Contact process with simultaneous spatial and temporal disorder

Xuecheng Ye and Thomas Vojta
Department of Physics, Missouri University of Science and Technology, Rolla, MO 65409, USA
(Dated: October 3, 2022)

We study the absorbing-state phase transition in the one-dimensional contact process under the
combined influence of spatial and temporal random disorders. We focus on situations in which the
spatial and temporal disorders decouple. Couched in the language of epidemic spreading, this means
that some spatial regions are, at all times, more favorable than others for infections, and some time
periods are more favorable than others independent of spatial location. We employ a generalized
Harris criterion to discuss the stability of the directed percolation universality class against such
disorder. We then perform large-scale Monte Carlo simulations to analyze the critical behavior in
detail. We also discuss how the Griffiths singularities that accompany the nonequilibrium phase
transition are affected by the simultaneous presence of both disorders.

I. INTRODUCTION

Macroscopic systems far from thermal equilibrium can
undergo abrupt transformations between different steady
states when their external conditions are varied. These
nonequilibrium phase transitions share many features
with thermodynamic (equilibrium) phase transitions in-
cluding collective behavior and large-scale fluctuations.
They can be found, for example, in interface growth,
chemical reactions, granular flow, and in biological prob-
lems such as population dynamics or epidemic spreading
(for reviews, see, e.g., Refs. [1-5]).

When a nonequilibrium phase transition separates an
active fluctuating steady state from an inactive absorbing
state in which fluctuations completely stop, it is called
an absorbing state transition. Experimental realizations
of absorbing state transitions have been observed, for ex-
ample, in turbulent liquid crystals [6], periodically driven
suspensions [7, 8], bacteria colony biofilms [9, 10], and the
dynamics of superconducting vortices [11]. Janssen and
Grassberger [12, 13] conjectured that all continuous tran-
sitions into a single absorbing state having a scalar order
parameter and short-range interactions belong to the di-
rected percolation (DP) universality class [14], provided
they do not feature extra symmetries, conservation laws,
inhomogeneities, or disorder.

Many realistic systems undergoing absorbing state
transitions feature random spatial inhomogeneities (i.e.,
spatial disorder) or random variations of their external
parameters with time (i.e., temporal disorder). The ques-
tion of how disorder affects absorbing state transitions
(and the DP universality class in particular) has at-
tracted significant attention during the last two decades
or so. According to the Harris criterion [15], the DP
critical point is unstable against spatial disorder because
its correlation length exponent v violates the inequal-
ity dvy > 2 in all physical dimensions, d = 1,2, and 3.
The DP critical point is also unstable against temporal
disorder because its correlation time exponent v = zv
violates Kinzel’s generalization [16] v > 2 of the Har-
ris criterion (see Ref. [17] for an extension of the Harris
criterion to general spatio-temporal disorder).

Spatial disorder has been demonstrated to have dra-

matic effects on the DP universality class. Hooyberghs
et al. [18] developed a strong-disorder renormalization
group (RG) [19, 20] method and predicted the transition
to be governed by an unconventional infinite-randomness
critical point. It is accompanied by strong power-law
Griffiths singularities [21, 22] in the parameter region
close to the transition. The infinite-randomness criti-
cal point scenario was confirmed by large-scale Monte
Carlo simulations in one, two, and three space dimen-
sions [23-26]. Similar critical behavior was also observed
in diluted systems near the percolation threshold [27] and
in systems featuring aperiodic order [28].

More recently, the effects of temporal disorder on the
DP universality class were analyzed by means of a real-
time “strong-noise” RG [29]. This method predicts that
the disorder strength diverges with increasing time scale
at criticality, and the probability distribution of the den-
sity becomes infinitely broad, even on a logarithmic scale.
This infinite-noise critical behavior can be understood
as the temporal counterpart of infinite-randomness crit-
ical behavior in spatially disordered systems, but with
exchanged roles of space and time. The RG predictions
were later confirmed by Monte Carlo simulations [30, 31].
In addition, Vazquez et al. [32] identified a temporal ana-
log of the Griffiths phase in spatially disordered systems
that features an unusual power-law relation between life-
time and system size on the active side of the phase tran-
sition.

Although the effects of pure spatial disorder and pure
temporal disorder have been studied in some detail, their
simultaneous influence on absorbing state transitions has
received much less attention. This is likely due to the fact
that uncorrelated spatiotemporal disorder is an irrelevant
perturbation at the clean DP critical point and thus not
expected to change the critical behavior (see, e.g., Ref
[2]). However, many experimental applications do not
lead to uncorrelated spatiotemporal disorder. Consider,
for example, an epidemic spreading in an inhomogeneous
environment under conditions that fluctuate with time.
If the locations of favorable spatial regions do not change
with time, and if favorable conditions in time apply uni-
formly to the entire population, the resulting spatiotem-
poral disorder features infinite-range correlations and is



thus expected to be a relevant perturbation at the clean
DP critical point.

In the present paper, we combine generalizations of
the Harris criterion, optimal fluctuation arguments, and
large-scale Monte Carlo simulations to investigate the
fate of the nonequilibrium phase transition in the con-
tact process [33] under the influence of such spatiotem-
poral disorder. We find that adding weak temporal dis-
order to a spatially disordered system does not change
the infinite-randomness critical behavior. Analogously,
adding weak spatial disorder to a temporally disordered
system does not affect the infinite-noise critical behav-
ior. We also explore the fate of the transitions if both
disorders are strong. In addition, we demonstrate that
the functional form of the Griffiths singularities changes
in the simultaneous presence of both disorders.

Our paper is organized as follows. The contact process
and our implementation of the spatiotemporal disorder
are introduced in Sec. I1. Section III briefly summarizes,
what is known about the phase transition in the clean
contact process, the spatially disordered contact process,
and the temporally disordered contact process. The ef-
fects of rare regions and the resulting Griffiths singular-
ities in the contact process with purely spatial or purely
temporal disorder are summarized in Sec. IV. The com-
puter simulations methods are introduced in Sec. V. Sec-
tions VI and VII are devoted to our results for the contact
process in the presence of spatiotemporal disorder. We
conclude in Sec. VIII.

II. CONTACT PROCESS

The non-equilibrium phase transition in the clean con-
tact process is well studied and belongs to the DP univer-
sality class [33]. We consider a d-dimensional hypercubic
lattice in which each site can be either active (infected) or
inactive (healthy). As the time progresses, an active site
can either infect its lattice neighbors or spontaneously
become inactive. More specifically, the time evolution of
the contact process is a continuous-time Markov process
during which the infected sites heal at rate u, and infect
their inactive neighbors at infection rate A. Thus an in-
active site becomes active at rate An/2d. Here, n stands
for the number of active neighbors. The long-time fate
of the contact process is determined by the ratio between
the infection rate A\ and the healing rate u. (Since only
the ratio matters, u can be set to unity without loss of
generality.)

For small infection rate A, the healing process is fa-
vored. Because of the lack of new infections, all active
sites will heal eventually. The system thus ends up in the
absorbing healthy state. This is called the inactive phase.
For large infection rate A, the active sites proliferate and
never die out. This is called the active phase. The active
and inactive phases are separated by a transition in the
DP universality class.

We now introduce spatial and temporal disorder into

the infection rate A by defining the local infection rate
Az, t) at lattice site z and time ¢ with a multiplicative
structure,

Az, t) = Xof(x)g(t). (1)

Here, the random variables f(z) and g(¢) are nonnegative
and independent of each other. They are characterized
by the averages

(fa)=Ff, (9@) =3 (2)
and short-range correlations

(f(@)f(2")) = f* = oFd(x —a') 3)
(gt)g(t")) —g* = o5(t —t') (4)

The multiplicative structure implies that favorable (for
the infection) spatial regions do not change with time,
and favorable time intervals apply to the whole system.
In other words, the disorder contains infinite-range cor-
relations in space and time. This is reflected in the co-
variance function of A\(x,t) which reads
G(Z‘ - xlat - t/) </\($, t))‘(xla t/)> - <)\(J}, t)) <)‘($/a t/)>
= Nojord(z—a)o(t —t)
+)\(2]0J20§25(9: — ')
+Xofro(t—t) . (5)

Here the first term represents uncorrelated spatiotempo-
ral disorder, the second term is perfectly correlated in
time, and the last term is perfectly correlated in space.
Purely spatial disorder can be understood as a special
case of (1) with g = const. Analogously, purely temporal
disorder emerges for f = const.

III. SCALING SCENARIOS

In this section, we briefly summarize what is known
about the critical behavior of the nonequilibrium phase
transitions in the clean contact process, the contact pro-
cess with purely spatial disorder, and the contact process
with purely temporal disorder.

A. Clean contact process: conventional power-law
critical behavior

The (clean) DP universality class features three inde-
pendent critical exponents which can be chosen to be (3,
v, , and z (see, e.g., Ref. [2]). The order parameter expo-
nent 3 controls how the steady state density pstat varies
as the infection rate \ approaches its critical value A.
from the active side of the transition,

Pstat ™~ ()\ - )\c)ﬂ ~ Tﬁ 5 (6)



with r = (A — A¢)/Ac the dimensionless distance from
criticality. The correlation length exponent v, controls
the divergence of the (spatial) correlation length &,

; (7)

and the dynamical exponent z relates the correlation time
§| to the correlation length,

g~ &1 (8)

The density p of active sites as a function of the dis-
tance r from criticality, the time ¢, and the system size
L fulfills the homogeneity relation

EL o~ |r|7*

p(r,t, L) = 0%/~ p(re=/v1 107, L) (9)

where / is an arbitrary dimensionless length scale factor.
The survival probability P, is the probability that an
active cluster survives to time t if the epidemic starts at
time 0 from a single infected site in an otherwise inactive
lattice. In the DP universality class, Ps; has the same
scaling form as the density of active sites (9) [34],

Py(At, L) = 0°0/VL Py(ALY/V2 107 LE) . (10)

The pair connectedness function C(z,t) is given by the
probability that site x is infected at time ¢ when the time
evolution starts from a single infected site at = 0 and
time ¢ = 0. The scale dimension of C is 23/v, because
it involves a product of two densities [35]. This implies
the scaling form

Clr,x,t, L) = 0P/ C (=Y wl, t0% L0) . (11)

The number Ny of sites in an active cluster growing from
a single seed can be calculated by integrating C' over all
x?

Ny(rt, L) = 02B/va=d N (rg= Ve 107 L)y . (12)

Because the mean-square radius R of this active cluster
has the dimension of a length, its scaling form reads

R(r,t,L) = 07 R(re= v+ 107 LY) . (13)

The time dependencies of p, Ps, Ny and R at the crit-
ical point r = 0 and in the thermodynamic limit L — oo
can be easily derived from Egs. (9) to (13) by setting the
scale factor £ to suitable values. In the long-time limit,
the density of infected sites and the survival probability
are expected to follow the relations

p(t) ~t7°  Pyt)~t° (14)
with § = 8/(v1 z). The mean-square radius and the num-
ber of sites of an active cluster starting from a single seed
site behave as

R(t) ~tY7  Ny(t) ~t° . (15)

Here, © = d/z — 28/(v,.z) is the critical initial slip
exponent. These results imply that ©, §, and z are
not independent, they fulfill the hyperscaling relation
O+20=d/z.

Highly accurate estimates of the critical exponents for
the clean DP universality class in d = 1 dimensions were
computed by series expansions [36]: 8 = 0.276486, v, =
1.096854, z = 1.580745, 6 = 0.159464, and © = 0.313686.

The clean correlation length exponent violates Harris’
inequality dv; > 2 [15]. Analogously, the exponent com-
bination v = 2z, violates the corresponding inequal-
ity v > 2 for temporal disorder [16]. Consequently, the
clean DP critical behavior is unstable against both purely
spatial disorder and purely temporal disorder.

B. Spatially disordered contact process:
infinite-randomness critical behavior

Hooyberghs et al. [18] employed a strong-disorder
renormalization group (RG) [19, 20] method to demon-
strate that the nonequilibrium phase transition in the
spatially disordered contact process is governed by an
exotic infinite-randomness critical point in the same uni-
versality class as the random transverse-field Ising model
[37]. This was later verified by Monte-Carlo simulations
in one, two, and three space dimensions [23-26].

A key difference between a conventional critical point
and an infinite-randomness critical point is the replace-
ment of the power-law relation (8) between correlation
length and time by an exponential (activated) one,

In(§) /to) ~ €% . (16)

Here v is the so-called tunneling exponent, and tg is a
microscopic time scale. This exponential relation implies
that the dynamical exponent z is formally infinite at an
infinite-randomness critical point. In contrast, the static
scaling relations remain of power-law type, i.e., eqgs. (6)
and (7) remain valid.

The scaling forms of disorder-averaged observables can
be obtained by simply substituting the variable combi-
nation In(t/to)¢¥ for ¢ in the arguments of the scaling
functions, yielding

p(r,In(t/ty), L) = EB/“p(ré_l/”L,ln(t/to)fw,Lf) , (17)
Py(r,In(t/tg), L) = 027V Py(r0= 1/~ In(t/to)0¥, L) |

(18)

Ny(r,In(t/to), L) = 2V =N (re=Y/ v~ In(t/to) 0¥, LE)

(19)

R(r,In(t/t), L) = £~ R(re=Y"~ In(t/to) 0¥, LE) . (20)

The resulting critical time dependencies of p, Ps, Ny,
and R are logarithmic (in the thermodynamic limit),

plt) ~ [m(t/t0)] ™, Pu(t) ~ [In(t/to)] ™, (21)
R(t) ~ [In(t/t)]/%,  No() ~ [In(t/t))® . (22)



with 6 = 8/(v1¢) and © = d/¢ — 28/(v.Ly).

Within the strong-disorder renormalization group ap-
proach, the critical exponents of the spatially disordered
one-dimensional contact process can be calculated ex-
actly. Their numerical values are § = 0.38197, v, = 2,
1 =0.5, 6 = 0.38197, and © = 1.2360.

C. Temporally disordered contact process:
infinite-noise critical behavior

To attack the problem of temporal disorder in the con-
tact process, Vojta and Hoyos [29] developed a real-time
strong-noise renormalization group that can be under-
stood as the temporal counterpart of the strong-disorder
renormalization group for spatially disordered systems.
This renormalization group predicts (in any finite dimen-
sionality d) a Kosterlitz-Thouless [38] type transition at
which the critical fixed point is the end point of a line
of fixed points that describe the ordered phase. Conse-
quently, observables at criticality show the same qualita-
tive behavior as in the active phase, except for logarith-
mic corrections. This can be expressed in the following
heuristic scaling theory [30].

The density of active sites fulfills the scaling form

p(rt, L) = (In €)% p(r(In ) /7 4077, Le™Y) - (23)

with order parameter exponent S = 1/2, correlation
length exponent 7, = 1/2, and dynamical exponent
z = 1. The scaling combination r(In¢)'/7+ reflects the
exponenial dependence of the correlation length £, on
the distance r from criticality. Because the time rever-
sal symmetry of DP [14] is still valid in the presence of
temporal disorder, the survival probability has the same
scaling form,

Py(r,t,L) = (In0)~A/7L P (r(In )Y/ 7+ 0= Lo~ .
(24)
The cloud of active sites originating from a single infected
seed site spreads ballistically, apart from logarithmic cor-
rections, yielding the scaling forms

Ny(rt, L) = £ (In 0) 7Y~ Ny (r(In €)Y/ 7+t L) (25)
R(r,t,L) = £(In &) YR R(r(In &)Y/ 7+ t0=% LL7Y) . (26)

The exponents yy and ygr that govern the logarithmic
corrections are not independent of each other. Because
N, ~ P,pR?, they must fulfill the relation yy = 28/v, +
dyR.

Setting L = oo, r = 0, and ¢ = t'/# =t in the scaling
forms (23) to (26) gives the time dependencies of the
observables at criticality,

p(t) ~ (Int)™
R(t) ~ tY/*(Int) "= |

Py(t) ~ (Int)~° (27)
Ny(t) ~t®(Int)~¥~  (28)

with 6 = 8/ =1and © =d/z = d.

This scaling theory was confirmed by large-scale Monte
Carlo simulations of the contact process with tempo-
ral disorder in one and two space dimensions [30]. The
simulations resulted in the estimates yy = 3.6(4) and
yr = 1.7(3) for the exponents governing the logarithmic
corrections in one dimension [39].

IV. RARE EVENTS AND GRIFFITHS
SINGULARITIES

Spatial and temporal disorder do not only destabilize
the DP critical behavior, rare strong disorder fluctua-
tions also lead to unusual singularities, the Griffiths sin-
gularities [21, 40] in an entire parameter region around
the transition. This section briefly summarizes the rare
region effects in the contact process with purely spatial
disorder, and in the contact process with purely temporal
disorder.

A. Spatial disorder

The inactive phase of a spatially disordered contact
process can generally be divided into two regions. Far
away from criticality (i.e., for sufficiently small infection
rate), the system approaches the absorbing state expo-
nentially fast in time, just as in the absence of disorder.
This is the conventional inactive phase. For infection
rates closer to the disordered critical point, the system
may feature large spatial regions that are locally in the
active phase even though the system as a whole is still
inactive. Because these regions are of finite size, they
cannot support a nonzero steady-state density, but their
density decay is very slow since it requires a rare density
fluctuation of the entire region [22]. The range in pa-
rameter space for which such rare locally active spatial
regions exist is called the (inactive) Griffith phase.

The contribution prr(t) of the rare regions to system’s
density can be easily estimated as

pRR(t) N/dLRR L(Ii%R w(LRR)eXp [7t/T(LRR)] y (29)

where w(Lgg) is the probability for finding a rare region
of linear size Lrr, and 7(Lggr) is its decay time. For
uncorrelated or short-range correlated disorder, the rare
region probability is given by w(Lgr) ~ exp(—bL%z)
(up to pre-exponential factors). The decay time reads
7(Lrr) ~ exp(aL%y) because a coordinated fluctuation
of the entire rare region is required to take it to the ab-
sorbing state.

In the long-time limit, the integral (29) can be evalu-
ated using the saddle point method, yielding an anoma-
lous power-law decay of the density in the Griffiths phase,

plt) ~t7e = ¢4/ (30)

rather then the exponential decay in the conventional in-
active phase. Here 2’ = da/b is the nonuniversal Griffiths



dynamical exponent. The survival probability Ps; shows
exactly the same time dependence. The behavior of 2’/
close to the infinite-randomness critical point A. follows
from the strong-disorder renormalization group [18, 37],

2 A= N T (31)

where ¢ and v, are the critical exponents of the infinite-
randomness critical point. Similar rare region effects also
exist in the active phase where they govern the approach
to the nonzero steady-state density.

B. Temporal disorder

The temporal Griffiths phase, introduced by Vazquez
et al. [32], is the part of the active phase in which the
life time 77, of a finite-size sample shows an anomalous
(non-exponential) dependence on the system size L.

The temporal Griffiths behavior is the result of rare,
long time intervals during which the system is temporar-
ily on the inactive side of the transition. The probability
of finding such a time interval of length Trr depends
exponentially on its length, w(Tgrr) ~ exp(—bTrr) (ne-
glecting pre-exponential factors). During Trg, the den-
sity of active sites decays exponentially as p ~ exp(—at).
Because the typical life time of a system of linear size L
can be estimated as time when the density reaches the
value L%, a system of size L will die during a rare time
interval of length Trr ~ (d/a)In L. The characteristic
time it takes for such a rare time interval to appear is
given by 7 ~ w™Y(Trr) ~ exp(bTrr). Consequently, the
life time 7 of a finite-size system in the temporal Griffiths
phase shows a power-law dependence on its size L,

(L) ~ L™ = L% (32)

The infinite-noise renormalization group [29, 30] pre-
dicts that the Griffiths exponent k = a/b take the value
ke = d right at criticality. k decreases with increasing
distance from criticality and is expected to vanish at the
boundary between the temporal Griffiths phase and the
conventional active phase (in which the life time increases
exponentially with system size). The temporal Griffiths
behavior has been confirmed by Monte Carlo simulations
of the contact process with temporal disorder in one and
two space dimensions [30].

V. SIMULATIONS METHODS

Our computer simulations focus on the case of one
space dimension. The numerical implementation of the
one-dimension contact process follows the method devel-
oped by Dickman [41]. We start at ¢ = 0 from a sys-
tem with at least one active site. For each time step,
we follow this sequence: First, an active site is ran-
domly chosen from all N, active sites. Then we randomly
let this site infect one of its neighbors with probability

Az, t)/[A(z,t) + 1] or become inactive with probability
1/[A(z,t) + 1]. If the infection process is chosen, only a
single neighbor is infected, chosen randomly. The time
increment associated with this sequence is 1/N,.

As discussed in Sec. II, the local infection rates take
the form A(x,t) = Ao f(x)g(¢), where Ag is the control pa-
rameter used to tune the phase transition, and f(x) and
g(t) are independent random variables. (In the follow-
ing, we will drop the subscript 0 from Aq if the meaning
is clear.) For the computer simulations, we employ the
binary probability distribution

P(f)=Q0—=p)o(f-1)+p(f—c), (33)

with 0 < ¢ < 1. This means the local infection rate is
reduced by a factor ¢ with probability p. g(t) is piecewise
constant over short time intervals of length At = 6, i.e.,
g(t) = gy for t,4q >t > t, with t,, = nAt. The g, follow
a binary probability distribution

P(gn) = (1 =pt)d(gn — 1) + pe(gn — c1) - (34)

We study two sequences of parameters. The first
sequence starts from (strong) purely spatial disorder,
adding an increasing amount of temporal disorders (p =
0.3, ¢ = 0.2, p = 0.2 and ¢; varying from 1.0 to 0.12).
The other sequence starts from (strong) purely temporal
disorder and adds an increasing amount of spatial disor-
der (p; = 0.2, ¢; = 0.05, p = 0.2 and ¢ varying from 1.0
to 0.05).

For each parameter set A\g, p, ¢, p; and c¢;, the results
are averaged over many disorder realizations (between
700 and 5 x 10°%). We employ two types of simulation
runs, (i) decay simulations in which the system starts
with all sites being active. In this case, we perform one
simulation run per disorder configuration and observe the
active site density p(t). (ii) Spreading simulation start
with a single active seed site only. In this case, we per-
form 5 to 10° runs per disorder configuration and analyze
the survival probability Ps(t), the average number of ac-
tive sites N4(t) and the (mean-square) radius R(¢) of the
active cloud. In order to eliminate the finite-size effects
for spreading runs, the system size is chosen to be much
larger than the maximum active cloud size.

VI. RESULTS: CRITICAL BEHAVIOR
A. Generalized Harris criterion

The Harris criterion dv; > 2 controls the stability of a
clean critical point against uncorrelated (or short-range
correlated) purely spatial disorder. Analogously, the in-
equality v > 2 governs the stability against uncorre-
lated purely temporal disorder [16]. As pointed out in
Sec. IIT A, the clean DP critical point is unstable against
both purely spatial disorder and purely temporal disorder
because its critical exponents violate both inequalities.



The effects of general spatiotemporal disorder can be
ascertained by means of the generalized Harris criterion
[17]. Tt predicts that a critical point is (perturbatively)
stable against weak spatiotemporal disorder, if the disor-
der covariance function G(z,t) fulfills the condition

2/v1—d £1/2 §)/2
s 5[1/ dd:c/ dtG(z,t) -0  (35)
—£1/2 =&1/2

as the critical point is approached, i.e, for £,,§ — oo
with the appropriate scaling relation between £, and §.
For power-law dynamical scaling this means & ~ £7, and
for activated scaling In(§| /to) ~ 511’.

For completely uncorrelated spatiotemporal disorder
with G(z,t) ~ §(x)d(t), the Lh.s. of Eq. (35) behaves as
fi/ v 7d§[1. The resulting stability criterion thus reads
(d+z)vy > 2 in the case of power law dynamical scaling.
The clean DP critical exponents fulfill this inequality im-
plying that uncorrelated spatiotemporal disorder is not a
relevant perturbation, as was already pointed out in the
literature (see, e.g., Ref. [2]).

Let us now apply the generalized Harris criterion to
the disorder (1) studied in this paper. Inserting the
covariance function (5), G(z,t) = /\%0’?0’35(%‘)5(15) +
)\gaj%gfé(x) + )\%crﬁ]aé(t), into Eq. (35) produces three
contributions. The first term (which represents uncor-
related disorder) goes to zero in the critical limit £, —
oo provided the critical exponents fulfill the inequality
(d+ z)vy > 2. The second term vanishes for dv; > 2,
and the third term vanishes for zv;, > 2. Because the
DP critical exponents violate the latter two inequalities,
the disorder (1) is a relevant perturbation at the clean
DP critical point and expected to modify the critical be-
havior.

The generalized Harris criterion can also be used to
analyze the addition of weak temporal disorder to the
already spatially disordered contact process. For purely
temporal disorder, G(x,t) ~ §(t). The Lh.s. of (35) thus
behaves as fi Vig N ! Because the correlation time & | de-
pends exponentially on the correlation length £, at the
infinite-randomness critical point of the spatially disor-

dered contact process (See Eq. (16)), fi/n

f[l vanishes
as criticality is approached, £, — oo. Thus, the infinite-
randomness critical point is expected to be stable against
weak temporal disorder. The same result also follows
from Kinzel’s inequality zv; > 2 because z is formally
infinite at the infinite-randomness critical point.

To study the stability of the infinite-noise critical point
of the temporally disordered contact process against
weak spatial disorder, we insert G(x,t) ~ §(x) into Eq.

(35). The Lh.s. then takes the form fi/ul_d leading to
the usual Harris inequality dv; > 2. As the infinite-noise
critical point features Kosterlitz-Thouless critical behav-
ior with In&;, ~ |r|~'/2, the exponent v, is formally
infinite. This implies that weak spatial disorder is not a
relevant perturbation at the infinite-noise critical point.
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FIG. 1. Inverse survival probability 1/Ps vs In ¢ close to

criticality. The data are averages over 10000 to 20000 disorder
configurations, with 5 runs per configuration (p: = 0.2, ¢; =
0.05, At = 6, p = 0.2 and ¢ = 0.8). The statistical errors
of every fifth data point of the critical curve are shown. The
dashed line is a linear fit of the data from In ¢t = 4.9 to In ¢
= 13.8 (reduced x? ~ 0.9)

The generalized Harris criterion thus predicts that
adding weak temporal disorder does not modify the crit-
ical behavior of the spatially disordered contact pro-
cess and vice versa. This raises the interesting ques-
tion of what happens if both disorders are of comparable
strength. We will return to this question in Sec. VID.

B. Adding weak spatial disorder to the temporal
disordered contact process

After the discussion of the generalized Harris criterion,
we turn to computer simulation results. We start by
adding weak spatial disorder to an already temporally
disordered contact process. To this end, we simulate a
sequence of systems with fixed strong temporal disorder,
pr = 0.2, ¢; = 0.05 and At = 6 and increasing spatial
disorder, p = 0.2, ¢ varying from 1.0 to 0.05. The case
of purely temporal disorder (¢ = 1.0) corresponds to the
parameters studied in detail in Ref. [30]. Based on the
generalized Harris criterion, we anticipate that the criti-
cal behavior for sufficiently weak spatial disorder remains
identical to the pure temporal disorder case, albeit with
a shift of the critical infection rate ..

We therefore analyze the simulation data based on
Eqgs. (27) and (28). Figure 1 presents the inverse sur-
vival probability 1/Ps of spreading runs as a function of
Int¢ for the weakest nonzero spatial disorder (¢ = 0.8).
The figure shows that the data for A = 28.4 follow the
predicted logarithmic behavior (27) over almost five or-
ders in magnitude in t. The data points with higher or
lower A curve away from the straight line as expected.
We therefore identify A\, = 28.4 as the critical value for
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FIG. 2. (Ns/t)"Y¥~ and (R/t)"'YR vs In t at criticality,
Ae = 28.4 for pr = 0.2, ¢ = 0.05, At =6, p=0.2 and ¢ = 0.8.
The data are averages over 20000 disorder configurations with
5 runs for each. The exponents yny = 3.6 and yr = 1.7 are
fixed at the values found for purely temporal disorder [30].
The straight lines are fits of the data from In ¢t = 6.5 to In ¢
=13.8 with Egs. (28).

¢ = 0.8. For comparison, the critical value for the case
of purely temporal disorder is A\, = 27.27 [30]. Figure 1
thus provides evidence that adding weak spatial disorder
does not change the strong-noise critical behavior of the
purely temporally disordered system.

To further confirm this, we test Eqgs. (28) by analyzing
the number of active sites Ny and the cloud radius R at
criticality as functions of time in Fig. 2. To make the log-
arithmic corrections visible, we modify Ny and R by di-
viding out the leading term ¢. We then plot (N,/t)~ /v~
and (R/t)~1/¥% vs In t, using the exponents yn = 3.6 and
yr = 1.7 found for the case of purely temporal disorder
[30]. The data follow straight lines, confirming that Eqs.
(28) are also fulfilled.

Now, we extend the simulations to stronger spatial dis-
order (decreasing ¢ towards 0). For ¢ = 0.6,0.4 and
0.2, the critical behavior can be fitted well with the
infinite-noise functional forms Egs. (27) and (28). This
can be seem in Fig. 3 that shows the inverse survival
probability as a function of In ¢ of the critical curves for
¢ =1,0.8,0.6,0.4 and 0.2. All data follow straight lines
for more than three orders of magnitude in ¢, confirming
Eq. (27). The resulting values for A\, are presented in
Fig. 4. When the spatial disorder is further increased,
the critical behavior deviates from the infinite-noise crit-
ical behavior (27) and (28). We will discuss this case in
Sec. VID.
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FIG. 3. Inverse survival probability 1/Ps vs In ¢ at criticality
for different ¢ and p; = 0.2, ¢t = 0.05, At =6, p = 0.2. The
data are averages over 20000 disorder configurations with 5
runs for each. The statistical errors of every fifth data point
is shown. The dashed lines are linear fits of the data.
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FIG. 4. Left: Critical infection rate A\, as a function of spatial
disorder strength ¢ for p+ = 0.2, ¢ = 0.05, p = 0.2. Right:
Critical A, as a function of temporal disorder strength c; for
p=0.3,c=02, p =0.2.

C. Adding weak temporal disorder to spatial
disorder case

We now simulate a sequence of systems with fixed
strong spatial disorder p = 0.3, ¢ = 0.2, to which we add
increasing temporal disorder with p; = 0.2 and ¢; vary-
ing from 1.0 to 0.12. The starting point of this sequence,
the purely spatially disordered system with ¢, = 1, cor-
responds to the parameters studied in Ref. [23].

For weak temporal disorder, ¢; = 0.8, we anticipate the
system to show the infinite-randomness critical behavior
discussed in Sec. IIIB. This is tested in Figs. 5 and 6
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FIG. 6. (N.)V/® and (R)¥ vs In t at criticality A, = 5.52 for
pt = 0.2, ¢ = 0.8, At =6, p = 0.3, and ¢ = 0.2. The data
are averages over 700 disorder configurations with 100 runs
per configuration. The values of the initial slip exponent ©
and the tunneling exponent 1 are fixed at the values of the
infinite randomness critical point, © = 1.2360, ¥ = 0.5. The
solid lines represents fits to Eqs. (22) from Int = 12.7 to 18.4.

which present the results of spreading simulations. Fig.
5 shows a plot of Py 1/6 vs In t. The predicted critical
behavior (21) corresponds to a straight line in this plot.
The figure demonstrates that the data for A\ = 5.52 fol-
low (21) for almost five order of magnitude in ¢. This
yields evidence for the infinite-randomness critical be-
havior. Similarly, Fig. 6 shows that the number of active

sites sites Vg and the cloud radius R fulfill Egs. (22) for
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FIG. 7. Survival probability vs time plotted as Ps /9 Y5 In
t at criticality for different c;, where 6 = 0.38197 (p; = 0.2,
At =6, p=0.3 and ¢ = 0.2). The data are averages over 700
to 1000 disorder configurations with 30 to 100 runs for each.
The statistical errors of every fifth data point are marked.
The dashed lines are linear fits of the data.

almost four orders of magnitude in t. We conclude that
the system is still controlled by infinite-randomness crit-
ical behavior.

We repeat this analysis for systems with stronger tem-
poral disorder. For ¢; = 0.6 and 0.4, we find that
the critical behavior can be fitted well with the infinite-
randomness expressions (21) and (22). This can be seen
in Fig. 7, which shows P;l/ % vs Int at criticality for
¢ = 1,0.8,0.6,0.4. The data feature straight-line behav-
ior for more than four orders of magnitude in ¢, confirm-
ing (22). The critical infection rates A, resulting from
these simulations are shown in the phase diagram in Fig.
4.

For even stronger temporal disorder, the critical be-
havior deviates from the infinite-randomness criticality
of Sec. 111 B, as will be discussed in the next section.

D. Spatial and temporal disorder of comparable
strength

In Sec. VIB, we have demonstrated that the infinite-
noise critical point of the temporally disordered con-
tact process is stable against the addition of weak spa-
tial disorder. Analogously, the infinite-randomness crit-
ical point of the spatially disordered contact process
is stable against the addition of weak temporal disor-
der, as shown in Sec. VIC. Since the infinite-noise and
infinite-randomness critical behaviors differ qualitatively
from each other, novel behavior is expected to emerge
if the spatial and temporal disorders are of comparable
strength.

The arguably simplest scenario corresponds to the
schematic renormalization group flow diagram sketched
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in Fig. 8 which contains a multicritical point separating
the infinite-noise and infinite-randomness regimes. If the
ratio of the spatial and temporal disorder strengths is
fine-tuned to be exactly on the separatrix (dashed line)
in Fig. 8, the system flows to the multicritical point un-
der coarse graining. The nonequilibrium phase transition
then features novel multicritical behavior. If the system
is not exactly on the dashed line, it will eventually flow
either to the infinite-noise critical point or to the infinite-
randomness critical point. However, if the system is close
to (but not exactly on) the dashed line, it will flow to-
wards the multicritical point for a long time before even-
tually approaching one of the other fixed points. This
means the system will show multicritical behavior over
a wide transient time interval before eventually crossing
over to either infinite-randomness or infinite-noise critical
behavior.

Studying the regime where the spatial and temporal
disorders are of comparable strength is extremely chal-
lenging numerically because the logarithmically slow dy-
namics makes it difficult to distinguish the asymptotic
behavior from slow crossovers during the achievable sim-
ulation times. In the following, we demonstrate that
our numerical data are compatible with the multi-critical
point scenario. We emphasize however, that the unequiv-
ocal determination of the fate of the contact process in
this regime is beyond our current computational capabil-
ities.

To identify a multicritical system, we start from the
sequence of systems studied in Sec. VIB and further
increase the spatial disorder by reducing ¢, aiming at
identifying a disorder strength for which the (asymp-
totic) critical behavior differs from both the infinite-
randomness and the infinite-noise behavior. As the func-
tional forms of the observables at the multicritical point
are not known, we employ Dickman’s [42] heuristic cri-
terion of A, being the smallest A supporting asymptotic
growth of N(t) to identify the phase transition. Figures
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9 and 10 show that the system with p; = 0.2, ¢, = 0.05,
p = 0.2, ¢ = 0.05 approximately fulfills these conditions.
The data at an infection rate of about 35.82 to 35.84
follow the functional forms
P, ~In"%(t),  Ny~t° (36)
with € ~ 0.5 for almost six orders of magnitude in time.
These functional forms differ from the behavior in the
bulk phases as well as from the infinite-randomness and
infinite-noise critical behaviors. This suggests that the
parameters p; = 0.2, ¢, = 0.05, p = 0.2, ¢ = 0.05 put
the system very close to the separatrix in Fig. 8, and
(36) approximately represents the multicritical behavior.
Small deviations at late times can be attributed to the
fact that the system is likely not exactly on the separa-
trix. To check the consistency of the analysis, we have
confirmed that N, /R behaves as In~*(t) as expected from



the relation N ~ Psde.

The multicritical point can also be reached (approxi-
mately) by starting from the sequence of systems in Sec.
VIC and further increasing the temporal disorder. The
system with p; = 0.2, ¢; = 0.12, p = 0.3, ¢ = 0.2 follows
the same multicritical behavior (36) at an infection rate
of \ =~ 16.35.

The functional forms of Egs. (36), which combine a
logarithmic decay of Ps; with a power-law time depen-
dence of Ny, indicate an unconventional type of multi-
critical point because they appear to be incompatible
with the usual scaling laws in which either ¢ or Int ap-
pear as scaling variables (but not both). We emphasize,
however, that a similar situation already occurs at the
infinite-noise critical point of a system with purely tem-
poral disorder, see Egs. (27) and (28). In that case, the
logarithmic time dependence of P, can be understood as
a logarithmic correction to a critical exponent of value
zero. A similar scenario may apply to the multicritical
point as well.

It is also interesting to note that the decay of Py at the
putative multicritical point, P, ~ In"%(t) is faster than
its decay at both the infinite-randomness critical point
and the infinite-noise critical point (even though the P
data are not compatible with an even faster power-law
decay). This suggests that when the spatial and temporal
disorders are of comparable strength, they weaken each
other. The same phenomenon is also observed for the
rare region effects and Griffiths singularities discussed in
the next section.

VII. RESULTS: RARE REGIONS AND
GRIFFITHS SINGULARITIES

In this section, we discuss the effects of rare spatial
regions and rare time intervals on the behavior of the
contact process with the combined spatial and temporal
disorder of the form A(z,t) = Ao f(x)g(t).

A. Theory

Consider a spatial rare region with an above average
f(x). This region can be locally in the active phase
even if the bulk system is still inactive. If f follows
the binary distribution (33), the strongest rare regions
consist of sites with f = 1 only. As in Sec. IV A,
the probability for finding such a region rare is given
by w(Lrr) ~ exp(—bL%y) (up to pre-exponential fac-
tors). However, the behavior of the lifetime 7(Lgg) of
such a region depends on the strength of the temporal
disorder. If the temporal disorder is sufficiently weak
such that the rare region is locally active for all times,
7(Lrr) ~ exp(aL%p) as in the case of purely spatial dis-
order. For stronger temporal disorder, in contrast, the
rare region will still be mostly active, but inactive dur-
ing rare time intervals. In this case, the lifetime 7(LgR)
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depends on Lrp via the power law 7(Lrr) ~ (aL%p)Y,
as shown in Sec. IV B.

Inserting 7(Lgrg) in (29) yields the following anoma-
lous density decay in the Griffiths phase on the inactive
side of the transition:

p(t) ~tb = t~%*"  weak temporal disorder , (37)
p(t) ~ exp(=bt'/¥ /a) strong temporal disorder .(38)

The survival probability Ps(t) in spreading runs behaves
in the same manner as p(t). Thus, for sufficiently strong
temporal disorder, the power-law Griffiths singularities
are weakened and replaced by stretched exponential be-
havior. The exponent y is non-universal and depends on
how far in the inactive phase a rare region is during the
"bad” (low g(t)) time periods. 1/y is expected to de-
crease to zero as the transition is approached from the
inactive side.

For moderately strong temporal disorder, we expect
the Griffiths phase to feature two regions: The density
decay follows a power law for infection rates close to the
critical point but a stretched-exponential behavior for
smaller infection rates (i.e., further away from critical-
ity). With increasing temporal disorder, the power-law
region of the Griffiths phase shrinks while the stretched
exponential region expands.

Analogous arguments can be made for the Griffiths
singularity in the lifetime 7; of a finite-size system on
the active side of the phase transition. Consider a sys-
tem globally in the active phase. Temporal disorder can
produce rare time intervals during which the system is
temporarily on the inactive side of the transition. For
the binary distribution (34), the strongest rare time in-
tervals have g(t) = ¢;. The probability of finding such
time intervals depends exponentially on their lengths,
w(Trr) ~ exp(—bTrR), as in Sec. IV B. However, the
time evolution of the density of active sites during these
rare time intervals depends on the strength of the spatial
disorder. For weak spatial disorder, the entire system
will be in the inactive phase during these intervals, lead-
ing to an exponential density decay, p ~ exp(—at), as in
the case of purely temporal disorder. For stronger spatial
disorder, the system will have spatial regions that remain
locally active during the rare time interval, leading to a
slower power-law decay of the density p ~ (at)~¥,

Repeating the analysis of Sec. IV B for these two cases,
we conclude that the life time 7 of a finite-size system
behaves as

7(L) ~ L%/ = LU/%  weak spatial disorder , (39)
7(L) ~ exp(bLYY /a) strong spatial disorder (40)

with system size L in the Griffiths phase on the active side
of the transition. This means for sufficiently strong spa-
tial disorder, the power-law temporal Griffith singulari-
ties of Sec. IV B are weakened and replaced by stretched
exponentials.

Note that the functional forms (38) and (40) have been
derived assuming that the relevant rare regions and rare
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FIG. 11. Main panel: In Ps vs In t for different A below

criticality A ~ 5.52 forp = 0.3, ¢ = 0.2, p+ = 0.2, ¢ = 0.8 and
At = 6. The data are averages over 1000 to 10000 disorder
configurations with 100 to 10° runs per configuration. The
solid lines are fits to (37). Inset: Resulting Griffiths exponent
2" as a function of the infection rate \.

time intervals are uniform in space and time, respec-
tively. This is justified for bounded disorder for which
the strongest spatial rare regions have f(z) = fina. and
the strongest rare time intervals have g(t) = gmin. The
asymptotic behavior of p and P, for ¢ — oo is governed
by the strongest rare regions and thus given by (38).
Along the same lines, the asymptotic behavior of 7(L)
for L — oo is governed by the strongest rare time inter-
vals and thus given by (40). The preasymptotic behav-
ior has contributions from nonuniform rare regions that
feature more complicated behavior, leading to nontrivial
CroSSOVers.

B. Simulation results

We first consider the survival probability Ps on the
inactive side of the transition. To test the power-law
Griffiths behavior (37), we consider a system with strong
spatial disorder but weak temporal disorder (p = 0.3,
¢c =02 p =02 ¢ =08 and At = 6). Figure 11
presents a double-log plot of P vs. t for several A below
the critical value \. ~ 5.52. The data indicate that the
survival probability follows (37) for all shown A > 4.3.
Moreover, the Griffiths dynamical exponent 2z’ diverges as
the critical infection rate A. is approached, in agreement
with the behavior for purely spatial disorder. For A =
3.9, in contrast, the data continue to curve downward to
the longest times.

These results are in agreement with the scenario dis-
cussed in Sec. VII A. To understand this in detail, con-
sider the strongest spatial rare regions which consist of
sites with f = 1 only. The local infection rate on such a
rare region is thus either A or ¢;A = 0.8 x A. For infec-
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FIG. 12. Main panel: In Ps vs t for different A\ between 2.3
and 3.9, far from criticality A. =~ 7.26 for p = 0.3 and ¢ = 0.2,
pt = 0.2, ¢ = 0.4 and At = 6). The data are averages over
at least than 10° disorder configurations with 10° runs each.
Inset: Enlarged plot for A = 2.3; the linear fit (solid line)
confirms a simple exponential decay.

tions rates A > A\/c; = 4.122 (where A\ = 3.298 is the
clean critical infection rate), the strongest rare regions
are thus always on the active side of the clean critical
point, explaining the power-law form of the Griffiths sin-
gularity. For A < AY/c; the rare regions become inactive
during the “bad” (low g¢(t)) time intervals, putting the
system in the stretched-exponential part of the Griffiths
phase in which the density decay follows Eq. (38).

To explore the novel stretched exponential Griffiths
behavior (38) in more detail, we study a system with
stronger temporal disorder, ¢; = 0.4 rather than 0.8. The
other parameters remain unchanged (p = 0.3, ¢ = 0.2,
pr = 0.2, and At = 6). The critical infection rate for
these parameters is A, &~ 7.26. To cover the entire (inac-
tive) Griffiths phase, we perform simulations for infection
rates ranging from 2.3 (below the clean critical value \?)
to 6.9 close to the phase transition. A semi-log plot of
the survival probability for infection rates between 2.3
and 3.9 is shown in Fig. 12. For A below the clean criti-
cal value /\2 = 3.298, the survival probability features a
simple exponential decay, as expected in the conventional
inactive phase in which there are no locally active rare re-
gions. For A > AU, the system enters the Griffiths phase,
and the decay of P; becomes slower than exponential.
However, as is demonstrated via the double-log plot of
P, vs t in Fig. 13(a), the decay for all A in the (inactive)
Griffiths phase is faster than a power law. In fact, all
data can be fitted very well with the stretched exponen-
tial form (38), as shown in Fig. 13(b) which replots the
same data in the form In P, vs t'/¥ with y chosen such
that the data fall onto straight lines. The resulting values
of the exponent 1/y governing the stretched exponential
evolve from unity at the clean critical infection rate A
towards zero at the phase transition. Note that even the
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FIG. 13. (a) InPs vs Int for different A below criticality
Ae = 7.26 for p=10.3, c=0.2, pr = 0.2, ¢ = 0.4 and At = 6).
The data are averages over 10? to 10° disorder configurations
with 10? to 10° runs per configuration. (b) In Ps vs t'/¥ for
the same data. The solid lines are linear fits. (¢) Exponent
1/y of the stretched exponential (38) vs A\. For A < A2, the
data can be fitted well with y = 1, as expected in the conven-
tional inactive phase even though an unrestricted fit yields
1/y values slightly below unity.

strongest rare regions (f = 1) will be inactive during the
“bad” time intervals everywhere in the Griffiths phase
because ¢;A\. < AY. This explains why the decay of the
survival probability takes the stretched exponential form
for all infection rates with A2 < A < A..

We now turn to the behavior of the lifetime of a finite-
size system on the active side of the transition. The goal
is to test wether the power-law temporal Griffiths behav-
ior (39) gets replaced by the stretched exponential (40)
if sufficiently strong spatial disorder is added to the tem-
porally disordered contact process. Figure 14(a) shows a
double log plot of the lifetime vs system size for p = 0.3,
c=0.2,p =0.2, ¢, = 0.2, and At = 6 at infection rates
slightly above the critical value A\, ~ 11.08. The figure
demonstrates that the increase is faster than a power law.
The same data are replotted in Fig. 14(b) in the form In 7
vs LYY motivated by Eq. (40). For properly chosen y-
values, all data fall onto straight lines, confirming that
the lifetime follows the stretched exponential Griffiths be-
havior (40). The exponent 1/y increases with increasing
distance from criticality, as expected.

VIII. CONCLUSIONS

In summary, we have investigated the combined in-
fluence of spatial and temporal random disorder on the
absorbing-state phase transition in the one-dimensional
contact process. Specifically, we have studied the case
of decoupled spatial and temporal disorders for which
the local infection rates A(z,t) are the product of a
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FIG. 14. (a) Double-log plot of lifetime 7 vs system size L for
different A above criticality A. =~ 11.08 for p = 0.3, ¢ = 0.2,
pt = 0.2, ¢; = 0.2 and At = 6. The data are determined from
decay runs, averaged over 10240 disorder configurations (one
run per configuration). (b) The same data plotted as InT vs
LYY with y chosen such that the data fall onto straight lines.

purely spatial term and a purely temporal term, A(z,t) =
Xof(x)g(t). In contrast to completely uncorrelated spa-
tiotemporal randomness, such disorder which contains
infinite-range correlations in space and time is a relevant
perturbation at the clean DP critical point.

We have employed a generalization of the Harris crite-
rion [17] to predict that the infinite-randomness critical
point of the spatially disordered contact process is sta-
ble against weak temporal disorder. Analogously, the
criterion predicts that the infinite-noise critical point of
the temporally disorder contact process is stable against
weak spatial disorder. We have confirmed these predic-
tions by extensive computer simulations. In the interest-
ing parameter region where both disorders are of compa-
rable strength, the critical behavior appears to differ from
both the infinite-randomness and infinite-noise critical
behaviors. Our simulation data are compatible with the
simplest scenario in which a single multicritical point sep-
arates the infinite-randomness and infinite-noise regimes.
However, due to the very slow dynamics of the contact
process in the presence of both disorders, we cannot ex-
clude more complicated scenarios that involve novel crit-
ical behavior in an extended parameter region. In the
absence of theoretical predictions, the complete quanti-
tative understanding of the (multi)critical behavior from
simulations would require simulation times several orders
of magnitude larger than what is achievable today. This
problem thus remains a task for the future.

In addition to the nonequilibrium phase transition it-
self, we have also investigated the effects of rare regions
and rare time intervals in the Griffiths phases near the
transition. By means of optimal fluctuation arguments,
we have shown that adding weak temporal disorder does
not change the power-law Griffiths behavior of the den-



sity and survival probability of the spatially disordered
contact process on the inactive side of the transition (at
least sufficiently close to the transition). Stronger tempo-
ral disorder, in contrast, weakens the “spatial” Griffiths
singularity in the density and survival probability, re-
placing the slow power-law decay with a faster stretched
exponential. The behavior of the lifetime as a func-
tion of system size in the “temporal” Griffiths phase
on the active side of the transition is completely anal-
ogous. Adding weak spatial disorder to the temporally
disordered contact process does not change the power-law
Griffiths behavior but sufficiently strong spatial disorder
weakens the singularity from power-law to stretched ex-
ponential behavior. The notion that the spatial and tem-
poral disorders weaken each other is also consistent with
the observation that the decay of the survival probabil-
ity with time at the putative multicritical point is faster
than the decay at either the infinite-randomness critical
point or the infinite-noise critical point.

Our explicit computer simulation results are for one
space dimension. However, the stability arguments based
on the generalized Harris criterion apply equally to one,
two, and three space dimensions. The same applies to
the optimal fluctuation arguments governing the Griffiths
singularities. We therefore expect most of our qualitative
results to carry over from one to two and three space
dimensions.

Recently, Odor [43] studied the stability against tem-
poral disorder of the Griffiths phase in a threshold model
running on a large human connectome graph. As in our
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problem, he found that the (spatial) Griffiths phase is
insensitive to weak temporal disorder while sufficiently
strong temporal disorder suppresses the power-law Grif-
fiths singularities.

Clearcut experimental examples of absorbing-state
transitions were missing for a long time [44]. By now,
such transitions have been observed, however, in turbu-
lent liquid crystals [6], driven suspensions [7, 8], growing
bacteria colonies [9, 10], and in the dynamics of supercon-
ducting vortices [11]. Studying these systems under the
combined influence of spatial disorder and external noise
will permit experimental tests of our results. The influ-
ence of environmental fluctuations and inhomogeneities
on the extinction of a biological population are attracting
considerable attention today in the contexts of both epi-
demic spreading and of global warming and other large-
scale environmental changes (see, e.g., Ref. [45]). In the
laboratory, these questions could be analyzed, e.g., by
growing bacteria or yeast populations in spatially inho-
mogeneous environments and fluctuating external condi-
tions.
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