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Abstract—Dynamic Spectrum Access (DSA) is proposed to
improve spectrum efficiency by enabling opportunistic access
of underutilized spectrum resources. The key to successful DSA
operations is the correct understanding of spectrum hole distri-
butions. Though huge amounts of studies have been conducted
on spectrum tenancy due to the significance of spectrum hole
distributions, there are still two overlooked aspects. One is
the measurement resolution, and the other is the spectrum
distribution in the spectral perspective. Since the spectrum hole
analysis relies on the measurement data, we decode the LTE
downlink control information to obtain the spectrum tenancy
at the same time-frequency granularity with LTE scheduling.
We analyze the spectrum hole distributions in fine resolutions
along both the temporal and the spectral dimensions, and
investigate the performance of two widely used spectrum tenancy
models, the Markov and the on/off models, in terms of their
capabilities on capturing the distributions of spectrum holes.
Our observations include but are not limited to the following.
The spectrum holes follow the power law distributions when
examined in the LTE scheduling unit from both the time and the
frequency perspectives. Both Markov and on/off models should
be fitted to the spectrum tenancy along the frequency perspective
to achieve their best performance.

Index Terms—dynamic spectrum access, spectrum hole distri-
bution, measurement granularity, power law.

I. INTRODUCTION

The low usage of valuable spectrum resources has been
identified in many studies [1]. To improve spectrum efficiency
by designing Dynamic Spectrum Access (DSA) systems, the
first step is to discover where the available spectrum slices
are, i.e., the spectrum holes left unoccupied by Primary Users
(PUs). Numerous measurement and modeling studies have
been conducted to investigate spectrum tenancy in various
spectrum bands and locations [2], [3]. One typical approach
to gain insight into spectrum hole distributions is to carry
out large scale spectrum measurement campaigns, such as the
measurement in Chicago and London [1], [4], which adopt
the energy detection method to scan a wide range of spectrum
bands in large chunks with commercial spectrum analyzers.
Based on the measurement data, various spectrum tenancy
models have been proposed, including Markov models [5],
linear regression models [6], queueing theory based models
[7], and game theory models [8], [9].

Despite the abundant existence of measurement and model-
ing studies on spectrum hole distributions, there are still two
overlooked aspects. First, existing studies on spectrum hole

distributions are based on coarse measurement of spectrum
activities in wide spectrum bands, so the analysis and results
derived from such data sets cannot capture the volatile changes
of the spectrum activities in most wireless communication
systems. For example, the revisit time is 75 seconds in one
measurement campaign [10]. However, the median duration of
mobile phone calls lasts only 51 seconds [11], meaning that
such measurement time granularity has good chance to deem
large percent of mobile calls using no spectrum resources
at all. Second, existing analytical models on spectrum hole
distributions mostly focus on the temporal perspective [12],
not taking into account the fact that spectrum resources
are often designed as two dimensional grids which can be
analyzed along both the frequency and the time horizons.

To improve on the aforementioned aspects that have long
been overlooked, in this paper we answer the research question
of how the spectrum holes are distributed in both temporal
and spectral domains when examined at fine resolutions. To
address this question, we target the spectrum usage of the LTE
system whose spectrum resources are structured into time-
frequency grids in two dimensions. Different from existing
measurement campaigns that measure spectrum tenancy in
coarse time-frequency granularities using the energy detection
method, we measure the spectrum tenancy of an LTE cell in
the resolutions at which the spectrum resources are scheduled
by the base stations. Equipped with the fine-grained spectrum
tenancy data, we analyze the distributions of the spectrum
holes from both the temporal and the spectral perspectives. To
investigate whether existing spectrum usage models are able
to capture the spectrum hole distributions in both the time
and the frequency domains, we study the performance of two
widely adopted spectrum tenancy models by comparing the
spectrum hole distributions in the measurement data and the
synthetic data sets generated by the models.

Improvements on the measurement granularity of spec-
trum tenancy are achieved by employing the decoding based
method [13]. Specifically, we set up an Software Defined
Radio (SDR) testbed to decode the downlink control infor-
mation aired by the LTE base station. Since the spectrum
resource assignments are included in the downlink control
messages, we obtain the LTE spectrum usage at the same
time-frequency resolutions with the dynamic scheduling of
LTE systems. The time resolution is 1 millisecond (ms), and



the frequency resolution is 180 kHz. Moreover, we gather the
spectrum tenancy in different traffic conditions, so spectrum
usage levels in the measurement data ranges from 9% to 90%.
Thus, the results and findings based on such data sets are
applicable to most spectrum usage conditions. Based on the
fine-grained spectrum tenancy, we analyze the spectrum hole
distributions in both the temporal and spectral domains. We
find that the temporal spectrum hole distributions in different
frequency channels in the LTE cell are identical to one another,
and the spectrum usage levels substantially affect the spectrum
hole distributions. Both the temporal and the spectral spectrum
hole distributions follow the power law distribution, regardless
of the frequency channels and the traffic conditions.

Since most existing models for spectrum hole distributions
are based on coarse spectrum tenancy measurement in the
time perspective, we study the performance of two widely
used models, the Markov model and the on/off model in
terms of their capabilities on capturing the spectrum hole
distributions. We apply the two models to our measurement
data along both the temporal and the spectral dimensions,
and generate synthetic spectrum usage based on the models.
Comparisons between the spectrum hole distributions of the
measurement data and those synthetic data sets are quantified
using Kolmogorov Smirnov (K-S) tests. Based on the compar-
ative studies, we observe that both Markov and on/off models
perform better when they are fitted to spectrum tenancy along
the frequency perspective. The on/off model achieves the best
performance when applied to fit the spectral spectrum holes
with power law distributions.

The contributions of this paper are recapitulated as follows.
• We analyze the spectrum hole distributions in both the

temporal and the spectral dimensions based on fine-
grained measurement of LTE spectrum tenancy. We
discover that the spectrum holes follow the power law
distributions when examined in the LTE scheduling unit
from both the time and the frequency perspectives.

• We compare the performance of the Markov and the
on/off models in terms of characterizing spectrum hole
distributions. Both models should be fitted to the spec-
trum tenancy along the frequency perspective to achieve
their best performance. The on/off model performs the
best when applied to fit the spectral spectrum holes with
the power law distribution.

II. ANALYSIS ON SPECTRUM HOLE DISTRIBUTIONS

In this section, we first explain how we obtain the LTE
spectrum tenancy at the same time frequency granularity as
the spectrum resources are scheduled at the base station. Then,
the distributions of the spectrum holes are analyzed in both
the time and the the frequency dimensions under different
spectrum usage levels.

A. Data collection

To obtain LTE spectrum usage at fine granularities, we
set up a measurement system and collect our spectrum ten-
ancy data based on the decoding method proposed in [14].

Specifically, the decoding method utilizes the fact that the
physical layer downlink control information in LTE systems
is not protected by any encryption schemes. LTE base stations
broadcast to all the users the decisions on how the spectrum
resources are assigned every millisecond via a physical layer
control channel in clear texts. Thus, the control information is
decodable to reveal the spectrum usage decisions at the same
time and frequency granularities with LTE scheduling. The
decoded data fields are contained in the Downlink Control
Information (DCI) in LTE terminology.
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Fig. 1. The measurement system and the measurement setting.

We implement the spectrum tenancy decoder in the user
space of a Linux computer. The two main function blocks
are decoding the DCIs, and parsing the spectrum tenancy
in DCI messages. Many existing LTE routines have been
implemented by the srsLTE [15], including DCI decoding
functions provided by OWL [14]. The radio front end is
realized by a SDR system. Through the SDR driver API, the
decoder calls USRP Hardware Driver (UHD) version 3.9.7 to
communicate with the SDR device [16]. The SDR system
includes a USRP X310 mother board and two SBX-120
wide-band daughter-boards. The SDR boards contain function
blocks to convert analog signals to complex samples. The host
computer has a quad-core CPU and 16 GB memory, running
Ubuntu 16.04. The software and the hardware configurations
of the measurement tool is also illustrated in Fig. 1(a).

The measurement setting is depicted in Fig. 1(b). We
use a spectrum analyzer to search and verify the existence
of a nearby LTE cell with the best signal to noise ratio.
The downlink system bandwidth of the cell is 10 MHz that
accommodates 50 LTE Resource Blocks (RB) which will be
referred to as channels. These channels are frequency-wise
orthogonal to one another, and each of them occupies 180
kHz. We collect LTE spectrum tenancy data of the cell for 24
hours, obtaining a total of 4.32× 109 binary spectrum usage
data. Each spectrum usage is either marked as unused by zero,
or occupied by one.

B. Two dimensional analysis of spectrum holes

In this subsection, we investigate the distributions of spec-
trum holes in both the time and the frequency dimensions.
When we analyze the spectrum holes along the time dimen-
sion, we study the time lengths of spectrum holes and the
time lengths in between two consecutive holes in different
channels independently. Similarly, the distributions of the sizes
of the spectrum holes along the frequency dimension are



also studied, together with the distributions of the distances
between the holes measured in the number of channels.
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Fig. 2. Illustrations for the denotations.

The definitions and the denotations of the random variables
whose distributions will be investigated are illustrated in Fig.
2. The 50 LTE RBs are independently scheduled channels
that experience tenancy and vacancy of integer numbers of
milliseconds. Thus, the sizes of spectrum holes on channel
i in the time domain are considered as a discrete random
variable denoted as Xi

t , and the interval size between spectrum
holes on that channel is a random variable denoted as Y i

t .
Moreover, the spectrum holes are also studied from the
frequency perspective, where the size of the spectrum holes is
measured in the number of adjacent occupied channels in the
same millisecond, a discrete random variable denoted as Xf .
The size of spectrum resources between frequency domain
spectrum holes is another discrete random variable Yf .

1) Distributions of spectrum holes: We first look into the
shape and the fitting function of spectrum hole distributions.
We choose a time period during which the overall spectrum
usage level is around 50% to avoid the impacts of extremely
high or low spectrum activities. The distributions of spectrum
holes in our measure data are presented by the blue bars in
Fig. 3. The time lengths of spectrum holes and the intervals
in between them are referred to as off time and on time in the
figures, and they are all shown in the unit of one millisecond.
Similarly, the size of spectrum holes in the frequency domain
and the size of occupied channels between the holes are
denoted as off sizes and on sizes in the figures, and the sizes
are in the unit of one channel or 180 kHz.

Since the off times take values from a large range and the
probabilities of the off times vary widely, the horizontal and
vertical axes of Fig. 3a and 3b are in the log scale. We observe
from those figures that the trend of LTE off time distributions
can be best captured by a power law function with a constant,
which takes the form

P(X = x) = axb + c, (1)

where a, b and c are constants. For the off times Xt, a, b and c
take the values of 0.426,−1.565 and −0.000122, respectively.
The distribution of the time intervals between off times is
characterized by the function P(Yt = x) = 0.4199x−1.632 −
0.000641. The parameters in the fitted distribution functions
are estimated using Maximum Likelihood Estimation (MLE).
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Fig. 3. Distributions of spectrum holes and the fitted power law functions in
two dimensions.

When we examine the spectrum hole distributions in the
spectral perspective, we observe that the off sizes and the
on sizes are under 50, the total number of LTE channels in
the system. As shown in Fig. 3c and 3d, the trends of the
probability distributions of the on and the off sizes in the
spectral domain also follow the power law function, despite
some fluctuations. The fitted functions are plotted as the red
lines in Fig. 3. The takeaway is that the spectrum holes and
the intervals between them follow power law distributions in
both the temporal and the spectral domains.
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Fig. 4. Distributions of spectrum holes in different LTE channels.

2) Spectrum hole distributions in different channels: To
investigate the temporal distributions of spectrum holes in
different frequency bands, we analyze the off times in three
LTE RBs, RB 5, 25 and 45. The distributions of the on times
and off times are illustrated in Fig. 4. Though these three
channels are well separated in frequency in a system with
50 RBs in total, their spectrum hole distributions are almost
identical to one another as shown by the overlapping plots of
the distributions of the spectrum holes in the three channels
in Fig. 4. Thus, the observation is that the temporal spectrum
hole distributions in different RBs are the same, and they all
follow the power law distribution.

3) Impact of spectrum usage levels: We study the spectrum
hole distributions in different spectrum usage levels. The
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Fig. 5. Distributions of spectrum holes in different spectrum usage levels.

spectrum usage level is defined as the ratio between the
number of occupied RBs and the total amount of RBs in 106

ms. Specifically, we collect the sizes of spectrum holes in both
temporal and spectral domains under spectrum usage levels of
6%, 50% and 89%. The distributions of the spectrum holes
conditioned on the three different spectrum usage levels are
illustrated in Fig. 5 where plots for in the three cases are
shown in red, green and blue, respectively.

Different from the distributions for various channels shown
in Fig. 4 where the lines are mostly overlapped, the distribu-
tions of spectrum holes are obviously affected by the overall
spectrum usage levels as the plots of the distributions are
clearly separated. For the temporal spectrum hole distribu-
tions, the off times show higher probabilities to take small
values below 5 when spectrum usage is high, and the slope
of the blue line is also steeper to allow faster decrease of
probabilities as the off time grows. The on time distributions
demonstrate the opposite effects of spectrum usage on off
times, because the plots of the on time distributions show
a less steeper decline of probabilities as the overall spectrum
usage level increases. In the spectral perspective, higher spec-
trum usage stabilizes the spectrum hole distributions, because
the probabilities fluctuate in smaller ranges as the spectrum
usage intensifies. Besides, the off sizes become much less
likely to take large values near 50 as the spectrum usage
increases. Thus, the spectrum usage levels exert substantial
impacts on spectrum hole distributions. Spectrum holes in both
temporal and spectral domains are enlarged by the decrease of
spectrum usage, but the shape of the distribution is unchanged
as it is still characterized by the power law function.

To sum up, the spectrum hole distributions follow the
power law function along both the frequency and the time
perspectives. The spectrum hole distributions in different
frequency bands are highly similar, and they are sensitive to
the variations of the overall spectrum usage levels. Though

the average sizes of spectrum holes change with the spectrum
usage levels, the shape of the spectrum hole distributions can
always be captured by the power law function.

III. COMPARATIVE STUDY OF DIFFERENT MODELS

Since we have analyzed the spectrum hole distributions
in both temporal and spectral domains, in this section we
examine how well existing spectrum tenancy models capture
the distributions of spectrum holes. Due to the pivotal role
of spectrum tenancy models in DSA systems, many spectrum
tenancy models have been proposed [2], and one of their key
goals is to generate synthetic spectrum usage data with the
same spectrum hole distributions as the actual measurement.
Two well-known and widely used spectrum tenancy models
are compared, the Markov model and the on/off model. We
apply these two models to the measurement data along both
the time and the frequency dimensions, resulting in four mod-
els, the Markov model in the frequency domain, the Markov
model in the time domain, the on/off model in the frequency
domain, and the on/off model in the time. These four models
are abbreviated as MF, MT, OF and OT, respectively.

A. Estimating model parameters

Though Markov models are theoretically possible to contain
large amount of elements in its state space, accommodating all
50 channels in practice results in an state space that requires
too many transition probabilities to learn. Thus, we apply the
Markov model in temporal and spectral dimensions separately.
The MF model is obtain by characterizing LTE spectrum
tenancy along the frequency dimension with a discrete time
Markov chain. The state of the Markov chain is considered as
the binary spectrum tenancy in three previous channels, and
we assume that the transition probabilities among different
states are only dependent on the current state. To collect the
empirical state transition probabilities from the measurement
data, we transpose the binary spectrum tenancy matrix into a
vector by serializing along the frequency dimension. Then, the
transition probabilities are extracted from the spectrum ten-
ancy vector. The only difference between the MT model and
the MF model is that MT collects the empirical state transition
probabilities along the time dimension. For both MF and MT
models, we collect the empirical transition probabilities from
the spectrum tenancy of 50 channels in 106 time slots during
which the overall spectrum usage around is around 50%. The
transition probability of P(sn+1 = a|sn = b) is approximated
by |{si|si = b, si+1 = a}|/|{si|si = b}|, the ratio between
the number of the appearances of state b followed by state a
and the number of all appearances of state b. The | · | denotes
the cardinality of a set.

To obtain the parameters for the OF model, we first serialize
the binary spectrum tenancy measurement along the frequency
direction. Then, we extract the time lengths of busy and idle
time intervals. We assume that the on times and off times
are independent and identically distributed (i.i.d.). Since we
have learned from the previous section that the spectrum hole
distributions follow the power law function in the spectral



perspective, we obtain the parameters in equation (1) by MLE
fitting in the same way we fit the parameters in Fig. 3. As for
the parameters in the OT model, we apply the same method
to temporal spectrum usage in an LTE channel. We extract
the model parameters of OF and OT from the same spectrum
usage matrix from which MF and MT parameters are learned
for fair performance comparisons.

B. Performance evaluations

To evaluate the performance of the four spectrum tenancy
models in terms of their capabilities of capturing the distribu-
tions of the spectrum holes in both the spectral and temporal
domains, we first generate synthetic spectrum tenancy with the
four models. The size of the synthetics data is 50 channels by
106 ms, the same as the measurement data based on which the
parameters in the four models are learned. Then, we analyze
the spectrum whole distributions in the four synthesized data
sets, and compare the spectrum hole distributions of the
synthetic data sets with those in the measurement data.

The spectrum hole distributions of synthetic data are com-
pared against their counterpart obtained from the measurement
data, and we measure the differences between the distributions
via the K-S test, used in [17] for the same purpose as well. K-S
test is a tool for comparing the closeness of two distributions.
We employ K-S test to quantify the differences between
the distribution of spectrum holes in the measurement and
the distribution obtained from the synthetic data sets. The
empirical distribution Fe(x) of a random variable Z that has
n observed samples Zi is

Fe(x) = P(Z < x) =
1

n

n∑
i=1

1{Zi<x}. (2)

The upper bound of the difference between the empirical
distribution and another empirical distribution function F0(x)
is D,

D = sup|Fe(x)− F0(x)|. (3)

If the two empirical distributions Fe and F0 are identical, the
distribution of the random variable D in this case, denoted as
D∗, is independent of the distribution function of the random
variable Z. Let G be the cumulative distribution function
(CDF) of D∗. The p value is defined as p = 1−G(D), so the
larger the p value, the more likely D obeys the distribution
of D∗, meaning that Fe(x) and F0(x) are more likely to be
the same. A threshold value p = 0.05 is chosen, so the null
hypothesis that the two data sets follow the same distribution
F0 is accepted when p ≥ 0.05.

The spectrum hole distributions of the measurement data
and the four synthetic data sets are depicted in Fig. 6.
The temporal distributions are presented in Fig. 6a and 6b.
Similar to previous spectrum distribution plots in the temporal
perspective, both the horizontal and the vertical axes are
shown in the log scale. The spectrum holes and the intervals
in between them are in the unit of one millisecond. The CDFs
of the measurement and synthetic data of MF, MT, OF and OT
models are shown in red lines, blue circles, blue diamonds,
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Fig. 6. CDF comparisons of spectrum hole distributions in time and frequency
dimensions in different data sets.

green circles and green diamonds, respectively. Based on the
comparisons of the CDF plots, the OT model achieves the
most similar spectrum hole distributions with the measurement
data. OT model outperforms Markov models because the
latter entail geometric distribution of spectrum holes which
actually follows power law distributions. Another observation
is that MF achieves better performance than MT in temporal
spectrum distributions, so Markov models should be applied
along the frequency dimension if the state space is limited.

Fig. 6c and 6d demonstrate the distribution comparisons in
the spectral domain, and corresponding relationships between
the lines and the data sets are the same with those in Fig.
6a and 6b. The spectral CDFs of spectrum holes are plotted
with linear scale horizontal axis and log scale vertical axis.
We observe that the OF model achieves the best performance
since the distributions of spectral domain spectrum holes are
most closely captured by the OF model.

TABLE I
D VALUES OF K-S TESTS BETWEEN ORIGINAL AND SYNTHETICS DATA.

Model Off time On time Off size On size
MF 0.1374 0.1903 0.3544 0.3315
MT 0.3032 0.0963 0.2786 0.5554
OF 0.2916 0.2488 0.0505 0.0798
OT 0.0067 0.0058 0.5520 0.4152

To quantify the distances between the spectrum hole distri-
butions of the measurement data and the distributions obtained
from those synthetic data sets, we tabulate the D values
between those distributions in Table I. As shown by the
highlighted row, the OF model achieves the overall best result
because of the smallest D values in spectrum hole distribution
in frequency domain. Though the D values of the OF model
in temporal spectrum hole distributions are not the smallest,
those D values are not far from the best.

In summary, the takeaway of the performance comparison
is as follows. To best capture the spectrum hole distributions



in both the temporal and the spectral domains with a simple
model, we should adopt the on/off model with the random
variables following the power law function, and apply this
model along the frequency dimension of the measurement
data. If a Markov model is adopted, it also needs to be applied
to the spectrum tenancy data along the frequency domain to
best characterize the spectrum hole distributions.

IV. RELATED WORK

Spectrum hole distributions are obtained by analyzing the
spectrum tenancy data, so the spectrum usage data should
have fine resolutions in order to achieve accurate spectrum
hole distributions. However, early efforts in spectrum usage
measurement based on the principle of energy detection often
result in poor time-frequency granularity. For example, the
Chicago measurement campaign reports spectrum holes in
the time-frequency grids of 500 minutes by 10 MHz [1].
Though more recent energy detection based measurements
achieve improved resolution, they still cannot reach the same
granularity with LTE scheduling, i.e., 1 ms by 180 kHz.
According to Table VI in [18], recent energy detection based
measurements achieve time granularity from several to tens
of seconds. Thus, we adopt the decoding based measurement
method that is able to obtain the spectrum tenancy at the same
resolution as they are scheduled by the base station.

Though spectrum holes appear in the two dimensional time-
frequency grids, spectrum tenancy are often analyzed and
modeled from the time perspective alone. The busy and the
idle periods of wireless local area network are characterized
by the Gaussian mixture model in [19]. In [20], the authors
propose a new time domain model for duty cycles. Though
some studies do have examined the spectrum tenancy in both
time and frequency domains, such as [21], they often rely on
low resolution measurement and only study the correlations
of spectrum tenancy in different frequency bands.

V. CONCLUSION

We investigate spectrum hole distributions in fine time-
frequency resolutions from both the temporal and the spectral
perspectives. We analyze the fine-grained measurement data
and observe that the spectrum holes follow the power law
distributions in both the time and the frequency perspectives,
when the spectrum usage is examined in the LTE scheduling
unit of 1 ms by 180 kHz. When applied to model the spectrum
tenancy, the Markov and the on/off models should be fitted
to the spectrum tenancy along the frequency perspective to
achieve their best performance on capturing the distributions
of spectrum holes. When the on/off time intervals follow
the power law distribution, the on/off model outperforms the
Markov model in characterizing spectrum hole distributions.
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