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ABSTRACT

We propose and evaluate a learning-based framework to address
multi-agent resource allocation in coupled wireless systems. In
particular we consider, multiple agents (e.g., base stations, access
points, etc.) that choose amongst a set of resource allocation options
towards achieving their own performance objective /requirements,
and where the performance observed at each agent is further cou-
pled with the actions chosen by the other agents, e.g., through
interference, channel leakage, etc. The challenge is to find the best
collective action. To that end we propose a Multi-Armed Bandit
(MAB) framework wherein the best actions (aka arms) are adap-
tively learned through online reward feedback. Our focus is on
systems which are “weakly-coupled” wherein the best arm of each
agent is invariant to others’ arm selection the majority of the time —
this majority structure enables one to develop light weight efficient
algorithms. This structure is commonly found in many wireless
settings such as channel selection and power control. We develop
a bandit algorithm based on the Track-and-Stop strategy, which
shows a logarithmic regret with respect to a genie. Finally through
simulation, we exhibit the potential use of our model and algorithm
in several wireless application scenarios.
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1 INTRODUCTION

Dynamic resource allocation, including the allocation of time slots,
frequency sub-channels, power, etc., is a key part of the design
of wireless systems. In a multi-cell setting, resource allocation is
especially challenging due to the triad of: (i) heterogeneity and
uncertainty of the network environment (e.g., time-varying loads,
channel states, interference, etc.), (ii) distributed decision making
(separate controller/agent in each base-station), and (iii) availability
of only partial state information at each agent (e.g., only local
channel states). In such settings, if each agent selects their own
allocation strategy/action without consideration of other agents’
decisions, the collective can suffer a significant loss in total utility.

We can view the multi-agent resource allocation problem through
the following abstraction. Each agent is allowed an action from
among a collection of actions (e.g., choice of frequency sub-band
in the channel selection problem). Its choice of action has two con-
sequences: (a) the agent accrues a reward for itself (e.g., average
throughput/delay for users in its cell), and (b) the action induces
an environment that affects all other agents (e.g., transmitting on a
frequency sub-band generates strong interference to other agents
in that frequency sub-band, and weaker interference in nearby fre-
quency sub-bands). In a multi-agent setting, the goal then is to find
an action for each of the agents (equivalently, a collective of actions
across agents), which in-turn induces a collective of environments,
such that the utility of the collective is maximized.

The immediate search-based solution to this problem — attempt
every action at each agent for a sufficiently long duration, em-
pirically estimate the collective reward, and choose the collective
that has highest utility - can scale poorly due to the super-linear
growth in search space. Indeed, even with two users, the number
of environments scales as k2 if each user has k possible actions,
making it computationally impractical to learn the best actions
within a reasonable time. In general, with no assumptions on the
actions and the resulting environments, it is not hard to see that
such complexity is unavoidable.

However, in many resource allocation settings that we are inter-
ested in, there are additional properties of the overall system that
can be used to reduce this complexity. Specifically in this paper,
we focus on systems that are weakly coupled. We say a system is
weakly-coupled if it satisfies the majority condition: we suppose that
the optimal action of an agent is also the best action in a majority of
environments, where each environment corresponds to a distinct
action tuple that can be chosen by the other agents. The intuition is
that under moderate interference levels, most of the time, the perfor-
mance of one agent’s action does not fluctuate much when actions
taken by nearby agents are changed. The majority condition holds
in several wireless settings. For example, in the channel selection
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problem, once an agent selects a frequency sub-band, only a small
set of adjacent channels will be significantly interfered with due to
channel leakage. Another example is one where each base-station
can choose a scheduler from among a candidate set [22]. Different
schedulers trade-off for different performance metrics within the
cell (e.g. MaxWeight for stability, vs. round robin for jitter); however,
they have different impact on neighboring cells. In this setting, good
schedulers tend to incur low interference to nearby agents (cells)
since they typically schedule opportunistically and use channels
more efficiently (therefore, the majority condition holds provided
that most of the schedulers are “good”).

The majority condition is especially useful for algorithm design,
because we show that it has the following three properties. (1) Local
greedy property: For each agent, it suffices to learn its best action
in each of the environment and choose the “majority best” as its
overall best action; (2) Avoiding hard environments: Identifying each
agent’s best action can be cast as k separate multi-armed bandit
best-arm identification instances, where k is the number of possible
environments. Some of these environments might be especially
hard, e.g., strong interference/poor channel quality, thus all actions
of the agent in this “hard” environment have low reward, making
this best arm identification instance difficult. Crucially however, the
majority conditions enables one to avoid solving such hard environ-
ments, once the best actions from the easiest k/2 environments has
been learned; (3) Sub-sampling property: When the number of envi-
ronments k is large, it is possible to sample a subset of environments
and still learn the best action (with high probability).

Building on these properties, we develop a decentralized algo-
rithm for multi-agent resource allocation with bandit feedback. The
algorithm proceeds episodically with each episode consisting of
an exploration and an exploitation phase. During the exploration
phase, one agent runs a collection of best-arm-identification sub-
routines to learn the optimal arm (aka action) in each environment
based on local reward feedback, while the other agents cycle over
actions from a randomly-chosen subset (of all the actions) in a
round-robin fashion, until the first agent learns the “majority best
arm” with a fixed confidence (crucially, not all environments have to
be “solved”). Once each agent learns the best collective arm using
the above procedure, it is applied in the exploitation phase. As the
episode index grows, the confidence level is made increasingly tight
as the increment of regret converges to zero. We build on Track-
and-Stop [8], which is designed for best arm identification with
fixed confidence, as the subroutines used in the main algorithm.
Track-and-Stop focuses on exploring arms with good rewards, and
is known to be asymptotically optimal in terms of the number of
plays needed for determining the best arm. This further accelerates
the exploration and improves the overall performance (in particular,
compared to the vanilla Explore-Then-Commit (ETC) approach).

Our main contributions are summarized as follows:

1. Weakly Coupled Systems under the Majority Condition:
We develop a multi-armed bandit framework to address the multi-
agent resource allocation problem for weakly coupled systems. In
these systems, the best arm of each agent is invariant to other
agents’ arm choices in the majority of scenarios. We believe this
assumption is reasonable in many wireless applications, and allows
the design of an algorithm with manageable computational and
communication costs.
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2. Track-and-Stop Based Decentralized Algorithm: We de-
velop a decentralized bandit algorithm specifically designed for
weakly coupled systems based on Track-and-Stop. For systems
satisfying the majority condition, this algorithm has two main ad-
vantages over classical bandit algorithms: (1) Low communication
cost: the decision making is decentralized as no reward/action in-
formation is exchanged and the only coordination needed is when
one agent signaling others the end of a Track-and-Stop subroutine.
Note that for centralized algorithms such as UCB or the vanilla
Track-and-Stop (i.e., best arm identification among all the collective
arms), a central controller who has access to all the reward feedback
has to be introduced to determine the action for each agent. (2)
Efficient with a logarithmic regret: it can be shown that with high
probability the regret scales as O((m — 1)k log k log T) where T is
the time horizon, m is the number of agents and k is the (max)
number of arms of each agent — this is much improved compared
to any classical algorithm which equally views all the k™ collective
arms in implementation, with the regret scaling as O(k™ log T).

3. Empirical Evaluation: We simulate the algorithm in two
wireless applications to show the potential usage of our model:
(1) channel selection with power leakage and (2) best scheduler
selection for wireless queueing systems. In both cases, we show the
systems are indeed weakly-coupled such that our algorithm can
be applied. Furthermore, our simulations show that the agents can
correctly learn the best collective action in reasonable time with a
sub-linear regret.

1.1 Related Work

Multi-Agent Resource Allocation in Wireless Settings. Many well-
studied wireless applications are by nature multi-agent resource
allocation problems, such as power control and cognitive spec-
trum access. A classical theoretic approach is to study the prob-
lems through a game theory perspective, e.g., [10, 11] on power
control, [25, 26] on dynamic spectral access and cognitive radio,
[5, 9, 21] on wireless sensor networks, [19] on edge computing, etc.
Moreover, due to the complexity of the problem, machine learn-
ing/reinforcement learning techniques have recently be proposed
to address related problems, see e.g., [1, 27, 28].

Decentralized Multi-Agent MABs. Multi-agent decision making
has been formulated as decentralized multi-armed bandit problems,
where multiple players simultaneously pull their arms at each round.
In a collaborative setting, the agents learn the same stochastic bandit
instance in a decentralized manner, and the goal is to minimize
individual regret via information sharing, see, e.g., [6, 12, 14, 24].
Recent works [7, 13] further consider the tradeoffs between regret
minimization and communication cost.

More aligned with this paper is the study on multi-agent MABs
with collision. In those problems, agents receive normal reward
feedback only if other agents do not choose the same arm (“colli-
sion”) — otherwise zero rewards are observed by colliding agents.
Several settings have been studied in this line of work, including
[2, 3, 20] on the homogeneous reward setting (agents observe the
same reward distributions on the same arm), and [4, 16, 18] on the
heterogeneous reward setting. A recent work [17] further explores
the scenario when agents observe non-zero rewards on collisions.
Compared to these works, our model is more general regarding
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the impact of interference on rewards — we do not restrict to a
collision-based model and the reward distribution of an arm may be
different when nearby agents change to any arm (not necessarily
the “colliding arm”). Instead, we explore a special arm-reward struc-
ture, i.e., weakly coupled systems under the majority condition, and
develop efficient decentralized bandit algorithms.

1.2 Notation

Throughout the paper, we use [n] to denote the set {1,2,---,n},
and 1 for the {0, 1} indicator function. The symbols [a] and | a]
represent the ceiling and floor function over the value a.

2 PROBLEM FORMULATION
2.1 Two-Agent Weakly Coupled Systems

For simplicity let us first focus on a 2-agent system and introduce
the notion of weak coupling. Here on, we use the standard bandit ter-
minology of ‘arm’ to denote an agent’s action. In this system, Agent
1 and Agent 2 can choose one over k1 and k; arms respectively for
each play (round). We call any pair of arms (i, i2) a collective arm.
The joint rewards for two agents choosing (i1, iz) € [k1] X [k2]

are independently and identically distributed over multiple plays,

1 (@
iy’ “il,iz)‘ Note that the
rewards are “coupled” and changing either arm of (i, iz) might

affect both rewards ( ,ugll 32, /,1[.(1232).

As usual the goal of a bandit framework is to find the best (col-
,iy) satisfy that ,u.(,}).* + ,u.(*z).* >
oba

1,1 1,1,

and the average rewards are denoted as (u

*

lective) arm. Let the arm pair (i]

;11.(11’32 +pl.(12’32 for all (i, iz) € [k1] X [kz2]. Simply applying classical

bandit algorithms (such as UCB) in this problem can be challenging
and problematic, since it requires a centralized controller observing
rewards from both agents and exploring all k1k; arms, leading to
high communication and computational cost.

Therefore, in this paper, we consider weakly coupled systems,
which have a special arm-reward structure such that only minimal
communication between agents is needed — in particular, no re-
ward/action information is required to be shared — and that fewer
arm pairs are necessarily explored to locate the best collective arm.
Before formally define the condition regarding weak coupling, we
introduce several notations as follows: Denote i](j) as the best

arm for Agent 1 when Agent 2 plays arm j for any j € [k2], i.e.,
i1 (j) = arg max; pl(,lj) Similarly, let i (j) = arg max;/ pj(zlz for any
Jj € [k1]. Let c1(i) = 2 jek,] L{i=i;(j)} (i.e., the number of Agent 2
choices, aka “environments”, resulting in arm i being the best arm
for Agent 1) and similarly, c2(i) = Zje[kl] 1 {i=i;(j)}.

We call a system weakly coupled if it satisfies the following
majority condition:

ConNDITION 1 (MAjJorITY CONDITION). Suppose there exist an

arm pair (iM,iM) € [k;] x [kz] such that ¢ (iM) > (1+y)kz/2, and

cz(ilz\") > (1+y)ki/2 for some0 < y < 1. Furthermore, assume that
1 1 2 2 L
Fin >t and i) > %), for any (in,2) € ] x [ka).

1k t

Arm i'lv‘ of Agent 1 is the best choice for him for majority of

Agent 2’s selections, and analogously for ié"‘ (an illustration is given
M iM
»h2

in Figure 1.). We call iy

the majority arms of both agents (hence
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Agent 1 (Observe Rewards) Agent 1 (Fix Each Arm)

Agent 2 (Fix Each Arm)

Agent 2 (Observe Rewards)

Best arm pair for each column

D Best arm pair for each row
in terms of Agent 2’s reward

in terms of Agent 1's reward

=

By Majority Condition, (1,1) is the optimal arm pair

Figure 1: An illustration of the majority condition.

the notation). Clearly, the majority arm pair is the optimal, i.e.,
(i1, 3), if the condition holds.

To understand the intuition of this condition, first consider the
case when there is no coupling, i.e, ,ul.(ll’gz is a constant for any

iz € [kz] when fixing i; (similar for ,ul.(lzl?z when fixing iz). The

majority condition holds with y = 1. In this case, each agent can
locate the best arm solely based on the observed rewards itself.

With more coupling, the mean rewards observed by one agent
are no longer constant as the other agent changes arms — however,
in a weakly-coupled system, we assume the change of arm at the
other agent will not affect the best arm majority of time. In other
words, only a small number of actions by the other agent make a
significantly negative impact on the best arm (actually a stronger
condition would be that only a few arm pairs lead to significant
reward degradation, but we focus on the best arm exclusively). As
we will see, with more robustness this arm-reward structure still
preserves the property that local reward feedback is sufficient for
the best arm identification of each agent.

REMARK 1 (WEAKLY COUPLED WIRELESS SYSTEMS). Weak cou-
pling can be found in several wireless settings. Two examples that we
consider in this paper are: (i) channel selection across multiple base
stations, with coupling due to interference leakage across adjacent
channels, and (ii) scheduler selection at multiple base stations, with
coupling due to the out-of-cell interference resulting from the trans-
mission patterns induced by the chosen scheduler. We study both these
settings in Section 4, where we discuss the nature of coupling, as well
as the efficiency benefits of our approach.

2.2 An Alternative Condition, Regret

Condition 1 naturally captures the weak-coupling nature of some
applications. In Condition 1, both agents are “symmetric”. Here, we
introduce a non-symmetric, weaker notion as follows.

ConpITION 2 (WEAKER MAJORITY CONDITION). Suppose there

exist an arm ii"‘ such that ¢y (i’l\") > (1+y)ka/2. Furthermore, assume
(1) (2) (1) (2)

that iy, + o LT e
172

i M) TN M) Iply

M
2

be i} (l?") under Condition 1 — therefore, it is better to adopt a more
general notion. Consider the channel selection example: with some
small probability, the majority arms of both agents might happen

Note that Condition 1 strictly implies Condition 2 since i:' must
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to “collide” with each other (i.e., being adjacent channels). Then it
is preferred to aim at finding the arm pair (z1 21y (1M)) rather than
(l1 iy M) when we design an algorithm so as to avoid the collision
(when there is no collision, Condition 2 becomes Condition 1). In
practice, even when Condition 2 is not held, the pair (iﬁv‘, i; (ilM))
still gives acceptable “near-optimal” rewards for similar settings
which involve collision avoiding.

The goal is to develop an efficient and communication-light
bandit algorithm to minimize regret. We define the regret as the loss
of rewards with respect to the arm pair (ii‘", iy (iﬁv‘)) in accordance
with Condition 2.1 Let (I; (t), I»(t)) denote the arm pair selected by
the two users at time t. The regret with horizon T is defined as

(1) (1)
RegretT E Z(:u (1/1\4) l'lfl(l‘) Iz(f))

(2)
* Z('”l 5 (M)

When Condition 2 holds, the regret expression above reduces to the
normal definition (i.e., with respect to the best pair (i, i3)). We use

(2)
RUAGYICUR

'1 iy (zM) in the current definition to allow general comparisons.

2.3 Generalization to Multi-Agent Systems

The model described above can be generalized to systems with
more than 2 agents. For notation simplicity we consider a 3-agent
system in this subsection. Let i] (-, iz, i3) € [k1] be the best arm for
Agent 1 when Agent 2 and Agent 3 play iy € [k2] and i3 € [k3]
respectively. (Arm i (i1, -, i3) and arm i3 (i1, iz, ) are analogously
defined.) The majority condition is stated as follows:

ConNDITION 3 (MAJORITY CONDITION: 3-AGENT SYSTEM). Sup-
pose there exist an arm iﬁv‘ € [k1] such that

L (iM=it (inis)} = (1+y) (kaks)/2,
(ig,i3) €[ ko ] x[k3]

M,i _iM
e [k2] such that

2
3B @iy = (14 ks /2.
iz€[ks]

and an arm i

M,ip=iM M,ip=iM
Furthermore, assume that(l1 AN A (: ?A A

collective arm in terms of sum (mean) rewards.

,*)) is the best

Note that we follow the non-symmetric pattern of the alternative
condition in Section 2.2. Accordingly, the regret is defined as the

M e ).

3 ALGORITHM DESIGN AND ANALYSIS

3.1 Building Block: Track-and-Stop

Our algorithm applies the Track-and-Stop (T-a-S) algorithm [8] as
subroutines to locate the best arm in each environment. Track-
and-Stop is a single-agent bandit algorithm for the purpose of best
arm identification — the goal is to learn the best arm with a fixed

MMlll

loss with respect to the triplet (1 iy

!Indeed, with shght modrﬁcation our algorithm can minimize a regret that is defined
with respect to (11 iy My,
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confidence § using the least number of plays. The T-a-S agent
explores arms and collects feedback until a certain criterion is met,
and outputs a “recommended” arm such that it is the best arm w.p.
1-4. In each round, the agent computes the “optimal proportion” of
arms needed for exploration based on observed mean rewards?, and
chooses the arm which better matches (“tracks”) the proportion.

Compared to the “pure exploration” approach (i.e., exploring the
arms in a round-robin fashion), a T-a-S agent spends more effort on
exploring arms with better reward feedback, which is significantly
more efficient. Indeed, for some structured bandit environments, it
has been shown that Track-and-Stop is asymptotically optimal in
terms of the number of explorations needed for the fixed-confidence
best arm identification problem. We present the following result
(taken from [15]) which will be used in our regret analysis.

Let & be the set of k-armed Gaussian bandit environments.
For any v € &, denote v; as the reward distribution of arm i €
[k] (which is normally distributed) and y; as its mean. We denote
Sralt(v) as the set of bandits whose best arms are different from
the one in v, i.e.,, Eg ait(v) = {V € E : i*(v) Ni* (V') = ¢} where
i*(v) = argmax;e ) pi(v).

LEmMA 3.1 ([15], THEOREM 33.6). For any bandit environment v €
&, the stopping time of a Track-and-Stop instance with a confidence

parameter 8, (J; v), satisfies that
k
inf aid(vi, v,
(V’Eak,an(v) (; !

E[z(&v)] _
where Py._1 is the (k — 1)-probability simplex and d(-, -) denotes the

i egye) P W=
Kullback-Leibler divergence of two distributions.>

sup
a€Pr-

Note that the value p*(v) is the asymptotic lower bound.

3.2 Algorithm for Weakly Coupled Systems

In this section, we introduce the main result — a decentralized
bandit algorithm for weakly coupled systems using Track-and-
Stop as a building block. As we will see, our algorithm exploits
three properties: (i) (1) Local greedy property, where there is no
sample sharing across agents and decision-making is based on
local majority; (2) Avoiding hard environments, where the T-a-S
algorithm is initially deployed on a larger set of environments, but
is stopped early on those environments that are hard (meaning
the gap between the means of the best and second-best arms is
small), and (3) Sub-sampling property, where only a limited set
of environments are ever explored by any agent. The complete
algorithm is presented in Algorithm 1, and an illustrative figure is
exhibited in Figure 2.

Let TAS(5") (8) denote a sub-routine as follows: Agent 1 plays
arm i repeatedly; Agent 2 implements T-a-S with respect to the
confidence parameter § based on her own feedback. The sub-routine
TAS(-1) (8) is defined analogously. Before implementation, let Agent
2 randomly choose a sample set of arms S @ ¢ [k2] such that
|S@)| = s(ky), where s(kz) is a global constant which is known
to both users. By choosing each of the arms in S @), Agent 2 will
generate s(kz) environments for Agent 1 where Agent 1 can learn

2For example, if an arm shows much worse reward feedback than others after some
initial exploration, the proportion assigned to this arm should be lower.
3A similar result on exponential family bandits is given in [8] (Theorem 14).
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For each episode (=0, 1, 2...

Phase 1a Phase 1b

I

Agent 1 (Run T-a-S) T Agent 1 (Fix Arm I3)

S2)

Agent 2 (Rotate Arms)
Agent 2 (Run T-a-5)

!
v -

Agent 1: FixArm I;
Agent 2: Run Track-and-Stop TAS+)(5;)

Agent 2: Rotate Each Arm i, € S®)
Agent 1: Run Track-and-Stop TAS( ) (87)

Stop -- Subroutine TAS () finish and
output I (ideally 1, = i3 (i}"))

Stop -- Enough T-a-S subroutines finish such that
I is recommended (ideally 7, = i)')

Phase 2
Both agents run (I1, I) until end of episode ( episode length: 7; = %17,-2")

Figure 2: An illustration of the main algorithm.

its “majority best” arm ii"‘, i.e., which maximizes its local rewards
in a majority of the environments. Sampling is important when k5
is large — we will discuss its impact in the analysis section later.

The algorithm proceeds by episodes. Each episode [ lasts Tj :=
%To - 22" rounds (arm pulls), and is split into two phases: the ex-
ploration phase which consists of phase (1a) and (1b), and the
exploitation phase (phase (2)).

In phase (1a), Agent 2 selects iy € S®) in a round-robin fash-
ion while Agent 1 runs Track-and-Stop instances (with respect
to corresponding Agent 2’s arms) under a confidence parameter
5; = h(6;) where &; = 20 - (%)21. The definition of h will be dis-
cussed later in Lemma 3.2. Once TAS(+/) (51’) stops (i.e., Agent 1

outputs an arm recommendation D(~/)), Agent 1 will inform Agent
2 to skip choosing j in the following rounds. Phase (1a) stops when
1) Agent 1 learns D) for all j € S®@ or when 2) more than
(1- y)|S(1) |/2 Track-and-Stop instances output the same (non-
¢) arm recommendation. Note that this latter step corresponds to
avoiding hard environments that we discussed earlier. Phase (1a)
ends with Agent 1 choosing an arm I; which is most frequently
recommended (and ideally if"). In Phase (1b), Agent 1 chooses I;
while Agent 2 runs subroutine TAS(") (8;) until Agent 2 outputs
a recommended arm I, (ideally 1;(14\4))

Finally, in phase (2), Agent 1 and Agent 2 select I; and I, respec-
tively for the remaining time slots in episode I. Note that there
is possibility that phase (1a) or (1b) is not finished by the end of
episode [ — in this case, we start a new episode nevertheless. In
practice, this scenario could be avoided by properly choosing pa-
rameters Ty and Jg.

Note that the constant y is pre-selected as a hyper-parameter to
reflect the degree of coupling of the system — the less coupling there
is (as one assumes), the larger y can be set, and the less exploration
is needed. In an extreme case, when y = 1 (i.e,, iﬁw is the best with
respect to any arm choice of Agent 2), only one sample is needed
in [ko] for the exploration of arm I in phase (1a).

REMARK 2 (COMMUNICATION CosT). In this algorithm, communi-
cation occurs when one agent signals the other the end of a Track-and-
Stop instance or the end of phase (1a) or (1b), and no other information
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Algorithm 1 Decentralized Bandit for Weakly Coupled Systems

Initialization: Agent 2 randomly select S (2) ¢ [ks], such that
IS@ | = s(ky).
for/=0,1,2,--- do
Global clock f « 1
Ty 1T 22,6 « 280 - (1)%.6] « h(8)
[Phase 1a]
[Agent 1] Set local variables: D) — ¢ forall j e S®@
[Agent 2] Set local variable: iy « lowest index in S®@
while NOT phase_1a_stop AND t < T; := 1T - 22" do
Proceed TAS(+i2) (51') by one time slot
if TAS(+i2) (51') stops (observed by Agent 1) then
[Agent 1] DG Output ofTAS("iZ)((Sl’)
Agent 1 informs Agent 2 that D) ¢
end if
[Agent 2] iy « the next arm (in a round-robin fashion)
in S where D) = ¢
te—1t+1
end while
[Agent 1] [; « Mode((D("iZ))izes(z>)
[Phase 1b]
[Agent 2] Set local variable: p)
while NOT phase_1b_stop AND t < T; := 1T - 22" do
Proceed TASU1:) (8;) by one time slot
if TAS() (87) stops (Observed by Agent 2) then
[Agent 2] D) — Output of TASU1) (6))
Agent 2 informs Agent 1 that DU) # ¢
end if
te—t+1
end while
[Agent 2] I, « pUn)

[Phase 2]
Agent 1 and Agent 2 choose (I3, I2) repeatedly until t = Tj

Definition (Phase Stopping Criteria):
phase_1a_stop = {3j € S such that 2ieS® 1{DG2)=j} >

(1= 520 or (DCR) # g, viy € S@),
phase_1b_stop = {D(Il") + ¢}

requires exchange. Furthermore, in phase (1a) and (1b), the agent who
implements the Track-and-Stop instance does not need to know which
arm the other agent selects since the other agent chooses arms in a
round-robin manner — the only knowledge needed is s(kz) for Agent
1. (In Algorithm 1, for notation simplicity we use D) gs Agent 1’s
local variables to denote the outputs of Track-and-Stop subroutines,
although the exact indices j are not needed.)

REMARK 3 (NON-WEAKLY COUPLED SYSTEMS). When the system is
not weakly-coupled, the recommended arms (11, I2) can be suboptimal
— in some settings, “greedy choices” may have a negative impact on
each other. When this happens (e.g., the rewards observed in phase (2)
are much smaller than the best rewards observed in phase (1)), one
solution is for both agents to switch to a pre-agreed arm pair or a
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centralized bandit algorithm. For instance, an Explore-Then-Commit
(ETC) approach is a reasonable centralized algorithm — all of the
k1 X ko arm pairs are selected in a round-robin fashion for a fixed
length of time, and the best arm pair (after exchanging the information
regarding mean rewards) is used in the exploitation phase.

REMARK 4 (EXTENSION TO 3-AGENT SYSTEMS). This algorithm can
be easily extended to systems with more than 2 agents. For example,
when there are are 3 agents, phase (1) is split into 3 sub-phases: in
phase (1a), Agent 2 and Agent 3 first select a subset of arms in [kz] X
[k3] and rotate arms accordingly, while Agent 1 runs Track-and-Stop
subroutines to identify the majority arm I (ideally i;v\); in phase (1b),
Agent 1 fixes his arm choice Iy, while Agent 2 and Agent 3 follow
the procedure as in the original phase (1a) of Algorithm 1 such that

M.is =M
Agent 2 learns I (ideally i, " as defined in Section 2.3); finally,
in phase (1c), Agent 3 learns the recommended arm Is when Agent 1
and Agent 2 play (I3, I2). The exploitation phase remains the same.

i1=

3.3 Regret Analysis

In this section, we present the regret analysis of our main algorithm.
For simplicity, we assume the distribution of rewards (for each
arm) observed by each agent is Gaussian, such that the theoretical
guarantee of Track-and-Stop can be applied.

3.3.1 Soundness of Phase (1). The first result states the soundness
of the exploration phase, i.e., the best collective arm is identified
with high probability. We will focus on the soundness of phase
(1a) since the result for phase (1b) is straightforward (as only one
Track-and-Stop instance is involved).

s(ka)
2

LEMMA 3.2. Assume that Zjesm T{iM=i;(j)} = , Le., the

sample set S?) preserves the majority condition. Let Tl(la) denote the
stopping time of phase (1a) in episode | (and suppose episode | can

run indefinitely). It satisfies that
P <o) n{l =it} = 1-4
provided that
[s(k2)/2]
i) =1-
n=|(1-y)s(ki)/2]+1
Proor. The intuition is as follows: Let Event A be “more than

(1—y)s(k2)/2 Track-and-Stop instances will eventually choose Arm
i'l\" if running indefinitely". Let Event B be “the majority-stopping

(fS(kz)/ﬂ)(1 _ synelstka)/21-n,

criterion phase_1a_stop is reached, and Arm if" is chosen when
phase_1la_stop is reached". Clearly we have that A implies B. Thus,
it suffices to compute the error probability of event A to get the
error bound for Event B.

Let D[t] be the random variable denoting the decision (“output”)
for instance TAS("j)((Sl’) at time ¢. Thus, D;[t] € {¢} U [k1]. Let
SM ¢ 8O be the set of “good” arms for Agent 2 such that ii"‘ =
i7(j) forall j € S@ (by assumption, |§(2)| > [s(kp)/2] = (1 -
v)s(k2)/2] + 1). Therefore, by the soundness of Track-and-Stop,
for any j € S@), lim; oo 1{D;[t]=i}'} = Yj, a.s. where Yj is a
Bern(1 — §/) random variable. Furthermore, since {D;[t]};>0 and
{Dj[t]}¢>0 are independent from each other for any i # j, we have

that Y; are independent for all i € S®@.
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Let N[1]=,c50) L{Dilt]=i'} and N[t] =3, _ g TADile]=i}").
Note that phase (1a) is good if and only if there exists ¢t > 0 such
that N[¢] > (1 — y)s(k2)/2. Now observe that,

(V& N[t] < (1 -p)s(kz)/2} = {lim N[t] < (1 -y)s(kz)/2}

= {lim N[t] < (1-y)s(kz)/2}.
Note that lim;—co N[¢] and lim; e NTt] both exist due to mono-
tonicity and N[t] > N[¢] for allt > 0.

Now observe that lim;—e N[t] = Zieém Y;. Therefore, we
have that

P({r}'¥ = o0} U (i # i1'}) < P(lim N[t] < (1-y)s(k2)/2)
N 5(2) .
<1- (|S |)(1_5l/)n5;|3(2)|—n
n=(1-y)s(k;)/2]+1
<h N (&) =6
The last inequality holds true for any possible S@, considering
IS@)| > s(ky)/2 by assumption. o

3.3.2  Regret. To compute the cumulative regret, let us first give a
bound on the expected length of the exploration phase. Note that
for any fixed arm j € S @), Agent 1 operates a kj-armed bandit
in instance TAS(~/) (51’). Let v(+/) € &k, denote the corresponding
environment in which Agent 1 plays. We have the following result.

LEMMA 3.3. Rank the elements in S as (J1s Jios - - ,j|5(z>|), such
that p* (v(-1)) < p*(v(-12)) <. < p*(v("jls(z)l)). For any € > 0,
there exists 8y such that for alll > 0,

E[Tl(la)] < (1+¢€)(log 5l +2! log 2)c1a)
0

where

= | 37 p*(rIm)) 4 (s(hke) = 9) - p* (v59)

m=1
ands=|(1-y)kd |4 q
Remind that §; = 26 - (%)21. The above is a direct result from
Lemma 3.1 and the phase stopping criterion. Analogously, we can
derive a similar (and simpler) result for phase (1b) using another con-

stant C(!?) which can be defined as C(10) = maxe k] p* (v,
We have the following regret bound for the main algorithm.

THEOREM 3.4. Provided that Zjesm L(iM=ix(j)} = s(k2)/2, we
have that for any € > 0, there exists 8o such that
Regrety < 4(1+ €)Amax(C1'® + C1P)) . max(log((T/Ty) - 2),1)
+0(logT)

2 2
wher s =855 (4 120~ G2, 45, e
constants C19) and C10) gre defined as in Lemma 3.3.

Proor. Let I(T) be the index of the episode at the horizon T. By
observation we have that

I(T)=0o0r (Ty/2) - 22" ' <T
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= I(T) < max(0,log,log,((T/Tp) - 2)) + 1.

The regret can be split into two parts: the loss of rewards due to
the exploration in phase (1a) and (1b), and the loss of rewards due
to the “wrong” recommendation in phase (2). Therefore, using the
bound on [(T), we have that

I(T)
Regret; < > (B[z)' ¥ + 1" | Amay + (28) - T))
1=0

(1)

<>
1=0

< 4(1+ €)Apax (C19 + Cc(10)) .max(log(zT—T), 1) +o(log T).
0

1
((1 +e)(CU1 4+ cUPHYA . (log ot 2'log 2) + 260Tp

Note that the first inequality applies the soundness guarantee given
in Lemma 3.2. o

3.3.3  Sampling. Note that the constant C(19) in the above theorem
scales as O(s(kz)). Thus, when S@ = [k2] (no sampling), we
have that Regrety = O(kik2logT). When the number of arms is
large, sampling is typically needed to reduce the computational cost.
Using standard concentration techniques (Bernstein inequality)
which bound the probability of the event {ZjeS(2> T{iM=ir(j)} =
s(kz)/2}, we have the following corollary.

COROLLARY 3.5. When Condition 2 holds, there exist fa > 0 such
that when the sample size s(k2) = P log k2, the regret satisfies that
Regrety = O(kilogkzlog T) with probability 1/k for sufficiently
large k.

Corollary 3.5 can be extended to systems with more than two
agents. Suppose there are m agents, each with k arms. Using the
procedure discussed in Remark 4, and letting the size of sample
sets in phase (1) scaling as O(log k), we have that the regret scales
as O((m — 1)klogklogT) wp. O(1/k). Note that the term (m — 1)
stems from the number of sub-phases needed in phase (1).

4 PERFORMANCE EVALUATION
4.1 Multi-Channel Selection

4.1.1 A Two-AP Example. We first consider an application exam-
ple in the wireless channel selection problem. Suppose two access
points (APs) are located within a close range, each serving a nearby
mobile user. The APs decide amongst a set of channels (frequency
bands) which one to use to serve the respective users. Due to some
environment effects (such as shadowing or exogenous interference),
the best channels are unknown to the APs. Furthermore, the deci-
sions of each AP will interfere with the rewards received by the
other due to channel leakage. However, since the leakage mainly
affects a small number of adjacent channels, it is reasonable to
believe that the majority condition holds, and one can apply our
algorithm to locate the best channel at each AP.

Experiment Settings: Suppose each AP chooses among (the same)
n frequency bands which are indexed 1,2, - - - , n for each time slot
(which lasts 0.5 ms). We set n = 13. The Signal-to-Interference ratio
(SIR) at time slot ¢ is modeled as SIR[t] = P,g[t]/I[t] where P, is
the transmit power of the AP, g[t] denotes the channel gain at the
user and I[¢] denotes the interference level. We set P, = 23 dBm
for both APs. The channel gain is determined through the path loss,
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Figure 3: Simulation results on experiments in Section 4.1.1.

fading properties (Rayleigh fast fading) and a channel-dependent
shadowing gain. We assume the channel-dependent gains (in dB)
are drawn from Gaussian distribution A (0, 6) and constant through
the simulation.

Assume that the interference I[¢] is exclusively caused by chan-
nel leakage from the nearby AP. We adopt the following simplified
power leakage model for AP s (s = 1,2): when channel i € [n]
is chosen, the relative power leakage (in dB) in channel j € [n]
equals min(0, max(—fs|i — j|, —¢s) + i j). This reflects the nature
of common channel leakage, i.e., adjacent channels experience sig-
nificantly higher interference (subject to channel-dependent “noise”
¥i,j)- In our simulation, we set fs = 33 dB, ¢; = 90 dB and y; j is
randomly chosen from Gaussian distribution NV (0, 4). Note that we
do not assume the agents (APs) have any prior knowledge of the
leakage model, and our algorithm can easily address more com-
plicated models (e.g., with APs using different sets of channels or
abnormal non-adjacent channel leakage). Furthermore, we assume
each mobile user is closer to its corresponding AP, and the relative
gain due to path loss is 20 dB for both users.

Suppose the users have infinitely backlogged queues and the
rewards received by each user equal the number of packets trans-
mitted, i.e., the instantaneous service rate. For any time slot ¢, the
rate at any user i is given by

Si[t] = BW x log, (1 + 10%1SIRiEI=L)y  ppg (1)

where BW is set to be 20 MHz and the parameter L = 3dB describes
a loss to Shannon capacity.

Results: We first run Monte-Carlo simulations to compute mean
rewards received by both APs under different (i, iz) pairs. Figure 3a
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and 3b show a typical realization of channel rewards (note that the
results vary by simulations due to randomness), where the adjacent
channel leakage negatively affects the rewards in the diagonal
squares. In Figure 3a, we use red boxes to denote the best AP-1 arm
under each AP-2 arm choice iz, and AP-1 arm 10 is the majority
arm ilM (under this simulation). Similarly, AP-2 arm 5 is shown as
the majority arm i;"‘ by Figure 3b (which is also i} (ii‘")).

We then run the main algorithm to find the best collective arm.
For simplicity, we apply a computationally-efficient version of
Track-and-Stop, assuming the rewards are normally distributed
(see [8], Section 2). In particular, we are interested in the TAS sub-
routines in phase (1a) of the algorithm. Figure 3¢ shows the number
of explorations for each arm pair in phase (1a) in the first episode.
As expected, for each sub-routine TAS(-2) ((5; ) (corresponding to
each column), typically only the top two arms are heavily explored
to determine the best one — this shows a major advantage of Track-
and-Stop compared to a naive round-robin exploration. In addition,
we use blue boxes to denote decisions made by each sub-routine.
The larger is the reward gap between the top two arms, the less
exploration is required (e.g., when i; = 13). Note that phase (1a)
stops once the stopping criterion has been met, and not all of the
sub-routines are needed to output a recommendation.

Finally, in Figure 3d, we exhibit the cumulative regret over time,
which grows logarithmically with an episodic behavior. We com-
pare our algorithm to the classical explore-and-commit (ETC) al-
gorithm, which utilizes round-robin exploration. Our algorithm
exhibits a much-improved regret in the exploration phase, sug-
gesting that the majority-based algorithm with Track-and-Stop
subroutines better exploits the structure of the system.

4.1.2 A Three-AP Example. In this experiment, we extend our
multi-channel selection example to a 3-AP setting. We follow the
channel leakage model introduced in the previous section, and set
Ps = 33,39,45 dB for s = 1, 2, 3 respectively. The relative path loss
gain ranges from 20 to 40 dB among different pairs of users. Other
parameters remain the same.

Figure 4a shows the best arm for AP-1 when each (iy, i3) pair is
selected (for one realization of the channel model). For the simula-
tion we present here, the majority arm i?" = 5. Figure 4b further
exhibits the reward gap between the majority arm and the second-
best in each environment (we set the gap as 0 when the majority
arm 5 is not the best arm in that environment).

When implementing phase (1a) of the algorithm, we sample 20
(ig, i3) pairs (otherwise, the number of sub-routines needed signif-
icantly grows with more APs). The total number of explorations
of each sampled sub-routine in the first episode is shown in Fig-
ure 4c, with orange boxes denoting the sub-routines that output
arm recommendations before phase (1a) finishes — as expected,
“easy” sub-routines with larger reward gap complete faster. A re-
gret plot is presented in Figure 4d for completeness. The regret is
computed with respect to the best collective action (5,11, 2).

4.2 Best Scheduler Selection

In this section, we explore a potential application of our algorithm
for best scheduler selection in wireless queueing systems, which is
first proposed as the “meta-scheduling” problem in [22, 23]. Wire-
less scheduling with queues is a challenging task — many schedulers
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Figure 4: Simulation results on experiments in Section 4.1.2.

are developed (e.g., MaxWeight, Log Rule, Exp Rule, etc.) for specific
settings/goals, however, there lacks a systematic approach to find a
good scheduler across diverse performance metrics and deployment
scenarios. The authors in [22] thereby proposed a multi-armed ban-
dit framework (“meta-scheduler”), which selects the best scheduler
from a set of predefined policies through users’ feedback evaluating
the performance. This is a flexible model which allows complicated
and user-customized reward schemes to be considered.

The algorithm proposed in [22] is designed for single-agent
scenarios. When there are multiple nearby base stations, reward
feedback at each agent is coupled with decisions from other agents
due to signal interference. Furthermore, different scheduler combi-
nations might lead to heterogeneous interfering behaviors. There-
fore, it can be problematic to run a single-agent bandit algorithm
individually at each station without effective coordination.

Under reasonable interference levels and typical reward schemes,
we believe the systems are weakly coupled. The intuition is that ef-
fective scheduling policies tend to schedule users opportunistically
(i.e., making use of good channels to improve transmission effi-
ciency), and as a byproduct incur less interference to other agents
(since less power/time is needed to transmit the same users’ packet
flows). Therefore, the majority condition should hold if the candi-
date set consists of mostly “good” schedulers. In the following, we
will set up a simple downlink scheduling system and showcase the
usage of our algorithm.

Experiment Settings: Suppose there exists 2 base stations (BS-1
and BS-2), each serving 4 downlink users. For each base station, we
follow a packet transmission model used in [22]: The instantaneous
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Table 1: Mean rewards observed by BS-1 and BS-2 in Scenario
(S1) of Section 4.2. The best policy in each environment is
highlighted in bold font. The best collective arm is (C, C).
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Table 2: Mean rewards observed by BS-1 and BS-2 in Scenario
(52) of Section 3.2. The best policy in each environment is
highlighted in bold font. The best collective arm is (C, C).

” BS-1 Arms (Policies) “ BS-1 Arms (Policies)

T A) B) 0) D) E) F) = A) B) Q) D) E) F)

% A) | 0.773 | 0.549 | 0.785 | 0.311 | 0.768 | 0.760 % A) | 0.569 | 0.183 | 0.612 | 0.051 | 0.596 | 0.505
Qé‘ B) | 0.769 | 0.508 | 0.781 | 0.264 | 0.764 | 0.755 Qé‘ B) | 0.544 | 0.125 | 0.587 | 0.030 | 0.575 | 0.474
|| C)|0.776 | 0.571 | 0.787 | 0.337 | 0.771 | 0.763 || C)|0.588 |0.221 | 0.630 | 0.074 | 0.611 | 0.530
E g D) | 0.745 | 0.046 | 0.757 | 0.019 | 0.739 | 0.724 E £ D) | 0.265 | 0.010 | 0.267 | 0.009 | 0.372 | 0.050
» E) | 0.773 | 0.541 | 0.784 | 0.303 | 0.768 | 0.759 @ E) | 0.560 | 0.168 | 0.604 | 0.046 | 0.588 | 0.493
R F) | 0.749 | 0.117 | 0.761 | 0.027 | 0.744 | 0.730 M F) | 0.339 | 0.010 | 0.376 | 0.009 | 0.417 | 0.158
” BS-1 Arms (Policies) " BS-1 Arms (Policies)

g A) B) 0) D) E) F) = A) B) 0) D) E) F)

% A) | 0945 | 0.945 | 0.944 | 0.945 | 0.941 | 0.943 % A) | 0936 | 0.941 | 0.945 | 0.942 | 0.942 | 0.939
Qé‘ B) | 0.937 | 0.936 | 0.933 | 0.932 | 0.932 | 0.930 Qé‘ B) | 0.934 | 0.933 | 0.936 | 0.932 | 0.932 | 0.931
S| | C)|0.948 | 0.952 | 0.953 | 0.952 | 0.952 | 0.951 || C) 0955|0953 | 0951 | 0.951 | 0.952 | 0.952
E % D) | 0.632 | 0.682 | 0.633 | 0.636 | 0.640 | 0.634 E £ D) | 0.709 | 0.737 | 0.700 | 0.696 | 0.737 | 0.671
» E) | 0.940 | 0.936 | 0.941 | 0.940 | 0.938 | 0.941 » E) | 0.932 | 0.930 | 0.938 | 0.932 | 0.939 | 0.932
R F) | 0.878 | 0.861 | 0.871 | 0.872 | 0.862 | 0.875 M F) | 0.873 | 0.878 | 0.876 | 0.866 | 0.874 | 0.871

SINR of user i at time t equals Ppg;[t]/(c? + I;[t]), where the
transmit power of BS Py, is set to be 47 dBm and the noise level
0% = —104. The channel gain g;[¢] is a combination of path loss
and Rayleigh fast fading, and the path loss (in dB) is computed as
39.11og;((dist) +13.5+201log;,(fc) where fo = 2.0 GHz and dist
denotes the user distance. The interference level I;[¢] is a result of
packet transmission of the nearby base station, and I;[t] = 0 when
the other base station is idle. The instantaneous service rate of each
user is computed according to (1) with BW = 10 MHz. Each time slot
lasts 0.5 ms and each packet has a fixed size 5 kb.

Let the 4 users served by BS-2 close to their base station (subject
to small interference) with a light load — the arrival rate for each
user is set as 0.3 packets/slot. For the 4 users served by BS-1, we set
the arrival rate as 0.6 packets/slot and focus on two scenarios: (S1)
For each user, the distance to BS-1 (dist) equals 150 m and the
distance to BS-1 (disty) ranges from 300 + 10 m. (S2) For each user,
dist; = 150 m and disty € 250 =+ 10 m. The second scenario sees
a higher interference level. Each agent chooses over 6 scheduling
policies: A) MaxWeight, B) Max-Queue, C) Max-Rate, D) Round-
Robin, E) Log-Rule, F) Exp-Rule, and collect reward feedback every
200 time slots (aka one “round”). Packets not transmitted at the
end of each round are dropped to ensure the reward feedback are
conditionally independent. We define the reward of each packet
as 1 — tanh(0.04 = delay) and the reward feedback of one round is
the sum of all packet rewards.

Results: We first compute the mean rewards observed by both
base stations under different policy pairs using Monte-Carlo simu-
lations, which is presented in Table 1 and 2 (the rewards are nor-
malized by the episode length and packet loads). In both Scenario
(S1) and Scenario (S2), the best arm for BS-2 is Max-Rate and the

4Note that if there is no packet drop, then a “bad” non-stable policy resulting in long
queues will skew the reward feedback for the next round, even if a “good” queue-
stabilizing policy is chosen. Ideally, only good policies are selected after some initial
exploration, and thus the impact of packet drop is minimal. A detailed discussion on
this issue is given in [22] , which introduces a queueing cycle-based algorithm to avoid
packet drop; adapting it to our multi-agent setting is of future interest.
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mean rewards do not vary much when BS-1 changes policies due
to the low load and negligible interference.

Now let us focus on the rewards observed by BS-1. In Scenario
(S1), it turns out Max-Rate is the best arm of BS-1 no matter what
policy BS-2 selects (due to the relatively low interference level
compared to Scenario (S2)). This can be expected since in our simu-
lation settings, all the users are almost symmetric (in terms of load
and service rates) — the Max-Rate policy, which greedily serves
the user with the best service rate, is proved to be efficient in mini-
mizing packet delays for symmetric moderate-load scenarios. By
contrast, in Scenario (S2), as the interference level increases (with
service rates degrading), for some choices of BS-2 (Round-Robin
and Exp-Rule), Max-Rate performs badly — instead, the Log-Rule
policy which has a better queue-stabilizing property prevails in
these cases.” However, the majority condition still holds for Sce-
nario (S2), showing the robustness of our model, and our algorithm
can indeed be applied to find the best collective policy.

Finally, we run the main algorithm for both scenarios. The simu-
lation results are exhibited in Figure 5. For each scenario, we show
the exploration heatmap for the algorithm phase (1a) in the first
episode — the best policy is identified with most of the explorations
focusing on good performing policies. Moreover, not all Track-and-
Stop sub-routines are needed to complete, and we use blue boxes
to denote finished sub-routines. As a result, our algorithm has a
lower regret than ETC as shown in Figure 5b and Figure 5d.

5 CONCLUSION

We study an online learning framework for the multi-agent resource
allocation problem. In particular, we focus on so-called weakly cou-
pled systems with a special arm-reward structure — the majority
condition, which states that most of the time the best arm of each

5To be precise, the Max-Rate policy, unlike Log-Rule or MaxWeight, is not throughput-
optimal and has a smaller capacity region. In this setting, when BS-2 chooses Round-
Robin or Exp-Rule which turns out incurring more interference, Max-Rate no longer
stabilizes the load and tends to result in long queues, thus worsening the delay metric.
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Figure 5: Simulation results on experiments in Section 4.2.

agent is invariant to other agents’ arm selection. When this con-
dition holds, the optimal arms can be learned with local signals
(reward feedback) with proper coordination from other agents,
therefore allowing design of less demanding algorithms compared
to classical methods which simply examine all the collective ac-
tions. Furthermore, we develop an efficient decentralized bandit
algorithm with minimal communication overheads. Through sim-
ulation, we validate the usefulness of our model and algorithm in
two wireless settings: channel selection among nearby APs, and
best scheduling policy selection by interfering base stations. We
believe weak coupling is a reasonable abstraction for several wire-
less applications, and it is of great interest to explore its benefits in
other related settings.
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