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1. Introduction

Let Gg = Gal(Q/Q) be the absolute Galois group of the field Q of rational numbers.
Let A = Aut(ﬁg) be the automorphism group of the free profinite group ﬁg on two
generators. Belyl showed in [2] that there is a canonical embedding ¢ of Gg into A (see
§3 for details). In [3], Drinfel’d defined the so-called Grothendieck-Teichmiiller group
whose profinite version GT is a certain subgroup of A that contains the image of Gg
under ¢. For background on GT and on variants of this group, see [8,17] and [13]. Thus
1(Go) < GT < A, and much effort has been dedicated to understanding the connection
between Gg and GT. 1t is known that every homomorphism from Gg to an abelian
group can be extended to GT' (see, for example, [17, §1.4(6)]) but no similar result is
known for non-abelian quotients. In [13, p. 179], Lochak and Schneps wrote that “no
irreducible non-abelian representation of any version of (the Grothendieck-Teichmiiller
group) has been constructed to date.” The goal of this paper is to address this challenge.
Our main results will show that many naturally constructed representations of G can
be extended to 5?, at least virtually, i.e. to a finite index subgroup. The main point of
our work is that instead of trying to extend a representation from Gg to @7 we extend
it further all the way to a representation of a finite index subgroup of A = Aut(F}), and
thus in particular to a finite index subgroup of GT. What makes this possible is adapting,
to the profinite world, the work of Grunewald and Lubotzky in [7]. They constructed
many linear representations of the discrete group Aut(Fy) and showed that these provide
surjections of Aut(Fy) onto various arithmetic groups. It turns out that the analogous
profinite theory is easier than the discrete one (see below) and leads to stronger results.
In particular, this approach works for A = Aut(ﬁg), while the discrete theory has given
interesting results for Aut(Fy) only when d > 3. As an illustrative example, we will show
the following result in connection with the challenge of Lochak and Schneps:

Theorem 1.1. Suppose t > 1 is an odd integer. Let ¢ be a primitive t'" root of unity, and
let E¢ be the elliptic curve with affine equation

y* =a(z - 1)( - Q).

There is a number field F' over which E¢ is defined, with the following property for
every prime {. The action of the finite index subgroup Gr = Gal(Q/F) of Gg on the
C-adic Tate module Ty(E¢) can be extended to an action of a finite index subgroup Ag,
of A that contains the image of Gp under the Belyi embedding v : Gg — A. Let
Tce + A, — GL(Q¢ ®z, Te(E¢)) be the associated representation of Ap. over Qy.
Suppose the value ¢(t) of Euler’s phi function on t is larger than 24. Then the restriction
of T¢,e to any subgroup between Ap, and (Gr) is absolutely irreducible and non-abelian.
This is true, in particular, for the restriction of 7¢ ¢ to the finite index subgroup éTﬂAEC
of GT.
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We now state a more general result concerning arbitrary smooth projective curves
X defined over Q. By a theorem of Belyi [I, Theorem 4], X can be realized as a cover
A X — IP% that is unramified outside {0,1,00}. Suppose F' is a number field over
which X, the points in A71({0,1,00}) and the generalized Jacobian J\(X) of X with
respect to A71({0,1,00}) are defined. Let T, ,(X) denote the f-adic Tate module of
Jx(X). This is a Zs,-module of rank 2 genus(X) + |[A71({0,1,00})| — 1. The finite index
subgroup G = Gal(Q/F) of Gg acts naturally on Ty ,(X) and on the adelic Tate
module

TX) = ] Tea(X)

¢ prime

of Jx(X). This gives rise to Galois representations, which we denote by
X0 GF — GL(T[V)\(X)) and pPX GF — GL(T)\(X))

Theorem 1.2. There is a representation px : Ax — GL(T\(X)) of a finite index sub-
group Ax of A that agrees with px on the finite index subgroup GrNit= ' (Ax) of Gr. In
particular, the same holds for every px ¢ that is extended to px ¢ : Ax — GL(Ty A (X)).

To prove Theorem 1.2, let us recall the results in [7], which are not needed here, but
which were the inspiration for the current work. In that paper, the following situation
was studied. Let FF = F,; be the free group on d > 2 generators and let 7 : Fy — H
be an epimorphism onto a finite group H, with R = Ker(w). Let A = Aut(Fy) and
A(m) ={a € A: moa = 7}. The finite index subgroup A(m) of A preserves R. Hence,
we get a linear representation p, : A(1) — GL(R), where R = R/[R, R] is a Z-module
of rank |H|(d—1)+1. The image of p, is inside the arithmetic group of all the H-module
automorphisms of R. The main result of [7] is the claim that under some technical
condition on 7 (“7 is redundant”) p,(A(m)) is, after projectivization, an arithmetic
group. This provides a rich class of arithmetic virtual quotients of A = Aut(Fy).

In §2, we develop the analogous profinite theory for all d > 1. Let m now be a con-
tinuous epimorphism 7 : F; — H, and let A(r) = {a € Aut(Fy) : moa = m}. Let
R = Ker(r). Then R = R/[R, R] is a Z[H]-module giving rise to p : A(x) — GL(R).
The result here is stronger than in the discrete case and without any assumption:

Theorem 1.3. For every d > 1 and every such w, the image p(A(rm)) equals the subgroup
Auty (R) of all Z[H]-module automorphisms of R preserving the extension class (3 of
the short exact sequence

1—R— Fy/[RR) 5 H—1 (1.1)

where T is induced by .
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See Theorem 2.1 below for an even more general result. This theorem is deduced from
a powerful lemma of Gaschiitz which holds for (pro)finite groups but not for discrete
groups. This explains why Theorem 1.3 does not hold in general for discrete groups; see
also [7, Prop. 9.7].

Theorems 1.2 and 1.3 are connected with each other because of Belyi’s theorem. Let
H be the Galois group of the normal closure A : Y — IE% of a Belyi cover A : X — ]I%,
and let 7 be the Galois group of Y over X. The étale fundamental group of PL —{O 1,00}
with respect to a geometric base point is naturally 1som0rph1c to the free proﬁnlte group
FQ Letting 7 : F2 — H be the homomorphism associated to )\ we get from Theorem 1.3
a lift to a finite index subgroup of A(w) of the action of a subgroup of finite index in
Gq on T5(Y). Taking J-coinvariants of this lift and then dividing by the finite torsion
subgroup of these coinvariants leads to Theorem 1.2; see Theorem 4.1 for details.

One natural question is whether similar results hold if one replaces the adelic Tate
module T)(X) of the generalized Jacobian of X with respect to the ramification locus
of A\: X — IP% with the adelic Tate module T'(X) of the Jacobian of X. Using Theo-
rem 1.2, we will give in §5 a sufficient condition for the lift of the action on T (X) which
we construct to descend to an action on T'(X); see Theorem 5.1. If X = Y then this
condition is also necessary. The condition is not always satisfied, but it is if, for example,
the Galois group H of the normal closure of A is abelian. Theorem 1.1 is proved by
applying Theorem 5.1 to a suitable Belyi cover when X = E;.

Theorem 1.3 gives the precise image of A(7) in GL(R) and hence also in GL(Ty(X)).
It is of interest to compare it with the image of Gp in GL(T»(X)). In §6 we analyze the
case in which X has genus 1 and A : X — ]P% is Galois.

We end this introduction with some comments and questions. The main open question
concerning the Grothendieck-Teichmiiller group GT is whether there is a variant of this
group that is equal to the image of Gg under the Belyl embedding ¢ : Go — A.
If this is true then every linear representation of Gg must lift to the variant of GT.
In view of Theorems 1.1 and 1.2 above, it would be interesting to find other natural
representations of finite index subgroups of Gg that lift to representations of finite
index subgroups of A. For example, the Galois representations provided by the adelic
Tate modules of the Jacobians of modular curves arise in the theory of modular forms of
weight two for congruence subgroups of PSLa(Z); see, for example, [20] and [10]. It would
be interesting if other Galois representations provided by modular forms of other weights,
and more generally by A-adic modular forms, have lifts to finite index subgroups of A.
At a minimum, one would like to check whether such representations can be lifted to
finite index subgroups of the Grothendieck-Teichmiiller group GT. For related questions
of this kind, see the end of [13, §1].
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2. A construction of linear representations of Aut(F)

Let m : ﬁd — H be a continuous epimorphism from ﬁd to a finite group H, and
let R be the kernel of . Define R = R/[R, R] to be the maximal abelian quotient of
R. Then R is isomorphic to ZH#I(d=1+1 where 7 is the profinite completion of Z. We
consider surjections R — R whose kernel T is a closed normal subgroup of ﬁd containing
[R, R], so that Risa quotient of R. We will be interested in constructing large linear
representations of the group

A(r,I)={a € Aut(Fy) i moa=n and a(l)=1} (2.1)

where we set A(w) = A(m,[R, R]). Since Fy is finitely generated as a profinite group,
there are finitely many surjections Fy — H, and A(m) is of finite index in Aut(ﬁd). In
general, A(m, ) need not have finite index in Aut(Fy), but it will if I is a characteristic
subgroup of R.

We have an exact sequence
1—R— Fy/T — H—1 (2.2)

with some extension class 3 € H?(H, ﬁ) Since R is abelian and profinite, there is a

well-defined continuous action of H on R. This gives rise to a linear representation

p: A(m,I) — GL(R).
Let Autg (R) be the group of continuous automorphisms of R that commute with the
action of H. Each element of Auty (R) induces an automorphism of H%(H, R). We define

Auty 3(R) = {y € Auty(R) : v.(8) = B}. (2.3)

Since R is a quotient of a finitely generated Z-module, H2(H, R) is finite, and Aut w.5(R)
has finite index in Autg(R).
We will prove the following result, which implies Theorem 1.3.

Theorem 2.1. For every d > 1 and every 7 and I, the image p(A(w, 1)) equals AutHﬁ(E).
In other words, the action of A(w,I) on R gives a surjection

A(r, T) — Auty 5(R). (2.4)
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This construction is the profinite analog of the one used in [7] to construct linear
representations of Aut(F;). Note, though, that Theorem 2.1 shows that in the profinite
case the representation is surjective. In the discrete case this may not be true; see [7,
Prop. 9.7]. Here is a concrete example.

Example 2.2. Let H be a cyclic group of prime order p, and let k = Q((,) for a primitive
p root of unity (pin Q. Suppose 7 : F; — H is a surjection with kernel R. In this case,
Q ®z R/[R,R] is isomorphic to Q[H]¢"! ® Q as a Q[H]-module, i.e. to k=1 & Q? (see,
for example, [6, §2]). Theorem 1.4 of [7] implies that if d > 3, the finite index subgroup
A(m) of A = Aut(Fy) has a “large” image in the H-module automorphism group of
k%=1 @& Q% in the following sense. After choosing a suitable basis for Q ®z R/[R, R] &
k%1 @ Q?, the Z[H] submodule R/[R,R] is commensurable with Z[(,]?! & Z?, where
a chosen generator h € H acts on Z[(,] by multiplication by (, and h acts trivially
on Z. The intersection of p(A(m)) with GLg_1(Z[(p]) x GLq(Z) has finite index in
pr(A(m)), and the intersection p,(A(m)) N (SLa—1(Z[(p]) x SL4(Z)) is of finite index in
SLa—1(Z[¢p]) x SL4(Z). This way it is shown in [7] that Aut(F;) has many arithmetic
subgroups as quotients. It was left open in [7] whether the image p,(A(w)) is of finite
index even in GL4_1(Z[(,]) x GL4(Z). This is the question “(SL) or not (SL)?” discussed
in [7, §8]. By using the recently proved result that Aut(Fy,) has Kazhdan property (T)
for d > 4 (see [12], [11], [15]), so that the abelianization of each finite index subgroup
is finite, it follows that (at least when d > 4), the answer to the “(SL) or not (SL)?”
question is (SL). In other words, the image there is always commensurable with the SL
group. So it is of infinite index in GLq_1(Z[(,]) x GLq(Z) if p > 3.

Theorem 2.1 gives a more precise and stronger result in the category of profinite
groups. As remarked above, R = R/[R, R] = Z@-r g 7. Concerning the action of
H, we can prove a more precise statement if we divide R by its pro-p Sylow subgroup
R(p) (i.e. by the Z,-factors). Let I be the inverse image of R(p) under the natural map
R — R. Define

Z(p) = Z/Zp = HZ@
L#£p

Then R = R/R(p) = R/:fis isomorphic to Z%‘<d71)+1 but this time we can say that R is

isomorphic to Z(p) [H" o Z(p) &~ Z(p) (Gl e Z?p) as an H-module since |H| is a unit

in Z(p). Theorem 2.1 implies that A(m, f), which is a finite index subgroup of Aut(ﬁd),
is mapped onto GLd,l(Z(pz\[(p]) X GLd(Z(p)A). (Note that SLq_1(Zy)[Cp]) X SLa(Zp) is

of infinite index in GLg—1(Z;)[Cp]) x GLa(Z(y))-)
More examples of this kind can be worked out by considering the various examples
studied in [7]. The advantage of Theorem 2.1 over [7, Theorem 4.1] is that it gives the

exact image (and not only up to a finite index subgroup as in [7], and only under some
additional assumptions on H and 7). It implies that the question “(SL) or not (SL)?”
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from [7, §8] has a clear answer here: it is never just SL. Moreover, a careful look at
Example 2.2 shows that not only Aut(ﬁd) has an infinite abelianization, since it clearly
surjects onto GLd(Z) and hence onto Z*, but that also Aut!(F}), which is defined as
the preimage of SLd(z), has a finite index subgroup with an infinite abelianization. This
implies (at least for d > 4) that Aut'(Fy) is not dense in Aut'(F), since the former has

property (T).
To prove Theorem 2.1 we need the following well-known result of Gaschiitz; see [5]

and [4, Lemma 17.7.2].

Lemma 2.3. Suppose ¥ : G1 —> G4 is a continuous surjective group homomorphism of
profinite groups. Suppose Sy is a finite set of generators of Go with |Se| = d, and that
the minimal number of generators of G1 is less than or equal to d. Then there exists a
set of generators S1 of G1 such that ¥(S1) = So.

This lemma has the following easy corollary (compare to [14, §2]).

Corollary 2.4. If N is a closed normal subgroup of F\d, then every automorphism of ﬁd/N
can be lifted to an automorphism of Fy preserving N. In particular, this holds for N = R.

The identification of second group cohomology classes with equivalence classes of
group extensions shows the following result.

Lemma 2.5. Assume B is an abelian H-module and that there is a short exact sequence

1 B H H 1. (2.5)

Let E € H?(H,B) be the extension class of this sequence. Let v : B — B be an H-
module automorphism. Then v fizes B if and only if there is a diagram of automorphisms

1 B H H 1 (2.6)
1 B H H 1

in which the right vertical isomorphism is the identity map on H.

Proof of Theorem 2.1. An clement of A(r,I) = {o € Aut(Fy) : moa = 7 and o(I) = I}
induces an automorphism of the sequence (2.2) which is the identity on H. Therefore,
Lemma 2.5 implies that the restriction of this element to R lies in Auty g(R). We now

suppose that 7 is an element of Auty g(R). By Lemma 2.5, there is an automorphism 7
of Fy/I that fits in a diagram of automorphisms



F.M. Bleher et al. / Journal of Algebra 607 (2022) 134—159 141

1*>1§*>F\d/f*>H*>1 (2.7)

|k

1*>§*>ﬁd/1*>H*>1.

By Corollary 2.4, we can lift 7 to an automorphism « of ﬁd. This lift will lie in A(m, f),
which shows that the homomorphism in Theorem 2.1 is surjective. O

3. Belyi’s construction of an injection Gal(Q/Q) —» Aut(Fb)

In this section, we review a construction of Belyl in [1,2,8] of an injection ¢ :
Gal(Q/Q) — Aut(ﬁg) which is essential to our work. An explicit description of this
construction is needed, in particular, to show that on passing to a finite index subgroup,
it is compatible with the actions of Gal(Q/Q) and Aut(ﬁg) on the generalized Jacobians
of curves.

We will identify Q(Pg) with Q(t) for a fixed choice of affine parameter ¢. Then @(IP%)

is identified with Q(t). Let Q()°! be a fixed algebraic closure of @(IP%) = Q(¢). We have
an exact sequence of étale fundamental groups

1— m(%— {0,1,00},7) — m(Py — {0,1,00},m) — Gal(Q/Q) — 1 (3.1)

when 7 : Spec(Q(¢)<!) — IP% —{0,1,00} is the geometric point determined by Q(¢)<.
This gives a homomorphism Gal(Q/Q) — Out (7 (]P% —{0,1,00},7)). Belyi showed in
[1,2] how one can lift this homomorphism to an injection

1:Gal(Q/Q) — Aut(m(]P% —{0,1,00},m)) (3.2)

in the following way.
Let L be the maximal extension of Q(t) contained in Q(¢)! that is unramified outside
{0,1,00}. Define

F@ = Gal(L/@(t» =m (Pé —{0,1,00}, 7).

Let = and y be topological generators of decomposition groups in I'g over 0 and 1. These
decomposition groups correspond to projective systems {P; o}; and {P;1}; of discrete
valuations over 0 and 1, respectively, in a countable cofinal system indexed by ¢ of finite
extensions of Q(¢) in L. The topological fundamental group of P*(C) — {0, 1, 00} is the
free group generated by loops around 0 and 1. It follows that the group I'g; is the profinite
completion @ of the free group generated by = and y.

For o € Gal(Q/Q), we lift o canonically to an element of Gal(Q(t)/Q(t)) by letting
o fix t. Choose a further lift & of o to Aut(L/Q(t)) C Aut(L/Q). There is a transitive
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action of I'y on the discrete valuations of any finite Galois extension of Q(t) in L that lie
over the discrete valuation of Q(¢) associated to the point 0. It follows that there is an
element v € Gal(L/Q(t)) such that v({Pio}:) = 5({Pio}:). Then conjugation by v~ 15
takes the profinite group @ generated by x back to itself.

Define

I'o = Gal(L/Q(t))

and let [F@, F@] be the commutator subgroup of I'g C I'g. When we set

~ FQ
Fg=—2
I'g gl
we have an exact sequence
1 — TP —To — Gal(@Q/Q) — 1 (3.3)

where

ab — —

I =T5/[Tg. Tl = (@) = (@) x ()

and we have identified Gal(Q(t))/Q(t)) with Gal(Q/Q).
Let D(y) be the subgroup of I'q which fixes the projective system {P;}; of points
lying over 1. Since the residue field of the point 1 on Pé is Q, we have an exact sequence

—

1 — (y) — D(y) — Gal(Q/Q) — 1.

—

We have an injective homomorphism </\y) — F%’ induced by the inclusion of (y) into
I'g- It follows that the homomorphism D(y) — f@ induced by D(y) C I'g ii\injecti\//e\;

let D(y) be the image of this homomorphism. For simplicity we will identify (z) and (y)
with their images in F%’.

We now claim that </x\> is a set of representatives for the left cosets zD(y) of D(y)

in f@. First, these cosets are disjoint, since if zD(y) = z'D(y) for some z,z’ € </3.c\>
then 2712’ is in the intersection of D(y) with the kernel of g — Gal(Q/Q). This
intersection is

—

D(y) NI = {y) I = (z) x (y).

o~

The only element of (z) lying in this intersection is the identity element, so z = 2z’. We
must now show that every element 1 of I'g lies in some coset 2D(y) with z € (). To

show this, first note that we can find d € D(y) with the same image under ' —
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Gal(Q/Q) as . Then pd =1 € 1"%’ = @ X </y\>, sopdt € z(y/\> for some z € (x/\> Hence,

¥ € z(y)d C zD(y) and we are done.

We now return to the element y~!

o of I'g. The image of this element in f@ lies in a

1

coset vD(y) for a unique v € {x). Therefore, v~ 17715 € I'g has the same image in 'g

as an element u of D(y), and y is unique since v was unique and the map D(y) — D(y)

is an isomorphism. Hence, v~ 1y~1

o = A-p for a unique X in the commutator subgroup
[F@, I‘@} of I'g. Since v was uniquely determined by ~~17, both X and u are as well.
The intersection of g, Ig] with D(y) is trivial. It follows that o’ = » =1y 7"

a lift of o to Gal(L/Q(t)) = I'g that has these properties:

o=A-pis

1

i. Conjugation by ¢’ takes (z) to itself, so o’ - z - (¢/) " = 2 for some a € Z*.

ii. Conjugation by o’ takes </y\> to a conjugate )\<y/\>)\_1 = (A,u)(y/\)()\u)_l of </y\> by an
element A of the commutator subgroup [Ig, Igl. Thus ¢’ -y - (o) ™' = (A-y- ATH)P

for some b € Z*.

By considering the action of ¢’ by conjugation on F%’, one sees by Kummer theory
that @ = b = Xcyc(0) where Xcyc is the standard cyclotomic character. Belyi shows that
</l‘\> and (y/\> are their own centralizers in I'g, from which it follows that o’ is uniquely
determined by o. Bely! denotes A by f,, and the BelyT lift

—

v: Gal(Q/Q) — Aut(I'g) = Aut((z,y))

is defined by letting ¢(o) be conjugation by o’.

For later use, we will describe one consequence of this construction. Suppose F is
a number field and that ¥ — ]P% is an irreducible finite Galois H-cover of smooth
projective irreducible curves that is unramified outside {0,1,00}. Suppose Y and the
action of H on Y are defined over F, and that F is algebraically closed in the function
field F(Y"). We will furthermore require that the points over 0, 1 and oo on Y are defined
over F. Recall that 5 corresponds to the choice of an algebraic closure Q(t)°' of Q(¢).
We fix an embedding of F(Y') into Q(¢)°.

Lemma 3.1. We can find a finite extension FT of F so that if o € Gal(Q/FT) then the
element o’ in the Belyi construction of 1(c) lies in Gal(L/FT(Y)).

Proof. If o € Gal(Q/Q) lies in the finite index subgroup Gal(Q/F), we can extend o
in a unique way to an element of Gal(Q(Y)/F(Y)). We can thus choose the first lift
o € Aut(L/Q) in Belyl’s construction so that ¢ € Gal(L/F(Y)). Recall that {P; ¢}
was a cofinal system of points over 0 in a cofinal system of finite covers of ]P% that are
unramified outside 0,1 and co. We can assume that Y is one of the covers in this system,
and that all the covers in the system are in fact covers of Y. Let Oy be the point of YV
lying over 0 which appears in the system {P;¢};. Since ¢ fixes Y and Oy, we see that

{G(P;,0)}: is a system of points over 0 which all lie over Oy . It follows that the first element
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v € Gal(L/Q(t)) in Bely{’s construction can be chosen to lie in Gal(L/Q(Y")). However,
we cannot say that the next element v in Belyi’s construction lies in Gal(L/Q(Y)). We
now indicate some further hypotheses that will force this to be the case.

Let s be the exponent of the finite group H, i.e. the smallest positive integer such
that every element of H has order dividing s. There is an abelian cover U of IP% that is
unramified outside {0, 1, 00} and whose Galois group over ]P% is isomorphic to the group

Z/s X Z/s Any automorphism in Gal(L/Q( )) then has image in Gal(L/Q(t))*"

~

(x y> = </m\> X < ) which is an s*® power. Let F' be a finite extension of F with the
following properties. The composite of Q(U) and Q(Y) in L is the function field of a
smooth projective irreducible curve YT that is defined over F!. The action of Hf =
Gal(Q(YT)/Q(t)) is defined over FT. The points of YT over {0,1,00} are defined over
FT and FT is the constant field of FT(YT). Then YT is a cover of Y and H is a quotient
of Ht. Running Belyi’s construction now with Y replaced by Y and F replaced by F'f,
we arrive at a lift ¢ € Gal(L/FT(YT)) and an element v € Gal(L/Q(Y'1)).

We now recall that v is the unique element of (x) such that the image of y~'5 in
Ig = Ig/ [I'g: I'gl lies in the image in T of the coset vD(y) of the decomposition
group D(y) of the inverse system of points {P;1}; over 1. We can assume that the
inverse system of covers used to define {P; 1}; includes U and Y and Y't. Since we have
arranged that v~'5 fixes FT(YT) and that the points over {0,1,00} on YT are defined

—1=

over F'', the action of y~'& fixes the point Py1 of the cover U over 1 in the above

-1

inverse system. Now, U is an abelian cover of IP% and vy~ o has the same image in

f@ as vz for some z in D(y). Since D(y) fixes the inverse system {P; 1};, we conclude
that v € </\> must fix Py 1 because v~ 15 does. Therefore, the image of v € @ CIlgin
Gal(Q(U)/Q(t)) = Z/sx Z/s is in the inertia group of a point Py over 0 in U as well as
in the inertia group of the point Py.1. These inertia subgroups of Gal(Q(U)/Q(t)) have
trivial intersection, so v € (z > has trivial image in Gal(Q(U)/Q(t)). This forces v to be
the s*® power of an element of < ). Since s was the exponent of H, we conclude that v has
trivial image in H = Gal(Q(Y)/Q(t)). Therefore, 0’ = v~1y715 lies in Gal(L/F!(Y))

and we are done. O
4. Galois representations

Let X be a smooth projective irreducible curve defined over Q. By Belyi’s Theorem [1,
Theorem 4], there is a non-constant morphism A : X — ]P% which is unramified outside

{0,1,00}. Let H be the Galois group of the Galois closure A Y — IF% of A. We will
identify F, with the étale fundamental group 7r1(]P% —{0,1,00},n) appearing in (3.2) by
the choices described in the previous section. We will also view Gg = Gal(Q/Q) as a

subgroup of Aut(ﬁg) via the injection ¢ of (3.2). Let 7 : Fy —» H be the homomorphism
associated to A and the choice of a geometric point of Y over 7. Fix d = 2 and let

p: A(m) — Auty g(R)
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be the surjective homomorphism defined in Theorem 1.3.
We will prove the following result, which implies Theorem 1.2.

Theorem 4.1. The group R is isomorphic to the Galois group of the mazimal abelian
cover of Y that is unramified outside the ramification locus X=1({0,1,00}). This Galois
group is isomorphic to the adelic Tate module T5(Y') of the generalized Jacobian J5(Y')
of Y with respect to Xﬁl({O, 1,00}). Let J C H be the Galois group of Y over X. The
coinvariants Ry of R with respect to J have finite torsion, and the quotient E?wr of Ry
by this torsion subgroup is naturally identified with a subgroup of finite index in the Galois
group of the maximal abelian cover of X that is unramified outside the ramification locus
A71({0,1,00}). The latter Galois group is Tx(X). There is an H-equivariant action of
A(m) on T5(Y'), and there is a finite index subgroup Ax () of A(w) that acts on Tx(X).

There is a finite extension F of Q over which X, Y, J\(X), J5(Y') and the action of
H onY are defined. There is a natural action of Gp = Gal(Q/F) on T5(Y) and Tx(X).
There are finite index normal subgroups Ay of A(rw) and Ax of Ax(m) such that the
action of Gp N (Ay) (resp. Gp N (Ax)) on T5(Y) (resp. Ta(X)) agrees with the
action of Ay (resp. Ax) under Belyi’s embedding G - Aut(F,).

Proof. The identification of R with T5(Y) is shown by Serre in [19, §I.2]. Let L be
the maximal abelian extension of Q(Y) that is Galois over Q(X), unramified outside
A~1({0,1,00}) and for which Gal(L/Q(Y)) is central in Gal(L/Q(X)). Then L contains
the maximal abelian extension L’ of Q(X) that is unramified outside A=1({0, 1, 00}).
Furthermore, Gal(L/Q(Y')) = T5(Y ) and there is a central extension of groups

1 —T5(Y)s — Gal(L/Q(X)) — J — 1.

Letting these groups act trivially on Q/Z, the Hochschild-Serre spectral sequence gives
an exact sequence of low degree terms

0— H'(J,Q/Z) — H'(Gal(L/Q(X)),Q/Z) — H'(T5(Y)7,Q/Z)
— H*(J,Q/7).

Here H(J,Q/Z) is finite for i > 1. The maximal abelian quotient of Gal(L/Q(X)) is
Gal(L'/Q(X)) = Tx(X) and

H'(Gal(L/Q(X)),Q/Z) = Hom(Gal(L' /Q(X)),Q/Z).
Moreover,
HY(T3(Y)7,Q/Z) = Hom(T5(Y) 7, Q/Z).

Since T5(Y')s is abelian, we obtain that T5(Y')7 maps with finite kernel and cokernel
to Gal(L'/Q(X)) = T\(X). Because T(X) is torsion free, we conclude that T5(Y)s
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has finite torsion, and the quotient T;\(Y)f})tor of T5(Y)s by its torsion subgroup is
isomorphic to a subgroup of finite index in T (X).

We now identify 75(Y) with R and apply Theorem 1.3. This shows that there is an
H-equivariant action of A(m) on T5(Y'). In particular, this action descends to an action
of A(m) on T5(Y)%*". Let m be the index of T5(Y)%"" in Tx(X). We have a sequence
of inclusions

m T (V) € mTh(X) C Ty (V)2

Since A(7) acts on the finite group Tx(Y)%'" /m T (Y)$'", there exists a finite index
subgroup Ax(m) of A(w) such that Ax(m) acts trivially on T5(Y)5*" /m T5(Y)5".
Therefore, Ax (m) preserves mT)(X) and hence Ax(m) acts on T)(X).

It remains to show that we can shrink A(7) and Ax (7) to smaller finite index normal
subgroups Ay and Ax, respectively, if necessary, so that the action of Gr Nt~ 1(Ay)
(resp. Gr N (Ax)) on T(Y) (resp. Th(X)) agrees with the action of Ay and Ax
under Belyi’s embedding ¢ : Gp — Aut(ﬁz). We will use the description of ¢ given in
§3.

In the arguments below, we will need to enlarge F to a finite extension F'f of F.
Since ¢ : Gp — Aut(ﬁg) is a continuous injective homomorphism of profinite groups, it
follows from [16, Prop. 2.1.5] that ¢ is a homeomorphism onto its image when the image
is given the topology induced by that of Aut(ﬁg). Therefore, there are finite index normal
subgroups of A(m) and Ax(m) with the property that their intersection with +(Gr) is
contained in ¢(Gpt). Thus in what follows we are free to enlarge F' by a finite extension
in order to prove the existence of finite index subgroups Ay and Ax with the desired
properties.

By Lemma 3.1, we can now replace F' by a larger finite extension FT to be able to
assume that if 0 € Gp then «(o) is conjugation by an element ¢’ € Gal(L/F(Y')) which
restricts to o on Q C L. We have a tower of fields F(Y) C Q(Y) € Q(Y)* c L
in which Q(Y)2® is the largest abelian extension of Q(Y) inside L. By [19, §1.2],
Gal(Q(Y)*/Q(Y)) is naturally isomorphic to the adelic Tate module 75(Y), and
the action of o on T5(Y) corresponds to the conjugation action of any lift & of
o to an element of Gal(Q(Y)*"/F(Y)). Note that this conjugation action does not
depend on the choice of the lift & because Gal(Q(Y)2P/Q(Y)) is an abelian nor-
mal subgroup of Gal(Q(Y)®’/F(Y)). However, we know that the action of i(c) on
Gal(Q(Y)*?/Q(Y)) is via the conjugation action by ¢’ € Gal(L/F(Y)), so the action
of 1(0) on Gal(Q(Y)2?/Q(Y)) agrees with the conjugation action of &. This shows that
the action of «(0) on T5(Y') agrees with the natural action of 0. O

Remark 4.2. The statements in Theorem 4.1 hold if one replaces T5(Y') and T)(X) by

their maximal pro-¢ quotients T, 5(Y') and Ty (X), the latter being the (-adic Tate

modules of the generalized Jacobians of Y and X with respect to X‘l({O, 1,00}) and
~1({0,1, 00}), respectively.
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We obtain the following consequence of Theorem 4.1.

Corollary 4.3. Assume the notation from Theorem /.1. Suppose Iisa (closed) normal
subgroup of Fy such that [R,R] C I C R, and let R = R/I. Then R is a quotient module
of R = T5(Y) and there is an H-equivariant action of A(m,I) C Aut(Fg) on R. The
kernel of the surjection R — R has stabilizer Gg/ in Gg for some extension F' of F

i. There is a finite index normal subgroup AYJ of A(W,IN) such that the action of
Gprs OL_I(AY’;) on R agrees with the action of AY’; under Belyi’s embedding G —
Aut(Fy). N

ii. There is a finite extension F" gf F’" in Q such that the action of Gg» N L:I(A(W, 1))
agrees with the action of A(r,I) under Belyi’s embedding Gp» < Aut(Fy).

Proof. The first statement follows by letting A, 7 be the intersection of A(m, ) ) with the
subgroup Ay appearing in the last sentence of the stajement of Theorem 4.1. For the sec-
ond, observe that since AY’ 7 has finite index in A(m, I), the kernel of the homomorphism
G N Y (A, 1)) — A(m, T)/AY,; induced by ¢ has finite index in Gpr N (A(r, I)).
Therefore, this kernel equals G N =L (A(r, I)) for some finite extension F” of F'. O

Example 4.4. Assume the notation from Corollary 4.3. If T is a subgroup of R that is
stabilized by the action of H on R, then I = I/[R, R] for a normal subgroup I of F.
Fix a prime number p. If T, is the subgroup of R = Z!*IH| generated by all factors
isomorphic to Z,, then I p = Ip /[R, R] for a normal subgroup I of F2 Moreover, the
action of G on R preserves I,,.

Suppose now that we take R = R/I to be the quotient of B = Z ! by the subgroup
generated by all Tp for primes p dividing |H|. Then I is a normal subgroup of ﬁg, and
the kernel of R —» R is stable under all of G The action of A(m) on R is Z-linear, so
A(r) acts on R and A(r,I) = A(m). If L% is the set of all primes ¢ not dividing |H]|,
then

R=1]] T

LeLlly

The extension class 8 € H2(H, E) corresponding to (2.2) is zero for this choice of R.
Therefore, it follows from Theorem 2.1 that the image of the action of A(w,I) = A(mw)
on R is Auty(R). Define

7 = 7
Hm/ = 1] 2

Lelly
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Then R is isomorphic to Z'[H] & Z’ as an H-module since |H| is a unit in Z’ (see [6,
§2]). Note that Z'[H] = Z' & M as H-module, where M is the augmentation ideal of
Z'[H]. Hence, Auty(R) = GLy(Z') x Auty (M). The right multiplication action of Z'[H]
identifies the endomorphism ring Endi,[ H](M ) with the quotient ring of the opposite
ring Z'[H]°P of Z'[H] modulo the ideal generated by the central idempotent ﬁ Y owcr O

Recall that the inversion o — ¢! on H extends to a ring isomorphism of Z/[H]°P with
Z'[H]. In other words,

. 7(H)
Auty(R) = GLo(Z GL; | =
Hl) = GlalE) > (Z’[H«(zaem)

since |H| is a unit in 7' Corollary 4.3 says that there is a finite index normal subgroup
Ay 7 of A(m, I) = A(m) such that the action of GpN L_l(AYj) on R extends to an action
of Ay ;7 under ¢.

5. Actions on the Jacobian versus the generalized Jacobian

Theorems 1.2 and 4.1 show that the action of the absolute Galois group Gg =
Gal(Q/Q) on the adelic Tate module of the generalized Jacobian can be virtually ex-
tended to an action of Aut(ﬁg). In this section, we show that, in general, one indeed
needs the full structure of the adelic Tate module of the generalized Jacobian and that
the action of Gg on the adelic Tate module of the Jacobian cannot be virtually extended
to Aut(ﬁg). Moreover, we give a sufficient condition to distinguish between these two
possibilities, which is also necessary when we have a Belyi cover that is Galois.

We use the notation from §3 and §4. In particular, we identify ﬁg with the étale
fundamental group (]P% —{0,1,00},7), and we view Gg as a subgroup of Aut(ﬁg)
via the injection ¢ of (3.2). Asin §4, let A : X — ]P% be a Belyi cover, i.e. X is a
smooth projective curve over Q and X is a non-constant morphism which is unramified
outside {0, 1,00}. Let H be the Galois group of the Galois closure XY — IP% of A.

Let 7 : ﬁg — H be the homomorphism associated to X and the choice of a geometric
point of Y over 7.

Let J C H be the Galois group of Y over X, let W be the normalizer of J in H, and
let Z =Y/W. We can factor A = k o where § : X — Z is a Galois cover with Galois
group D=W/J and k: Z — ]P% is a Belyl cover. For each point j € k~1({0,1,00})
let jx be a point over j in X and let d;, be a generator for the inertia group of jx in
D.

Consider now the natural surjection Jy(X) — J(X) from the generalized Jacobian
of X with respect to A71({0, 1, 00}) to the Jacobian of X. Recall that the points of Jy(X)
over Q are divisors of degree zero on X prime to A~1({0, 1,00}) modulo divisors of the
form div(f) for rational functions f € Q(X)* such that f(x) =1 if x € A71({0, 1, 00}).
The principal divisor group of X is isomorphic to Q(X)* /Q". Consider the homomor-



F.M. Bleher et al. / Journal of Algebra 607 (2022) 134—159 149

phism from the group of elements g € Q(X)* that have no zeros or poles in A=1({0, 1, 00})
to the product er/\,l({0717oo}) @* which sends g to the element of the product with com-
ponent g(x) at x. This homomorphism induces an isomorphism between the algebraic
group that is the kernel of Jy(X) — J(X) and the split torus

HmEA*l({O,l,oo}) Gm )

T =" Gag(Gn)

The exact sequence
1 —T— JHh(X) —JX)—1
gives an exact sequence of ¢-adic Tate modules

HIE)\*l({O,l,oo}) Zz(l)
diag(Z,(1))

0— — Ty A (X) — Ty(X) — 0. (5.1)

This sequence is exact as a sequence of G p-modules once F' is a number field over which
X, J(X), Jx(X) and the action of D on X are defined.

The set A71({0,1,00}) = 67 1(sk71({0,1,00})) is the D-set formed by the disjoint
union of the orbits of the jyx as j ranges over £~ 1({0,1,00}). We find that the tensor
product of the left term in the sequence (5.1) with Qg over Z, is isomorphic to

Djci—1(10,1,001) Qe[D/{djx)]
Qe

(5.2)

as a Qg[D]-module, where the denominator here is embedded into the numerator by
sending 1 € Q, to the sum of all the cosets of (d;,) as j ranges over £~ ({0,1,00}).
When we tensor the middle term of (5.1) with Q; over Z,, we get the Q[D]-module
that is the group of J-coinvariants of Q; & Q[H| by Gaschiitz’s theorem (see [6, §2]).
Let Ax () be the finite index subgroup of A(7) from the statement of Theorem 4.1,
so we have a well-defined action of Ax (7) on Ty 5(X) as in Remark 4.2. Let A; be a finite
index subgroup of Ay (m). We will say that the action of Ay on Ty »(X) descends to an
action on the Tate module Tp(X) if the action of A; respects the terms of the sequence

(5.1). We now give a sufficient condition for this to occur which is also necessary when
X =Y. In the latter case, Ax(w) = A(w) and X = A.

Theorem 5.1. Let Ay be a finite index subgroup of Ax(mw). A sufficient condition for the
action of A1 on Ty A(X) to descend to an action on Ty(X) is that for every irreducible
representation V. of D over Q,

ny = — dim@(VD) + Z dim@(V<dfx>)
Jj€r™1({0,1,00})
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is equal to either O or
my = dimg(V?) + [H : W] - dimgy(V).

This condition for V holds if and only if Q, ®g V' occurs in exactly one of the Q,[D]-
modules that result from tensoring either the left or right term of (5.1) with Q, over
Ze. If X =Y, then D = H =W and the above sufficient condition is also necessary.
Furthermore, if X =Y, then the condition holds for all V' of dimension 1.

Proof. It follows from Theorem 4.1 and Remark 4.2 that Q,®z, Ty A (X) is isomorphic to
the coinvariants (Q, ®z, T, 5(Y))s. By Gaschiitz’s theorem (see [6, §2]), Q,®z, T, (Y)
is isomorphic to Qg EBQZ[Hj as a Q[H]-module. Therefore, Q;®z, Ty A(X) is isomo’rphic
to Q¢ @ Q[P W] as a Q,[D]-module.

Let V be an arbitrary irreducible representation of D over Q. Then my is the multi-
plicity of V' as a direct summand of Q @ Q[D]#W. By Frobenius reciprocity and (5.2),
ny is the multiplicity of Q, ®g V as a direct summand of the tensor product of the left
term of (5.1) with Q, over Z;. Therefore, Theorem 5.1 is equivalent to the statement
that the action of A respects the sequence (5.1) if

ny € {0,my} for every irreducible representation V of D over Q, (5.3)

and if X =Y then (5.3) is also necessary for A; to respect the sequence (5.1).

Suppose first that the action of A; does not respect the sequence (5.1). Since the terms
of (5.1) are free Zg-modules, the action of A; does not respect the terms of the sequence
obtained by tensoring (5.1) with Q, over Z,. Hence, we obtain a non-zero Q,[D]-module
homomorphism from the tensor product with Q, over Z, of the left term of (5.1) to
Q, ®z, Te(X). Since the irreducible representations of D over Q, are all defined over
Q, this means that there exists an irreducible representation V of D over Q such that
0 < ny < my, so (5.3) does not hold.

Now suppose that X =Y, so that J is the trivial subgroup of H, and hence W = H
and D = H. We suppose that the action of A; respects the terms of the sequence (5.1),
and we must show that (5.3) holds. The action of A; preserves the terms of the sequence
that results from tensoring (5.1) with Q, over Z,. Since Ty ,(X) = T&X(Y) is the maximal
pro-¢ quotient of R = T5(Y'), we can write Ty \(X) = R/ I, for a characteristic subgroup
I, of R. By Theorem 2.1, it follows that the image of the action of Ax (7) = A(w, I;) on
Ty A(X) =R/ I, consists of all H-equivariant automorphisms of Ty A (X) that preserve a
certain extension class. Since this extension class is annihilated by ¢¢ for a sufficiently
large integer a > 0, it follows that if f : Ty \(X) — Ty A (X) is any Z,[H]-module
endomorphism of Ty x(X) and idy, , (x) is the identity automorphism of 7y »(X), then
idg, , (x) + € f is induced by the action of an element of Ax (m). The kernel Az of the
left multiplication action of Ax(7) on the finitely many left cosets of A; in Ax(w) is a
finite index normal subgroup of Ax (7) contained in A;. Let n = [Ax(7) : As]. Then for
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all sufficiently large a > 0, the binomial theorem shows that there is an endomorphism
f1 of Ty A(X) with the following property. The map

1 . a P\ . a

7o ((dr 00 +001)" —idn, y(x)) =nf+L0f

is an endomorphism of 7y x(X) lying in the Q,-subalgebra B of Endq, ) (Q¢®z,Te A (X))
generated by automorphisms arising from the action of Ay C A; on Ty A(X). Taking the
limit as @ — oo and using the fact that B is a closed Qg-subspace of a finite dimensional
Qg-vector space, we see that B is all of Endg,x](Qe ®z, Te,A(X)). Therefore, every
element of Endq,[#](Q¢®z,Tr,A(X)) preserves the tensor product of the left term of (5.1)
with Qg over Z. It follows that every element of Endgy, (Q,®z,TeA(X)) preserves the
tensor product of the left term of (5.1) with Q, over Z,. But this implies the statement
(5.3) since the irreducible representations of H over Q, are all defined over Q. O

Remark 5.2. Let D; be a subgroup of D. Suppose V is an irreducible representation of D
over Q for which the sufficient criterion described in Theorem 5.1 does not hold. Let V;
be any irreducible representation of D; over Q that occurs in the restriction of V to D;.
Then Q, ®g V1 occurs in both of the restrictions to Dy of the Q,[D]-modules that result
from tensoring either the left or right term of (5.1) with Q, over Z,. This implies that
if for some subgroup D; of D the counterpart of the criterion in Theorem 5.1 holds for
all irreducible representations of D; over Q, then this criterion holds for D. This forces
the action of every finite index subgroup A; of Ax (m) to descend to Tp(X).

We now give an example in which X =Y and the action of no finite index subgroup
Ay of Ax(m) = A(r) descends to an action on Tp(X).

Example 5.3. Suppose X = Y and that D = H is the alternating group As of order
60 on the letters {a1,as,as,as,as}. Recall that dy, and dy, are generators of inertia
groups of points of X = Y over 0 and 1. It follows that they generate D = H and
that deoy = (doydi1, )t Suppose do, is the three-cycle (a1, as,a3) in D and di,, is the
five-cycle (a1, as,as,as,as), so that de, = (doyd1, )~ ! is a five-cycle. Define Ay to be
the alternating group of order 12 on the letters {ay, as, a3, as}. The induction Q[As5/A4]
of the trivial representation of A4 to As is then isomorphic to the direct sum of one
copy of the trivial representation Q of A5 with a four-dimensional absolutely irreducible
representation V of As. It is easy to check that the invariants V{%x) are trivial for
j = 1,00. On the other hand, the three-cycle dy, has eigenvalues 1,1,(3 and ¢3 on V,
SO dim@(V<dox>) = 2. It follows by Theorem 5.1 that no finite index subgroup A; of
Ax(m) = A(m) respects the terms of the sequence (5.1). Therefore, while the Galois
action of some finite index subgroup G of Gg on the f-adic Tate module Ty x(X) can
be extended to an action of A(w), the same cannot be said for the f-adic Tate module
T,(X).



152 F.M. Bleher et al. / Journal of Algebra 607 (2022) 134—159

We next give an example to show that the sufficient condition in Theorem 5.1 is not in
general necessary for the action of Ax () on Ty x(X) to descend to an action on T,(X).

Example 5.4. Let E be the elliptic curve with affine equation y®> = ¢(t — 1), and let
k:E — IP% be the Belyi cover defined by (¢,y) — ¢ in affine coordinates. Then « is
a Galois cover and Gal(E/ IP%) = ps is a cyclic group of order 3, corresponding to the
action of cube roots of unity on F via the complex multiplication of F. Suppose p # 3 is
a prime and that J is a cyclic subgroup of the p-torsion E(Q)[p] that is not stable under
the action of Gal(E/]P%). Define Y = F and let A: Y —» IP% be the Bely! Galois cover
that is the composition of multiplication by p with . Define X to be the quotient Y/J.
Then there is an isogeny ¢ : X — FE such that the multiplication by p map ¥ — FE is
the composition of the quotient morphism Y — X with d. The composition of § with
k is a Belyl cover A : X — IP%. The Galois group H = Gal(Y/ ]P’é) is the semi-direct

product E(Q)[p] % 13, and the normalizer of 7 = Gal(Y/X) in H is W = E(Q)[p]. Thus
D =W/J = Gal(X/E) is the cyclic order p group associated to the isogeny §. Each
of the points 0,1,00 € IP% are totally ramified with respect to k : E —» ]P%, and the
points over them are split under § : X — FE. Thus if V is the trivial one-dimensional
representation of D, then

ny = —dimg(V?) + Y dimg(V®x)) = -14+3=2
jem_l({()vl:m})

and
my = dimg(V?) + [H : W] - dimg(V) =143 = 4.

Hence it is not true that ny is either 0 or my, and the condition in Theorem 5.1 does not
hold. Let us now check that nevertheless the action of Ax (7) descends to Ty(X), i.e. that
this action preserves the terms of (5.1). For this we use that the p-isogeny § : X — F
is induced by the trace element of the group ring Z,[D] and induces a commutative

diagram
o1 (01,000 Ze(1)
1, Ty (X To(X 4
0 diag(Z(1)) P b : o
oty Ze(l
. acr1((0,1,00p) Ze(1) Ty (E) T,(E) 0.

diag(Z,(1))

Since the actions of Ax () and D on Ty »(X) commute, the middle vertical arrow in (5.4)
is equivariant for the action of Ax (7). Suppose that the terms of the top row of (5.4)
are not stable under the action of Ax (7). Then there exists a € Ax () and there exists
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¢ € Ty A(X) with non-zero image in Ty(X) such that «-c has trivial image in 7;(X). The
right vertical arrow in (5.4) is injective, since the elements of D act by translations on the
elliptic curve X and thus they act trivially on the torsion free module Tp(X). Therefore,
the image ¢’ of ¢ under the middle vertical arrow in (5.4) is an element of Ty . (E) with
non-zero image in Ty(E) such that a - ¢ has trivial image in Ty(F). This means that the
terms of the bottom row of (5.4) are not respected by the action of Ax (7). However, we
can now apply Theorem 5.1 to the cyclic morphism k : F — IP% with Galois group pus.
Since « is Galois and all the irreducible characters of uz over Q have dimension 1, the
condition in Theorem 5.1 is automatically satisfied. Hence the action of Ax () respects
the terms in the bottom row of (5.4), which is a contradiction. In other words, the action
of Ax(m) on Ty x(X) descends to an action on Tp(X).

We end this section by proving Theorem 1.1 of the introduction.

Proof of Theorem 1.1. As in the statement of the theorem, suppose ¢ > 1 is an odd

tth

integer. Let ¢ be a primitive ¢t'" root of unity, and let ¥ = E; be the elliptic curve with

affine equation

y? = a(a — 1)z - Q).

Let A\: F — ]P% be the Belyi cover defined by (z,y) — 2! in affine coordinates. Then
A factors as A = ko d where § : E — IF% is given by (z,y) — x, and & : IP% — IP%
is given by x — zt, both in affine coordinates. Over Q, & is a cyclic cover of order t.
Since § : F —» IP% is quadratic, the Galois group H of the Galois closure XY — IP%
of X is a semi-direct product of a cyclic group Z/t of order ¢ with a normal elementary
abelian 2-group G. The Galois group J of the natural morphism z : ¥ — F is an
index two subgroup of G. We can identify G with the Galois group of the morphism
doz:Y — ]P%, where A = ko040 2. Note that G is contained in the normalizer W of J

in H. As before, we let 7 : F, —» H be the surjective homomorphism associated to A

We now apply Theorem 4.1 and Remark 4.2 to X = E. We obtain a finite index
subgroup Ag(m) of A(m) so that Ag(m) acts on the f-adic Tate module Ty »(E). Let
F1 D Q(¢) be a number field over which E' = E¢, Y, Jx(FE), J5(Y) and the action of H
on Y are defined. Then there exists a finite index normal subgroup Ag of Ag(w) such
that the action of Gr, N7 (Ag) on Ty \(E) agrees with the action of Ar under Belyf’s
embedding G, - Aut(ﬁg). Since G, Nt~ (Ag) is a finite index subgroup of G, , there
exists a number field F' containing Fy such that Gr = G, N1~ (Ag). In other words,
Apg contains the image of G under ¢.

We next use the criterion of Theorem 5.1 and Remark 5.2 to show that the action of
Ag(m), and hence the action of Ag, on Ty x(E) descends to an action on T;(E). Let Dy
be the order two subgroup G/J of D = W/J. Let V; be an irreducible representation
of D; over Q. Then the character of V; is either the trivial character or the order two
character of D;. By Remark 5.2, it suffices to show that Q, ®g V1 occurs in at most one
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of the restrictions to D; of the Q,[D]-modules that result from tensoring either the left
or right term of (5.1) with Q, over Z,. Here the action of D; on these terms results from
the elliptic involution associated to 6 : B —» ]P%. This involution acts trivially on each
of the points in A71({0,1,00}) C E, so it acts trivially on the left term of (5.1). On the
other hand, the elliptic involution (z,y) — (2, —y) on E acts as multiplication by —1 on
Ty(E). Therefore, each V7 can occur in only one of the above restrictions, which implies
that Ag(m) acts on Tp(E).

Finally, suppose that the value ¢(t) of Euler’s phi function on ¢t is larger than 24. Let
71 Ap — GL(Q;®z, T;(E)) be the representation of Ag over Q, that is associated to
the action of Ag on Ty(F). It remains to check that the restriction of 7, to any subgroup
between Ag and ((Gp) is absolutely irreducible and non-abelian. For this it will suffice
to show these properties for the representation of Gp over Q, that is associated to the
action of G on Ty(E). By a result of Serre (see [18, Chapter IV]), this will be true as
long as E does not have complex multiplication. Using the formula for the j-invariant of
E = E¢ in [21, Prop. IIL.1.7], we see that

(¢*=¢+1)?°
(G

In particular, j(E) lies in Q(¢) C F. If E has complex multiplication then j(F) lies in
the Hilbert class field of an imaginary quadratic field, which is a dihedral extension of Q.
However, the maximal abelian quotient of such a dihedral group has order 4. Therefore,

i(E) = 256

we only need to ensure that j(E) generates an extension of Q of degree larger than 4.
However, this is the case provided the minimal polynomial of ( has degree greater than
24, which happens if and only if ¢(t) > 24. This completes the proof of Theorem 1.1. O

6. The case of elliptic curves that are Galois covers of ]P‘(lj —{0,1,00}

Suppose X is a Galois H-cover of IP% that is unramified outside {0, 1,00} and asso-

ciated to a surjection 7 : 132 — H. Theorem 5.1 shows that the action of a finite index
subgroup of Gg on the adelic Tate module of the Jacobian of X cannot, in general, be
extended to an action of the finite index subgroup A(r) of Aut(F3). In this section, we
will show that such an extension does always exist when X has genus 1, and that all
such X must be CM elliptic curves. We will also show that when ¢ : Gog — Aut(F)
is the Belyl embedding, the action of «(Gg) N A(m) on the adelic Tate module of the
generalized Jacobian of X has infinite index in the group of automorphisms generated
by A(w), while the corresponding index is finite if we replace the generalized Jacobian
by the Jacobian of X.
Throughout this section we will make the following hypothesis:

Hypothesis 6.1. The morphism A : X — IP% is an H-cover unramified outside {0, 1, oo},

associated to a surjection 7 : F» —s H and an embedding of Q(X) into an algebraic
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closure of Q(t) = @(]P%) The genus of X is 1. There are points Ox, 1x and cox of X

over 0, 1 and co on PL such that the corresponding inertia groups Ip,, I, and I
SatiSfy |IOX| > |I1x| > |IOOX|

Note that we can always arrange for the last property to hold by composing A with
an automorphism of ]P% which permutes {0,1,00}. In the notation of the previous two

sections, we are assuming that X =Y is its own Galois closure over ]P% and that A = X,
which implies that Ax (7)) = A(n).

Here are some examples which are easily checked using Hurwitz’s theorem (see [9,
§IV.2]).

Example 6.2. Let d € {3,6,4}. Suppose (a, b, d) is a triple of integers in the set
{(1,1,3),(2,2,3),(1,2,6), (5,4,6),(1,1,4),(3,3,4) }.

Let X be the curve with affine equation y¢ = t*(t — 1)® and let A pq: X — ]P% be the

map sending (y,t) to t. Fix a root of unity (4 of order d in Q. Then Hypothesis (6.1)
holds with A = A\, 4 and the generator 1 of H, 4 = Z/d sending y to (4y. Note that
the isomorphism class of X as an H, j 4-cover of PL depends on the choice of (4. There
is a unique point Ox over 0 on X, and Iy, = Hypa- The ordered pair (|11, |loox])
equals (3,3) if d =3, (3,2) if d =6 and (4,2) if d = 4. The elliptic curve X with origin
0x is isomorphic to an elliptic curve over Q with complex multiplication by the ring of
integers Z[(q] of Q({4), and all such elliptic curves are isomorphic.

Proposition 6.3. Let X be as in Hypothesis 0.1, so that X is an elliptic curve with origin
Ox. Then A can be factored as a finite étale isogeny A1 : X — X followed by one of the
morphisms Agpa : X — ]P% defined in Example 6.2. The group H is the semi-direct
product of Hy p.q = Z/d with the kernel J of \1. We can identify J with an Hg p 4-stable
submodule of the torsion points of X as an elliptic curve. Conversely, any such finite
H, b q-stable subgroup of torsion points can be taken to be the kernel of a Ay of the above
kind, leading to a cover A : X —» IP% as in Hypothesis 6.1. The action of Hypq on
torsion points agrees with the action of ((q) when we identify the Kummer action of the
generator 1 of Hg pq with complex multiplication by (q.

Proof. By Hurwitz’s Theorem,

0=29(X)—2=|H\'(—2)+‘ [H = Ijx] - ([Tjx | = 1)

It follows that

1= > 1Lyl (6.1)
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This forces |I;,| > 3 for some j, so d = |Io, | > 3 since Iy, has the largest order of any
inertia group. Fix an identification of Iy, with Z/d. The generator 1 of Iy, then acts on
X via complex multiplication by a root of unity (; of order d. This forces d € {3,6,4}.
Now (6.1) together with the inequalities d = |lo | > [T1| > [Tooy | force (|I14]; | 1oox |)
to be (3,3) if d = 3, (3,2) if d = 6, and (4,2) if d = 4. If d = 6 or d = 4, the group I,
of automorphisms of X fixing Ox is equal to Ip,. If d = 3, Ij is cyclic of order 6 and
generated by Iy, together with the multiplication by —1 map z : X — X.

Let T be the group of elements of H which are translations X — X relative to the
group law of X. Suppose h is an arbitrary element of H. Then h(0x) = t(0x) for some
translation ¢ : X — X, where we do not claim at this point that ¢ € 7. Moreover,
tloh=1:X — X is an automorphism of X which fixes 0x. So ¢ is a unit in the
endomorphism ring of X as an elliptic curve. If d = 6 or 4, all such units are produced
by powers of a generator of Iy, , so it follows that ¢ € Iy, and ¢t € 7. Thus in this case,
H is the semi-direct product of Iy, with the normal subgroup 7 of H.

Suppose now that d = 3. Then ¢ € Iy, or 271 o1 € Iy,. We find that in this case,
h=toL=tol whereeithert =t € T and 1 =7 € Iy, ort=tozandT=z2ltor€ Iy, .
Suppose the alternative ¢ = t o z occurs. Then t = toz = ho7 ! lies in H. In this case

there would be a point 7 € X such that ¢(P) = —P + 7 for all P € X. Hence, t(7') = 7/
for all points 7/ € X satisfying 7/ + 7/ = 7 with respect to the group law on X. Since ¢
is the identity, we would then have some points of X with inertia groups of even order,
which we have shown does not occur when d = 3. So in fact, h =t o with ¢ € T and
t € Iy, . This implies H is the semi-direct product of Iy, with 7 in all cases.

Recall that the action of the generator 1 of Iy, = Z/d on X defines the complex
multiplication of X corresponding to (y4. Since 7T is stable under the conjugation action
of Iy, , T is the group of translations associated to a subgroup J(7) of torsion points on
X which is stable under the action of Z[(;]. We have a T-Galois isogeny A1 : X — X' =
X/T = X/J(T),and X' is an elliptic curve over Q with complex multiplication by Z[(4].
Therefore X’ is isomorphic to X. The morphism Ay : X' = X/T — IP% induced by
A X — IP% defines an H/T Galois cover of ]P% which is unramified outside {0, 1, co}.
Furthermore the order of the inertia group of H/T at a point of X’ over j € {0, 1,00}
must be the same as the order of I;, since A\; : X — X’ is étale. Since X' is isomorphic
to X and H/T is isomorphic to Iy, , Kummer theory shows that Ay : X' — IP% must
be H/T-isomorphic to a unique Z/d-cover Agpq: X — ]Pé appearing in Example 6.2
when we identify H/T with Iy, and Iy, with Z/d. The H-cover X — IP% we started
with then results from the isogeny X — X’ = X/T followed by Ay p.q- O

Theorem 6.4. With the notation of Proposition 6.3, the action of A(m) on the Tate module
T\(X) of the generalized Jacobian descends to an action of A(m) on T(X) which respects
the action of Z[(4]. Let F be a number field such that «(Go)NA(m) = «(GF). The action of
(Go)NA(T) on Tx(X) defines an infinite index subgroup of the group of automorphisms
of Tx\(X) induced by A(m). The action of «(Gg) N A(m) on T(X) defines a finite index
subgroup of the group of automorphisms of T(X) induced by A(w).
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Proof. By Proposition 6.3, X is an elliptic curve with complex multiplication by Z[( ]
for an integer d € {3,4,6}. The group H is the semi-direct product of a group T of
translations on X with a cyclic group I of order d, with a generator of I acting by
complex multiplication by (4. The action of 7 on the adelic Tate module T'(X) is trivial.
So the action of H on T(X) factors through H/7 = I and corresponds to the action of
complex multiplication. Therefore, in the sequence (5.1) the action of H on Q,®z, Ty(X)
gives two (non-trivial) one dimensional characters. Hence, by Theorem 5.1, the action of
A(m) on T (X) descends to an action on T'(X).
Therefore, we have an action of A(7) on the submodule

Hze)\*l({O,l,oo}) Z€(1>
diag(Z(1))

of Ty »(X) appearing in the sequence (5.1). This submodule contains the rank one Z,-
modules M; with trivial action by H that are the images of Z,(1) diagonally embedded
in

II z«

zEATT(H)

for j € {0,1,00}. In particular, Q; ®z, My and Q,; ®z, M; define two distinct one-
dimensional Q[H]-submodules of Q; ®z, Ty (X ) with trivial H-action. Since Q¢ ®z,
To A (X) = Q®dQ[H], there exists a nilpotent Q,[H]-module endomorphism f of Q,®z,
Ty A(X) that sends Q; ®z, My isomorphically to Q; ®z, M7 and that sends all other
irreducible Q[H]-module summands of Q; ®z, Tr x(X) to zero. Multiplying f with a
sufficiently large positive integer, say my, we obtain that my - f is a nilpotent Z,[H]-
module endomorphism of Ty »(X) that sends M to a non-zero submodule of M. If mo
is the largest power of ¢ dividing |H]|, it then follows that mims - f is a nilpotent Z,[H]-
module endomorphism of Tp »(X) that sends My to a non-zero submodule of M; and
that sends any extension class in H?(H, Ty x(X)) to zero. Since Ty y(X) is the maximal
pro-{ quotient of R = T)(X), we can write Ty \(X) = R/ I, for a characteristic subgroup
fz of R. It follows from Theorem 2.1 that idr, , (x) + mima - f is an automorphism of
Ty A (X) that is induced by an element of A(7) = A(mw, D) Moreover, idy, , (x)+mims- f
generates a subgroup of this automorphism group that is isomorphic to Z and every
non-trivial element of this subgroup sends Mj to a non-zero submodule of M;.

Since A(r) is a finite index subgroup of Aut(F}), it follows that there exists a number
field F' such that «(Gg) N A(m) = «(GF). Since G cannot send points over 0 to points
over 1 or oo, the action of Gr = GgNt™(A(n)) on Ty A (X) preserves My and M;. By the
above construction of idr, , (x) +mimz - f, this implies that the action of (Gg) N A(T)
on T)\(X) defines an infinite index subgroup of the group of automorphisms of T)(X)
induced by A(w).

We now compare the actions of Gp and A(w) on T(X). The action of Z[(4] on X
by complex multiplication makes T'(X) a rank one free module for 7 ®z Z[Cd] = i[(d].
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The action of A(r) on T(X) respects the action of H, and the action of H corresponds
to the action of complex multiplication. On picking a basis for T'(X) as a rank one free
module for Z[ﬁd], we see that the action of A(w) on T'(X) is defined by a homomorphism
xa 1 A(T) — Z[¢4)*. Similarly, the action of G on T(X) is defined by a homomorphism
xr : Gp — Z[Cd]*. When ¢ : Go — Aut(ﬁg) is the Bely! embedding, we know by
Corollary 4.3 that, after enlarging F' by a finite extension, we have xp = x4 o t|g.-
Hence, the image of xp is contained in the image of xy 4. On the other hand, the main
theorem of complex multiplication (see [20, Thm. 5.4]) shows that the image of xr has
finite index in Z[Cd]*. Therefore, the image of xr has finite index in the image of y 4 and
the proof is complete. O
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