interrupt the cycle as the system
does not return idle before the cycle time reaches l2. The meta-scheduler then collects feedback Z2 and starts a new cycle with w3 = (k, 3).

Definition 4 (Cumulative Regret). Let 7°P' be the optimal
simple-static meta-policy, i.e.

ngt = (k*v 00)7

vn > 1 (©6)

where k™ = argmax;¢ 4 (x) (%), The regret of meta-policy T
with respect to w°P* over any time horizon T is defined as

Reg, [7] = E[Rewopt [T] — Rew,[7]]. (7)

In the remaining sections, we will simply refer to k£* as the
optimal arm (assumed to be unique). For notation simplicity,
we suppress k£* as a single asterisk in the superscript when
there is no ambiguity (e.g., r*) 1= r(*7)),

III. UCB META-SCHEDULER WITH INTERRUPTION

To guarantee negligible throughput loss and a sub-linear
regret as discussed in Section II, the meta-scheduler should
wisely select the arms and interruption thresholds such that
the optimal arm is being applied at most of the time, and
the packet discard hardly occurs. This implies the following
guidelines when designing the algorithm: 1) the number of
times a suboptimal arm (either unstable or stable) gets selected
should be sub-linear in time; and 2) the unstable arms’ (pos-
sibly infinitely) long cycles must be stopped, while the cycles
of the optimal arm should be preserved with little interruption.
Motivated by these guidelines, we propose a UCB-type meta-
scheduler with a properly-designed interruption rule.

To simplify notation and avoid ambiguity, let Cg and
C’s(k’l) (Usk) and US?’““) be the full and observed cycle length
(reward) of arm k when it is selected the s-th time (we call it
s-th sample of k). Denote by T,gk) as the number of times arm
k has been chosen in the first n decisions. Thus, if 4,, = k,

(Chi Upi) = (CP (), UM ().

Ték)7 TT(’k)

k)

Similar to a classical UCB algorithm, the meta-scheduler
learns the arm statistics by keeping track of the empirical
averages of cycle lengths and rewards. We formally define

Algorithm 1 UCB based Meta-Scheduler with Interruption
1: Input: Set of scheduling policies A.
2: Threshold Function: f; := 8+ xlogs.
> [and x to be defined

3: Initialization: Run every arm k € A once with interrup-

tion threshold [, then initialize empirical rate ng).
4: for n=|A|+1,|A|+2,--- do

5 [before cycle n)
6: for all £ € A do
7: Compute Exploration Bonus AP,
8 Compute Stability Indicator I,(Lk).
> I,(Lk): a Boolean variable
9: Arm decision:
A, € argmax I® x (R®) (n—1) + AP).

k€A

10: Cycle interruption decision:
Ln - ny(lAn)'

11: [after cycle n]

12: Observe cycle feedback UAnsLn) (), CAnLn) (),
then update R(47)(n).

the empirical rate of arm k after s samples as]Eigk). For all
s>1,

~ (k)
(k,F)

U
ng) = Z::A(T(M)’ (8)
2, G
i=1

where Fi(k) denotes the threshold level for arm £’s i-th sample.
As a convention, the empirical rate equals 0 when s = 0. Let
R®) (n) := R;ﬂ?m be the empirical rates for the k-th arm after
n-th cycle in the system.

As an overview, we present a simplified version of our meta-

scheduler in Algorithm 1. The mathematical design of key
variables will be discussed in a rigorous manner in the next
section. Before that, let us first give some intuition as follows.

First, we observe that to avoid constantly interrupting a sta-
ble arm, it is necessary (and sufficient) to apply an interruption
rule where the threshold of each arm is set to slowly grow with
the number of samples (note that otherwise a fixed threshold
will always result in linear throughput loss). Hence, we define
a threshold function f; as in line 2. For any arm k, we will
use fs as the interruption threshold for its s-th sample. With
this design, the expected number of interruptions imposed on
the optimal arm can be bounded by a constant if 3 and k are
large enough.

The meta-scheduler starts with running each policy once
with an initial interruption level 5 and initializing the empirical
rate ng) for any k € A. After this initialization phase, before
each decision, the meta-scheduler will compare the “score”
(i.e., upper confidence bound) for each of its arms. The score
is the sum of its empirical reward rate and an exploration
bonus (line 7). The exploration bonus is used to compensate
for possibly under-performing empirical rate estimates in order
to ensure adequate exploration before finding committing to
optimal arm. We will show that w.h.p., R*) (n—1) + AL >
() for any n > |.A|+1. Meanwhile, the score of a suboptimal
stable arm will be below *) after it is sufficiently explored.

Moreover, we design a stability indicator (line 8) to elim-
inate unstable arms by utilizing accumulated interruptions as
a signal indicating whether an arm frequently induces long
cycles. We keep track of the number of times each arm is
interrupted, and Ir(lk) is set 0 only if the total number of
interruptions exceeds a limit (which is a function of n).

After computing the exploration bonus and the stability
indicator, the meta-scheduler will pick the arm with the best
score B,(lk) = R (n—1)+ AS{“) and a positive value of I,(Lk)
(line 9), and the threshold of that cycle is determined by the
threshold function (line 10). A new cycle then starts according
to this decision. When the cycle is finished, the meta-scheduler
observes the (possibly clipped) cycle length and reward before
updating the empirical rate for the selected arm. The updated
statistics are then used to determine the next decision.

IV. MAIN RESULTS AND DISCUSSION

Compared with previous works in the literature, our UCB-
type algorithm tackles more challenging assumptions on cycle
variables (sub-exponential instead of sub-Gaussian), and fur-
ther the cycle lengths can be unbounded with positive prob-
ability, due to unstable schedulers. Thus, it requires several
novel design choices such as dynamic interruption thresholds,
a stability indicator, and a suitably modified exploration bonus.
In this section, we will discuss these key design choices that
differ from the classical UCB, followed by the result of the
regret analysis.

A. Analysis of Key Design Choices

1) Hyper-Parameters: Before discussing the details of the
meta-scheduler, let us first introduce several parameters used
in our algorithm in the following assumption.

Assumption 3. We assume parameters [imin, ftmax> Tmax @nd
(v2,) are given a priori such that there exists a subset of
arms Ag satisfying

{k*} C Ay C A°(N)

and for all k € Ay,

(]) Hmin S E[C(k)(l)] S Hmax-

(2) E[U® (1)|C*)(1) = 1] < rmax! for all I > 1. Note
that ryax exists by Assumption 1, and 1y, > r(*),

(3) C*®)(1),U*) (1) are both (v?,a)-sub-exponential ran-
dom variables as described in Assumption 2. In addition, we
assume that the l-interrupted cycle reward U*D (1) is (12, a)-
sub-exponential for all 1 > 2E[CF)(1)].

In the algorithm, these parameters serve as hyper-parameters
that need to be further tuned. To remove ambiguity, for a given
set of hyper-parameters used in implementation, we will refer
to Ap as the largest set of arms which satisfy these conditions
with respect to those hyper-parameters. We assume £* € Ay
(as the weakest notion) to achieve sub-linear regret.

Remark 5. For technical reasons, we also require U (kD (1)
to be sub-exponential under the same parameters® (V%)
as those of U%) (1) when | is sufficiently large. This does
not make the assumption significantly stronger, since one can
always pick the parameters large enough to satisfy this con-
dition. The condition | > 2E[C'®)(1)] is chosen for simplicity.
Indeed, the condition can be replaced by | > (1+~)E[C®)(1)]
for any v > 0 (the algorithm parameters will be changed
accordingly), which will be explained in Section 1V-A4.

2) Threshold Function: Recall that the interruption thresh-
old for arm k’s s-th sample is given by

fs =0+ klogs.
We require 3 and « satisfy that

(€))

B > pimax Jrz/z/cv7 Kk/a > 4.

Under these conditions, and by Assumption 2, it is easy
to verify that the interruption probability for the best arm
]P’(Cg*) > fé(*)) < 1/s2. This implies that, under our threshold
function, the expected number of interruptions of the best arm
is bounded by a constant (since Y .-, 1/s* = 72/6), and thus
packet drops induced by the “wrong” interruptions do not grow
faster than O(logn) over n cycles.

3) Stability Indicator: The stability indicator is defined as
follows:

i
[=1 _;11{05“>.fi}<%2+\/2T£iilogn,
0 otherwise.
(10

The Bernoulli random variable 1{c(® > r.} denotes whether
the s-th sample for arm £ is clipped by its threshold. The value
E[>>;_,1{c™>r}] is bounded by 72 /6 for the optimal arm

5Note that U (kvl)(l) is sub-exponential (indeed bounded). However, the
fact that U(k)A(l) is (12, a)-sub-exponential does not imply the same param-
eters suffice U*:)(1).

as previously discussed, but grows linearly for the unstable
arms (since they are frequently clipped).

This motivates us to distinguish unstable arms by comparing
the total number of interruptions of each arm to 72/6 plus a
concentration bound. By McDiarmid’s inequality, the optimal
arm’s indicator L(l*) is equal to 1 whp. for any n > 1. In
contrast, for any unstable k, the value of "7, 1{c*>f,} will
eventually exceed the limit.

4) Upper Confidence Bound: As discussed in the last sec-
tion, an exploration bonus term is designed to compensate the
empirical reward rates of arms for arm selection. Specifically,
at least for the best arm, the empirical rate plus its exploration
bonus should be above the true rate w.h.p., which ensures the
best arm gets sufficiently explored.

The exploration bonus is formally defined as follows:

AP = A(ell,) (11)
where
1 max !
A(g,ef) = w, (12)
Hmin + €
and
6v2logn 6v2logn v2
(k) (k) = 5
ek) = v 4 T (13)
“T o otherwise

’rIIl X — Oé i
e’ T(k) Zln/;a BlAe(B+2a+rklogi+1).

n—1 =1

(14)

To see why this term works, first let us suppose every arm
is stable and there is no interruption, i.e., fs = co. As in [28],
we can introduce the following term,

_ 6(1 =+ Tmax) > T(*) -

Ae) := P (15)

By simple observation, we have that

{RY + Ale) <} c

1 > A(*, fi * 1 > (e, fi *
{52 G S+ UG U <BUT7) o).
i=1 i=1
(16)

These two events at the bottom allow us to use the concentra-
tion properties stated in Assumption 2 to bound the probability
of the original event. Following a trick in [36], let € = ¢, ,

where
612 log n 612 log n V2
Ea

g (17
@ Og n 0therw1se.

We can then show that both of those two events happen with
probability 1/n? for all s < n. Hence, by taking a union bound
on all possible T,(:i < n, we have that w.h.p. the exploration
bonus A(Gn,T,ﬁj) suffice to compensate the best arm’s em-
pirical rate R*)(n) such that R*)(n) + A(e
which is as desired.

X > r(*),
7))

When we consider the threshold f; as deﬁned in (9),
however, A is not sufficient to compensate for RS *) to exceed
7). This is due to the bias of estimating E[Ul()] by the
average truncated reward (1/ S)ZleUi(*’f 9 and the second
bottom event in (16) is no longer with a negligible probability.
This motivates us to adjust € to account for the additional bias.

When 3> (147) (ptmax+v? /), by simple algebra, we have
that the bias is bounded as follows (see the detailed derivation
in Appendix A).

_ %ZE[Ui(*7fi)]
TII] X
¢ Z zn/ga

B+2a+k logi+1)e—ﬁw/2(1+»¥)a.

(18)

For simplicity, we let v = 1 in our algorithm. Note that €/, | ~
O(log s/s) when k/a > 4. l

Now we can define an updated exploration bonus A(e, €’)
as in (12). Note that

€(1 4+ rmax) + €

> p() _
Hmin +e€ -

Ae, €)==

E[Cl(*)] +e
(19)

Followigg the same logic as in (16), we can conclude® that
w.h.p., R®) (n) + A(e) > (),

n,Tfﬁi’ n, T\

As a sanity check, if 7™ grows faster than O(logn) for
any stable arm k, then its exploration bonus will converge
to 0. Thus, the UCB-compensated empirical rate of a stable
suboptimal arm will eventually fall short of r(*) after sufficient

explorations.

B. Main Results

In this part we present the main theorem, which justifies
that the meta-scheduler given in Algorithm 1 satisfies our
requirements regarding negligible packet loss and a sub-linear
regret. Before that, let us first introduce a key lemma, stating
that the number of sub-optimal decisions under our algorithm
grows quasi-logarithmically.

For simplicity, let d*) := r(*) — r(*) denote the gap of
reward rates between arm k and the optimal arm. We will use
symbols A and V as the shorthand notations for min and max
functions respectively.

Lemma 1. A meta-scheduler implementing Algorithm 1 sat-
isfies the following regarding E[T, ék)].
(1) For all unstable arms k € A*(X),
2
E[T®] < [K¥ logn] + % +1

where

" 18
G p—

The proof requires the technical assumption in item (3) of Assumption 3.

(2) For stable suboptimal arms that lie in set Ay \ {k*}, we
have that
E[TF] < [KS logn vMP vME | 47241
where
24(1+Tmax)2y2(umin+1)2
(d(k))2/1’1%[1in
and I\/ng), I\/ng) are (smallest possible) constants such that

k< 4 (k) (k)
MY > ¥ 1"([C} 460y log My)(6

12(1+Tmax)a(ﬂmin+ 1)
d(k)ﬂmin

K =

/M Tog),

M) > e P11 (B 4+ 20 4 klog M) +1).

2
d()Tmax : F

(3) For stable suboptimal arms that lie in A*(X) \ Ao, we
have that for any 6 > 0 and x > 1,

E[T®] < (K 1ogn v I log' P n vy v M 4 72 4+ 1

where

K(k) _ 24(1 +7amax)2yg (/ffmin'i_]-)2 12(1+Tmax)ak (,U/min""]-)
‘ (d(k))2:u?nin d(k)ﬂmin

and Jgk) is a constant (up to 6§ and x) such that

4 _(E[CP)+6arlog(){ 108 X)) (% +\/2J(k)10g2+‘5x+1)
B> —7 T

log™ x
Note that "), 3§ are roughly O((1/d™))?) and MY is
roughly O(1/d®). To summarize,

O(logn) Vk € A%(N),
O(logn) VE € Ag \ {k*},
O(log"™ n)¥6 >0 Vke A5(\)\ A.

Proof of Lemma 1. Here we will present a proof sketch. The
complete proof can be found in Appendix B.

The proof consists of two parts. First, we prove the case
when arm & is unstable. Observe that for any k € A“(), P =

]P’(C(k) = 00) > 0. Thus, w.h.p., the value Z;f: 1{cF>p)
grows no slower than kaT(ﬂ minus a concentration bound
27*) 1ogn (by Bernstein’s inequality). Therefore, if the n-th

arm decision 4,, = k € A%(X), by the stability indicator,
we have that kaﬁi — /21" 10gn < T%/6 + /2T *) log n. This
implies]E[T,gk)] =0(logn).

Next, we study the case for any stable suboptimal arm. If
A, =k € A%(X) \ {k*}, either of the following two events
will happen: (a) the stability indicator of the best arm is 0; or
(b) the UCB score (empirical rate plus UCB) of arm k is larger
than the best arm’s score. As discussed in IV-A3, the first
event has a negligible chance to happen. For the second event,
we already guarantee that w.h.p., R®)(n) + A(el?, e >
) by the design of the exploration bonus in IV-A4. Then to
show the second event cannot occur either, it suffices to show
that R (n) + A, ¥)) < r). Observe that R (n) ~
r®) < &) and that A(en , n(k)) can be arbitrarily small
when T,(Lk) > Clogn for a sufficiently large C. This suggests
T cannot grow faster than O(log n). When k € A%(X)\ Ay,
an additional 14§ is needed in the exponent of logn. This

BT =

is caused by a technical issue’ due to the bias of (possibly)
overestimating () by R®*)(n). O

Now we present the main theorem as follows.

Theorem 1. Let f, =
g () = [K{" log 7] + 1,

gék) (1) = fKék) log TV Mgk) v Mgﬁ +1

k k

g5 () = [K{"

where ng), K(Qk), ng), J(lk)7 I\/I(lk) and Mék) are defined as in
Lemma 1. The meta-policy m induced by Algorithm I has the
following properties.

(1) For the expected number of packets discarded over the
time horizon T, denoted by E[D.[7]], we have for any § > 0
and x > 1,

(k+ alogT) and

log 7V Jgk) log™° 7V x Vv Mé’% +1,

(57

E[Dx[7]] < auf- —

keAg

m’ () (k) ’
v (<<6+ 26(r) og +2) Al (1)) +)
ke A (X)

+ (7)log 742) /\g3)+))
keA® (M)\ Ao

(2) For the regret Reg, [r], we have for any 6 > 0 and
x>1

7T'2

F)fT

D@ (r) +) f,

Reg,[r] < — 7@ (g (1) +

PORGR

keA™(X)

+ Z
ke As(A)\ Ao
£SO)

keAg

keAg

(k)(T) + 7'(-2)/-‘mam

+ r(*)f‘r + T'(

where

7 (k1)
7#*) = inf L({ (1)],
18 E[C*:D(1)]
2
h(r) = Tmax%€_5/4a(f7 +2a+1).

This theorem implies that if Ay = A°(X), i.e, all the stable
arms satisfy the conditions in Assumption 3 with respect to
the hyper-parameters used in the algorithm, then

E[D,[7]] = O(log*(7)), Reg,[r] = O(log® 7).
Otherwise,
E[Dy[r]] = O(log>™(7)), Reg,[r] = O(log”"’()),
V6 > 0.

7If the hyper-parameters, in particular 3 and c, do not suffice the conditions
in Assumption 3 for a stable suboptimal arm k, the number of interruptions
of k is no longer well bounded under our threshold function. This leads to
an additional bias between r(¥) and R(*)(n).

Proof of Theorem 1. The complete proof can be found in
Appendix C.

Claim (1) of the theorem: The expected number of interrup-
tions on arms in Ay is bounded by 72 /6 due to the threshold
design. For any arm not in Ay, the expected number of
interruptions is bounded by the number of arm selections
IE[TT(k)] (note that N [r] < 7), but a nicer bound can be given
since some of the cycles might not be interrupted. For each
interrupted cycle, the number of packets dropped is bounded
by auf, = O(logT), where f. is a (coarse) bound on the
longest possible cycle before time 7. This concludes the claim.

Claim (2) of the theorem: For this part we follow a similar
approach as in the budgeted bandit literature [26], [28]. We
first bound the number of sub-optimal actions that have been
taken in order to bound regret. Intuitively, the expected cumu-
lative reward for the optimal meta-policy is roughly (*)7, and
the regret of 7 is due to the reward loss during the period of
suboptimal decisions, where the loss in reward rate is either
r() —) (for k € Ag\ {k*}) or bounded by r*) —#(*) (for
k ¢ Ap)8. We can show that

Reg Z E T(k ,U/max (k))
keAg
+ Z E[TM]f.(r®) —7#*)) 4 O(log 7).
k¢ Ao

The value of E[Tf(k)] is then bounded using Lemma 1. 0

As described in Remark 4, if packet dropping is unaccept-
able in the system, one can instead switch to a queue-stablizing
(throughput-optimal) policy like MaxWeight to clear out the
queues. This process introduces a small extra cost to the total
regret.

Corollary 1. Once a cycle is interrupted, if the meta-scheduler
switches to a MaxWeight (instead of dropping packets) until
the system returns idle, the total regret Reg, [T] satisfies the
following:

O(log3 T)
R =
8x[7] {0(1og3+5 7), Y6 > 0

lfAO = AS(A)v

otherwise.

Proof. By Lyapunov stability, it can be shown that the average
time required for MaxWeight to clear out queues of a total
length ¢ is in the order of O(q?). Recall that when a cycle
is interrupted before the horizon 7, the total queue length is
bounded by C - log 7 for some constant C. Therefore, it takes
O(log2 7) time slots for each queue-clearing process to end,
and the extra regret induced is thereby in the order of O(r*) -
1og2) since (*) is the rate of the optimal policy. Then the
claim is shown by utilizing Lemma 1 and combining with
Theorem 1. A complete proof is presented in Appendix D. [J

V. EXTENSION: SYSTEM WITH CONSTRAINTS

In the previous sections, we introduced a UCB-type meta-
scheduler that determines the best stable policy optimizing

8When k € Ag, the expected reward rate of arm k’s period (which
may include interrupted cycles) is roughly r(®) | since only few cycles are
interrupted; otherwise, we use a weaker bound 7#(k) instead.

Algorithm 2 UCB Meta-Scheduler with Interruption for Sys-
tem with Constraints

1: Input: Set of scheduling policies .A.

2: Threshold Function: f; := 5+ xlogs.

3: Initialization: Run every arm k once with interruption
threshold 3, then initialize empirical rates Rg) and
W™ Wi=1,2,--- h

4 forn=|A| +1,|A|+2,-- do
5: [before cycle n)
6: for all £ € A do
7: Compute Exploration Bonus AP,
8: Compute Stability Indicator I,(Lk).
> A%k) and I,(Lk) as defined in Section IV.
9: Compute Constraint Indicator J,gk)
10: Arm decision:
A, € argmax IP x J®) x (R (n—1) + AW,
k€A
11: Cycle interruption decision: L, = fT7(LAn).
12: [after cycle n]

13 Observe C(AnLa) (n), T(AnLn) (n) and VA5 ().
14: Update R4 (n) and W) (n), Vi.

the renewal reward rate of the system. In some applications,
the system might be also interested in satisfying a certain
performance guarantee besides maximizing the main reward.
For instance, the system may attempt to minimize mean packet
delay of all traffic but also promise that certain users get
sufficient service (e.g., 80% of packets must arrive within 5
ms). If the guarantee can be described as a constraint on the
reward rate of another renewal-reward process (other than the
main reward), we can extend Algorithm 1 to locate the optimal
constraint-satisfying policy with a simple modification.

First let us generalize the basic model as follows. For arm
k, the n-th cycle C*)(n) is associated with 1 cycle reward
U®)(n) and h auxiliary rewards Vl(k) (n),--- ,Vh(k) (n). Both
the main and auxiliary rewards satisfy Assumption 1. If 7,, =
(k,1), a stochastic feedback Z,, is observed for n-th cycle as
follows,

2o =(CD), 5D (),
VED (), VED (), Lie® mysn).

Asin (@), let w'™ := E[V")(1)]/E[C®(1)] be the renewal
reward rate for i-th auxiliary reward of arm k. We call a
scheduling policy acceptable if it guarantees that the reward
rates for the h auxiliary rewards exceed a given threshold
& = (&, - ,&), which is known a priori by the meta-
scheduler. The optimal arm k* is thus defined as

k* = argmax r®)

k
st. ke A {kw) > & vi=1,2,- h}.

Inspired by the stability indicator, the constraints can also
be handled by an indicator that eliminates unacceptable arms
with high probability. Since auxiliary rewards still satisfy
Assumption 1, we can use the same UCB bound as defined

in (19), and an arm’s constraint indicator is set to be false
when its empirical rate of auxiliary rewards com%)ensated by
the exploration bonus is below &. Denote Wi(k (n) as the
(observed) empirical rate (see (8)) of ¢-th auxiliary reward
after n cycles. Formally, the constraint indicator J,(Lk) is as
follows,

h
k) _
T = Lo sy
i=1

The algorithm is formally presented in Algorithm 2.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our meta-
scheduler algorithms. The simulation setting is based on the
IMT Advanced evaluation guidelines for urban macro-cell
deployments [37]. We consider a wireless network consisting
of a single base station (BS) and v = 12 down-link users. The
BS is located at the center of the cell with a radius of 250 m,
and the user terminals are located in the cell. We assume the
total channel bandwidth is 10 MHz. Further, the bandwidth
can be divided into 200 resource units of 0.05 MHz each,
which can be assigned to different users within a time slot.
Scheduling decisions, which consist of the allocation of each
resource unit, are made once in each time slot of duration 0.5
ms.

We assume that the size of packets in the system is fixed at
5 kb. At each slot, each users’ packets arrive as i.i.d. binomial
random variables. For simplicity we do not allow one packet to
be transmitted across several time slots. The user scheduling
within one slot is done in a sequential manner: one of the
users is first scheduled for 1 packet based on current queue
and rate values, then the updated queues and rates (of the
remaining resource units) are used to determine the next user.
The process is iterated until remaining resource units cannot
support another packet transmission.

The Signal-to-Interference-Noise ratio (SINR) at time ¢
is modeled as SNR;[t] = Pyg;[t]/(0? + IL[t]) where P, is
the transmit power of BS, g;[t] denotes the channel gain of
user i, o2 and I;[t] denote the noise and the interference
level respectively. The channel gain is a combination of
path loss, fast fading and antenna gain, Following [37], we
set P, = 47 dBm,o? = —104 dBm, path loss (in dB)
computed as 39.1log;,(dist) + 13.5 4+ 20log,o(f.) where
fe = 2.0 GHz and dist denotes the user distance, and antenna
gain of 17 dBi. Fast fading follows a Rayleigh distribution
and is independent over users. For simplicity, we assume the
interference is identical to all users and I;[t] = —56 dBm.
In any time slot ¢, the channel state (rate supported by the
channel) of the user ¢ is given by

Si[t] = BW x logy (1 4 10%-1EMR:[-1)) - g

where the parameter L = 3dB describes a loss to Shannon
capacity.

In the following simulations, we will fix the locations of 12
users. The location profile and the mean data rates are given
in Table II. Several classical scheduling policies we use are
summarized in Table I.

A. Meta-scheduler behavior and reward design

In this experiment we select various types of rewards and
show that the meta-scheduler can indeed pick the optimal
policy. We set i.i.d. random arrival A;[t] ~ Binomial(3,0.12)
for each ¢ € U described in Table II. Under this arrival rate
(A; = 0.36 packets/slot), cycle lengths induced by the policies
in Table I are no more than 60 ms.

Suppose each packet of the system is associated with a
reward and the cycle reward is simply defined as the sum
of all packet rewards with proper normalization such that
Tmax = 1 (see Assumption 3). Three types of packet rewards
are considered as follows:

Type-1: Mean delay: The reward of each packet equals (1—
delay x 0.1)*. To optimize this type of reward is equivalent
to minimize the mean delay of packets provided the delays
are smaller than 10 time slots.

Type-2: Deadline requirement: Each packet receives a
reward of *1” only if its delay is less than dd1 slots. Otherwise
the packet receives '0’ reward. We use ddl = 8 in this
experiment.

Type-3: Burstiness: This reward favors spreading the ser-
vice allocations to a user across slots rather than serving a user
multiple packets in a single slot. If a user receives a single
packet within one slot, this packet is associated with a reward
of ’1’. If two or more packets are received in the same slot,
it will be considered as “bursty” and no rewards are given to
any of the packets.

Besides the policies given in Table I, we also consider a
Round-Robin scheduler as a baseline which may not be stable
even if the traffic loads are within the capacity region. In
Table III, we list the average cycle length and reward rates
induced by each policy. We set the parameters of Algorithm 1
as o = 4,02 = 1,k = 50, = 200, ftmin = 20, "max = 1
and run 40 simulations for each type of rewards. Define the
selection ratio of arm k after n cycles as (1/n)> """ 1{A;=k}.
Figure 2 exhibits the mean selection ratios of all arms for the
three types of rewards (with 10% and 90% quantile shown for
the best arms). In each case, Algorithm 1 correctly determines
the optimal policy. We observe the rate of convergence largely
depends on the performance gap between the best and second
best arms: Type-2 reward takes the longest time to separate
between Log-Rule and Max-Rate since they have the least gap.
As we would expect, Round-Robin scheduler gets discarded
quickly in all cases.

B. Meta-scheduler behavior dependence on the load

In this experiment, we show the robustness of Algorithm 1
over variations in the traffic load. We design a case where the
best policy shifts from one to another when we adjust the load
of the system. The goal is to verify the optimal arm is picked
by our algorithm in all scenarios.

Suppose Users 6, 12 are two reward Type-2 users with
ddl = 2 (as defined in the last experiment) that are quite
strict with packet deadlines, while other users are Type-1 users.
The cycle reward is still defined as the sum of packet rewards
of all users. We consider two policies: 1) Log-Rule and 2)
Priority Rule. The second policy is defined as follows: at each

TABLE I
A SUMMARY OF POLICIES USED IN OUR SIMULATIONS. HERE WE OMIT ALL TIME INDICES, AND Q;, H;, S; DENOTE THE CURRENT QUEUE LENGTH,
HEAD-OF-LINE DELAY AND AVAILABLE SERVICE RATE OF USER % AT THE TIME OF DECISION FOR EACH PACKET (REMIND THAT USER SCHEDULING IS
DONE PACKET BY PACKET SEQUENTIALLY IN A TIME SLOT). UNLESS SPECIFICALLY MENTIONED WE WILL SET POLICY PARAMETERS AS BELOW. NOTE
THAT THE POLICIES ARE ALL WEIGHTED (I.E., b;) BY THE INVERSE OF MEAN RATE OF EACH USER, WHICH IS A COMMON PRACTICE SUGGESTED IN [11].

H H Policy Rules

Parameter Settings H

MaxWeight i* = argmax; ¢y, b;S; Qs b; = 1/E[S;]
. a; Q;
Exp-Rule i* = argmax; ¢y b;S; ex T b; = 1/E[S;],a; =1,c¢=0.3, 1 =0.
p gmax;eyy bio; P(CHU lzjeuﬂjQﬂ”) i /E[S:], a;) 0.3,n=0.6
Log-Rule i* = argmax; ¢y b; S; log(c + a;Q;) b; =1/E[Si],a; =2,c=1
MaxWeight-HOL i* = argmax; ¢y by S; H; b; = 1/E[S;]
Max-Rate i* = argmax; ¢y, b S; b; = 1/E[S;]
Policy Selection Ratio (Mean Delay) Policy Selection Ratio (Deadline Requirement) Policy Selection Ratio (Burstiness)
1.0 1.0 1.0
0.8 0.8 0.8
] —— Max-Weight 2 —— Max-Weight] —— Max-Weight
So6 Log-Rule £ 0.6 Log-Rule £ 0.6 Log-Rule
c —— Exp-Rule c —— Exp-Rule c —— Exp-Rule
2 —— MW-HOL 2 —— MW-HOL 2 —— MW-HOL
l{; 0.4 —— Max-Rate E 0.4 —— Max-Rate l{; 0.4 —— Max-Rate
3 —— Round-Robin 3 —— Round-Robin 3 —— Round-Robin
0.2 0.2 0.2
0.0 — = 0.0 0.0
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

Number of Cycles

(a) Mean Delay

Number of Cycles

(b) Deadline Requirement

Number of Cycles

(c) Burstiness

Fig. 2. Mean policy selection ratio of Algorithm 1 for 3 types of rewards defined in Section VI-A, after simulating 40 times in each case. The area between

10% and 90% quantile of the best arm is shaded.

slot, Type-2 users are always scheduled first using a Max-Rate
policy; Type-1 users are scheduled using Log-Rule only when
there are no more Type-2 packets that can be transmitted.
Clearly, the second policy provides better performance for
Type-2 users.

We consider a system where each user has random arrivals
A;[t] ~ Binomial(3, A;/3). We increase the traffic load from
Ai = 0.32 to 0.36 for each ¢ € U. Figure 3a shows the
reward per packet under the two policies as a function of the
traffic load. When the load is relatively light, the priority-based
scheduler outperforms Log-Rule; however, when the load is
larger than 0.34, the reward boost of Priority Rule for Type-2
users does not compensate the loss in mean delay for Type-1
users and Log-Rule prevails instead. Indeed, Priority Rule is
not even stable for even higher loads (see Figure 3b).

Figure 3d to 3f exhibit the simulation results for \; =
0.32,0.34 and 0.36. Algorithm 1 correctly locates the optimal
policy in the low and high load scenario. When \; = 0.34,
the selection ratio of two policies barely separate as the
performance gap is almost 0. This is not an issue for any
MAB algorithm as both arms can be viewed as the best arm
in this scenario.

TABLE I
USER PROFILE IN OUR SIMULATION SYSTEM.

[12 [34 [56 [78 [9.10 [1112]
110 | 140 | 170 | 200
484 [362|271 | 2.04

H User Indices

Distance to BS (m) 50 80
Mean Rate (packets/slot) || 9.16 | 6.54

TABLE III
A SUMMARY OF MEAN CYCLE LENGTHS AND REWARD RATES FOR 3
TYPES OF REWARDS CONSIDERED INDUCED BY EACH POLICY USED IN
SECTION VI-A. THE REWARD RATE OF THE OPTIMAL ARM FOR EACH
REWARD TYPE IS IN BOLD FONT.

Mean Cycle Average Reward per Packet
Length (ms) | Type 1 Type 2 Type 3
MaxWeight 37 0.717 0.887 0.589
Log-Rule 22 0.805 0.954 0.557
Exp-Rule 57 0.627 0.796 0.599
MW-HOL 48 0.694 0.931 0.567
Max-Rate 20 0.832 0.949 0.484
Round-Robin 400 N/A N/A N/A

Remark 6. Figure 3d-3f illustrate each arm’s selection ratio
over the number of cycles. Indeed, the meta-scheduler’s rate of
convergence in real time scale also depends on cycle lengths.
In general, two factors affect the rate of convergence. First,
the larger is the performance gap between the best and second
best arm, the easier it is to learn. Thus, as load increases, it
is indeed possible that the instance becomes easier due to the
increased gap between the best and second best schedulers.
Second, the longer is the system’s cycle time, the slower the
learning process is. With this effect, in general, the system
with higher loads will exhibit longer cycle times. To get some
insight on the load-cycle relation, consider for simplicity a
standard M/M/1 queue with \ and [i as the mean arrival and
service rate respectively. For a stable queue, we have the load

Mean Reward vs Load

Mean Cycle Length vs Load

Average Queue Length vs Load

100

4
)
o

—— Log-Rule
Priority

mmm Log-Rule

Priorit;
80 Y

o
©
o

\

60

o
~
a

40

e
S
=)

20

Mean Reward per Packet
Mean Cycle Lengths (ms)

4
o
«

0.31 0.32 0.33 0.34 0.35 0.36 0.37 031 032 033
Arrival Rate A (Packet/Slot/User)

(a) Load vs Reward Rate.

Policy Selection Ratio (A =0.32) Policy Selection Ratio (A = 0.34)

— Log-Rule
Priority

o
o

0.8 0.8

— Log-Rule
Priority

°
>

Selection Ratio
o
2 <

Selection Ratio

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Number of Cycles Number of Cycles

(d) A\; =0.32 () \; =0.34

Arrival Rate A (Packet/Slot/User)
(b) Load vs Mean Cycle Length.

@30

9o mmN Log-Rule
® 254 ¢ Priority
=

@

£ 20

o

c

S5

[

2

%10

&

& s

o

9

z 0

034 035 036 037 031 032 033 034 035 036 037

Arrival Rate A (Packet/Slot/User)
(c) Load vs Mean Sum-Queue Length.

Policy Selection Ratio (A = 0.36) Regret (7 = 10, 000 slots) vs Load

B Mean Reward Loss
¥ 0.25/0.75 Quantiles

v v

— Log-Rule
Priority

Selection Ratio

4 1000 2000 3000 4000 5000 09 0925 095 0.975
Number of Cycles Relative Arrival Rate \/ji

) A\; =0.36 (2) Regret vs Load.

Fig. 3. Results for the experiment in Section VI-B. (a-c) Reward rate, mean cycle length and mean queue length induced by Log-Rule and Priority under
changing traffic loads. (d-f) Mean policy selection ratio (40 simulations) of the meta-scheduler when arrival rate A\; = 0.32,0.34,0.36 respectively, where
the area between 10% and 90% quantile of the best arm is shaded. (g) Mean reward loss (aka regret) of meta-scheduler 7 for time horizon 7 = 10k over
varying traffic loads. Let fi be the mean (non-opportunistic) service rate and i = 0.4 packet/user/slot. We focus on the high load region of A = 0.36 to 0.39
(i.e., relative arrival rate > 0.9) where the best policy is Log-Rule. As the load increases, the expanding performance gap of two policies and the growing
cycle lengths have opposing effects on the regret, and thus it does not grow monotonically.

parameter p ‘= \/fi < 1. From standard analysis of such
queues, the mean cycle length is Ji/ (1 — p)+ 1/ and the sub-
exponential parameter o roughly scales as O(1/logp™1) ~
O(p/(1 — p)). Recall that the regret scales linearly in these
parameters, and thus, the regret has an inverse dependence in
(1 — p), assuming the performance gap is fixed. The system
we consider is more complex, and includes opportunism, multi-
user scheduling and a non-stationary schedule, thus making it
hard to analytically quantify the effect.

In Figure 3g, we numerically explore how the regret varies
with load and indeed see a mixed impact — as the load
increases, the regret does not change monotonically due to the
different effects of enlarging performance gaps and growing
cycle lengths.

C. Meta-scheduler behavior with performance constraints

In this experiment, we consider the case where additional
constraints are imposed on the system. Let \; = 0.36 packet
per slot for any ¢ € U. Let User 6 and User 12 be Type-2 users.
Suppose we impose the following performance guarantee: 75%
of packets for user 6 and 12 must arrive with a delay less
than 5 slots (ddl = 5). And the target is to pick the policy
that minimizes the mean delay of the other 10 users while
satisfying this constraint.

We are given 3 Log-Rule schedulers with different weight
parameters b; (See Table I): b; = m where v = 0.8,1
and 1.2. Here v roughly tunes the fairness of each user,
and a larger ~y is good for users with low average rates.
Table IV summarizes the reward rates for the constraints and
main objective. Only the policy with v = 1.2 satisfies the
constraints.

We run Algorithm 2 40 times using the same parameters as
in the first experiment. Figure 4a shows the policy selection
ratio over number of cycles with the constraints described
above. As a comparison, we drop the constraint (by setting
& = 0) and the result is shown in Figure 4b. In both cases,
Algorithm 2 locates the best constraint-satisfying policy.

To clearly show the behavior of Algorithm 2, we manu-
ally slow the convergence of learning by increasing hyper-
parameter « from 4 to 20, which corresponds to a more
conservative upper confidence bound. As shown in Figure 4c,
the third policy prevails the selection ratio after the other two
policies sequentially get dropped by the constraint indicators.

TABLE IV
A SUMMARY OF MEAN RENEWAL REWARD RATES FOR THE MAIN AND
AUXILIARY REWARDS INDUCED BY EACH POLICY USED IN SECTION VI-C.
ONLY THE LAST POLICY IS ACCEPTABLE WHEN £ = [0.75, 0.75].

Average Reward per Packet
User 6 User 12 ‘ Others (Main Reward)
v=0.8 0.855 0.577 0.808
v=1.0 0.810 0.725 0.803
y=1.2 0.772 0.834 0.787

VII. CONCLUSION

In this paper we move from the traditional approach of
designing a good downlink wireless scheduler given a sce-
nario and/or rewards to that of determining which amongst
a set of possible (good) schedulers is the best for the given
context, e.g., user loads, service capacity, and performance

Policy Selection Ratio (a =4)

Policy Selection Ratio (a =20)

-
=)
=
=)

4
o
o
®

e
o
g
o

o
S

Selection Ratio
o
s

Selection Ratio

e
N
o
N

e
=)
o
=)

o o 4 [y
IS o ® o

Selection Ratio

o
N

0.0

0 500 1000 1500 2000 2500 3000 3500 4000 0
Number of Cycles

(a) System with a constraint

500 1000 1500 2000 2500 3000 3500 4000 0
Number of Cycles

(b) System without constraints

500 1000 1500 2000 2500 3000 3500 4000
Number of Cycles

(c) System with a constraint (slow convergence)

Fig. 4. Results for the experiment in Section VI-C using Algorithm 2. (a) The meta-scheduler finds the best policy (7 = 1.2) subject to the performance
constraint defined in Section VI-C. (b) The meta-scheduler finds the best policy (v = 0.8) when the constraint does not exist. (c) Repeating (a) with o = 20

to see clear convergence behavior of the meta-scheduler.

requirements. Our, so called, meta-scheduler, provides a sys-
tematic approach to achieve robustness to uncertainty in the
demand, environment or users’ needs. This is accomplished by
leveraging a budgeted multi-armed bandit framework, which
uses the queuing system’s regeneration cycles as natural times
to make choices amongst arms (scheduling policies), but also
by introducing a cycle interruption policy that is shown to
ensure that eventually only stable policies are chosen. We
provide a theoretical analysis which shows two objectives are
met: (1) the approach has sub-linear regret, and (2) the losses
due to interruptions are negligible. Our simulations show the
meta-scheduler approach is effective, and exhibits the ability
to achieve robust decisions in selecting a context-dependent
best scheduling policy.

Finally, there has been a renewed interest in using Re-
inforcement Learning (RL) algorithms for wireless resource
allocation. However, designing the ideal wireless scheduler
that will achieve optimal performance in all possibly settings
is likely an impossible goal, even with current RL techniques.
Our meta-scheduler framework provides an approach to lever-
age a collection of state-of-art schedulers (possibly even RL
based) which are known to be good for specific settings,
and achieve “universality” by learning which amongst these
provides the best results for the given operational scenario.

ACKNOWLEDGMENT

This work was supported by NSF grants CNS-1731658,
CNS-1718089 and CNS-1910112, Army Futures Command
Grant W911NF1920333, and the Wireless Networking and
Communications Group Industrial Affiliates Program.

REFERENCES

[11 J. Song, G. de Veciana, and S. Shakkottai, “Meta-scheduling for the
wireless downlink through learning with bandit feedback,” in Proc. IEEE
WIOPT Workshop on Machine Learning in Wireless Communications
(WMLC), June 2020, pp. 1-7, invited paper.

[2] R. Srikant and L. Ying, Communication networks: an optimization,
control, and stochastic networks perspective. ~ Cambridge University
Press, 2013.

[3] P. Viswanath, D. N. C. Tse, and R. Laroia, “Opportunistic beamforming
using dumb antennas,” IEEE transactions on information theory, vol. 48,
no. 6, pp. 1277-1294, 2002.

[4] X. Liu, E. K. P. Chong, and N. B. Shroff, “Opportunistic transmission
scheduling with resource-sharing constraints in wireless networks,”
IEEE Journal on Selected Areas in Communications, vol. 19, no. 10,
pp. 2053-2064, 2001.

[5]

[6]

[7]

[8]

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

A. L. Stolyar, “On the asymptotic optimality of the gradient scheduling
algorithm for multiuser throughput allocation,” Operations research,
vol. 53, no. 1, pp. 12-25, 2005.

I.-H. Hou and P. R. Kumar, “Packets with deadlines: A framework
for real-time wireless networks,” Synthesis Lectures on Communication
Networks, vol. 6, no. 1, pp. 1-116, 2013.

I.-H. Hou, “Scheduling heterogeneous real-time traffic over fading
wireless channels,” IEEE/ACM Transactions on Networking, vol. 22,
no. 5, pp. 1631-1644, 2013.

M. Andrews, K. Kumaran, K. Ramanan, A. Stolyar, R. Vijayakumar,
and P. Whiting, “Scheduling in a queuing system with asynchronously
varying service rates,” Probability in the Engineering and Informational
Sciences, vol. 18, no. 2, pp. 191-217, 2004.

L. Tassiulas and A. Ephremides, “Dynamic server allocation to parallel
queues with randomly varying connectivity,” IEEE Transactions on
Information Theory, vol. 39, pp. 466—478, March 1993.

S. Shakkottai and A. L. Stolyar, “Scheduling for multiple flows sharing
a time-varying channel: The exponential rule,” Translations of the
American Mathematical Society-Series 2, vol. 207, pp. 185-202, 2002.
B. Sadiq, S. J. Baek, and G. De Veciana, “Delay-optimal opportunistic
scheduling and approximations: The log rule,” IEEE/ACM Transactions
on Networking (TON), vol. 19, no. 2, pp. 405-418, 2011.

H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource man-
agement with deep reinforcement learning,” in Proceedings of the 15th
ACM Workshop on Hot Topics in Networks, 2016, pp. 50-56.

E. C. Santos, “A simple reinforcement learning mechanism for resource
allocation in Ite-a networks with markov decision process and g-
learning,” arXiv preprint arXiv:1709.09312, 2017.

S. Chinchali, P. Hu, T. Chu, M. Sharma, M. Bansal, R. Misra, M. Pavone,
and S. Katti, “Cellular network traffic scheduling with deep rein-
forcement learning,” in Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

H. Ye, G. Y. Li, and B.-H. F. Juang, “Deep reinforcement learning
based resource allocation for v2v communications,” IEEE Transactions
on Vehicular Technology, vol. 68, no. 4, pp. 3163-3173, 2019.

R. Balakrishnan, K. Sankhe, V. S. Somayazulu, R. Vannithamby, and
J. Sydir, “Deep reinforcement learning based traffic-and channel-aware
ofdma resource allocation,” in 2019 IEEE Global Communications
Conference (GLOBECOM). 1EEE, 2019, pp. 1-6.

B. Liu, Q. Xie, and E. Modiano, “Reinforcement learning for optimal
control of queueing systems,” in 2019 57th Annual Allerton Conference
on Communication, Control, and Computing (Allerton). 1EEE, 2019,
pp. 663-670.

D. Shah, Q. Xie, and Z. Xu, “Stable reinforcement learning with
unbounded state space,” arXiv preprint arXiv:2006.04353, 2020.

B. Liu, Q. Xie, and E. Modiano, “Rl-qn: a reinforcement learning
framework for optimal control of queueing systems,” arXiv preprint
arXiv:2011.07401, 2020.

L. Huang, X. Liu, and X. Hao, “The power of online learning in stochas-
tic network optimization,” in The 2014 ACM international conference
on Measurement and modeling of computer systems, 2014, pp. 153-165.
T. Chen, A. Mokhtari, X. Wang, A. Ribeiro, and G. B. Giannakis,
“Stochastic averaging for constrained optimization with application to
online resource allocation,” IEEE Transactions on Signal Processing,
vol. 65, no. 12, pp. 3078-3093, 2017.

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

[32]

[33]

[34]

[35]

[36]

(371

S. Bubeck, N. Cesa-Bianchi et al., “Regret analysis of stochastic and
nonstochastic multi-armed bandit problems,” Foundations and Trends®)
in Machine Learning, vol. 5, no. 1, pp. 1-122, 2012.

T. Lattimore and C. Szepesvdri, Bandit algorithms. Cambridge Uni-
versity Press, 2020.

A. Badanidiyuru, R. Kleinberg, and A. Slivkins, “Bandits with knap-
sacks,” in 2013 IEEE 54th Annual Symposium on Foundations of
Computer Science. 1EEE, 2013, pp. 207-216.

L. Tran-Thanh, A. Chapman, A. Rogers, and N. R. Jennings, “Knapsack
based optimal policies for budget-limited multi—armed bandits,” in
Twenty-Sixth AAAI Conference on Artificial Intelligence, 2012.

Y. Xia, H. Li, T. Qin, N. Yu, and T.-Y. Liu, “Thompson sampling
for budgeted multi-armed bandits,” in Twenty-Fourth International Joint
Conference on Artificial Intelligence, 2015.

S. Agrawal and N. Devanur, “Linear contextual bandits with knapsacks,”
in Advances in Neural Information Processing Systems, 2016, pp. 3450—
3458.

S. Cayci, A. Eryilmaz, and R. Srikant, “Learning to control renewal pro-
cesses with bandit feedback,” Proceedings of the ACM on Measurement
and Analysis of Computing Systems, vol. 3, no. 2, p. 43, 2019.

P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine Learning, no. 47, pp. 235 — 256,
2002.

Y. Gai, B. Krishnamachari, and R. Jain, “Learning multiuser channel
allocations in cognitive radio networks: A combinatorial multi-armed
bandit formulation,” in 2010 IEEE Symposium on New Frontiers in
Dynamic Spectrum (DySPAN). 1EEE, 2010, pp. 1-9.

S. H. A. Ahmad and M. Liu, “Multi-channel opportunistic access: A case
of restless bandits with multiple plays,” in 2009 47th Annual Allerton
Conference on Communication, Control, and Computing (Allerton).
IEEE, 2009, pp. 1361-1368.

Y.-H. Kao, K. Wright, B. Krishnamachari, and F. Bai, “Online learning
for wireless distributed computing,” arXiv preprint arXiv:1611.02830,
2016.

Y. Sun, X. Guo, S. Zhou, Z. Jiang, X. Liu, and Z. Niu, “Learning-based
task offloading for vehicular cloud computing systems,” in 2018 IEEE
International Conference on Communications (ICC). 1EEE, 2018, pp.
1-7.

I. Tarig, R. Sen, G. de Veciana, and S. Shakkottai, “Online channel-state
clustering and multiuser capacity learning for wireless scheduling,” in
IEEE INFOCOM 2019-1EEE Conference on Computer Communications.
IEEE, 2019, pp. 136-144.

B. Hajek, “Hitting-time and occupation-time bounds implied by drift
analysis with applications,” Advances in Applied probability, vol. 14,
no. 3, pp. 502-525, 1982.

K. Liu and Q. Zhao, “Extended ucb policy for multi-armed bandit with
light-tailed reward distributions,” arXiv preprint arXiv:1112.1768, 2011.
M. Series, “Guidelines for evaluation of radio interface technologies for
imt-advanced,” Report ITU, vol. 638, 2009.

‘ Supplementary Material ‘

APPENDIX A
DERIVATION OF EQUATION 18

When > (147) (tmax+v%/c) and £ > 4o, one can show
that

()] - éi:]E[Uv(*fl)]

=1
I v (%) (
gsg > EUH@)C

1 S
<D e | FPCOW) 2 fi) + D PEV (D) 2 1)
i=1 1=[fi]
Tmax
< Z K/ 2

1

S —Tmax
S

—Bv/2(1+7)e

(B+2a+klogi+1)e (20)

E(5+2C)¢+,@10g s+1)e Pr/204a, (21)

Equation (20) gives the term e

ns i (18), which is further
bounded by (21). Hence, €], ;, ~ O(log s/s).

APPENDIX B
PROOF OF LEMMA 1

Proof. We apply a technique commonly used in classical UCB
proofs [23]: Let H(¥)(s) denote the cycle index when the arm

k is first selected s times, i.e.
H®(s) = min{n : T = s}. (22)

If there exists a positive non-decreasing function g(*)(n) and

an event &, for each n such that
(A, =k} Cc & U{TP, < g®(n)}, (23)

then we have that

E[T®] =E[3 Lia,—)]

=E[Y Lim<a® @)1 {a,=}]

m=1

+E[Z 1 {m>H® 0 (n)} 1 {4, =k}]

m=1
<g®m)+E[> Le, L{a.=r],
m=ngo+l
where ng = min(H® (g¥)(n)),n —

inequality holds since

m > H® (g (n))

(24)
1). Note that the last

— 1, > M (n) > g¥)(m)
= {A, =k} C&.N{4, =k}

Therefore, for any k # k*, it suffices to find a function
g™ (n) and some &, such that (23) holds and both g(*)(n)

and E[Y°7) Tg, 1{A,,=k}] are sub-linear (or even finitely
bounded). In plain language, this means finding a suitable
gk (n) such that when a suboptimal arm k has been played
sufficiently many times (larger than g ()), the probability
of selecting k for n-th cycle is negligible.

The lemma is proved for k € A¥(A) and k € A*(A)\{k*}
respectively.
Unstable Arms: Recall that p, = P(C%k) =o00) and p; >
0 for unstable arms. Let Ys(k = 1{c™>r,}. Observe that if
A, =k € A*(X), one of the following events must occur for
n > |A| (excluding the initialization round):

)

n—1

gl,n = {Z }Q(k) - kay(LE} S

2
Eop = {ka(k% < 24/ 2T(ﬂ logn + %}
)

Otherwise, — Z Y(k) + % ® \/2T£2 logn > 0 and the

stability indicator W111 ehmlnate arm k for this decision.
If &, is true, T(k < (18/pi?) logn. The probability of
&1, is bounded by Bernsteln s inequality. Note that

S
1
P <ZYZ-(]€) —pps < —\/2510gn> < v Vl<s<n.

=1

— 2T£2 logn}

The value P(&s,) is bounded by taking a union bound over
all possible s. Therefore, applying the reasoning in (24), for
all k€ A*(X),

n

>

—|A\+1

<1+[—logn +Z Z m4 <

m=1 s=1

18
BT SH[F logn] + E[le, ,, L{an=k}]
k)

2
T
210g7ﬂ+g—|—1.

The “plus 1” term corresponds to the first exploration in the
initialization round.

Stable Arms: For all n > |A|, if A, = k € A%(X\) \ {k*},
one of the following events must happen:

+ \/ 2T75i)1 logn < 0},

)

53n—{ ZY(

. _ d®)
= {RM(n-1) = RM(n-1) > T}a
= {R®(n—1) > r® L A’(P))},
= {BY(n-1) <™ — A(D,)},
3q(k)
= {A(EP) + AP,) > =),

The variables R (n) and A’(¢\)) will be defined later. We
argue by contradiction. Assume that the five events are all

false, then we have
+ /2T 75_1 logn >0, and

L)) <

)
_Zy(

Rk)(n—l)JrA(en R™ (n—1) + A(el), €/)),

TL’W

and thus we reach a contradiction that A,, # k.
Next, we transform the event U]7.=3 Ejm into the form

exhibited in (23) to investigate bounds on IE[T,(L]C)].

€3, and &g, These two events correspond to the design
of the stability indicator and the exploration bonus respec-
tively. By McDiarmid’s inequality, we observe that

1
(ZY 7;>\/2510gn> <= Vs < n.
n

By the concentration property stated in Assumption 2 and
Egs. (17)-(19), we have that

v (Rg*) + Alens €,5) < r(*))

]. s A(*, fi *
<P (SZC§) S B0 +6n,s> +

i=1
/ —
6n,s ETMS

LS rf) < i)
P(-)» U " <E[U]—
BT
Note that the term (1/s)325 U is (12/s,a/s)-sub-
exponential by the technical assumption in item (3) of As-
sumption 3.
Therefore, we conclude that

i Z E[]15j,m

m=|AH1 j*{S 6}

<Z
\AH&

m 2

PObITLEEIRA

E4,n: Now we define the “non-truncated” empirical rate of

arm k after s samples as ng), where for all s > 1,

i(k)

2
S—, Vs < n.
n3

Tian=k}]
53 n + P (56 n))

(25)

R —

s

Therefore, &4, describes the event that the observed av-
erage R (n) is significantly higher than the non-truncated
empirical average R(*)(), which is possible if a substantial
number of arm k’s samples are interrupted. We will show that
this will not occur w.h.p. after the sub-optimal arm k is played
a sufficient number of times.

Observe that, for any s < n

P (R - Y > “))
: 4

s & s & s . k. fi

Z:lUi() (,210”—.2105 f)> o
<]P) 1= 3 1= 1= >
T lsew 5 Glkd) 4

i=1 i=1

Ak
> Cz()l{cfk)>fi} dk)

<P |7 = > —
- S 4

First consider the case when k € Agy. Then k/ay, = k/a >
4 by the algorithm setting. Therefore, by Assumption 2 and 3,
we have that E[>"7 | 1{c®>7}] < 72/6. Let Mgk) be a
constant such that

 (B[CP] 4603 1og M) (2 41/ M 1og M) _d®
T k <—.
M 4
Then we apply proof by contrapositive to see that
Ean CE4n 1) Usn,(2) YUEun,3)
where
Ean,) = {T3h < M7},
)
Exnry = (JIO SEIC] + 6ax log T},
=1
T)
0
Eane) = 1y LeP>ry> = + /T log T}
i=1

We can derive that

Z Z Ele,,,, (;)hAm_k}]

IA\H i={2, 3}
<Z]P’ U{C’ ® S EC?] + 6ay log s)
2
+ ZIP’(Z Tic®>py> % + +/slogs)
o0 S 2
™
- <= 26

In the first mequahty we move from the “global” cycle index
m to the “local” index s (denoting the number of cycles
selecting arm k), since 84’m,(2) and 54’m’(3) only depend on
the number of samples T,(f_)l (rather than m). The second in-
equality is given by Assumption 2 and McDiarmid’s inequality
respectively.

When k ¢ Ap, however, the value Y ;_, 1{c* >y} does
not satisfies the concentration property, since it is possible that
ai > a and k/ay < 4. That means this stable arm & can still
be interrupted relatively frequently due to our underestimating
of the distribution’s tails.

We note that due to the design of the stablhty indicator, if

A, =k, there is a natural bound on Z 1 e >y whp.

given by,
7
3" Lie®spy < 7?/6+ /21 logn, Q27
i=1

i.e., the stability indicator of arm k at n-th decision is true.
If this bound does not hold, then the indicator of every arm
must be all false (including the best arm) such that the random

tie-breaker has a chance to select k, which implies that & ,,
must happen.
Now let Jgk) be a constant such that for any s >
(Jgk) log o n v x) for some § > 0 and x > 1,
(E[C{k)]—l—Gaklogs)(++/2slogn+1)

_ <d
7 —_
s - 4

One choice of Jgk)

(B[CP]+6aklog(J{ 10g P %)) (22 +1/20 1og2H x+1)

log™ x

Following a similar argument as in the last case, we have
that

can be such that for any y > 1,

4
d)

r

JB>

Ean C Exn 1) UEin,2) UEn, (3
where

(k k
54717(1) _{ —% <Jg)log n\/X}7
et

2
o Vs
Ern) = 1) TeM>y > o+ o1 ogn}.
=1

Note that {A,, =k} 054%(3) C &, as discussed earlier and
we can apply the similar bound as in (26).

To interpret the result, we note that when the number of
samples selecting arm k (k ¢ Ag) grows slightly faster than
O(logn), there must exist enough samples of k that are not
interrupted (due to the stability indicator), which helps to
guarantee ng) ~ R§

Es5,n: This event describes that the empirical reward rates
of sub-optimal arms show a nice concentration around (%),
which contributes to Assumption 2.

Recall that A(e) defined in (15) such that R*) (n) <
A(e$)) wh.p. Similarly, define that

(L +E[U® W)]/ECH(1)])
max(E[CR (1)] — ¢, 1)

P _

A(e) :=
Then we have

_ 1<
{R >r® 1A' (e)} C {;Z CF <max(E[C{Y] -, 1)}

U{ ZU’“)>E

Let €, be defined as €, in (17) except that (a,v?) is

replaced by (o, uk) And let en) =&, 7 Then,

9]+ e}

>)+ A (D))
P(RM >+ 4 A'(e,,)) <

and thus

n

>

m=| AR

E[lg, , 1{a.=xr}] < (28)

E7.n: Now we show that &7 ,, is always false when T(% is

large enough. Let p := “m‘i First observe that
(k)
Ay) < 210y
dk)
— (1=p)}U

El E2

A

0)
o

1+rmax) d(k)

Hmin

d®)

(I4+7rmax) < ——p} -

A(k;
U {En 2

E3
The first and the third set imply that
24(1+7max) ?v? - 12(14+Tmax)
(d))22 By
K
24(1+rmax)21/,3
(d®))2p?

K

E1 c{T¥) >()-logn},

12(147max) ik
d®)p

E3 c{T"™) >()logn}.

The second set E2 implies T,(Q > Mgk) where Mgk) is defined
as the smallest integer such that

dk)

Tmax 7T
< — Umin-
) 1 min

M(k) . Ee_ﬁ/‘la(ﬁ + 2a + klog M(

These three results indicate that when &7, occurs, T()
(ng) v ng)) logn Vv Mg),

Combining the analysis of the five events, we can conclude
that for k € Aqg,

g®(m) = [(K" v KE) logn v MY v MET 41,
En = 53,n U g4,n,(2) U 54,71,(3) U 55,n U gﬁ,n-

as indicated in (23). Note that K(k) v K(k) ng) since v? <
V2o < o for k € Ap, and E[Z —a+1 L,]l{Am_k}] is
bounded by 72 (see Egs. (25), (26) and (28)). The case of

k ¢ Ag follows the same reasoning. This finishes the proof.
O

APPENDIX C
PROOF OF THEOREM 1

Proof. Claim (1): Note that N, [7] < 7. Clearly, we have that

E[D[r]] < <E[oD L= ie®m>s,a }]) aufr,
ke An=1

where the term in parentheses bounds the number of interrup-
tions in total while auf; is the maximal number of packets
that can occur in a cycle before time 7 (since f; is the largest
possible length of a cycle).

Note that the expected number of interruptions of arm k is
either bounded by 72/6 if k € Ay or (trivially) bounded by
IE[TT(k)] otherwise. Indeed, a better bound can be found for
k ¢ Ag. Take k € A“(\) as an example, we observe that

E[Y Tia=t}l{c®m>1,)]

n=1

T

<Y EL{a,=mLr < mrLe® @)>1,)]

n=1

+) E[Lia=r 1ir) 260 ()],
n=1
gi" (r) A7)
<[)
s=1
8" (AT

D

s=1

ﬂ{c‘gk>>fs}} + Z E[]l{An:k}]lglyn],
n=1

2
<E| Lie®>r] + -
Recall that & , is defined in the proof of Lemma 1.

Now we define for any integer random variable N > | A|+1
(a.s.),
U {(N=n}né&s,.

n>[Al+1

&N =

Then events &3 g (5 are well-defined® for any s > 2, where

H®)(s) is defined in (22). Observe that, on anywhere but
k k

53’H(k)(2/\g(1k)(T)/\Tﬂ(—k)) N {gg)(T) A T7E) > 2}, we have

gl (AT —1

D

2
Lic>r < % +1/2e(m)log T a.s.
s=1

Otherwise the (ggk)() A TT(k))—th sample will not be chosen
due to the stability indicator (a similar argument is given in
(27)). Note that H(g™ (r) A T < 7 (a.5.).

Therefore,

8" (AT

E[>

s=1

2
< (g +v/28" (M) log7+1)

+E[(g" (1) ATM) 1 ¢

Lc®s 1]

5

3,H(k)(2/\g§k)(7)/\T7(rk>)
2
™
< 5 + 2g§k) (1) log T + 2.

The last inequality is given by the fact that P(€;3,) < 1/n3
(see (25)) and H¥) (s) > s (a.s.) for all s.

Finally, the claim is proved by combining all the bounds
discussed above.

Claim (2): We follow a similar approach as developed in
[28]. First we claim that the expected cumulative reward of
TP over a time horizon 7 is bounded as follows:

E[Rewone[r]] < (7 4 r0 ELCO D))

E[C™)(1)]
To prove this claim, observe that,
N.,ropt [T]-‘rl
ERewrone[r]] <E[> UW(n)],
n=1

L <nE[UY (n)]],

Z Tis=r

Events & 1 (1) are not well-defined, since H®) (1) < |A]

Z sz <y E[C™) (n)],

N opt [7]+1

Y. W),

(-, E(CY Q)]
<rY(r+4 E[CT)(1)]).
Note that the second and fourth equations hold true due to the
independence of ST and (C*)(n),U*)(n)). The last line
follows Lorden’s inequality for overshoot.
We note that 7 can be further bounded with respect to meta-
policy 7 as follows:

=rME|

N 7]

r<E[Y Y La=n ")] 1

n=1 ke A

Thus, we have the following upper bound:

N,
E[Rew ot [7]] < r*)(E Z Z 1{a,=x1C ’fofi)l)(n)])
n=1 k€A
(o, 4 ECW?]

E[C™)(1)]
The lower bound of E[Rew[7]] is given by
Nxl[7]

] > E| Z Z]l{A"—k}U ’T““))()]

n=1 ke A

E[Rew,[7]

Therefore, the regret is bounded by
E[Rew rort [7] — Rew[7]] < T1 4+ T2+ ™) f, + O(1)

(29)
where
NW[T]
Tl = Z E[Z Tia,=k}x
kGA\AU n=1
(r I) — 0),
NW[T]
T2 = ZE[Z Tia,=kx
keAg n=1
((x)C(f (k))() U(k’fTv(mk))(n))].

Here the term T1 denotes the regret induced by the arms
that have frequent interruptions, which includes unstable arms
and stable arms that are not in Ay with respect to the hyper-
parameters. Observe that

T1< Z

ke A\ Ao

o0
E[Z T¢st, <ryla,=k}x

n=1
(rOECE) ()] — BT ()],
< 3 E[Y Lsz,<n {an—kyx
keA\A, n=1
() F(k))E[CA,(kJT?(Lk))(n)”)

<X (- ORI
ke A\ Ao

(30)

The first inequality holds true since S ; and A,, are indepen-
dent of C*:1)(n), U*D (n) for any I.

For the term T2, which indicates the regret induced by the
arms with few interruptions (i.e., arms in Ag), we can derive
the following bound.

T2 SZ

N [7]
E[Y T{a=k(rC® (n) = UM (n))]
ke Ao n=1

NW[T]
+E[S Liaw=ey@® (n) — 0" ()] |
n=1

55

NW[T]
E[> Lta=r(r® — rE)E[CH (n)]
keAg n=1

+E[iw§’“> - Uf’“”)]) :

=0
< Z ((r(*) — r)E[TM | imax
keAp
HE[Z]l{c§“>fi}Ui(k)]> ,
=0
<3 (0 =BT i
ke Ao

7T2
o 4 2041)).
(31)

Note that the value E[> 1{c* > fi,}Ui(k)] is bounded using
a similar derivation from Appendix A.
In conclusion, by combining Egs. (29)—(31), we have that

E[Rew ropt [T] — Rew,[7]] < f- Z (r®) — FENE[T*)
ke A\ Ao
+pimax Y () =r"E[TH] + O(log 7).
keAp
Then the main claim is proved by applying Lemma 1.

APPENDIX D
PROOF OF COROLLARY 1

Proof. To show this result, we first present the following
lemma.

Lemma 2. Consider a queueing system with an initial state
QI0], in which the number of packet arrivals each slot is
bounded. Suppose a stable policy is applied such that there
exist a Lyapunov function ¢(-), a bounded set Q and constants
Ymax, t > 0 such that

E[o(Q[k+1]) — ¢(Q[K]) | Q[¥]]
<) Vmax, i QK] € Q,
- ifQIK ¢ Q,

then the mean hitting time E[wy|Q[0]], where wp := min{k >

0: ¢(Q[k]) < maxqeo ¢(Q)}, is bounded by C,¢$(Q[0]) for

some constant Cj.

20

Proof. Consider the case when Q ¢ Q (since the result is
trivial otherwise). According to Theorem 2.3 in [35], when
the queueing system has bounded arrivals and satisfies the
Lyapunov stability condition, there exists a constant ¢ such
that for any < ¢/c and p = 1 — 1y + cn?, the following
inequality holds:

P(wp > k| Q[O]) < QLD

where b := maxgeo ¢(Q). Therefore, we have that

Elw, | QO] <> P (w, >k | Q[0])

k=0
< en@@Io)—b) P
< =,
< en@@OD-D 2 pen < L
- m’ ~ 2
Take 7) = min(5oy =5 32)- then it follows that
2e
Elws | Q[O]] < ~(#(Q[0]) ~)
and the claim is proved. O

Note that the average hitting time from any queueing state
within a compact (finite) set Q to the idle state (i.e., Q@ = 0)
is bounded by a (Q-dependent) constant, since the Markov
chain of the queueing system is positive recurrent under a
stable policy. This implies that when a cycle is interrupted
with initial state Q[0], it takes C1¢(Q[0]) time (for some C;)
for a stable policy like MaxWeight to return the system to the
idle state.

Note that ¢(Q) = ||Q||3 is the Lyapunov function used to
show the stability of MaxWeight [2]. By our model settings (in
particular, bounded arrivals per time slot) and the interruption
rule, there exists a constant Cy such that the longest queue
(after an interrupted cycle) is bounded by Cslog 7 for any
interruption before horizon 7. This leads to an extra regret
bounded by 7,4, [U|C1 C3 log? T per interruption. Furthermore,
since the average number of interruptions is logarithmic as
bounded by Lemma 1, the claim of this corollary is proved.

O

	Introduction
	Contribution
	Related Work
	Notation

	Model Settings
	Traffic and Service Model
	Regenerative Dynamics
	Meta-Scheduler, Feedback and Interruptions
	Regret

	UCB Meta-Scheduler with Interruption
	Main Results and Discussion
	Analysis of Key Design Choices
	Hyper-Parameters
	Threshold Function
	Stability Indicator
	Upper Confidence Bound

	Main Results

	Extension: System with Constraints
	Performance Evaluation
	Meta-scheduler behavior and reward design
	Meta-scheduler behavior dependence on the load
	Meta-scheduler behavior with performance constraints

	Conclusion
	References
	Appendix A: Derivation of Equation 18
	Appendix B: Proof of Lemma 1
	Appendix C: Proof of Theorem 1
	Appendix D: Proof of Corollary 1

