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1. Introduction

Let GQ = Gal(Q/Q) be the absolute Galois group of the field Q of rational numbers. 

Let A = Aut(F̂2) be the automorphism group of the free profinite group F̂2 on two 

generators. Bely̆ı showed in [2] that there is a canonical embedding ι of GQ into A (see 

§3 for details). In [3], Drinfel’d defined the so-called Grothendieck-Teichmüller group 

whose profinite version ĜT is a certain subgroup of A that contains the image of GQ

under ι. For background on ĜT and on variants of this group, see [8,17] and [13]. Thus 

ι(GQ) ≤ ĜT ≤ A, and much effort has been dedicated to understanding the connection 

between GQ and ĜT . It is known that every homomorphism from GQ to an abelian 

group can be extended to ĜT (see, for example, [17, §1.4(6)]) but no similar result is 

known for non-abelian quotients. In [13, p. 179], Lochak and Schneps wrote that “no 

irreducible non-abelian representation of any version of (the Grothendieck-Teichmüller 

group) has been constructed to date.” The goal of this paper is to address this challenge. 

Our main results will show that many naturally constructed representations of GQ can 

be extended to ĜT , at least virtually, i.e. to a finite index subgroup. The main point of 

our work is that instead of trying to extend a representation from GQ to ĜT , we extend 

it further all the way to a representation of a finite index subgroup of A = Aut(F̂2), and 

thus in particular to a finite index subgroup of ĜT . What makes this possible is adapting, 

to the profinite world, the work of Grunewald and Lubotzky in [7]. They constructed 

many linear representations of the discrete group Aut(Fd) and showed that these provide 

surjections of Aut(Fd) onto various arithmetic groups. It turns out that the analogous 

profinite theory is easier than the discrete one (see below) and leads to stronger results. 

In particular, this approach works for A = Aut(F̂2), while the discrete theory has given 

interesting results for Aut(Fd) only when d ≥ 3. As an illustrative example, we will show 

the following result in connection with the challenge of Lochak and Schneps:

Theorem 1.1. Suppose t > 1 is an odd integer. Let ζ be a primitive tth root of unity, and 

let Eζ be the elliptic curve with affine equation

y2 = x(x − 1)(x − ζ).

There is a number field F over which Eζ is defined, with the following property for 

every prime �. The action of the finite index subgroup GF = Gal(Q/F ) of GQ on the 

�-adic Tate module T�(Eζ) can be extended to an action of a finite index subgroup AEζ

of A that contains the image of GF under the Bely̆ı embedding ι : GQ −→ A. Let 

τζ,� : AEζ
−→ GL(Q� ⊗Z�

T�(Eζ)) be the associated representation of AEζ
over Q�. 

Suppose the value φ(t) of Euler’s phi function on t is larger than 24. Then the restriction 

of τζ,� to any subgroup between AEζ
and ι(GF ) is absolutely irreducible and non-abelian. 

This is true, in particular, for the restriction of τζ,� to the finite index subgroup ĜT ∩AEζ

of ĜT .
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We now state a more general result concerning arbitrary smooth projective curves 

X defined over Q. By a theorem of Bely̆ı [1, Theorem 4], X can be realized as a cover 

λ : X −→ P 1
Q

that is unramified outside {0, 1, ∞}. Suppose F is a number field over 

which X, the points in λ−1({0, 1, ∞}) and the generalized Jacobian Jλ(X) of X with 

respect to λ−1({0, 1, ∞}) are defined. Let T�,λ(X) denote the �-adic Tate module of 

Jλ(X). This is a Z�-module of rank 2 genus(X) + |λ−1({0, 1, ∞})| − 1. The finite index 

subgroup GF = Gal(Q/F ) of GQ acts naturally on T�,λ(X) and on the adelic Tate 

module

Tλ(X) :=
∏

� prime

T�,λ(X)

of Jλ(X). This gives rise to Galois representations, which we denote by

ρX,� : GF −→ GL(T�,λ(X)) and ρX : GF −→ GL(Tλ(X)).

Theorem 1.2. There is a representation ρ̃X : AX −→ GL(Tλ(X)) of a finite index sub-

group AX of A that agrees with ρX on the finite index subgroup GF ∩ ι−1(AX) of GF . In 

particular, the same holds for every ρX,� that is extended to ρ̃X,� : AX −→ GL(T�,λ(X)).

To prove Theorem 1.2, let us recall the results in [7], which are not needed here, but 

which were the inspiration for the current work. In that paper, the following situation 

was studied. Let F = Fd be the free group on d ≥ 2 generators and let π : Fd −→ H

be an epimorphism onto a finite group H, with R = Ker(π). Let A = Aut(Fd) and 

A(π) = {α ∈ A : π ◦ α = π}. The finite index subgroup A(π) of A preserves R. Hence, 

we get a linear representation ρπ : A(π) −→ GL(R), where R = R/[R, R] is a Z-module 

of rank |H|(d −1) +1. The image of ρπ is inside the arithmetic group of all the H-module 

automorphisms of R. The main result of [7] is the claim that under some technical 

condition on π (“π is redundant”) ρπ(A(π)) is, after projectivization, an arithmetic 

group. This provides a rich class of arithmetic virtual quotients of A = Aut(Fd).

In §2, we develop the analogous profinite theory for all d ≥ 1. Let π now be a con-

tinuous epimorphism π : F̂d −→ H, and let A(π) = {α ∈ Aut(F̂d) : π ◦ α = π}. Let 

R = Ker(π). Then R = R/[R, R] is a Ẑ[H]-module giving rise to ρ : A(π) −→ GL(R). 

The result here is stronger than in the discrete case and without any assumption:

Theorem 1.3. For every d ≥ 1 and every such π, the image ρ(A(π)) equals the subgroup 

AutH,β(R) of all Ẑ[H]-module automorphisms of R preserving the extension class β of 

the short exact sequence

1 −→ R −→ F̂d/[R, R]
π
−→ H −→ 1 (1.1)

where π is induced by π.
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See Theorem 2.1 below for an even more general result. This theorem is deduced from 

a powerful lemma of Gaschütz which holds for (pro)finite groups but not for discrete 

groups. This explains why Theorem 1.3 does not hold in general for discrete groups; see 

also [7, Prop. 9.7].

Theorems 1.2 and 1.3 are connected with each other because of Bely̆ı’s theorem. Let 

H be the Galois group of the normal closure λ̃ : Y −→ P 1
Q

of a Bely̆ı cover λ : X −→ P 1
Q

, 

and let J be the Galois group of Y over X. The étale fundamental group of P 1
Q

−{0, 1, ∞}

with respect to a geometric base point is naturally isomorphic to the free profinite group 

F̂2. Letting π : F̂2 −→ H be the homomorphism associated to λ̃, we get from Theorem 1.3

a lift to a finite index subgroup of A(π) of the action of a subgroup of finite index in 

GQ on Tλ̃(Y ). Taking J -coinvariants of this lift and then dividing by the finite torsion 

subgroup of these coinvariants leads to Theorem 1.2; see Theorem 4.1 for details.

One natural question is whether similar results hold if one replaces the adelic Tate 

module Tλ(X) of the generalized Jacobian of X with respect to the ramification locus 

of λ : X −→ P 1
Q

with the adelic Tate module T (X) of the Jacobian of X. Using Theo-

rem 1.2, we will give in §5 a sufficient condition for the lift of the action on Tλ(X) which 

we construct to descend to an action on T (X); see Theorem 5.1. If X = Y then this 

condition is also necessary. The condition is not always satisfied, but it is if, for example, 

the Galois group H of the normal closure of λ is abelian. Theorem 1.1 is proved by 

applying Theorem 5.1 to a suitable Bely̆ı cover when X = Eζ .

Theorem 1.3 gives the precise image of A(π) in GL(R) and hence also in GL(Tλ(X)). 

It is of interest to compare it with the image of GF in GL(Tλ(X)). In §6 we analyze the 

case in which X has genus 1 and λ : X −→ P 1
Q

is Galois.

We end this introduction with some comments and questions. The main open question 

concerning the Grothendieck-Teichmüller group ĜT is whether there is a variant of this 

group that is equal to the image of GQ under the Bely̆ı embedding ι : GQ −→ A. 

If this is true then every linear representation of GQ must lift to the variant of ĜT . 

In view of Theorems 1.1 and 1.2 above, it would be interesting to find other natural 

representations of finite index subgroups of GQ that lift to representations of finite 

index subgroups of A. For example, the Galois representations provided by the adelic 

Tate modules of the Jacobians of modular curves arise in the theory of modular forms of 

weight two for congruence subgroups of PSL2(Z); see, for example, [20] and [10]. It would 

be interesting if other Galois representations provided by modular forms of other weights, 

and more generally by Λ-adic modular forms, have lifts to finite index subgroups of A. 

At a minimum, one would like to check whether such representations can be lifted to 

finite index subgroups of the Grothendieck-Teichmüller group ĜT . For related questions 

of this kind, see the end of [13, §1].
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2. A construction of linear representations of Aut(F̂d)

Let π : F̂d −→ H be a continuous epimorphism from F̂d to a finite group H, and 

let R be the kernel of π. Define R = R/[R, R] to be the maximal abelian quotient of 

R. Then R is isomorphic to Ẑ|H|(d−1)+1 where Ẑ is the profinite completion of Z. We 

consider surjections R −→ R̃ whose kernel Ĩ is a closed normal subgroup of F̂d containing 

[R, R], so that R̃ is a quotient of R. We will be interested in constructing large linear 

representations of the group

A(π, Ĩ) = {α ∈ Aut(F̂d) : π ◦ α = π and α(Ĩ) = Ĩ} (2.1)

where we set A(π) = A(π, [R, R]). Since F̂d is finitely generated as a profinite group, 

there are finitely many surjections F̂d −→ H, and A(π) is of finite index in Aut(F̂d). In 

general, A(π, Ĩ) need not have finite index in Aut(F̂d), but it will if Ĩ is a characteristic 

subgroup of R.

We have an exact sequence

1 −→ R̃ −→ F̂d/Ĩ −→ H −→ 1 (2.2)

with some extension class β ∈ H2(H, R̃). Since R̃ is abelian and profinite, there is a 

well-defined continuous action of H on R̃. This gives rise to a linear representation 

ρ : A(π, Ĩ) −→ GL(R̃).

Let AutH(R̃) be the group of continuous automorphisms of R̃ that commute with the 

action of H. Each element of AutH(R̃) induces an automorphism of H2(H, R̃). We define

AutH,β(R̃) = {γ ∈ AutH(R̃) : γ∗(β) = β}. (2.3)

Since R̃ is a quotient of a finitely generated Ẑ-module, H2(H, R̃) is finite, and AutH,β(R̃)

has finite index in AutH(R̃).

We will prove the following result, which implies Theorem 1.3.

Theorem 2.1. For every d ≥ 1 and every π and Ĩ, the image ρ(A(π, Ĩ)) equals AutH,β(R̃). 

In other words, the action of A(π, Ĩ) on R̃ gives a surjection

A(π, Ĩ) −→ AutH,β(R̃). (2.4)
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This construction is the profinite analog of the one used in [7] to construct linear 

representations of Aut(Fd). Note, though, that Theorem 2.1 shows that in the profinite 

case the representation is surjective. In the discrete case this may not be true; see [7, 

Prop. 9.7]. Here is a concrete example.

Example 2.2. Let H be a cyclic group of prime order p, and let k = Q(ζp) for a primitive 

pth root of unity ζp in Q. Suppose π : Fd −→ H is a surjection with kernel R. In this case, 

Q ⊗Z R/[R, R] is isomorphic to Q[H]d−1 ⊕ Q as a Q[H]-module, i.e. to kd−1 ⊕ Qd (see, 

for example, [6, §2]). Theorem 1.4 of [7] implies that if d ≥ 3, the finite index subgroup 

A(π) of A = Aut(Fd) has a “large” image in the H-module automorphism group of 

kd−1 ⊕ Qd in the following sense. After choosing a suitable basis for Q ⊗Z R/[R, R] ∼=

kd−1 ⊕ Qd, the Z[H] submodule R/[R, R] is commensurable with Z[ζp]d−1 ⊕ Zd, where 

a chosen generator h ∈ H acts on Z[ζp] by multiplication by ζp and h acts trivially 

on Z. The intersection of ρπ(A(π)) with GLd−1(Z[ζp]) × GLd(Z) has finite index in 

ρπ(A(π)), and the intersection ρπ(A(π)) ∩ (SLd−1(Z[ζp]) × SLd(Z)) is of finite index in 

SLd−1(Z[ζp]) × SLd(Z). This way it is shown in [7] that Aut(Fd) has many arithmetic 

subgroups as quotients. It was left open in [7] whether the image ρπ(A(π)) is of finite 

index even in GLd−1(Z[ζp]) ×GLd(Z). This is the question “(SL) or not (SL)?” discussed 

in [7, §8]. By using the recently proved result that Aut(Fd) has Kazhdan property (T) 

for d ≥ 4 (see [12], [11], [15]), so that the abelianization of each finite index subgroup 

is finite, it follows that (at least when d ≥ 4), the answer to the “(SL) or not (SL)?” 

question is (SL). In other words, the image there is always commensurable with the SL 

group. So it is of infinite index in GLd−1(Z[ζp]) × GLd(Z) if p > 3.

Theorem 2.1 gives a more precise and stronger result in the category of profinite 

groups. As remarked above, R = R/[R, R] ∼= Ẑ(d−1)p ⊕ Ẑ. Concerning the action of 

H, we can prove a more precise statement if we divide R by its pro-p Sylow subgroup 

R(p) (i.e. by the Zp-factors). Let Ĩ be the inverse image of R(p) under the natural map 

R −→ R. Define

Ẑ(p) = Ẑ/Zp
∼=

∏

� �=p

Z�.

Then R̃ = R/R(p) = R/Ĩ is isomorphic to Ẑ
|H|(d−1)+1
(p) but this time we can say that R̃ is 

isomorphic to Ẑ(p)[H]d−1 ⊕ Ẑ(p)
∼= Ẑ(p)[ζp]d−1 ⊕ Ẑd

(p) as an H-module since |H| is a unit 

in Ẑ(p). Theorem 2.1 implies that A(π, Ĩ), which is a finite index subgroup of Aut(F̂d), 

is mapped onto GLd−1(Ẑ(p)[ζp]) × GLd(Ẑ(p)). (Note that SLd−1(Ẑ(p)[ζp]) × SLd(Ẑ(p)) is 

of infinite index in GLd−1(Ẑ(p)[ζp]) × GLd(Ẑ(p)).)

More examples of this kind can be worked out by considering the various examples 

studied in [7]. The advantage of Theorem 2.1 over [7, Theorem 4.1] is that it gives the 

exact image (and not only up to a finite index subgroup as in [7], and only under some 

additional assumptions on H and π). It implies that the question “(SL) or not (SL)?” 
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from [7, §8] has a clear answer here: it is never just SL. Moreover, a careful look at 

Example 2.2 shows that not only Aut(F̂d) has an infinite abelianization, since it clearly 

surjects onto GLd(Ẑ) and hence onto Ẑ∗, but that also Aut1(F̂d), which is defined as 

the preimage of SLd(Ẑ), has a finite index subgroup with an infinite abelianization. This 

implies (at least for d ≥ 4) that Aut1(Fd) is not dense in Aut1(F̂d), since the former has 

property (T).

To prove Theorem 2.1 we need the following well-known result of Gaschütz; see [5]

and [4, Lemma 17.7.2].

Lemma 2.3. Suppose ψ : G1 −→ G2 is a continuous surjective group homomorphism of 

profinite groups. Suppose S2 is a finite set of generators of G2 with |S2| = d, and that 

the minimal number of generators of G1 is less than or equal to d. Then there exists a 

set of generators S1 of G1 such that ψ(S1) = S2.

This lemma has the following easy corollary (compare to [14, §2]).

Corollary 2.4. If N is a closed normal subgroup of F̂d, then every automorphism of F̂d/N

can be lifted to an automorphism of F̂d preserving N . In particular, this holds for N = R.

The identification of second group cohomology classes with equivalence classes of 

group extensions shows the following result.

Lemma 2.5. Assume B is an abelian H-module and that there is a short exact sequence

1 B H̃ H 1. (2.5)

Let β̃ ∈ H2(H, B) be the extension class of this sequence. Let γ : B −→ B be an H-

module automorphism. Then γ fixes β̃ if and only if there is a diagram of automorphisms

1 B

γ

H̃

γ̃

H 1

1 B H̃ H 1

(2.6)

in which the right vertical isomorphism is the identity map on H.

Proof of Theorem 2.1. An element of A(π, Ĩ) = {α ∈ Aut(F̂d) : π ◦α = π and α(Ĩ) = Ĩ}

induces an automorphism of the sequence (2.2) which is the identity on H. Therefore, 

Lemma 2.5 implies that the restriction of this element to R̃ lies in AutH,β(R̃). We now 

suppose that γ is an element of AutH,β(R̃). By Lemma 2.5, there is an automorphism γ̃

of F̂d/Ĩ that fits in a diagram of automorphisms
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1 R̃

γ

F̂d/Ĩ

γ̃

H 1

1 R̃ F̂d/Ĩ H 1.

(2.7)

By Corollary 2.4, we can lift γ̃ to an automorphism α of F̂d. This lift will lie in A(π, Ĩ), 

which shows that the homomorphism in Theorem 2.1 is surjective. �

3. Bely̆ı’s construction of an injection Gal(QQQ/QQQ) −→ Aut(F̂2)

In this section, we review a construction of Bely̆ı in [1,2,8] of an injection ι :

Gal(Q/Q) −→ Aut(F̂2) which is essential to our work. An explicit description of this 

construction is needed, in particular, to show that on passing to a finite index subgroup, 

it is compatible with the actions of Gal(Q/Q) and Aut(F̂2) on the generalized Jacobians 

of curves.

We will identify Q(P 1
Q) with Q(t) for a fixed choice of affine parameter t. Then Q(P 1

Q
)

is identified with Q(t). Let Q(t)cl be a fixed algebraic closure of Q(P 1
Q

) = Q(t). We have 

an exact sequence of étale fundamental groups

1 −→ π1(P 1
Q

− {0, 1, ∞}, η) −→ π1(P 1
Q − {0, 1, ∞}, η) −→ Gal(Q/Q) −→ 1 (3.1)

when η : Spec(Q(t)cl) −→ P 1
Q

− {0, 1, ∞} is the geometric point determined by Q(t)cl. 

This gives a homomorphism Gal(Q/Q) −→ Out(π1(P 1
Q

− {0, 1, ∞}, η)). Bely̆ı showed in 

[1,2] how one can lift this homomorphism to an injection

ι : Gal(Q/Q) −→ Aut(π1(P 1
Q

− {0, 1, ∞}, η)) (3.2)

in the following way.

Let L be the maximal extension of Q(t) contained in Q(t)cl that is unramified outside 

{0, 1, ∞}. Define

ΓQ = Gal(L/Q(t)) = π1(P 1
Q

− {0, 1, ∞}, η).

Let x and y be topological generators of decomposition groups in ΓQ over 0 and 1. These 

decomposition groups correspond to projective systems {Pi,0}i and {Pi,1}i of discrete 

valuations over 0 and 1, respectively, in a countable cofinal system indexed by i of finite 

extensions of Q(t) in L. The topological fundamental group of P 1(C) − {0, 1, ∞} is the 

free group generated by loops around 0 and 1. It follows that the group ΓQ is the profinite 

completion 〈̂x, y〉 of the free group generated by x and y.

For σ ∈ Gal(Q/Q), we lift σ canonically to an element of Gal(Q(t)/Q(t)) by letting 

σ fix t. Choose a further lift σ̃ of σ to Aut(L/Q(t)) ⊂ Aut(L/Q). There is a transitive 



142 F.M. Bleher et al. / Journal of Algebra 607 (2022) 134–159

action of ΓQ on the discrete valuations of any finite Galois extension of Q(t) in L that lie 

over the discrete valuation of Q(t) associated to the point 0. It follows that there is an 

element γ ∈ Gal(L/Q(t)) such that γ({Pi,0}i) = σ̃({Pi,0}i). Then conjugation by γ−1σ̃

takes the profinite group 〈̂x〉 generated by x back to itself.

Define

ΓQ = Gal(L/Q(t))

and let [ΓQ, ΓQ] be the commutator subgroup of ΓQ ⊂ ΓQ. When we set

Γ̃Q =
ΓQ

[ΓQ, ΓQ]

we have an exact sequence

1 −→ Γab
Q

−→ Γ̃Q −→ Gal(Q/Q) −→ 1 (3.3)

where

Γab
Q

= ΓQ/[ΓQ, ΓQ] = 〈̂x, y〉
ab

∼= 〈̂x〉 × 〈̂y〉

and we have identified Gal(Q(t))/Q(t)) with Gal(Q/Q).

Let D(y) be the subgroup of ΓQ which fixes the projective system {Pi,1}i of points 

lying over 1. Since the residue field of the point 1 on P 1
Q

is Q, we have an exact sequence

1 −→ 〈̂y〉 −→ D(y) −→ Gal(Q/Q) −→ 1.

We have an injective homomorphism 〈̂y〉 −→ Γab
Q

induced by the inclusion of 〈̂y〉 into 

ΓQ. It follows that the homomorphism D(y) −→ Γ̃Q induced by D(y) ⊂ ΓQ is injective; 

let D(y) be the image of this homomorphism. For simplicity we will identify 〈̂x〉 and 〈̂y〉

with their images in Γab
Q

.

We now claim that 〈̂x〉 is a set of representatives for the left cosets zD(y) of D(y)

in Γ̃Q. First, these cosets are disjoint, since if zD(y) = z′D(y) for some z, z′ ∈ 〈̂x〉

then z−1z′ is in the intersection of D(y) with the kernel of Γ̃Q −→ Gal(Q/Q). This 

intersection is

D(y) ∩ Γab
Q

= 〈̂y〉 ⊂ Γab
Q

= 〈̂x〉 × 〈̂y〉.

The only element of 〈̂x〉 lying in this intersection is the identity element, so z = z′. We 

must now show that every element ψ of Γ̃Q lies in some coset zD(y) with z ∈ 〈̂x〉. To 

show this, first note that we can find d ∈ D(y) with the same image under Γ̃Q −→
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Gal(Q/Q) as ψ. Then ψd−1 ∈ Γab
Q

= 〈̂x〉 × 〈̂y〉, so ψd−1 ∈ z〈̂y〉 for some z ∈ 〈̂x〉. Hence, 

ψ ∈ z〈̂y〉d ⊂ zD(y) and we are done.

We now return to the element γ−1σ̃ of ΓQ. The image of this element in Γ̃Q lies in a 

coset νD(y) for a unique ν ∈ 〈̂x〉. Therefore, ν−1γ−1σ̃ ∈ ΓQ has the same image in Γ̃Q

as an element μ of D(y), and μ is unique since ν was unique and the map D(y) −→ D(y)

is an isomorphism. Hence, ν−1γ−1σ̃ = λ · μ for a unique λ in the commutator subgroup 

[ΓQ, ΓQ] of ΓQ. Since ν was uniquely determined by γ−1σ̃, both λ and μ are as well. 

The intersection of [ΓQ, ΓQ] with D(y) is trivial. It follows that σ′ = ν−1γ−1σ̃ = λ · μ is 

a lift of σ to Gal(L/Q(t)) = ΓQ that has these properties:

i. Conjugation by σ′ takes 〈̂x〉 to itself, so σ′ · x · (σ′)−1 = xa for some a ∈ Ẑ∗.

ii. Conjugation by σ′ takes 〈̂y〉 to a conjugate λ〈̂y〉λ−1 = (λμ)〈̂y〉(λμ)−1 of 〈̂y〉 by an 

element λ of the commutator subgroup [ΓQ, ΓQ]. Thus σ′ · y · (σ′)−1 = (λ · y · λ−1)b

for some b ∈ Ẑ∗.

By considering the action of σ′ by conjugation on Γab
Q

, one sees by Kummer theory 

that a = b = χcyc(σ) where χcyc is the standard cyclotomic character. Bely̆ı shows that 

〈̂x〉 and 〈̂y〉 are their own centralizers in ΓQ, from which it follows that σ′ is uniquely 

determined by σ. Bely̆ı denotes λ by fσ, and the Bely̆ı lift

ι : Gal(Q/Q) −→ Aut(ΓQ) = Aut(〈̂x, y〉)

is defined by letting ι(σ) be conjugation by σ′.

For later use, we will describe one consequence of this construction. Suppose F is 

a number field and that Y −→ P 1
Q

is an irreducible finite Galois H-cover of smooth 

projective irreducible curves that is unramified outside {0, 1, ∞}. Suppose Y and the 

action of H on Y are defined over F , and that F is algebraically closed in the function 

field F (Y ). We will furthermore require that the points over 0, 1 and ∞ on Y are defined 

over F . Recall that η corresponds to the choice of an algebraic closure Q(t)cl of Q(t). 

We fix an embedding of F (Y ) into Q(t)cl.

Lemma 3.1. We can find a finite extension F † of F so that if σ ∈ Gal(Q/F †) then the 

element σ′ in the Bely̆ı construction of ι(σ) lies in Gal(L/F †(Y )).

Proof. If σ ∈ Gal(Q/Q) lies in the finite index subgroup Gal(Q/F ), we can extend σ

in a unique way to an element of Gal(Q(Y )/F (Y )). We can thus choose the first lift 

σ̃ ∈ Aut(L/Q) in Bely̆ı’s construction so that σ̃ ∈ Gal(L/F (Y )). Recall that {Pi,0}i

was a cofinal system of points over 0 in a cofinal system of finite covers of P 1
Q

that are 

unramified outside 0, 1 and ∞. We can assume that Y is one of the covers in this system, 

and that all the covers in the system are in fact covers of Y . Let 0Y be the point of Y

lying over 0 which appears in the system {Pi,0}i. Since σ̃ fixes Y and 0Y , we see that 

{σ̃(Pi,0)}i is a system of points over 0 which all lie over 0Y . It follows that the first element 
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γ ∈ Gal(L/Q(t)) in Bely̆ı’s construction can be chosen to lie in Gal(L/Q(Y )). However, 

we cannot say that the next element ν in Bely̆ı’s construction lies in Gal(L/Q(Y )). We 

now indicate some further hypotheses that will force this to be the case.

Let s be the exponent of the finite group H, i.e. the smallest positive integer such 

that every element of H has order dividing s. There is an abelian cover U of P 1
Q

that is 

unramified outside {0, 1, ∞} and whose Galois group over P 1
Q

is isomorphic to the group 

Z/s × Z/s. Any automorphism in Gal(L/Q(U)) then has image in Gal(L/Q(t))ab =

〈̂x, y〉
ab

∼= 〈̂x〉 × 〈̂y〉 which is an sth power. Let F † be a finite extension of F with the 

following properties. The composite of Q(U) and Q(Y ) in L is the function field of a 

smooth projective irreducible curve Y † that is defined over F †. The action of H† =

Gal(Q(Y †)/Q(t)) is defined over F †. The points of Y † over {0, 1, ∞} are defined over 

F †, and F † is the constant field of F †(Y †). Then Y † is a cover of Y and H is a quotient 

of H†. Running Bely̆ı’s construction now with Y replaced by Y † and F replaced by F †, 

we arrive at a lift σ̃ ∈ Gal(L/F †(Y †)) and an element γ ∈ Gal(L/Q(Y †)).

We now recall that ν is the unique element of 〈̂x〉 such that the image of γ−1σ̃ in 

Γ̃Q = ΓQ/[ΓQ, ΓQ] lies in the image in Γ̃Q of the coset νD(y) of the decomposition 

group D(y) of the inverse system of points {Pi,1}i over 1. We can assume that the 

inverse system of covers used to define {Pi,1}i includes U and Y and Y †. Since we have 

arranged that γ−1σ̃ fixes F †(Y †) and that the points over {0, 1, ∞} on Y † are defined 

over F †, the action of γ−1σ̃ fixes the point PU,1 of the cover U over 1 in the above 

inverse system. Now, U is an abelian cover of P 1
Q

and γ−1σ̃ has the same image in 

Γ̃Q as νz for some z in D(y). Since D(y) fixes the inverse system {Pi,1}i, we conclude 

that ν ∈ 〈̂x〉 must fix PU,1 because γ−1σ̃ does. Therefore, the image of ν ∈ 〈̂x〉 ⊂ ΓQ in 

Gal(Q(U)/Q(t)) = Z/s ×Z/s is in the inertia group of a point PU,0 over 0 in U as well as 

in the inertia group of the point PU,1. These inertia subgroups of Gal(Q(U)/Q(t)) have 

trivial intersection, so ν ∈ 〈̂x〉 has trivial image in Gal(Q(U)/Q(t)). This forces ν to be 

the sth power of an element of 〈̂x〉. Since s was the exponent of H, we conclude that ν has 

trivial image in H = Gal(Q(Y )/Q(t)). Therefore, σ′ = ν−1γ−1σ̃ lies in Gal(L/F †(Y ))

and we are done. �

4. Galois representations

Let X be a smooth projective irreducible curve defined over Q. By Bely̆ı’s Theorem [1, 

Theorem 4], there is a non-constant morphism λ : X −→ P 1
Q

which is unramified outside 

{0, 1, ∞}. Let H be the Galois group of the Galois closure λ̃ : Y −→ P 1
Q

of λ. We will 

identify F̂2 with the étale fundamental group π1(P 1
Q

− {0, 1, ∞}, η) appearing in (3.2) by 

the choices described in the previous section. We will also view GQ = Gal(Q/Q) as a 

subgroup of Aut(F̂2) via the injection ι of (3.2). Let π : F̂2 −→ H be the homomorphism 

associated to λ̃ and the choice of a geometric point of Y over η. Fix d = 2 and let

ρ : A(π) −→ AutH,β(R)
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be the surjective homomorphism defined in Theorem 1.3.

We will prove the following result, which implies Theorem 1.2.

Theorem 4.1. The group R is isomorphic to the Galois group of the maximal abelian 

cover of Y that is unramified outside the ramification locus λ̃−1({0, 1, ∞}). This Galois 

group is isomorphic to the adelic Tate module Tλ̃(Y ) of the generalized Jacobian Jλ̃(Y )

of Y with respect to λ̃−1({0, 1, ∞}). Let J ⊂ H be the Galois group of Y over X. The 

coinvariants RJ of R with respect to J have finite torsion, and the quotient R
cotor

J of RJ

by this torsion subgroup is naturally identified with a subgroup of finite index in the Galois 

group of the maximal abelian cover of X that is unramified outside the ramification locus 

λ−1({0, 1, ∞}). The latter Galois group is Tλ(X). There is an H-equivariant action of 

A(π) on Tλ̃(Y ), and there is a finite index subgroup AX(π) of A(π) that acts on Tλ(X).

There is a finite extension F of Q over which X, Y , Jλ(X), Jλ̃(Y ) and the action of 

H on Y are defined. There is a natural action of GF = Gal(Q/F ) on Tλ̃(Y ) and Tλ(X). 

There are finite index normal subgroups AY of A(π) and AX of AX(π) such that the 

action of GF ∩ ι−1(AY ) (resp. GF ∩ ι−1(AX)) on Tλ̃(Y ) (resp. Tλ(X)) agrees with the 

action of AY (resp. AX) under Bely̆ı’s embedding GF
ι

−→ Aut(F̂2).

Proof. The identification of R with Tλ̃(Y ) is shown by Serre in [19, §I.2]. Let L be 

the maximal abelian extension of Q(Y ) that is Galois over Q(X), unramified outside 

λ̃−1({0, 1, ∞}) and for which Gal(L/Q(Y )) is central in Gal(L/Q(X)). Then L contains 

the maximal abelian extension L′ of Q(X) that is unramified outside λ−1({0, 1, ∞}). 

Furthermore, Gal(L/Q(Y )) = Tλ̃(Y )J and there is a central extension of groups

1 −→ Tλ̃(Y )J −→ Gal(L/Q(X)) −→ J −→ 1.

Letting these groups act trivially on Q/Z, the Hochschild-Serre spectral sequence gives 

an exact sequence of low degree terms

0 −→ H1(J , Q/Z) −→ H1(Gal(L/Q(X)), Q/Z) −→ H1(Tλ̃(Y )J , Q/Z)

−→ H2(J , Q/Z).

Here Hi(J , Q/Z) is finite for i ≥ 1. The maximal abelian quotient of Gal(L/Q(X)) is 

Gal(L′/Q(X)) = Tλ(X) and

H1(Gal(L/Q(X)), Q/Z) = Hom(Gal(L′/Q(X)), Q/Z).

Moreover,

H1(Tλ̃(Y )J , Q/Z) = Hom(Tλ̃(Y )J , Q/Z).

Since Tλ̃(Y )J is abelian, we obtain that Tλ̃(Y )J maps with finite kernel and cokernel 

to Gal(L′/Q(X)) = Tλ(X). Because Tλ(X) is torsion free, we conclude that Tλ̃(Y )J
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has finite torsion, and the quotient Tλ̃(Y )cotor
J of Tλ̃(Y )J by its torsion subgroup is 

isomorphic to a subgroup of finite index in Tλ(X).

We now identify Tλ̃(Y ) with R and apply Theorem 1.3. This shows that there is an 

H-equivariant action of A(π) on Tλ̃(Y ). In particular, this action descends to an action 

of A(π) on Tλ̃(Y )cotor
J . Let m be the index of Tλ̃(Y )cotor

J in Tλ(X). We have a sequence 

of inclusions

m Tλ̃(Y )cotor
J ⊂ m Tλ(X) ⊂ Tλ̃(Y )cotor

J .

Since A(π) acts on the finite group Tλ̃(Y )cotor
J /m Tλ̃(Y )cotor

J , there exists a finite index 

subgroup AX(π) of A(π) such that AX(π) acts trivially on Tλ̃(Y )cotor
J /m Tλ̃(Y )cotor

J . 

Therefore, AX(π) preserves m Tλ(X) and hence AX(π) acts on Tλ(X).

It remains to show that we can shrink A(π) and AX(π) to smaller finite index normal 

subgroups AY and AX , respectively, if necessary, so that the action of GF ∩ ι−1(AY )

(resp. GF ∩ ι−1(AX)) on Tλ̃(Y ) (resp. Tλ(X)) agrees with the action of AY and AX

under Bely̆ı’s embedding ι : GF −→ Aut(F̂2). We will use the description of ι given in 

§3.

In the arguments below, we will need to enlarge F to a finite extension F † of F . 

Since ι : GF −→ Aut(F̂2) is a continuous injective homomorphism of profinite groups, it 

follows from [16, Prop. 2.1.5] that ι is a homeomorphism onto its image when the image 

is given the topology induced by that of Aut(F̂2). Therefore, there are finite index normal 

subgroups of A(π) and AX(π) with the property that their intersection with ι(GF ) is 

contained in ι(GF †). Thus in what follows we are free to enlarge F by a finite extension 

in order to prove the existence of finite index subgroups AY and AX with the desired 

properties.

By Lemma 3.1, we can now replace F by a larger finite extension F † to be able to 

assume that if σ ∈ GF then ι(σ) is conjugation by an element σ′ ∈ Gal(L/F (Y )) which 

restricts to σ on Q ⊂ L. We have a tower of fields F (Y ) ⊂ Q(Y ) ⊂ Q(Y )ab ⊂ L

in which Q(Y )ab is the largest abelian extension of Q(Y ) inside L. By [19, §I.2], 

Gal(Q(Y )ab/Q(Y )) is naturally isomorphic to the adelic Tate module Tλ̃(Y ), and 

the action of σ on Tλ̃(Y ) corresponds to the conjugation action of any lift σ̂ of 

σ to an element of Gal(Q(Y )ab/F (Y )). Note that this conjugation action does not 

depend on the choice of the lift σ̂ because Gal(Q(Y )ab/Q(Y )) is an abelian nor-

mal subgroup of Gal(Q(Y )ab/F (Y )). However, we know that the action of ι(σ) on 

Gal(Q(Y )ab/Q(Y )) is via the conjugation action by σ′ ∈ Gal(L/F (Y )), so the action 

of ι(σ) on Gal(Q(Y )ab/Q(Y )) agrees with the conjugation action of σ̂. This shows that 

the action of ι(σ) on Tλ̃(Y ) agrees with the natural action of σ. �

Remark 4.2. The statements in Theorem 4.1 hold if one replaces Tλ̃(Y ) and Tλ(X) by 

their maximal pro-� quotients T�,λ̃(Y ) and T�,λ(X), the latter being the �-adic Tate 

modules of the generalized Jacobians of Y and X with respect to λ̃−1({0, 1, ∞}) and 

λ−1({0, 1, ∞}), respectively.
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We obtain the following consequence of Theorem 4.1.

Corollary 4.3. Assume the notation from Theorem 4.1. Suppose Ĩ is a (closed) normal 

subgroup of F̂2 such that [R, R] ⊂ Ĩ ⊂ R, and let R̃ = R/Ĩ. Then R̃ is a quotient module 

of R = Tλ̃(Y ) and there is an H-equivariant action of A(π, Ĩ) ⊂ Aut(F̂2) on R̃. The 

kernel of the surjection R −→ R̃ has stabilizer GF ′ in GF for some extension F ′ of F

in Q.

i. There is a finite index normal subgroup AY,Ĩ of A(π, Ĩ) such that the action of 

GF ′ ∩ ι−1(AY,Ĩ) on R̃ agrees with the action of AY,Ĩ under Bely̆ı’s embedding GF ′
ι

−→

Aut(F̂2).

ii. There is a finite extension F ′′ of F ′ in Q such that the action of GF ′′ ∩ ι−1(A(π, Ĩ))

agrees with the action of A(π, Ĩ) under Bely̆ı’s embedding GF ′′
ι

−→ Aut(F̂2).

Proof. The first statement follows by letting AY,Ĩ be the intersection of A(π, Ĩ) with the 

subgroup AY appearing in the last sentence of the statement of Theorem 4.1. For the sec-

ond, observe that since AY,Ĩ has finite index in A(π, Ĩ), the kernel of the homomorphism 

GF ′ ∩ ι−1(A(π, Ĩ)) −→ A(π, Ĩ)/AY,Ĩ induced by ι has finite index in GF ′ ∩ ι−1(A(π, Ĩ)). 

Therefore, this kernel equals GF ′′ ∩ ι−1(A(π, Ĩ)) for some finite extension F ′′ of F ′. �

Example 4.4. Assume the notation from Corollary 4.3. If I is a subgroup of R that is 

stabilized by the action of H on R, then I = Ĩ/[R, R] for a normal subgroup Ĩ of F̂2. 

Fix a prime number p. If Ip is the subgroup of R = Ẑ1+|H| generated by all factors 

isomorphic to Zp, then Ip = Ĩp/[R, R] for a normal subgroup Ĩp of F̂2. Moreover, the 

action of GF on R preserves Ip.

Suppose now that we take R̃ = R/Ĩ to be the quotient of R = Ẑ1+|H| by the subgroup 

generated by all Ip for primes p dividing |H|. Then Ĩ is a normal subgroup of F̂2, and 

the kernel of R −→ R̃ is stable under all of GF . The action of A(π) on R is Ẑ-linear, so 

A(π) acts on R̃ and A(π, Ĩ) = A(π). If L′
H is the set of all primes � not dividing |H|, 

then

R̃ =
∏

�∈L′
H

T�,λ̃(Y ).

The extension class β ∈ H2(H, R̃) corresponding to (2.2) is zero for this choice of R̃. 

Therefore, it follows from Theorem 2.1 that the image of the action of A(π, Ĩ) = A(π)

on R̃ is AutH(R̃). Define

Ẑ′ =
Ẑ∏

p/∈L′
H

Zp

∼=
∏

�∈L′
H

Z�.
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Then R̃ is isomorphic to Ẑ′[H] ⊕ Ẑ′ as an H-module since |H| is a unit in Ẑ′ (see [6, 

§2]). Note that Ẑ′[H] = Ẑ′ ⊕ M as H-module, where M is the augmentation ideal of 

Ẑ′[H]. Hence, AutH(R̃) ∼= GL2(Ẑ′) ×AutH(M). The right multiplication action of Ẑ′[H]

identifies the endomorphism ring End
Ẑ′[H]

(M) with the quotient ring of the opposite 

ring Ẑ′[H]op of Ẑ′[H] modulo the ideal generated by the central idempotent 1
|H|

∑
σ∈H σ. 

Recall that the inversion σ �→ σ−1 on H extends to a ring isomorphism of Ẑ′[H]op with 

Ẑ′[H]. In other words,

AutH(R̃) ∼= GL2(Ẑ′) × GL1

(
Ẑ′[H]

Ẑ′[H] ·
(∑

σ∈H σ
)

)

since |H| is a unit in Ẑ′. Corollary 4.3 says that there is a finite index normal subgroup 

AY,Ĩ of A(π, Ĩ) = A(π) such that the action of GF ∩ ι−1(AY,Ĩ) on R̃ extends to an action 

of AY,Ĩ under ι.

5. Actions on the Jacobian versus the generalized Jacobian

Theorems 1.2 and 4.1 show that the action of the absolute Galois group GQ =

Gal(Q/Q) on the adelic Tate module of the generalized Jacobian can be virtually ex-

tended to an action of Aut(F̂2). In this section, we show that, in general, one indeed 

needs the full structure of the adelic Tate module of the generalized Jacobian and that 

the action of GQ on the adelic Tate module of the Jacobian cannot be virtually extended 

to Aut(F̂2). Moreover, we give a sufficient condition to distinguish between these two 

possibilities, which is also necessary when we have a Bely̆ı cover that is Galois.

We use the notation from §3 and §4. In particular, we identify F̂2 with the étale 

fundamental group π1(P 1
Q

− {0, 1, ∞}, η), and we view GQ as a subgroup of Aut(F̂2)

via the injection ι of (3.2). As in §4, let λ : X −→ P 1
Q

be a Bely̆ı cover, i.e. X is a 

smooth projective curve over Q and λ is a non-constant morphism which is unramified 

outside {0, 1, ∞}. Let H be the Galois group of the Galois closure λ̃ : Y −→ P 1
Q

of λ. 

Let π : F̂2 −→ H be the homomorphism associated to λ̃ and the choice of a geometric 

point of Y over η.

Let J ⊂ H be the Galois group of Y over X, let W be the normalizer of J in H, and 

let Z = Y/W. We can factor λ = κ ◦ δ where δ : X −→ Z is a Galois cover with Galois 

group D = W/J and κ : Z −→ P 1
Q

is a Bely̆ı cover. For each point j ∈ κ−1({0, 1, ∞})

let jX be a point over j in X and let djX
be a generator for the inertia group of jX in 

D.

Consider now the natural surjection Jλ(X) −→ J(X) from the generalized Jacobian 

of X with respect to λ−1({0, 1, ∞}) to the Jacobian of X. Recall that the points of Jλ(X)

over Q are divisors of degree zero on X prime to λ−1({0, 1, ∞}) modulo divisors of the 

form div(f) for rational functions f ∈ Q(X)∗ such that f(x) = 1 if x ∈ λ−1({0, 1, ∞}). 

The principal divisor group of X is isomorphic to Q(X)∗/Q
∗
. Consider the homomor-
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phism from the group of elements g ∈ Q(X)∗ that have no zeros or poles in λ−1({0, 1, ∞})

to the product 
∏

x∈λ−1({0,1,∞}) Q
∗

which sends g to the element of the product with com-

ponent g(x) at x. This homomorphism induces an isomorphism between the algebraic 

group that is the kernel of Jλ(X) −→ J(X) and the split torus

T :=

∏
x∈λ−1({0,1,∞}) Gm

diag(Gm)
.

The exact sequence

1 −→ T −→ Jλ(X) −→ J(X) −→ 1

gives an exact sequence of �-adic Tate modules

0 −→

∏
x∈λ−1({0,1,∞}) Z�(1)

diag(Z�(1))
−→ T�,λ(X) −→ T�(X) −→ 0. (5.1)

This sequence is exact as a sequence of GF -modules once F is a number field over which 

X, J(X), Jλ(X) and the action of D on X are defined.

The set λ−1({0, 1, ∞}) = δ−1(κ−1({0, 1, ∞})) is the D-set formed by the disjoint 

union of the orbits of the jX as j ranges over κ−1({0, 1, ∞}). We find that the tensor 

product of the left term in the sequence (5.1) with Q� over Z� is isomorphic to

⊕
j∈κ−1({0,1,∞}) Q�[D/〈djX

〉]

Q�
(5.2)

as a Q�[D]-module, where the denominator here is embedded into the numerator by 

sending 1 ∈ Q� to the sum of all the cosets of 〈djX
〉 as j ranges over κ−1({0, 1, ∞}). 

When we tensor the middle term of (5.1) with Q� over Z�, we get the Q�[D]-module 

that is the group of J -coinvariants of Q� ⊕ Q�[H] by Gaschütz’s theorem (see [6, §2]).

Let AX(π) be the finite index subgroup of A(π) from the statement of Theorem 4.1, 

so we have a well-defined action of AX(π) on T�,λ(X) as in Remark 4.2. Let A1 be a finite 

index subgroup of AX(π). We will say that the action of A1 on T�,λ(X) descends to an 

action on the Tate module T�(X) if the action of A1 respects the terms of the sequence

(5.1). We now give a sufficient condition for this to occur which is also necessary when 

X = Y . In the latter case, AX(π) = A(π) and λ = λ̃.

Theorem 5.1. Let A1 be a finite index subgroup of AX(π). A sufficient condition for the 

action of A1 on T�,λ(X) to descend to an action on T�(X) is that for every irreducible 

representation V of D over Q,

nV := − dimQ(V D) +
∑

j∈κ−1({0,1,∞})

dimQ(V 〈djX
〉)
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is equal to either 0 or

mV := dimQ(V D) + [H : W] · dimQ(V ).

This condition for V holds if and only if Q� ⊗Q V occurs in exactly one of the Q�[D]-

modules that result from tensoring either the left or right term of (5.1) with Q� over 

Z�. If X = Y , then D = H = W and the above sufficient condition is also necessary. 

Furthermore, if X = Y , then the condition holds for all V of dimension 1.

Proof. It follows from Theorem 4.1 and Remark 4.2 that Q� ⊗Z�
T�,λ(X) is isomorphic to 

the coinvariants (Q� ⊗Z�
T�,λ̃(Y ))J . By Gaschütz’s theorem (see [6, §2]), Q� ⊗Z�

T�,λ̃(Y )

is isomorphic to Q� ⊕Q�[H] as a Q�[H]-module. Therefore, Q� ⊗Z�
T�,λ(X) is isomorphic 

to Q� ⊕ Q�[D][H:W] as a Q�[D]-module.

Let V be an arbitrary irreducible representation of D over Q. Then mV is the multi-

plicity of V as a direct summand of Q ⊕ Q[D][H:W]. By Frobenius reciprocity and (5.2), 

nV is the multiplicity of Q� ⊗Q V as a direct summand of the tensor product of the left 

term of (5.1) with Q� over Z�. Therefore, Theorem 5.1 is equivalent to the statement 

that the action of A1 respects the sequence (5.1) if

nV ∈ {0, mV } for every irreducible representation V of D over Q, (5.3)

and if X = Y then (5.3) is also necessary for A1 to respect the sequence (5.1).

Suppose first that the action of A1 does not respect the sequence (5.1). Since the terms 

of (5.1) are free Z�-modules, the action of A1 does not respect the terms of the sequence 

obtained by tensoring (5.1) with Q� over Z�. Hence, we obtain a non-zero Q�[D]-module 

homomorphism from the tensor product with Q� over Z� of the left term of (5.1) to 

Q� ⊗Z�
T�(X). Since the irreducible representations of D over Q� are all defined over 

Q, this means that there exists an irreducible representation V of D over Q such that 

0 < nV < mV , so (5.3) does not hold.

Now suppose that X = Y , so that J is the trivial subgroup of H, and hence W = H

and D = H. We suppose that the action of A1 respects the terms of the sequence (5.1), 

and we must show that (5.3) holds. The action of A1 preserves the terms of the sequence 

that results from tensoring (5.1) with Q� over Z�. Since T�,λ(X) = T�,λ̃(Y ) is the maximal 

pro-� quotient of R = Tλ̃(Y ), we can write T�,λ(X) = R/Ĩ� for a characteristic subgroup 

Ĩ� of R. By Theorem 2.1, it follows that the image of the action of AX(π) = A(π, Ĩ�) on 

T�,λ(X) = R/Ĩ� consists of all H-equivariant automorphisms of T�,λ(X) that preserve a 

certain extension class. Since this extension class is annihilated by �a for a sufficiently 

large integer a > 0, it follows that if f : T�,λ(X) −→ T�,λ(X) is any Z�[H]-module 

endomorphism of T�,λ(X) and idT�,λ(X) is the identity automorphism of T�,λ(X), then 

idT�,λ(X) + �af is induced by the action of an element of AX(π). The kernel A2 of the 

left multiplication action of AX(π) on the finitely many left cosets of A1 in AX(π) is a 

finite index normal subgroup of AX(π) contained in A1. Let n = [AX(π) : A2]. Then for 
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all sufficiently large a > 0, the binomial theorem shows that there is an endomorphism 

f1 of T�,λ(X) with the following property. The map

1

�a

((
idT�,λ(X) + �af

)n
− idT�,λ(X)

)
= n f + �af1

is an endomorphism of T�,λ(X) lying in the Q�-subalgebra B of EndQ�[H](Q�⊗Z�
T�,λ(X))

generated by automorphisms arising from the action of A2 ⊂ A1 on T�,λ(X). Taking the 

limit as a −→ ∞ and using the fact that B is a closed Q�-subspace of a finite dimensional 

Q�-vector space, we see that B is all of EndQ�[H](Q� ⊗Z�
T�,λ(X)). Therefore, every 

element of EndQ�[H](Q�⊗Z�
T�,λ(X)) preserves the tensor product of the left term of (5.1)

with Q� over Z�. It follows that every element of EndQ�[H](Q� ⊗Z�
T�,λ(X)) preserves the 

tensor product of the left term of (5.1) with Q� over Z�. But this implies the statement 

(5.3) since the irreducible representations of H over Q� are all defined over Q. �

Remark 5.2. Let D1 be a subgroup of D. Suppose V is an irreducible representation of D

over Q for which the sufficient criterion described in Theorem 5.1 does not hold. Let V1

be any irreducible representation of D1 over Q that occurs in the restriction of V to D1. 

Then Q� ⊗Q V1 occurs in both of the restrictions to D1 of the Q�[D]-modules that result 

from tensoring either the left or right term of (5.1) with Q� over Z�. This implies that 

if for some subgroup D1 of D the counterpart of the criterion in Theorem 5.1 holds for 

all irreducible representations of D1 over Q, then this criterion holds for D. This forces 

the action of every finite index subgroup A1 of AX(π) to descend to T�(X).

We now give an example in which X = Y and the action of no finite index subgroup 

A1 of AX(π) = A(π) descends to an action on T�(X).

Example 5.3. Suppose X = Y and that D = H is the alternating group A5 of order 

60 on the letters {a1, a2, a3, a4, a5}. Recall that d0X
and d1X

are generators of inertia 

groups of points of X = Y over 0 and 1. It follows that they generate D = H and 

that d∞X
= (d0X

d1X
)−1. Suppose d0X

is the three-cycle (a1, a2, a3) in D and d1X
is the 

five-cycle (a1, a2, a3, a4, a5), so that d∞X
= (d0X

d1X
)−1 is a five-cycle. Define A4 to be 

the alternating group of order 12 on the letters {a1, a2, a3, a4}. The induction Q[A5/A4]

of the trivial representation of A4 to A5 is then isomorphic to the direct sum of one 

copy of the trivial representation Q of A5 with a four-dimensional absolutely irreducible 

representation V of A5. It is easy to check that the invariants V 〈djX
〉 are trivial for 

j = 1, ∞. On the other hand, the three-cycle d0X
has eigenvalues 1, 1, ζ3 and ζ2

3 on V , 

so dimQ(V 〈d0X
〉) = 2. It follows by Theorem 5.1 that no finite index subgroup A1 of 

AX(π) = A(π) respects the terms of the sequence (5.1). Therefore, while the Galois 

action of some finite index subgroup GF of GQ on the �-adic Tate module T�,λ(X) can 

be extended to an action of A(π), the same cannot be said for the �-adic Tate module 

T�(X).
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We next give an example to show that the sufficient condition in Theorem 5.1 is not in 

general necessary for the action of AX(π) on T�,λ(X) to descend to an action on T�(X).

Example 5.4. Let E be the elliptic curve with affine equation y3 = t(t − 1), and let 

κ : E −→ P 1
Q

be the Bely̆ı cover defined by (t, y) �→ t in affine coordinates. Then κ is 

a Galois cover and Gal(E/P 1
Q

) = μ3 is a cyclic group of order 3, corresponding to the 

action of cube roots of unity on E via the complex multiplication of E. Suppose p �= 3 is 

a prime and that J is a cyclic subgroup of the p-torsion E(Q)[p] that is not stable under 

the action of Gal(E/P 1
Q

). Define Y = E and let λ̃ : Y −→ P 1
Q

be the Bely̆ı Galois cover 

that is the composition of multiplication by p with κ. Define X to be the quotient Y/J . 

Then there is an isogeny δ : X −→ E such that the multiplication by p map Y −→ E is 

the composition of the quotient morphism Y −→ X with δ. The composition of δ with 

κ is a Bely̆ı cover λ : X −→ P 1
Q

. The Galois group H = Gal(Y/P 1
Q

) is the semi-direct 

product E(Q)[p] �μ3, and the normalizer of J = Gal(Y/X) in H is W = E(Q)[p]. Thus 

D = W/J = Gal(X/E) is the cyclic order p group associated to the isogeny δ. Each 

of the points 0, 1, ∞ ∈ P 1
Q

are totally ramified with respect to κ : E −→ P 1
Q

, and the 

points over them are split under δ : X −→ E. Thus if V is the trivial one-dimensional 

representation of D, then

nV = − dimQ(V D) +
∑

j∈κ−1({0,1,∞})

dimQ(V 〈djX
〉) = −1 + 3 = 2

and

mV = dimQ(V D) + [H : W] · dimQ(V ) = 1 + 3 = 4.

Hence it is not true that nV is either 0 or mV , and the condition in Theorem 5.1 does not 

hold. Let us now check that nevertheless the action of AX(π) descends to T�(X), i.e. that 

this action preserves the terms of (5.1). For this we use that the p-isogeny δ : X −→ E

is induced by the trace element of the group ring Z�[D] and induces a commutative 

diagram

0

∏
x∈λ−1({0,1,∞}) Z�(1)

diag(Z�(1))
T�,λ(X) T�(X) 0

0

∏
x∈κ−1({0,1,∞}) Z�(1)

diag(Z�(1))
T�,κ(E) T�(E) 0.

(5.4)

Since the actions of AX(π) and D on T�,λ(X) commute, the middle vertical arrow in (5.4)

is equivariant for the action of AX(π). Suppose that the terms of the top row of (5.4)

are not stable under the action of AX(π). Then there exists α ∈ AX(π) and there exists 
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c ∈ T�,λ(X) with non-zero image in T�(X) such that α ·c has trivial image in T�(X). The 

right vertical arrow in (5.4) is injective, since the elements of D act by translations on the 

elliptic curve X and thus they act trivially on the torsion free module T�(X). Therefore, 

the image c′ of c under the middle vertical arrow in (5.4) is an element of T�,κ(E) with 

non-zero image in T�(E) such that α · c′ has trivial image in T�(E). This means that the 

terms of the bottom row of (5.4) are not respected by the action of AX(π). However, we 

can now apply Theorem 5.1 to the cyclic morphism κ : E −→ P 1
Q

with Galois group μ3. 

Since κ is Galois and all the irreducible characters of μ3 over Q have dimension 1, the 

condition in Theorem 5.1 is automatically satisfied. Hence the action of AX(π) respects 

the terms in the bottom row of (5.4), which is a contradiction. In other words, the action 

of AX(π) on T�,λ(X) descends to an action on T�(X).

We end this section by proving Theorem 1.1 of the introduction.

Proof of Theorem 1.1. As in the statement of the theorem, suppose t > 1 is an odd 

integer. Let ζ be a primitive tth root of unity, and let E = Eζ be the elliptic curve with 

affine equation

y2 = x(x − 1)(x − ζ).

Let λ : E −→ P 1
Q

be the Bely̆ı cover defined by (x, y) �→ xt in affine coordinates. Then 

λ factors as λ = κ ◦ δ where δ : E −→ P 1
Q

is given by (x, y) �→ x, and κ : P 1
Q

−→ P 1
Q

is given by x �→ xt, both in affine coordinates. Over Q, κ is a cyclic cover of order t. 

Since δ : E −→ P 1
Q

is quadratic, the Galois group H of the Galois closure λ̃ : Y −→ P 1
Q

of λ is a semi-direct product of a cyclic group Z/t of order t with a normal elementary 

abelian 2-group G. The Galois group J of the natural morphism z : Y −→ E is an 

index two subgroup of G. We can identify G with the Galois group of the morphism 

δ ◦ z : Y −→ P 1
Q

, where λ̃ = κ ◦ δ ◦ z. Note that G is contained in the normalizer W of J

in H. As before, we let π : F̂2 −→ H be the surjective homomorphism associated to λ̃.

We now apply Theorem 4.1 and Remark 4.2 to X = E. We obtain a finite index 

subgroup AE(π) of A(π) so that AE(π) acts on the �-adic Tate module T�,λ(E). Let 

F1 ⊃ Q(ζ) be a number field over which E = Eζ , Y , Jλ(E), Jλ̃(Y ) and the action of H

on Y are defined. Then there exists a finite index normal subgroup AE of AE(π) such 

that the action of GF1
∩ ι−1(AE) on T�,λ(E) agrees with the action of AE under Bely̆ı’s 

embedding GF1

ι
−→ Aut(F̂2). Since GF1

∩ ι−1(AE) is a finite index subgroup of GF1
, there 

exists a number field F containing F1 such that GF = GF1
∩ ι−1(AE). In other words, 

AE contains the image of GF under ι.

We next use the criterion of Theorem 5.1 and Remark 5.2 to show that the action of 

AE(π), and hence the action of AE, on T�,λ(E) descends to an action on T�(E). Let D1

be the order two subgroup G/J of D = W/J . Let V1 be an irreducible representation 

of D1 over Q. Then the character of V1 is either the trivial character or the order two 

character of D1. By Remark 5.2, it suffices to show that Q� ⊗Q V1 occurs in at most one 
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of the restrictions to D1 of the Q�[D]-modules that result from tensoring either the left 

or right term of (5.1) with Q� over Z�. Here the action of D1 on these terms results from 

the elliptic involution associated to δ : E −→ P 1
Q

. This involution acts trivially on each 

of the points in λ−1({0, 1, ∞}) ⊂ E, so it acts trivially on the left term of (5.1). On the 

other hand, the elliptic involution (x, y) �→ (x, −y) on E acts as multiplication by −1 on 

T�(E). Therefore, each V1 can occur in only one of the above restrictions, which implies 

that AE(π) acts on T�(E).

Finally, suppose that the value φ(t) of Euler’s phi function on t is larger than 24. Let 

τ� : AE −→ GL(Q� ⊗Z�
T�(E)) be the representation of AE over Q� that is associated to 

the action of AE on T�(E). It remains to check that the restriction of τ� to any subgroup 

between AE and ι(GF ) is absolutely irreducible and non-abelian. For this it will suffice 

to show these properties for the representation of GF over Q� that is associated to the 

action of GF on T�(E). By a result of Serre (see [18, Chapter IV]), this will be true as 

long as E does not have complex multiplication. Using the formula for the j-invariant of 

E = Eζ in [21, Prop. III.1.7], we see that

j(E) = 256
(ζ2 − ζ + 1)3

ζ2(ζ − 1)2
.

In particular, j(E) lies in Q(ζ) ⊂ F . If E has complex multiplication then j(E) lies in 

the Hilbert class field of an imaginary quadratic field, which is a dihedral extension of Q. 

However, the maximal abelian quotient of such a dihedral group has order 4. Therefore, 

we only need to ensure that j(E) generates an extension of Q of degree larger than 4. 

However, this is the case provided the minimal polynomial of ζ has degree greater than 

24, which happens if and only if φ(t) > 24. This completes the proof of Theorem 1.1. �

6. The case of elliptic curves that are Galois covers of PPP 1

QQQ
− {0, 1, ∞}

Suppose X is a Galois H-cover of P 1
Q

that is unramified outside {0, 1, ∞} and asso-

ciated to a surjection π : F̂2 −→ H. Theorem 5.1 shows that the action of a finite index 

subgroup of GQ on the adelic Tate module of the Jacobian of X cannot, in general, be 

extended to an action of the finite index subgroup A(π) of Aut(F̂2). In this section, we 

will show that such an extension does always exist when X has genus 1, and that all 

such X must be CM elliptic curves. We will also show that when ι : GQ −→ Aut(F̂2)

is the Bely̆ı embedding, the action of ι(GQ) ∩ A(π) on the adelic Tate module of the 

generalized Jacobian of X has infinite index in the group of automorphisms generated 

by A(π), while the corresponding index is finite if we replace the generalized Jacobian 

by the Jacobian of X.

Throughout this section we will make the following hypothesis:

Hypothesis 6.1. The morphism λ : X −→ P 1
Q

is an H-cover unramified outside {0, 1, ∞}, 

associated to a surjection π : F̂2 −→ H and an embedding of Q(X) into an algebraic 
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closure of Q(t) = Q(P 1
Q

). The genus of X is 1. There are points 0X , 1X and ∞X of X

over 0, 1 and ∞ on P 1
Q

such that the corresponding inertia groups I0X
, I1X

and I∞X

satisfy |I0X
| ≥ |I1X

| ≥ |I∞X
|.

Note that we can always arrange for the last property to hold by composing λ with 

an automorphism of P 1
Q

which permutes {0, 1, ∞}. In the notation of the previous two 

sections, we are assuming that X = Y is its own Galois closure over P 1
Q

and that λ = λ̃, 

which implies that AX(π) = A(π).

Here are some examples which are easily checked using Hurwitz’s theorem (see [9, 

§IV.2]).

Example 6.2. Let d ∈ {3, 6, 4}. Suppose (a, b, d) is a triple of integers in the set

{(1, 1, 3), (2, 2, 3), (1, 2, 6), (5, 4, 6), (1, 1, 4), (3, 3, 4)}.

Let X be the curve with affine equation yd = ta(t − 1)b and let λa,b,d : X −→ P 1
Q

be the 

map sending (y, t) to t. Fix a root of unity ζd of order d in Q. Then Hypothesis (6.1)

holds with λ = λa,b,d and the generator 1 of Ha,b,d = Z/d sending y to ζd y. Note that 

the isomorphism class of X as an Ha,b,d-cover of P 1
Q

depends on the choice of ζd. There 

is a unique point 0X over 0 on X, and I0X
= Ha,b,d. The ordered pair (|I1X

|, |I∞X
|)

equals (3, 3) if d = 3, (3, 2) if d = 6 and (4, 2) if d = 4. The elliptic curve X with origin 

0X is isomorphic to an elliptic curve over Q with complex multiplication by the ring of 

integers Z[ζd] of Q(ζd), and all such elliptic curves are isomorphic.

Proposition 6.3. Let X be as in Hypothesis 6.1, so that X is an elliptic curve with origin 

0X . Then λ can be factored as a finite étale isogeny λ1 : X −→ X followed by one of the 

morphisms λa,b,d : X −→ P 1
Q

defined in Example 6.2. The group H is the semi-direct 

product of Ha,b,d = Z/d with the kernel J of λ1. We can identify J with an Ha,b,d-stable 

submodule of the torsion points of X as an elliptic curve. Conversely, any such finite 

Ha,b,d-stable subgroup of torsion points can be taken to be the kernel of a λ1 of the above 

kind, leading to a cover λ : X −→ P 1
Q

as in Hypothesis 6.1. The action of Ha,b,d on 

torsion points agrees with the action of 〈ζd〉 when we identify the Kummer action of the 

generator 1 of Ha,b,d with complex multiplication by ζd.

Proof. By Hurwitz’s Theorem,

0 = 2g(X) − 2 = |H| · (−2) +
∑

j=0,1,∞

[H : IjX
] · (|IjX

| − 1).

It follows that

1 =
∑

j=0,1,∞

1/|IjX
|. (6.1)
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This forces |IjX
| ≥ 3 for some j, so d = |I0X

| ≥ 3 since I0X
has the largest order of any 

inertia group. Fix an identification of I0X
with Z/d. The generator 1 of I0X

then acts on 

X via complex multiplication by a root of unity ζd of order d. This forces d ∈ {3, 6, 4}. 

Now (6.1) together with the inequalities d = |I0X
| ≥ |I1X

| ≥ |I∞X
| force (|I1X

|, |I∞X
|)

to be (3, 3) if d = 3, (3, 2) if d = 6, and (4, 2) if d = 4. If d = 6 or d = 4, the group I ′
0X

of automorphisms of X fixing 0X is equal to I0X
. If d = 3, I ′

0X
is cyclic of order 6 and 

generated by I0X
together with the multiplication by −1 map z : X −→ X.

Let T be the group of elements of H which are translations X −→ X relative to the 

group law of X. Suppose h is an arbitrary element of H. Then h(0X) = t(0X) for some 

translation t : X −→ X, where we do not claim at this point that t ∈ T . Moreover, 

t−1 ◦ h = ι : X −→ X is an automorphism of X which fixes 0X . So ι is a unit in the 

endomorphism ring of X as an elliptic curve. If d = 6 or 4, all such units are produced 

by powers of a generator of I0X
, so it follows that ι ∈ I0X

and t ∈ T . Thus in this case, 

H is the semi-direct product of I0X
with the normal subgroup T of H.

Suppose now that d = 3. Then ι ∈ I0X
or z−1 ◦ ι ∈ I0X

. We find that in this case, 

h = t ◦ ι = t̃ ◦ ι̃ where either t = t̃ ∈ T and ι = ι̃ ∈ I0X
, or t̃ = t ◦ z and ι̃ = z−1 ◦ ι ∈ I0X

. 

Suppose the alternative t̃ = t ◦ z occurs. Then t̃ = t ◦ z = h ◦ ι̃−1 lies in H. In this case 

there would be a point τ ∈ X such that t̃(P ) = −P + τ for all P ∈ X. Hence, t̃(τ ′) = τ ′

for all points τ ′ ∈ X satisfying τ ′ + τ ′ = τ with respect to the group law on X. Since t̃2

is the identity, we would then have some points of X with inertia groups of even order, 

which we have shown does not occur when d = 3. So in fact, h = t ◦ ι with t ∈ T and 

ι ∈ I0X
. This implies H is the semi-direct product of I0X

with T in all cases.

Recall that the action of the generator 1 of I0X
= Z/d on X defines the complex 

multiplication of X corresponding to ζd. Since T is stable under the conjugation action 

of I0X
, T is the group of translations associated to a subgroup J (T ) of torsion points on 

X which is stable under the action of Z[ζd]. We have a T -Galois isogeny λ1 : X −→ X ′ =

X/T = X/J (T ), and X ′ is an elliptic curve over Q with complex multiplication by Z[ζd]. 

Therefore X ′ is isomorphic to X. The morphism λ2 : X ′ = X/T −→ P 1
Q

induced by 

λ : X −→ P 1
Q

defines an H/T Galois cover of P 1
Q

which is unramified outside {0, 1, ∞}. 

Furthermore the order of the inertia group of H/T at a point of X ′ over j ∈ {0, 1, ∞}

must be the same as the order of IjX
since λ1 : X −→ X ′ is étale. Since X ′ is isomorphic 

to X and H/T is isomorphic to I0X
, Kummer theory shows that λ2 : X ′ −→ P 1

Q
must 

be H/T -isomorphic to a unique Z/d-cover λa,b,d : X −→ P 1
Q

appearing in Example 6.2

when we identify H/T with I0X
and I0X

with Z/d. The H-cover X −→ P 1
Q

we started 

with then results from the isogeny X −→ X ′ = X/T followed by λa,b,d. �

Theorem 6.4. With the notation of Proposition 6.3, the action of A(π) on the Tate module 

Tλ(X) of the generalized Jacobian descends to an action of A(π) on T (X) which respects 

the action of Z[ζd]. Let F be a number field such that ι(GQ) ∩A(π) = ι(GF ). The action of 

ι(GQ) ∩A(π) on Tλ(X) defines an infinite index subgroup of the group of automorphisms 

of Tλ(X) induced by A(π). The action of ι(GQ) ∩ A(π) on T (X) defines a finite index 

subgroup of the group of automorphisms of T (X) induced by A(π).
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Proof. By Proposition 6.3, X is an elliptic curve with complex multiplication by Z[ζd]

for an integer d ∈ {3, 4, 6}. The group H is the semi-direct product of a group T of 

translations on X with a cyclic group I of order d, with a generator of I acting by 

complex multiplication by ζd. The action of T on the adelic Tate module T (X) is trivial. 

So the action of H on T (X) factors through H/T = I and corresponds to the action of 

complex multiplication. Therefore, in the sequence (5.1) the action of H on Q� ⊗Z�
T�(X)

gives two (non-trivial) one dimensional characters. Hence, by Theorem 5.1, the action of 

A(π) on Tλ(X) descends to an action on T (X).

Therefore, we have an action of A(π) on the submodule

∏
x∈λ−1({0,1,∞}) Z�(1)

diag(Z�(1))

of T�,λ(X) appearing in the sequence (5.1). This submodule contains the rank one Z�-

modules Mj with trivial action by H that are the images of Z�(1) diagonally embedded 

in

∏

x∈λ−1(j)

Z�(1)

for j ∈ {0, 1, ∞}. In particular, Q� ⊗Z�
M0 and Q� ⊗Z�

M1 define two distinct one-

dimensional Q�[H]-submodules of Q� ⊗Z�
T�,λ(X) with trivial H-action. Since Q� ⊗Z�

T�,λ(X) ∼= Q�⊕Q�[H], there exists a nilpotent Q�[H]-module endomorphism f of Q�⊗Z�

T�,λ(X) that sends Q� ⊗Z�
M0 isomorphically to Q� ⊗Z�

M1 and that sends all other 

irreducible Q�[H]-module summands of Q� ⊗Z�
T�,λ(X) to zero. Multiplying f with a 

sufficiently large positive integer, say m1, we obtain that m1 · f is a nilpotent Z�[H]-

module endomorphism of T�,λ(X) that sends M0 to a non-zero submodule of M1. If m2

is the largest power of � dividing |H|, it then follows that m1m2 · f is a nilpotent Z�[H]-

module endomorphism of T�,λ(X) that sends M0 to a non-zero submodule of M1 and 

that sends any extension class in H2(H, T�,λ(X)) to zero. Since T�,λ(X) is the maximal 

pro-� quotient of R = Tλ(X), we can write T�,λ(X) = R/Ĩ� for a characteristic subgroup 

Ĩ� of R. It follows from Theorem 2.1 that idT�,λ(X) + m1m2 · f is an automorphism of 

T�,λ(X) that is induced by an element of A(π) = A(π, Ĩ�). Moreover, idT�,λ(X) +m1m2 ·f

generates a subgroup of this automorphism group that is isomorphic to Z and every 

non-trivial element of this subgroup sends M0 to a non-zero submodule of M1.

Since A(π) is a finite index subgroup of Aut(F̂2), it follows that there exists a number 

field F such that ι(GQ) ∩ A(π) = ι(GF ). Since GF cannot send points over 0 to points 

over 1 or ∞, the action of GF = GQ∩ι−1(A(π)) on T�,λ(X) preserves M0 and M1. By the 

above construction of idT�,λ(X) + m1m2 · f , this implies that the action of ι(GQ) ∩ A(π)

on Tλ(X) defines an infinite index subgroup of the group of automorphisms of Tλ(X)

induced by A(π).

We now compare the actions of GF and A(π) on T (X). The action of Z[ζd] on X

by complex multiplication makes T (X) a rank one free module for Ẑ ⊗Z Z[ζd] = Ẑ[ζd]. 
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The action of A(π) on T (X) respects the action of H, and the action of H corresponds 

to the action of complex multiplication. On picking a basis for T (X) as a rank one free 

module for Ẑ[ζd], we see that the action of A(π) on T (X) is defined by a homomorphism 

χA : A(π) −→ Ẑ[ζd]∗. Similarly, the action of GF on T (X) is defined by a homomorphism 

χF : GF −→ Ẑ[ζd]∗. When ι : GQ −→ Aut(F̂2) is the Bely̆ı embedding, we know by 

Corollary 4.3 that, after enlarging F by a finite extension, we have χF = χA ◦ ι|GF
. 

Hence, the image of χF is contained in the image of χA. On the other hand, the main 

theorem of complex multiplication (see [20, Thm. 5.4]) shows that the image of χF has 

finite index in Ẑ[ζd]∗. Therefore, the image of χF has finite index in the image of χA and 

the proof is complete. �
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