
Vol.:(0123456789)

Real-Time Systems (2022) 58:275–312
https://doi.org/10.1007/s11241-022-09388-5

1 3

Design optimization for real‑time systems with sustainable
schedulability analysis

Yecheng Zhao1  · Runzhi Zhou1 · Haibo Zeng1

Accepted: 20 June 2022 / Published online: 16 August 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2022

Abstract
The design of modern real-time systems not only needs to guarantee their tim-
ing correctness, but also involves other critical metrics such as control quality and
energy consumption. As real-time systems become increasingly complex, there is
an urgent need for efficient optimization techniques that can handle large-scale sys-
tems. However, the complexity of schedulability analysis often makes it difficult to
be directly incorporated in standard optimization frameworks, and inefficient to be
checked against a large number of candidate solutions. In this paper, we propose a
novel optimization framework for the design of real-time systems. It leverages the
sustainability of schedulability analysis that is applicable for a large class of real-
time systems. It builds a counterexample-guided iterative procedure to efficiently
learn from an unschedulable solution and rule out many similar ones. Compared to
the state-of-the-art, the proposed framework may be ten times faster while provid-
ing solutions with the same quality. This work is a journal extension to the con-
ference paper published at RTSS 2020, which adds new discussions for techniques
that improve the algorithm scalability, as well as a set of new experiments to better
evaluate the proposed framework.

Keywords  Design optimization · Sustainable schedulability analysis

 *	 Yecheng Zhao
	 zyecheng@vt.edu

	 Runzhi Zhou
	 zrz@seas.upenn.edu

	 Haibo Zeng
	 hbzeng@vt.edu

1	 Virginia Polytechnic Institute and State University Blacksburg, Virginia, USA

http://orcid.org/0000-0003-1942-2361
http://crossmark.crossref.org/dialog/?doi=10.1007/s11241-022-09388-5&domain=pdf

276	 Real-Time Systems (2022) 58:275–312

1 3

1  Introduction

Design optimization techniques are becoming vital and urgent for a number of
application domains for real-time systems. For example, the automotive industry is
extremely cost sensitive yet its products are highly safety critical (Ebert and Favaro
2017). Unmanned aerial vehicles powered by batteries must carefully plan and oper-
ate according to their tight energy budget (Hassanalian and Abdelkefi 2017).

There has been a rich set of research on the development of timing and schedu-
lability analysis over the past years. However, many of the analysis techniques are
either impossible, or too complex and inefficient, to be used in well-established
optimization frameworks (i.e., mathematical programming) (Zhao et al. 2018).
As a result, the existing practice for design optimization often has to rely on ad-
hoc approaches. This typically comes with the loss of solution quality as well as
limited applicability. Hence, an efficient and general framework that bridges the
gap between schedulability analysis and optimization is critical to the future suc-
cess of real-time systems design.

In this paper, we seek to address this urgent need and propose a general frame-
work for optimizing real-time systems. We leverage the concept of sustainable
schedulability analysis that is recommended as a good engineering practice for
real-time systems (Baruah and Burns 2006). Specifically, if a task system is
schedulable under a sustainable schedulability analysis, then it should remain to
be schedulable with, for example, decreased worst case execution time (WCET),
or increased period.

The design of our framework centers around the concept of Maximal Unsched-
ulable Assignment (MUA) to variables that are sustainable in the schedulabil-
ity analysis, including task WCET and period. It avoids the direct formulation
of schedulability region, but uses MUAs to provide an efficient abstraction of
the schedulability constraints. It develops a counterexample (i.e., unschedulable
solutions) guided paradigm to learn from an unschedulable solution and rule out
many similar unschedulable ones. It also builds an MUA-driven branching algo-
rithm that takes advantage of the special structure in the optimization problem.

Our framework is generally applicable to a broad range of optimization prob-
lems for real-time systems. We use two case studies to demonstrate the benefit
of our framework. The first is the optimization of energy consumption on plat-
forms with dynamic voltage and frequency scaling (DVFS), where task WCETs
change based on the selected CPU frequency. The second is the selection of task
periods to optimize control quality under schedulability constraints (Mancuso
et al. 2014). Compared to the state-of-the-art, the proposed framework may be ten
times faster while providing solutions with the same quality.

Extended version This paper is an extension to the conference publication
(Zhao et al. 2020) appeared at RTSS 2020. Comparing to the conference version,
this paper adds the following new contents:

1.	 In Sect. 5.2, we describe a size limit K on the number of nodes to keep when
expanding the MUA-driven branching tree in each iteration. This addresses the

277

1 3

Real-Time Systems (2022) 58:275–312	

issue of exponential growth of tree size for large problems. We discuss how to
select the value K to balance between optimization quality and algorithm scal-
ability.

2.	 In Sect. 5.4, we perform a more in-depth analysis of the MUA conversion pro-
cedure. We discussed an improved conversion algorithm in Algorithm 2. The
new algorithm treats each decision variable in a way that is more sensitive to the
objective function. We add two examples, Examples 5 and 6, to demonstrate how
the new algorithm improves convergence rate over Algorithm 1 for separable and
monotonic objective functions.

3.	 In Section 7.1, we perform a number of new experiments for the case study of
energy consumption optimization. Specifically, we add new experiment results
in Fig. 6 that compares the framework using Algorithm 1 and the one with Algo-
rithm 2. We also add new experiment results in Table 2 and Table 3 that compares
the runtime and solution quality for different settings of K.

4.	 In Sect. 7.2, we perform a number of new experiments for the case study of
control performance optimization. In Fig. 9 we compare Algorithm 1 and the
newly proposed Algorithm 2. We also perform new experiments that compare
the runtime and sub-optimality for different settings of K. The results are given in
the newly added Figs. 10 and 11. Finally, we perform another experiment where
task priority assignment is also a design variable. We evaluate the framework in
terms of runtime and solution quality improvement. The results are given in the
two new figures, Figs. 12 and 13.

Paper organization The rest of the paper is organized as follows. Section 2 summa-
rizes the related work. Section 3 presents the system model and the problem setting
that fits our framework. Section 4 describes the concept of Maximal Unschedulable
Assignment (MUA). Section 5 develops the framework based on MUA. Section 6
discusses the applicability and limitations. Section 7 shows the experiments to dem-
onstrate the advantage of our framework. Finally, Sect. 9 concludes the paper.

2 � Related work

There is a rich literature for the optimization of real-time systems. Generally speak-
ing, the current approaches can be classified into four categories: (i) meta heuristics
such as simulated annealing (e.g., (Tindell et al. 1992; Bate and Emberson 2006))
and genetic algorithms (e.g., (Hamann et al. 2004; Shin and Sunwoo 2007)); (ii)
problem specific heuristics (e.g., (Saksena and Wang 2000; Han et al. 2013; Wang
et al. 2016)); (iii) adoption of existing optimization frameworks such as branch-and-
bound (BnB) (e.g., (Wang and Saksena 1999; Al-Bayati et al. 2015)), Mixed Inte-
ger Linear Programming (MILP) (e.g., (Zeng and Di Natale 2012; Gu et al. 2016)),
and convex programming (e.g., (Huang et al. 2014)); (iv) customized optimization
frameworks that are tuned for specific design variables in real-time systems, such
as the optimization of task priority (Zhao and Zeng 2017, 2017, 2018, 2018, 2019),
task period (Zhao et al. 2018), and task offset (Bansal et al. 2018). The first two

278	 Real-Time Systems (2022) 58:275–312

1 3

categories either do not have any guarantee on solution quality, or suffer from scal-
ability issues and may have difficulty to handle large industrial designs. For the third
category, besides the possible scalability issues, it also requires that the schedula-
bility analysis can be formulated in the chosen framework, which may not always
be possible. The current approaches in the fourth category are also limited in their
applicability. For example, unlike the proposed framework in this paper, none of
them (Zhao et al. 2018; Zhao and Zeng 2017, 2017, 2018; Bansal et al. 2018; Zhao
and Zeng 2018, 2019) considers task WCETs as design variables.

The problem of task period selection has been studied in the literature (Seto
et al. 1998; Bini and Di Natale 2005). In particular, Bini and Di Natale (2005) pro-
pose a problem specific branch-and-bound technique for optimizing task rate, but it
describes the exact schedulability region in the domain of task rates, hence it may
be applicable to problems with optimization objectives that depend only on task
periods (not on other variables such as task response times). Mancuso et al. (2014)
develop a branch-and-bound algorithm, where a linear lower bound is adopted
as an approximation to task response time. In Shin and Sunwoo (2007), a genetic
algorithm is used for the problem to minimize the sum of end-to-end delays in net-
worked control systems. Davare et al. consider the period optimization to minimize
end-to-end latencies for a set of paths, and formulate it in mixed integer geomet-
ric programming (MIGP) framework (Davare et al. 2007). Differently, Zhao et al.
(2018) propose a customized procedure specialized for the minimization of end-to-
end latencies, which is several orders of magnitude faster than (Davare et al. 2007).
Our approach is also to develop a customized framework. However, it not only is
more generally applicable than (Zhao et al. 2018), but also may run 100× faster.

There are various approaches proposed to address the problem of optimizing
energy consumption for systems with DVFS, see a related review in Bambagini
et al. (2016). However, they are all focusing on one particular scheduling model and
associated schedulability analysis. For example, Huang et al. (2014) consider mixed-
criticality systems scheduled with Earliest Deadline First with Virtual Deadline,
which allows to formulate the problem as a convex program. Instead, our frame-
work is generally applicable to any systems as long as the schedulability analysis is
sustainable.

In summary, compared to the existing approaches, our framework is applicable to
a larger class of optimization problems in real-time systems. It does not pertain to a
particular scheduling model or schedulability analysis, but can be used for any sys-
tems with sustainable schedulability analysis. It applies to the optimization of vari-
ous decision variables including task WCET, period, deadline, or priority assign-
ment. Finally, it may still be much faster than the state-of-the-art, as demonstrated in
the experimental results.

3 � System model

In this paper, we consider a general setting of real-time systems for which the asso-
ciated schedulability analysis is sustainable (Baruah and Burns 2006). It contains
m tasks indexed from 1 to m. The design optimization of a real-time system is to

279

1 3

Real-Time Systems (2022) 58:275–312	

select the appropriate values for design variables such that (a) a given cost function
is minimized, and (b) system schedulability is satisfied. Mathematically it can be
expressed as follows

where � = (x1, ...xn) is the vector of variables. Here we first focus on the case that �
may include the response time Ri , WCET Ci , deadline Di and/or period Ti for any
task �i . In Sect. 6 we will discuss how to handle the case where priority assignment
is also part of the decision variables. Each variable xj in � takes integer values
within a bounded range [xl

j
, xu

j
] (i.e., the design variables have finite resolutions). We

do not impose any particular form of schedulability analysis, as long as it is sustain-
able (Baruah and Burns 2006).

Sustainability is proposed as a guideline for the development of schedulability
analysis techniques in real-time systems (Baruah and Burns 2006). Specifically, a
schedulability analysis is defined as sustainable if any schedulable task system
remains schedulable with (i) decreased WCET Ci ; (ii) larger period Ti ; (iii) larger
deadline Di for any task �i , among others.1

Here we discuss how to leverage the sustainability with respect to task dead-
lines to handle the case that response time Ri appears in the objective function. In
this case, we not only need to make sure that Ri ≤ Di (which can be satisfied by
any Ri that is no larger than Di ), but also a precise value of Ri in order to compare
different schedulable solutions. In this case, we replace Ri with a virtual deadline
D̂i (Zhao and Zeng 2017), which can be interpreted as a safe estimation on Ri (hence
Ri ≤ D̂i ≤ Di ) when the system is schedulable. It is easy to see any schedulability
analysis that is sustainable with respect to the deadline Di is also sustainable with
respect to D̂i.

For systems with sustainable schedulability analysis, without loss of generality,
they satisfy the following property.

Property 1  The system schedulability constraints can be written as G(�) ≤ 0 , where
each function in G(�) is monotonically non-increasing with respect to each vari-
able xj in � . Hence, if a smaller assignment to xj (e.g., the period, virtual deadline,
or the additive inverse −Cj of WCET Cj ) makes the system schedulable, then a larger
assignment to xj also does (assuming all other variables remain unchanged).

Note that some variables such as WCET Ci may be opposite to the above property
(smaller Ci corresponds to easier schedulability). In this case, we can simply per-
form a variable conversion (i.e., replacing Ci with C�

i
= −Ci ) to make it conform to

the assumption.

(1)
min F(�)

s.t. system schedulability

xj ∈ [xl
j
, xu

j
],∀j = 1, ..., n

1  For simplicity we call such a schedulability analysis sustainable, but it is termed as self-sustainable
analysis in Baker and Baruah (2009), see a detailed discussion therein.

280	 Real-Time Systems (2022) 58:275–312

1 3

3.1 � Examples on sustainable schedulability analysis

Sustainability is a general property that applies to many schedulability analysis
techniques in real-time systems. For example, for the classical Liu-Layland task
model scheduled with fixed priority (Liu and Layland 1973), the response time
based schedulability analysis (Audsley et al. 1991) is sustainable

A more complicated example is mixed-criticality systems scheduled with Adap-
tive Mixed-Criticality (AMC) scheduling policy (Baruah et al. 2011). The proposed
AMC-rtb and AMC-max schedulability analyses (Baruah et al. 2011) are both sus-
tainable (Guo et al. 2017). The two analyses mainly differ in the estimation of inter-
ferences from higher priority tasks during the criticality change.

AMC-rtb analysis calculates the response time of a HI-ciriticality task �i dur-
ing the criticality change as

Here Ci(HI) represents the WCET of �i in HI criticality mode. Ri(LO) is the response
time of �i in LO criticality mode given by Eq. (2). hpH(i) and hpL(i) represent the
set of HI- and LO-criticality tasks of higher priority than �i , respectively.

Intuitively, AMC-rtb assumes that a HI-criticality task always executes in HI-
criticality mode and LO-criticality task may execute up to Ri(LO) . AMC-max
improves upon AMC-rtb by considering different specific time instants of criti-
cality change and dividing the workload of higher priority HI-criticality tasks into
LO-mode and HI-mode. Specifically, given a time instant s of criticality change,
AMC-max computes the WCRT of �i as follows

where M(j, s, t) represents the maximum number of instances of �j that are released
as HI-criticality instances during the time interval [s, t], which is expressed as

(2)Ri = Ci +
∑

∀j∈hp(i)

⌈
Ri

Tj

⌉
Cj ≤ Di

(3)

Ri(HI) = Ci(HI) +
∑

∀j∈hpH(i)

⌈
Ri(HI)

Tj

⌉
Cj(HI)+

∑
∀j∈hpL(i)

⌈
Ri(LO)

Tj

⌉
Cj(LO)

(4)

Ri(HI, s) = Ci(HI) +
∑

∀j∈hpL(i)

(⌊
s

Tj

⌋
+ 1

)
Cj(LO)+

∑
∀j∈hpH(i)

M(j, s,Ri(HI, s))Cj(HI)+

∑
∀j∈hpH(i)

(⌈
t

Tj

⌉
−M(j, s,Ri(HI, s))

)
Cj(LO)

281

1 3

Real-Time Systems (2022) 58:275–312	

The WCRT of �i during the criticality change can be computed by examining all
possible time instants s of criticality change

It is shown to be sufficient to only consider those s in the interval [0,Ri(LO)) (Baruah
et al. 2011).

3.2 � Example optimization problems

We now provide two examples that fit our framework.

3.2.1 � Optimizing control quality

The first problem is to optimize control performance for a set of periodic tasks
scheduled on a uniprocessor (Mancuso et al. 2014). The objective function, which
represents the control cost, are approximated as a weighted sum of task period Ti and
response time Ri for each task �i (Mancuso et al. 2014)

where �i and �i are given constant weights. Note that in the above objective function
Ri can be replaced by a (virtual) deadline Di . The reason is that for every optimal
solution for (7), there is a solution with the same objective value for 8 by simply set-
ting Di = Ri.

Our framework works for any scheduling policy as long as its schedulability analysis
is sustainable. In the experiments (Sect. 7.2) we assume the same as those in Man-
cuso et al. (2014), i.e., the schedulability analysis in Eq. (2).

3.2.2 � Energy minimization with DVFS

Platforms with DVFS capabilities allow to adjust the CPU clock rate to save energy.
Higher clock rate gives smaller WCET, which generally helps schedulability. How-
ever, this comes with an increased energy consumption. The goal is to determine the
clock rate fi for executing each task �i such that the system is schedulable while the
total energy is minimized.

Specifically, suppose �i has an execution time Cb
i
 measured at a base clock rate

f b , then its execution time at another clock rate fi can be estimated as Ci = Cb
i
×

f b

fi
 .

(5)M(j, s, t) = min

{⌈
t − s − (Tj − Dj)

Tj

⌉
+ 1,

⌈
t

Tj

⌉}

(6)Ri(HI) = max
∀s

Ri(HI, s)

(7)F(�) =

m∑
i=1

�iTi + �iRi

(8)F(�) =

m∑
i=1

�iTi + �iDi

282	 Real-Time Systems (2022) 58:275–312

1 3

Thus fi = f b ×
Cb
i

Ci

 . We normalize f b to be 1 and consider that Cb
i
 is given, which

makes Ci a decision variable in the optimization. We adopt the energy consump-
tion objective formulated in Huang et al. (2014):

where � is a circuit-dependent constant. A common assumption for � is 3 (Nelson
et al. 2011; Pagani and Chen 2014). Like the previous case, we do not impose any
constraint on the scheduling policy as long as the associated schedulability analysis
is sustainable. In the experiments (Sect. 7.1), we use Eq. (2) for a large number of
random systems. For an industrial case study, we assume mixed-criticality systems
scheduled with AMC, and adopt the AMC-rtb and AMC-max schedulability analy-
ses (Baruah et al. 2011), both of which are sustainable (Guo et al. 2017).

4 � Maximal unschedulable assignment

We now introduce the concept of Maximal Unschedulable Assignment (MUA).

Definition 1  An assignment

is a valuation of each variable xi = vi in � . An assignment X = (v1, ...vn) is said to
dominate another assignment X� = (v�

1
, ...v�

n
) , denoted as X ⪰ X

� , if X is component-
wise no smaller than X′ , i.e., vi ≥ v�

i
,∀i.

Definition 2  An assignment X is said to be unschedulable if it violates the schedu-
lability constraints. X is a maximal unschedulable assignment (MUA) if (a) X is
unschedulable and (b) there is no other unschedulable assignment that dominates X .

We remark that the concept of MUAs is well-defined, since by Property 1
of schedulability constraints with respect to the variables in � , any assignment
X

′ that is dominated by an MUA X must also be unschedulable. Also, any two
MUAs cannot dominate each other, otherwise one of them is not an MUA. Note
that we assume variables with integer values (or in general discrete variables),
hence the MUAs always exist.

Example 1  Consider a hypothetical optimization problem formulated in (11) where ||
denotes the logic OR operation. The decision variables are � = (x1, x2) , which take
values in the range [0, 9]. The feasibility region are formed by the disjunction of two
linear constraints, which is shown in Fig. 1 as the green shadowed area.

(9)F(�) =
∑
∀�i

Cb
i
f b

Ti
⋅ � ⋅ (fi)

�−1 =
∑
∀�i

1

Ti
⋅ � ⋅

(Cb
i
)�

(Ci)
�−1

(10)X = (v1, ...vn)

283

1 3

Real-Time Systems (2022) 58:275–312	

In the figure, the five points A = (8, 1) , B = (7, 3) , C = (6, 4) , D = (5, 5) ,
E = (0, 5) marked in the figure are all unschedulable assignments as they lie outside
of the schedulability region. E is not an MUA, since D dominates E. Meanwhile, A,
B, C and D are all MUAs since they are unschedulable assignments and there exists
no other unschedulable assignment that dominates any of them.

By Property 1, any assignment dominated by an unschedulable assignment is also
unschedulable. Therefore, an MUA X = (v1, ...vn) implies the following constraint that
must be satisfied by any schedulable solution

where { denotes the logic AND operation. We call (12) the implied constraint by
X  . Note that no matter how complicated the schedulability analysis is, the MUA-
implied constraints will always take the form in (12), hence they are an abstract
interpretation of the schedulability constraints. The higher the values in X  , the

(11)

min F(�) = x1 + x2

s.t.
‖‖‖‖
x1 + 6x2 ≥ 36

5x1 + 3x2 ≥ 45

0 ≤ x1, x2 ≤ 9

(12)¬

⎧
⎪⎨⎪⎩

x1 ≤ v1

...

xn ≤ vn

⇔

�������

x1 ≥ v1 + 1

...

xn ≥ vn + 1

A(8, 1)

B(7, 3)

C(6, 4)

D(5, 5)E(0, 5)

0 1 2 3 4 5 6 7 8 9

x1

0

1

2

3

4

5

6

7

8

9

x2

Fig. 1   The MUAs of the problem in Eq. (11)

284	 Real-Time Systems (2022) 58:275–312

1 3

stronger the implied constraint. In this sense, constraints implied by MUAs are the
“strongest" type of constraints for schedulability. In Example 1, the implied con-
straints by MUAs A = (8, 1) , B = (7, 3) , C = (6, 4) , D = (5, 5) together represent the
exact schedulability region.

5 � Optimization framework

We now present the optimization framework that builds upon the concept of MUA.
By the sustainability of schedulability analysis (hence Property 1), once we find an
unschedulable solution, we can generalize it to MUAs to simultaneously rule out
many similar unschedulable solutions. This leads to the following key idea for the
design of our framework: we use MUA-implied constraints as an efficient abstrac-
tion (as opposed to a direct formulation) of the schedulability region, and employ an
iterative procedure to gradually learn those MUAs that are critical for determining
the optimal solution (Sect. 5.1). Furthermore, we maintain an MUA-driven branch-
ing structure to allow incremental update of the branching tree and efficient solution
to each leaf problem (Sect. 5.2).

5.1 � MUA‑guided iterative procedure

In real-time systems, the complexity of the schedulability analysis may prevent
us from leveraging existing optimization frameworks. Consider the example of a
mixed-criticality system scheduled according to adaptive mixed-criticality schedul-
ing (Baruah et al. 2011). The system operates in two modes: low-criticality (LO)
or high-criticality (HI). Correspondingly, the tasks in the system are categorized as
either low-criticality(LO) or high-criticality(HI). HI tasks are characterized by two
worst-case execution times, denoted C(HI) and C(LO)), in HI and LO modes respec-
tively. C(HI) is usually much higher than C(LO). When in LO mode, all tasks are
scheduled and need to meet the deadline requirements. In HI mode, LO tasks are
dropped and only HI tasks need to meet the deadline. Schedulability analysis for
such system needs to consider the worst case scenario, taking into account that LO
to HI criticality mode change may happen anytime. The AMC-max (Baruah et al.
2011) schedulability analysis, as detailed in Eq. (6), is the most accurate analysis
for fixed-priority AMC scheduling. It considers all possible time instants s of criti-
cality change up to the the task’s worst-case response time in LO mode. However,
the analysis is difficult to use in traditional mathematical programming frameworks.
This is because the LO mode worst-case response time is typically also a function
of the design parameters and therefore the range of s is not known a priori when for-
mulating the mathematical programming model. As systems become more sophis-
ticated and the associated schedulability analysis gets more delicate, often times a
direct formulation in existing optimization frameworks is more difficulty if possible
at all.

We consider a different approach that leverages the sustainability of schedula-
bility analysis, a property that was first advocated by Baruah and Burns (2006).

285

1 3

Real-Time Systems (2022) 58:275–312	

Our key observation is that the sustainability of schedulability analysis (hence
Property 1) allows to generalize from one unschedulable solution to MUAs, which
can simultaneously rule out many similar unschedulable solutions. This is lever-
aged to develop the iterative optimization framework guided by counterexamples
(i.e., unschedulable solutions), as illustrated in Fig. 2. Initially, it starts with an
optimization problem � that leaves out all the schedulability constraints. It then
enters an iterative procedure that contains four steps. The first step is to solve
� using an MUA-driven branching algorithm. Here � maintains to be a relaxed
version of the original problem in Eq. (1), since it only includes the implied con-
straints from a subset of all MUAs (and hence only part of the schedulability
constraints). The second step is to use the associated (sustainable) schedulability
analysis to check if the returned solution X from Step 1 is schedulable or not. If
yes, then X must also be an optimal solution to the original problem (Theorem 1).
Otherwise, it performs two operations, Steps 3 and 4, that can be executed in par-
allel. In Step 3, it converts X to an MUA and adds the implied constraints (12) to
� . In this way, the counterexample (i.e., the unschedulable solution X returned in
Step 1) is generalized as much as possible, such that many similar unschedulable
solutions can be ruled out together. In Step 4, it converts X to a feasible solution
and adds it to � , which allows both efficient branch-and-bound and early termina-
tion of the algorithm. These steps will be explained from Sect. 5.3 to Sect. 5.5,
after we present the MUA-driven tree structure (Sect. 5.2).

We now discuss two important properties of the framework, as stated in the
following theorem.

Fig. 2   MUA-guided optimization framework

286	 Real-Time Systems (2022) 58:275–312

1 3

Theorem 1  The algorithm in Fig. 2 guarantees to terminate. If Step 1 in each iter-
ation is solved optimally w.r.t. the added constraints, the algorithm guarantees to
return an optimal solution upon termination.

Proof  During each iteration, the procedure has to find a solution X that satis-
fies the constraints implied by all the previously added MUAs. This means that if
X is still unschedulable, then it must correspond to MUAs that are different from
the known ones. Since the total number of MUAs is clearly finite and bounded by
�(�∀i(x

u
i
− xl

i
+ 1)) , the algorithm guarantees to terminate.

The implied constraint (12) only cuts away unschedulable decision space. Since
the problem starts with no MUAs in � , at any point during the optimization, the
feasibility region defined by the added MUA-implied constraints maintains to be an
over-approximation of the exact feasibility region. Hence the optimization problem
� in Step 1 has the same objective function but a larger feasibility region than the
original problem (1). This implies that upon termination, where the algorithm finds
a schedulable solution, the solution must also be optimal to (1).

Example 2  As an example, we apply the framework to the problem (11). Here we
focus on how the framework prunes the unschedulable solutions, and ignore the step
of finding feasible solutions.

Iteration 1 The algorithm initially ignores all schedulability constraints. Opti-
mizing F(�) gives the assignment X = (x1, x2) = (0, 0) . Since X is clearly unschedu-
lable, the algorithm proceeds to convert X into an MUA. Depending on the strategy
for MUA computation (which will be discussed in Sect. 5.3), the algorithm may
obtain any one of points A = (8, 1) , B = (7, 3) , C = (6, 4) , or D = (5, 5) in Fig. 1.
Suppose A is returned as the converted MUA.

Iteration 2 The feasibility region is updated to Fig. 3b, where the area colored
in yellow represents the region cut away by the constraints implied by the MUA A.
Optimizing F(�) gives the assignment X = (0, 2) . Since X is not schedulable, the
algorithm proceeds to convert X into an MUA. Suppose B = (7, 3) is returned as the
converted MUA.

Iteration 3 The feasibility region is updated to Fig. 3c. Optimizing F(�) returns
the assignment X = (0, 4) . Suppose C = (6, 4) is returned as the computed MUA.

Iteration 4 The feasibility region is updated to Fig. 3d. Optimizing F(�) returns
the assignment X = (0, 5) . Now the only possible MUA that can be computed is
D = (5, 5).

Iteration 5 The feasibility region is updated to Fig. 3e. Optimizing F(�) gives
the assignment X = (0, 6) . This assignment is now schedulable and the algorithm
terminates with an optimal solution (x1, x2) = (0, 6).

5.2 � MUA‑driven branching tree

As in Figure 2, the above procedure requires to solve an instance of � during each
iteration, which may only be slightly different from the previous iterations since the

287

1 3

Real-Time Systems (2022) 58:275–312	

procedure only adds a handful of new MUAs to � . Directly calling mathematical
programming solvers to solve � is not necessarily efficient since many solvers do

X(0, 0)

G(8, 1)

0 1 2 3 4 5 6 7 8 9

x1

0

1

2

3

4

5

6

7

8

9
x2

(a) Iteration 1

G(8, 1)

X(0, 2)

G(7, 3)

0 1 2 3 4 5 6 7 8 9

x1

0

1

2

3

4

5

6

7

8

9

x2

(b) Iteration 2

G(8, 1)

G(7, 3)

X(0, 4)
G(6, 4)

0 1 2 3 4 5 6 7 8 9

x1

0

1

2

3

4

5

6

7

8

9

x2

(c) Iteration 3

G(8, 1)

G(7, 3)

G(6, 4)

X(0, 5)
G(5, 5)

0 1 2 3 4 5 6 7 8 9

x1

0

1

2

3

4

5

6

7

8

9

x2

(d) Iteration 4

G(8, 1)

G(7, 3)

G(6, 4)

G(5, 5)

X(0, 6)

0 1 2 3 4 5 6 7 8 9

x1

0

1

2

3

4

5

6

7

8

9

x2

(e) Iteration 5

Fig. 3   The iterative procedure applied to the problem in Eq. (11). The yellow shadowed area is the
pruned unschedulability at the end of the iteration

288	 Real-Time Systems (2022) 58:275–312

1 3

not support incremental solving, i.e., they have to solve each instance of � from
scratch.2

Hence we build a branching tree structure to represent the MUA-implied con-
straints. It allows incremental updating of the tree, as well as efficiently solving each
subproblem at the leaf nodes. Initially (i.e., before entering the iteration in Fig. 2)
the tree only contains one (root) node. Each time a new MUA X is added to the
problem � , we add a new layer in the tree to represent the disjunction (i.e., logic
OR) of the constraints implied by X  , where each branch (edge) in the new layer is a
constraint in the disjunction. Each node N in the tree represents the set of conjunc-
tive (i.e., logic AND) constraints along the path from the root node to this node N  .
Since the constraint on each branch takes the particular form xj ≥ uj for some value
uj , the constraint represented by a node N can be simplified as

For simplicity, we denote the node as N = [u1, ..., un].
Some nodes in the tree are redundant, in the sense that the corresponding con-

straints may have already been satisfied by constraints along the path from the root.
These nodes can be pruned to make the tree structure more compact.

Example 3  Consider the branching tree after Iteration 2 in Example 2, i.e., after add-
ing the constraints implied by MUAs A = (8, 1) and B = (7, 3) . The left hand side of
Fig. 4 shows the resulted tree. The constraint corresponding to A is x1 ≥ 9 ∨ x2 ≥ 2 ,
and the constraint corresponding to B is x1 ≥ 8 ∨ x2 ≥ 4 , where ∨ denotes the logic
OR operation. Hence, the root node (node 1) is first branched to two children, nodes
2 and 3, where the branch to node 2 represents the constraint x1 ≥ 9 , and the branch
to node 3 represents the constraint x2 ≥ 2 . When adding the constraints for MUA
B = (7, 3) , each of nodes 2 and 3 is branched to two children. Node 6, for example,

(13)

⎧⎪⎨⎪⎩

x1 ≥ u1

...

xn ≥ un

Fig. 4   Branching tree at the end of Iteration 2 of Example 2: original tree (left); after pruning (right)

2  The only known exception is the MILP solver CPLEX (International Business Machines Corporation
xxxx), which provides an interface for building customized branching tree. But the price is that it can no
longer run in parallel on multiple cores, which actually makes the whole procedure slower.

289

1 3

Real-Time Systems (2022) 58:275–312	

represents the constraints along the path from the root node, i.e., x2 ≥ 2 ∧ x1 ≥ 8 ,
where ∧ denotes the logic AND operation.

When adding the constraint x1 ≥ 8 ∨ x2 ≥ 4 implied by MUA B to node 2, this
constraint is already satisfied by the constraint x1 ≥ 9 represented by node 2, i.e.,
(x1 ≥ 9) ∧ (x1 ≥ 8 ∨ x2 ≥ 4) = x1 ≥ 9 . The right hand side of Fig. 4 shows the tree
structure after pruning the redundant nodes.

The special form of MUA-implied constraints make it easy to check the redun-
dancy of nodes.

Theorem 2  Assume N = [u1, ..., un] is an existing node in the tree. If an MUA
X = (v1, ..., vn) to be added satisfies that ∃i ∶ ui ≥ vi + 1 , then the constraints implied
by X are redundant.

Proof  This is easy to see by checking the represented constraints of N in (13) and
those of MUA X in (12).

Pruning redundant nodes avoids exploring redundant sub-trees and reduces search
space. However, the number of nodes in each layer may still grow exponentially as
more MUAs are being added. For large size problems that require many MUAs to
define the optimal solution, it is impractical to examine and solve all possible leaf
nodes in each iteration. To alleviate the problem, a size limit K can be set on the
number of nodes to keep when adding a new MUA (and hence a new layer of nodes)
to the tree. Specifically, each node in the layer represents an optimization problem
with the same objective function and a constraint of form (13). We solve the prob-
lem and obtain the objective value. We then sort these nodes in ascending order
according to their optimized objective values and only keep at most K best nodes. In
other words, we only keep at most K nodes that has smaller objective values than the
rest. In the next iteration, the framework only branches into new nodes from these K
nodes. Since an MUA-implied constraint can have at most n disjuncted inequalities
where n is the number of variables, the number of new nodes being branched into
in each iteration is at most Kn. Likewise, among these Kn nodes, another K nodes
will be selected for branching in the next iteration. Therefore, in each iteration, the
framework solves at most Kn instances of node problems.

With a size limit K, the sub-problem in each iteration is only solved sub-opti-
mally. In return, the algorithm gains better scalability. In most cases, a larger value
on K gives better solution. But extremely large K does not necessarily brings more
benefit on solution quality comparing to smaller one, but may drastically increases
run-time. The best setting of K may depend on the nature of the problem. In Sect. 7,
we evaluate how K affect the solution quality and scalability of the optimization
algorithm.

⎧⎪⎨⎪⎩

x1 ≥ u1

...

xn ≥ un

⇒ xi ≥ ui ⇒ xi ≥ vi + 1 ⇒

�������

x1 ≥ v1 + 1

...

xn ≥ vn + 1

290	 Real-Time Systems (2022) 58:275–312

1 3

In the following we explain how the steps in Fig. 2 are handled. For Step 2, it
can use any schedulability analysis as long as it is sustainable.

5.3 � Step 1: Solving !

For Step 1, it requires to solve the following optimization problem at each leaf
node N = [u1, ..., un] in the tree:

The constraints in (14) are of a particularly simple form: there are no coupled con-
straints for any pair of variables xi and xj . This means that the overall optimization
can be done by optimizing each variable in sequence (Boyd and Vandenberghe
2004). In other words, (14) can be transformed to

For example, if F(�) is convex with respect to the variables, then solving (15)
amounts to solving a series of single-variable convex programs, which is a lot easier
than those with coupled constraints.

In addition, even if F(�) is not convex (hence in general difficult to
solve (Boyd and Vandenberghe 2004)), we may still be able to provide a sim-
ple solution to it. In real-time systems, often times there exists some tradeoff
between schedulability and the metrics in the objective function. For example,
when the CPU frequency is increased, the task WCET is lower, but the energy
consumption will be higher. Similarly, increasing the task periods will make the
task system easier to schedule, but the control quality and stability will be wors-
ened. In component-based design, modularity (i.e., the number of exposed inter-
faces) is a critical metric, but better modularity may lead to larger code size and
longer WCET (Tripakis and Lublinerman 2018). We leverage this observation to
derive the following corollary, which is a direct consequence from Eq. (15). In
fact, Corollary 3 applies to both problems in the experiments.

Corollary 3  If F(�) is monotonically non-decreasing with respect to each of the vari-
ables in � , then the optimal solution to (14) is x1 = u1, ..., xn = un.

This corollary is intuitive since the objective function will push each variable
xi to its lowest possible value ui.

(14)

min
xj∈�

F(�)

s.t. constraints of form (13)

xj ∈ [xl
j
, xu

j
],∀j = 1, ..., n

(15)

min
x1

min
x2

... min
xn

F(�)

s.t. constraints of form (13)

xj ∈ [xl
j
, xu

j
],∀j = 1, ..., n

291

1 3

Real-Time Systems (2022) 58:275–312	

5.4 � Step 3: Converting an Unschedulable Assignment to MUA

In this section, we discuss algorithms for converting an unschedulable assignment X
into an MUA U . It utilizes Property 1, i.e., the schedulability analysis is sustainable
with respect to the variables, to maximally increase each entry in X while maintain-
ing its unschedulability. The procedure is summarized in Algorithm 1. It uses binary
search to sequentially find the maximal value that each entry in U can be increased
to while maintaining unschedulability. The algorithm requires O(n log xmax) number
of schedulability analysis where xmax = max{xu

1
, ..., xu

n
}.

Algorithm 1 Conversion to MUA
1: function ConvertToMUA(Unschedulable Assignment X)
2: U = (u1, ..., un) = X
3: for each entry ui in U do
4: Use binary search to maximally increase ui while keeping the system unschedu-

lable
5: end for
6: return U
7: end function

This step is critical in the efficiency of the overall algorithm. Unlike typical coun-
terexample guided algorithms, once we find an unschedulable solution, in the next
iteration we rule out not only this solution but also many similar ones. Here the
concept of MUA is critical: it is essentially a generalization from one unschedu-
lable solution to many, which is a key in allowing a fast convergence rate of the
framework.

Example 4  Using Algorithm 1 on Example 1 yields the exact trace of iterations
shown in Fig. 3 in Example 2. For instance, in the first iteration, when a solution
X = (0, 0) is returned, Algorithm 1 first increases u1 to 8 since that is the largest
value of x1 that still makes the system unschedulable. It then increases u2 from 0 to 1
to get the MUA U = (8, 1).

Although simple and straightforward, the returned MUA may not give the best
convergence rate w.r.t the objective function. Specifically, the procedure in Algo-
rithm 1 tends to give a larger increase on entries that are visited earlier, and a
smaller increase on entries that are visited later. This is mainly because each time
an entry is increased, the assignment becomes closer to being feasible, which
leaves less room for variables visited later in the order to increase. This can nega-
tively impact convergence rate if the objective function is sensitive to these vari-
ables that are visited later. For example, in iteration 1 of Example 2, since x1 is
visited first in Algorithm 1, the computed MUA U = (8, 1) has a large increase of
8 on x1 , but only a very small increase of 1 on x2 . However, the objective func-
tion F(�) = x1 + x2 is equally sensitive to both x1 and x2 . As a result, optimizing
problem � in the following iteration chooses to satisfy x2 ≥ 2 and gives solution
X = (0, 2) that only increases the objective value by 2. An intuitive improvement

292	 Real-Time Systems (2022) 58:275–312

1 3

in this case is to simultaneously increase all entries first before sequentially
increasing each one. This gives an improved MUA conversion procedure in
Algorithm 2.

Algorithm 2 Improved MUA conversion algorithm
1: function ConvertToMUAImproved(Unschedulable assignments X)
2: U = (u1, ..., un) = X , d = 0
3: Use binary search to maximally increase d while keeping U ′ = (u1 + d, ..., un + d)

unschedulable
4: Update U = (u1 + d, ..., un + d)
5: Apply Algorithm 1 to convert U into an MUA
6: return U ′

7: end function

The new algorithm first increases all entries simultaneously by the same
amount d as much as possible, and then applies Algorithm 1 to convert it into a
valid MUA. This gives a more balanced increase for each variable.

X(0, 0)

G(5, 5)

0 1 2 3 4 5 6 7 8 9

x1

0

1

2

3

4

5

6

7

8

9
x2

(a) Iteration 1

G(5, 5)

X(6, 0)

G(8, 1)

0 1 2 3 4 5 6 7 8 9

x1

0

1

2

3

4

5

6

7

8

9

x2

(b) Iteration 2

G(5, 5)

G(8, 1)

X(0, 6)

0 1 2 3 4 5 6 7 8 9

x1

0

1

2

3

4

5

6

7

8

9

x2

(c) Iteration 3

Fig. 5   Iterations of optimizing Example 2 using Algorithm 2 for MUA conversion

293

1 3

Real-Time Systems (2022) 58:275–312	

Example 5  We now revisit Example 2 and apply Algorithm 2 for MUA conversion.
The trace of iterations is shown in Fig. 5.

Iteration 1 Similar to iteration 1 in Example 2 (that uses Algorithm 1), solu-
tion X = (0, 0) is returned for computing MUA. Since all entries are simultaneously
increased first, Algorithm 2 computes MUA U1 = (5, 5) instead of (8, 1).

Iteration 2 With U1 = (5, 5) , the feasibility region is updated to Fig. 3b. There
are two solutions of equal optimal objective value: (6, 0) and (0, 6). The latter is
the true optimal solution. Depending on the implementation for solving � , either
of them may be returned. If (0, 6) is returned, the framework terminates already. If
(6, 0) is returned, Algorithm 2 will compute MUA U2 = (8, 1) (it first increases both
entries simultaneously to (7, 1), then applies Algorithm 1, which gives (8, 1)).

Iteration 3 With U1 = (5, 5) and U2 = (8, 1) , the feasibility region becomes
Fig. 3c. Solving the problem returns the true optimal solution X = (0, 6) . The frame-
work terminates.

Comparing with Algorithm 1, the use of Algorithm 2 reduces the total number
of iterations from 5 to 3. In particular, after the first iteration, the objective value
drastically increases from 0 to 6, while in the original Example 2, it increases only
to 2. This illustrates that a proper strategy of computing MUAs can have a signifi-
cant impact on the convergence speed. Intuitively, the goal is to find a proper way
to increase entries such that the resulting MUA-implied constraint gives the largest
increase on the objective value.

To achieve this, an important factor to consider is how sensitive the objective
function is to each variable. Algorithm 2 simultaneously increase all entries by the
same amount, and thus essentially assumes that the objective function is equally
sensitive to each variable. This however, is generally not true. For example, if the
objective function in (11) is changed to F(�) = x1 + 8x2 , then a better strategy is to
increase x1 by 8 times the amount x2 is increased, i.e. changing line 3 of Algorithm 2
to U� = (u1 + 8d, u2 + d) . If we revisit the example in this case, it is not difficult to
see that this will lead the algorithm to compute MUA U1 = (8, 1) in the first itera-
tion. In the second iteration, the framework will get the true optimal solution (9, 0)
and terminates. However, for the original scheme in Algorithm 2, the framework
will need to go through the same 3 iterations in Fig. 5 before obtaining the optimal
solution.

Finding the best MUA conversion that generally works well can be challenging.
We discuss a specific but rather common scenario, where the objective function sat-
isfies the following two properties.

–	 The objective function is separable in each variable and can be written as a sum
of functions, i.e. F(�) = f1(x1) + f2(x2) + ...fn(xn)

–	 Each function term fi(xi) is invertible and non-decreasing w.r.t the increasing of
xi.

In this scenario, Algorithm 2 can be adapted to work generally well. The intui-
tion is that for objective functions satisfying the above conditions, we can per-
form a variable conversion and reformulate the problem such that the objective

294	 Real-Time Systems (2022) 58:275–312

1 3

function is a linear sum of variables. Specifically, for each fi(xi) we introduce a
new decision variable yi such that xi = f −1

i
(yi) , where f −1

i
 is the inverse function

of fi . The objective function can then be re-written as F(�) = y1 + y2 + ...yn . The
second property suggests that increasing the value of yi can only increase the
value of xi . This ensures that schedulability is also sustainable w.r.t. variable
yi . Therefore, the framework can be applied to solve the reformulated problem.
Since F(�) is now equally sensitive to each variable, Algorithm 2 can be used to
compute MUA that best benefits convergence speed. However, it should be noted
that the values yi can take are not necessarily integer and depends on fi(xi) . The
value needs to be adjusted each time it is increased, i.e. rounding to the closest
valid value.

Example 6  Consider a problem modified from (11) where the objective function is
changed to F(�) = x1 + 8x2

Introduce variable y1 = x1 and y2 = 8x2 and re-write the above problem as

Note that the values y2 can take are only integer multiples of 8, since x2 takes inte-
ger values. We now apply the proposed framework with Algorithm 2 to the above
problem.

Iteration 1 All constraints are ignored, solving the problem returns the solution
(y1, y2) = (0, 0) . In Algorithm 2, since both entries are simultaneously increased by
the same amount as much as possible, the returned MUA is U1 = (y1, y2) = (8, 8) .
Note that this corresponds to an assignment of (8, 1) in terms of the original variable
(x1, x2).

Iteration 2 U1 = (y1, y2) = (8, 8) , the problem is updated to

Solving the updated problem returns the true optimal solution (y1, y2) = (9, 0) . Note
that this corresponds to the optimal solution (x1, x2) = (9, 0) of the original problem.

(16)

min F(�) = x1 + 8x2

s.t.
‖‖‖‖
x1 + 6x2 ≥ 36

5x1 + 3x2 ≥ 45

0 ≤ x1, x2 ≤ 9, x1 ∈ ℤ, x2 ∈ ℤ

(17)

min F(�) = y1 + y2

s.t.

‖‖‖‖‖‖‖

y1 +
3

4
y2 ≥ 36

5y1 +
3

8
y2 ≥ 45

0 ≤ y1 ≤ 9, y1 ∈ ℤ

0 ≤ y2 ≤ 72, y2 ∈ ℤ, y2 mod 8 ≡ 0,

(18)
min F(�) = y1 + y2

s.t.
‖‖‖‖
y1 ≥ 8 + 1

y2 ≥ 8 + 1
⇒

‖‖‖‖
y1 ≥ 9

y2 ≥ 16

295

1 3

Real-Time Systems (2022) 58:275–312	

5.5 � Step 4: finding feasible solutions

The branching tree structure (as in Fig. 4) allows to implement a typical branch-and-
bound algorithm, i.e., to use the known best solution X to cut the branches that are
certainly no better than X and hence are surely suboptimal. Getting a feasible solu-
tion also allows returning useful results for designers even if they are not necessar-
ily the global optimal solution. This facilitates the possible early termination of the
overall procedure, otherwise it will not be able to get any feasible solution until the
optimal solution is found.

Our main idea is to make use of the assignment returned in Step 1 and convert
it heuristically into a good-quality schedulable assignment. The conversion can be
performed concurrently with the rest of the optimization process (Steps 1 and 3).
Specifically, in Step 2, if the assignment X = (v1, ..., vn) is unschedulable, we simply
scale each variable xi by a factor a ∈ [0, 1] , until X becomes schedulable

When a = 1 , xi takes the upper-bound value xu
i
 . We use binary search to find the

minimum a such that the assignment X becomes schedulable after scaling.

6 � Applicability and efficiency

In this section, we discuss the applicability and expected efficiency of the proposed
techniques.

Applicability to optimizing priority assignment As mentioned earlier, the
framework is applicable to optimizing task response time, period, WCETs or dead-
line, as long as the schedulability analysis is sustainable with respect to these varia-
bles. Regarding task priority assignment as part of the decision variables, this comes
with two cases: (a) the objective function is independent from the task priorities; (b)
it is sensitive to task priority assignments, such as the memory consumption in the
software implementation that preserves the semantics of the synchronous reactive
models (Zeng et al. 2011).

For case (a), we can leverage Audsley’s algorithm (Audsley 2001) that is applica-
ble to many task models and scheduling schemes (Davis et al. 2016): if there exists a
schedulable priority assignment, Audsley’s algorithm will be able to find it. Hence,
we can leave out the variables of priority assignment in the problem � , but instead
incorporate the optimization of priority assignment in the procedure for checking
schedulability (e.g., Step 2 in Fig. 2, and Line 4 in Algorithm 1): After fixing the
values of all other variables, the existence of a schedulable priority assignment now
can be efficiently checked by Audsley’s algorithm.

For case (b), it is necessary to explicitly include those binary variables for task
priority orders in the optimization problem � in the framework of Fig. 2. In this
case, we can leverage the concept of unschedulability core (Zhao and Zeng 2017).
Intuitively, it is an irreducible representation of the reason why a given total priority

(19)xi = vi + a(xu
i
− vi)

296	 Real-Time Systems (2022) 58:275–312

1 3

order is unschedulable, in the sense that relaxing any order will make the system
schedulable. We leave the details of this discussion to future work.

Efficiency The proposed technique fits the best for problems that have the follow-
ing characteristics:

1.	 The schedulability analysis is complex.
2.	 The rest of the problem is relatively simple.

For the first characteristic, the exact schedulability analysis is often NP-complete,
even for the basic settings, e.g., periodic task with fixed priority scheduling (Ekberg
and Yi 2017), or EDF scheduling with arbitrary deadlines (Ekberg and Yi 2015).
In this case, even if the problem may be formulated in some standard mathemati-
cal programming framework, our approach might still be better, since it uses MUAs
to abstract away the details of schedulability analysis, and only performs such an
analysis on a small number of design choices guided by the objective function. Of
course, there are cases that the schedulability analysis is particularly simple, such as
the condition for tasks with implicit deadlines scheduled by EDF (Liu and Layland
1973), or the utilization based bound for EDF-VD (Huang et al. 2014). In this case,
although our framework is still applicable, it is faster to directly handle the schedu-
lability condition.

For the second characteristic, this is satisfied when the objective function has
some friendly properties (such as monotonicity or convexity with respect to the var-
iables), and the constraints only include the system schedulability. If the problem
includes some additional constraints other than schedulability, then the problem at
each leaf node of the branching tree (see Fig. 4) is not necessarily easy to solve,
since there might be coupled constraints among the variables. In this case, it can
be more efficient to use other appropriate solvers to directly solve � at Step 1 of the
framework.

7 � Experiment result

We now use two problems to demonstrate the advantage of our framework. The first
is the minimization of energy consumption, the second is the optimization of control
quality.

7.1 � Optimizing energy consumption with DVFS

In this experiment, we consider the energy consumption model in Eq. (9). The deci-
sion variables are task execution times, which can be adjusted by tuning the proces-
sor frequency. Note that the objective function meets the two requirements discussed
in Sect. 5.4. Specifically, the objective function is separable in each decision vari-
able and can be written as a sum of monotonic and invertible functions:

297

1 3

Real-Time Systems (2022) 58:275–312	

Thus we can perform a variable conversion to reformulate the problem as (21),
where Algorithm 2 can be applied for computing MUAs with better convergence
rate.

We use both random systems as well as an industrial case study to compare different
approaches. To demonstrate that our framework is applicable to various scheduling
models and schedulability analysis techniques, we assume the periodic task model
and Eq. (2) in the experiments on random systems, and use AMC-rtb and AMC-max
(Eqs. 3–6) in the experiments on the industrial case study. The relative simplicity of
Eq. (2) compared to AMC-rtb and AMC-max also allows us to perform experiments
on a large number of random systems.

Random Systems For random systems, we compare the following methods:

–	 MIGP: A mixed-integer geometric programming formulation, solved by the
geometric programming solver gpposy (Mutapcic et al. 2006) with the BnB
(bmi) solver in YALMIP (Löfberg 2004).

–	 MUA-MILP: The proposed iterative procedure in Fig. 2, but the subproblem
� with MUA-implied constraints is formulated as an MILP and solved using
CPLEX (International Business Machines Corporation xxxx).

–	 MUA-incremental: The proposed technique depicted in Fig. 2 with MUA-
driven branching tree for incremental update, where each problem at the leaf
node is solved using Corollary 3. Note that the method uses Algorithm 2 for
MUA conversion and the result is the same one presented in the original con-
ference submission (Zhao et al. 2020). The algorithm was not discussed how-
ever due to space limitation.

–	 MUA-incremental-naive-conversion: The same as MUA-incremental, but
MUA conversion uses Algorithm 1 instead of Algorithm 2.

–	 Minimum-single-speed: A simple heuristic that uses binary search to find
the minimum single speed at which all tasks become schedulable.

To avoid excessive waiting, we adopt the strategy disucssed in Sect. 5.2 in and set
K = 10000 to limit the number of nodes in each iteration. Also, the time limits of
MUA-MILP and MUA-incremental are set to 600 seconds for each task system.
The BnB (bmi) solver in YALMIP does not have a time limit setting and only
allows to set a limit on the number of iterations. Therefore, we set a maximum
iteration limit of 2000. This gives roughly a similar time limit for MIGP as those
of the other methods.

(20)

F(�) =
∑
∀�i

fi(Ci)

fi(Ci) =
1

Ti
⋅ � ⋅

(Cb
i
)�

(Ci)
�−1

(21)
minF(�) =

∑
∀�i

yi
s.t. �i schedulable with Ci = f −1

i
(yi),∀�i

298	 Real-Time Systems (2022) 58:275–312

1 3

The task sets are generated synthetically as follows. For each task set, we first ran-
domly select a system utilization in the range [0.5, 0.9]. We then generate a period
Ti for each task according to log-uniform distribution in the range [100, 100000],
and a utilization Ui for each task using UUnifast algorithm (Davis and Burns 2009).
The corresponding WCET Cb

i
= Ti ⋅ Ui is treated as the execution time at the base

clock rate. The range of decision variable Ci is taken as [Cb
i
, 2Cb

i
] . This means that

the clock rate can be decreased as low as half the base clock rate. The deadline Di
of each task �i is generated randomly in the range [Cb

i
, Ti] . Priorities are assigned

according to the deadline monotonic policy.
Figure 6 illustrates the average runtime over 1000 random systems for each m,

the number of tasks in the system. The runtime of Minimum-single-speed is very
short (a few milliseconds), as it is simply a binary search on a single period value.
MUA-incremental is about one to two orders of magnitude faster than MIGP. The
capping of MIGP that occurs for systems with 14 or 15 tasks is mainly due to a large
number of cases reaching the iteration limit. Meanwhile, MUA-incremental is able
to finish all the instances in the time limit. On the other hand, MUA-incremental-
naive-conversion is comparable to MIGP and much slower than MUA-incremen-
tal, which demonstrates the benefit of Algorithm 2 in providing better convergence
rate. As for MUA-MILP, it is very slow such that even for systems with 5 tasks,
most of the cases are timed out. This is because the MILP solver CPLEX is unable
to perform efficient incremental solving of the problems. Again, it demonstrates the
benefit of designing a branching algorithm that takes advantage of the MUA-guided
framework, as in the case of MUA-incremental.

Since MUA-MILP is unable to finish for most of the cases, we only compare the
quality of solutions from MUA-incremental, MIGP and Minimum-single-speed

0251015

Number of Tasks

10-3

10-2

10-1

100

101

102

103

R
un

-T
im

e
(s

)

MIGP
MUA-incremental
MUA-incremental-naive-conversion
MUA-MILP
minimum-single-speed

Fig. 6   Runtime of minimizing energy consumption on random systems

299

1 3

Real-Time Systems (2022) 58:275–312	

in terms of relative gap. For each random system, we define the relative gap of
MIGP (or Minimum-single-speed) with respect to MUA-incremental as the rel-
ative difference in the objective values. Since MUA-incremental always provides
a better objective value than the other two, we define the relative gap of MIGP
(resp. Minimum-single-speed) as

where pA is the objective value of MUA-incremental, and pB represents that of
MIGP (resp. Minimum-single-speed).

Figure 7 shows the whisker box plot of the distribution of the relative gap for
MIGP compared to MUA-incremental. On average MUA-incremental finds 3%
to 30% better solutions (i.e., with less energy consumption) than MIGP within
the time limit. Likewise, Fig. 8 shows the distribution for Minimum-single-
speed. As in the figure, MUA-incremental is on average 3% to 10% better than
Minimum-single-speed.

Flight management system We next evaluate the techniques on an avion-
ics case study consisting of a subset of Flight Management System applica-
tion (Huang et al. 2014). The system contains 11 tasks of different criticality,
which implement functions such as localization and flight planning. Each task
is abstracted into an implicit deadline sporadic task characterized by a minimum
inter-arrival time, a range of execution time that is typical in practice, and a criti-
cality level. 7 tasks are of HI-criticality and the other 4 are of LO-criticality. The
parameter configuration of the case study is summarized in Table 1.

(22)s =
pA − pB

pB
× 100%

 5 6 7 8 9 10 11 12 13 14 15

Number of Tasks

-70

-60

-50

-40

-30

-20

-10

0

su
b-

op
tim

al
ity

 (
%

)

Fig. 7   Relative gap of MIGP compared to MUA-incremental 

300	 Real-Time Systems (2022) 58:275–312

1 3

We consider fixed-priority uniprocessor scheduling according to Adaptive-
Mixed-Criticality (AMC) for these tasks. For schedulability analysis, AMC-max
has much higher computational complexity comparing to AMC-rtb, but it is more
accurate and may help find better quality solutions when used in optimization. In the
following, we consider the problem of minimizing LO-criticality energy consump-
tion (Huang et al. 2014) given by Eq. (9). The range of the LO-criticality WCET
Ci(LO) of each task �i is determined as follows. We first take the upper-bound Cu

i

of the execution time range given in the case study. Then we consider Ci(LO) to be
freely adjustable in the interval [C

u
i

4
, 2Cu

i
] by CPU clock rate adjustment. For HI-crit-

icality task, Ci(HI) is obtained by scaling Ci(LO) by a fixed criticality factor � , i.e.
Ci(HI) = �Ci(LO) . In the experiments, we vary � to take three possible values 3, 4,
5. The optimization problem is to find a Ci(LO) for each task that minimizes Eq. (9).

We compare the following four methods:

Fig. 8   Relative gap of Minimum-single-speed compared to MUA-incremental 

Table 1   Flight management
system case study Huang et al.
(2014)

� �
1

�
2

�
3

�
4

�
5

�
6

T 5000 200 1000 1600 100 1000
C(LO) [5, 40] [5, 40] [5, 40] [5, 40] [5, 40] [5, 40]
HI/LO HI HI HI HI HI HI
� �

7
�
8

�
9

�
10

�
11

T 1000 1000 1000 1000 1000
C(LO) [5, 40] [50, 400] [50, 400] [50, 400] [50, 400]
HI/LO HI LO LO LO LO

301

1 3

Real-Time Systems (2022) 58:275–312	

–	 MIGP-AMCrtb: Formulating the problem with AMC-rtb analysis as a mixed
integer geometric program, and use the gpposy and YALMIP solvers to solve
it. The value of K, i.e., the maximum number of nodes in each iteration is set to
50000.

–	 MUA-MILP-AMCrtb: The iterative framework in Fig. 2, where the problem � is
directly solved as an MILP program, and the schedulability analysis uses AMC-
rtb.

–	 MUA-incremental-AMCrtb-K[K]: The framework in Fig. 2, where problems
� are solved with the MUA-driven branching tree, and the schedulability test is
AMC-rtb. The suffix “-K[K]" represents the value of K, and we consider 3 dif-
ferent values 5, 500 and 50000.

–	 MUA-incremental-AMCmax-K[K]: The same as MUA-incremental-AMCrtb,
except that the schedulability analysis uses AMC-max.

We let each approach run for 48 hours. Note that we do not consider AMC-max for
MIGP as the analysis is too complicated to formulate in the MIGP framework. Like-
wise, we do not apply AMC-max to MUA-MILP, since it is already very slow under
AMC-rtb: it cannot find any feasible solutions in 48 hours.

We first assume priority assignment is given by rate monotonic (ties are bro-
ken by criticality level). The results are summarized in Table 2. For � = 3 , MIGP-
AMCrtb gets stuck in a suboptimal solution (about 51% worse than the optimal)
early and cannot find any better solution even after 48 hours. MUA-MILP-AMCrtb
is even worse, as it cannot find any feasible solution in 48 hours. Comparably, MUA-
incremental performs much better: regardless of whether AMC-max or AMC-rtb
is used, it finds the best solution in about 15 minutes for K = 50000 , or about 200
times faster than MUA-MILP-AMCrtb and MIGP-AMCrtb. It can also be observed
that the settings of K = 500, 500000 have an obviously better quality in solution
compared with k = 5 . While the solution with K = 50000 is marginally better than

Table 2   Results on flight management system by optimizing Task WCETs

Method � = 3 � = 4 � = 5

Time Objective Time Objective Time Objective

MUA-MILP-AMCrtb ≥ 48h N/A ≥ 48h N/A ≥ 48h N/A
MIGP-AMCrtb ≥ 48h 6.216e+007 ≥ 48h 8.379e+007 ≥ 48h 1.076e+008
MUA-incremental-AMCrtb-K5 0.05s 4.691e+007 0.04s 6.220e+007 0.03s 8.459e+007
MUA-incremental-AMCmax-
K5

0.04s 4.691e+007 0.05s 6.220e+007 0.03s 8.459e+007

MUA-incremental-AMCrtb-
K500

2.40s 4.129e+007 2.04s 5.840e+007 1.76s 7.732e+007

MUA-incremental-AMCmax-
K500

3.18s 4.129e+007 2.64s 5.840e+007 2.14s 7.732e+007

MUA-incremental-AMCrtb-
K50000

873.91s 4.108e+007 582.06s 5.803e+007 409.76s 7.723e+007

MUA-incremental-AMCmax-
K50000

903.10s 4.108e+007 619.86s 5.803e+007 406.59s 7.723e+007

302	 Real-Time Systems (2022) 58:275–312

1 3

that with K = 500 give the same solution quality, the runtime is much longer for
K = 50000 . This suggests that while increasing the value of K may help find better
solution, setting it to be excessively large brings marginal benefit but may signifi-
cantly increase runtime.

The cases of � = 4 and � = 5 are similar. Note that the use of the more accu-
rate AMC-max analysis did not improve the quality of the solution. This is mainly
due to the rate-monotonic priority assignment. For this case, LO-criticality tasks are
mostly lower in priorities than HI-criticality tasks (except �1, �4 which have quite
loose deadlines). As a result, most HI-criticality tasks only suffer interference from
other HI-criticality tasks. Therefore, the worst-case scenario for the response time
calculation occurs when the system is entirely in the HI-criticality mode, where
AMC-max and AMC-rtb give the same response time. On the other hand, the small
difference in the runtimes of MUA-incremental-AMCmax and MUA-incremental-
AMCrtb demonstrates that the efficiency of our approach is relatively insensitive to
the complexity of the schedulability analysis.

We next consider the setting where priority assignment is not given and need to
be co-optimized with WCETs. We omit MIGP-AMCrtb from this experiment as it
is no longer applicable. Note that for methods based on the proposed optimization
framework (MUA-incremental-AMCrtb-K[K] and MUA-incremental-AMCmax-
K[K]), including priority assignment in the design space is rather simple: since
both AMC-rtb and AMC-max are both compatible with Audsley’s algorithm (Guo
et al. 2017), in the framework we just use a schedulability analysis procedure that
incorporates both the response time calculation (either AMC-rtb or AMC-max) and
Audsley’s algorithm for finding a feasible priority assignment.

The results are summarized in Table 3. A number of observations can be made.
First, much better solutions are found when priority assignment is treated as a deci-
sion variable. The overall objective values reduce by as much as more than half com-
paring to the results in Table 2. This shows the benefit of the proposed optimization

Table 3   Results on Flight Management System by Co-optimizing Task priority assignments and WCETs

Method � = 3 � = 4 � = 5

Time Objective Time Objective Time Objective

MUA-MILP-AMCrtb ≥ 48h N/A ≥ 48h N/A ≥ 48h N/A
MUA-incremental-AMCrtb-
K5

0.14s 2.666e+007 0.09s 3.056e+007 0.09s 3.762e+007

MUA-incremental-AMC-
max-K5

0.16s 2.666e+007 0.16s 2.666e+007 0.15s 2.666e+007

MUA-incremental-AMCrtb-
K500

12.16s 2.629e+007 10.20s 2.835e+007 6.55s 3.439e+007

MUA-incremental-AMC-
max-K500

16.71s 2.630e+007 15.85s 2.629e+007 14.13s 2.629e+007

MUA-incremental-AMCrtb-
K50000

2356.61s 2.626e+007 1204.74s 2.832e+007 517.68s 3.415e+007

MUA-incremental-AMC-
max-K50000

2734.41s 2.626e+007 2260.71s 2.626e+007 2569.84s 2.626e+007

303

1 3

Real-Time Systems (2022) 58:275–312	

framework: it is able to handle the co-optimization of various variables. Second,
the difference between AMC-rtb and AMC-max analyses is now more noticeable.
For example, when the criticality factor � = 5 , the use of AMC-max provides a
solution that is 23% better than that of AMC-rtb. This demonstrates the benefit of
using a more accurate analysis for optimization. However, such a benefit can only be
achieved when the optimization algorithm is capable of accommodating the analy-
sis. This is difficult for MIGP as AMC-max is too complicated to formulate in geo-
metric programming framework. Our framework, on the other hand, can incorporate
any schedulability analysis as long as it is sustainable. Third, the runtime noticeably
increases comparing to Table 2. This is mainly because the schedulability analysis
now incorporates Audsley’s algorithm, which has a substantially higher computa-
tion complexity than just a plain response time calculation. Lastly, the difference
in solution quality for different settings of K is even smaller than that in the previ-
ous experiment. The only noticeable difference is when � = 5 and between MUA-
incremental-AMCrtb-K5 and MUA-incremental-AMCrtb-K500. This is mostly
because schedulability constraints become easier to satisfy when priority assign-
ment can be co-optimized, especially for settings that use the AMC-max analysis.
This suggests that the value of K can also be set by considering how constrained the
problem is.

7.2 � Control performance

In this experiment, we consider the problem of optimizing control performance for a
set of periodic tasks scheduled on a uniprocessor. The problem was originally intro-
duced in Mancuso et al. (2014), where the objective is formulated in Eq. (8). Note
that the objective function also satisfies the two properties discussed in Sect. 5.4,
and thus can benefit from Algorithm 2.

Mancuso et al. (2014) proposed to relax the response time analysis (2) by remov-
ing the ceiling operator (hence it uses Ri

Tj
 to estimate the number of interferences

from task �j on task �i ). Although the relaxation was claimed to be a close approxi-
mation to the exact response time in practice, it is possible that the relaxed analysis
may give unsafe solutions. In fact, in the randomly generated systems below, the
solution returned by Mancuso et al. (2014) is always unschedulable with the exact
analysis in Eq. (2). Thus, in the comparison of other methods below, we use the
exact analysis (2).

We evaluate on randomly generated synthetic task sets. The parameters are gener-
ated using a similar setting as Mancuso et al. (2014). Specifically, in Equation (7), �i
is randomly generated in the range [1, 1000], �i is randomly generated in the range
[1, 10000], and the WCET of each task Ci is randomly selected from [1, 100]. The
upper-bound for the task period Ti is set to be 5 times the sum of all task WCETs,
i.e., Tu

i
= 5

∑n

j=1
Cj . This sets 20% as the lower bound on system utilization. Task

priority are assigned with the rate monotonic policy.
We compare the following three methods:

304	 Real-Time Systems (2022) 58:275–312

1 3

–	 MIGP: MIGP formulation proposed in Davare et al. (2007) for optimizing task
periods. We use geometric programming solver gpposy (Mutapcic et al. 2006)
with the BnB (bmi) solver in YALMIP (Löfberg 2004) for solving MIGP prob-
lems.

–	 MUPDA-MILP: The proposed optimization framework in Zhao et al. (2018),
which is an iterative procedure that leverages CPLEX solver (International Busi-
ness Machines Corporation xxxx) to solve a series of MILP problems.

–	 MUA-incremental: The proposed optimization framework in Fig. 2, where the
problem � is solved using the MUA-driven branching tree. Note that the method
uses Algorithm 2 for MUA conversion. The same result is presented in the origi-
nal conference paper (Zhao et al. 2020). The algorithm however, was not dis-
cussed due to space limitation.

–	 MUA-incremental-naive-conversion: The same as MUA-incremental but
using Algorithm 1 for MUA conversion.

Like in Sect. 7.1, we set a maximum iteration limit of 2000 for MIGP, and the time
limits of the other two methods are set to 600 seconds for each problem instance.
The size limit for MUA-incremental is set to K = 10000.

Figure 9 plots the runtime of all the optimization methods MIGP, MUPDA-MILP
and MUA-incremental. While all methods give the same optimal solution when fin-
ishing within the time limit, MUPDA-MILP has the worst scalability. As discussed
in Zhao et al. (2018), this confirms that it is often inefficient in solving problems
with objective that are sensitive to many decision variables, since it takes many iter-
ations to terminate, and each MILP problem has to be solved from scratch (instead
of incrementally as in our approach). Meanwhile, MUA-incremental runs about

4 6 8 10 12 14 16 18 20 22

Number of Tasks

10-3

10-2

10-1

100

101

102

103

R
un

-T
im

e
(s

)

MIGP
MUA-incremental
MUPDA-MILP
MUA-incremental-naive-conversion

Fig. 9   Runtime of optimizing control performance

305

1 3

Real-Time Systems (2022) 58:275–312	

10 times faster than MIGP. This again demonstrates the advantage of our proposed
framework that judiciously combines the MUA-guided iterative procedure with the
incremental update of the branching tree. MUA-incremental is also several times
faster than MUA-incremental-naive-conversion, which confirms that Algorithm 2
can improve the convergence speed of the optimization framework.

We next study the effect of K on algorithm efficiency and quality of solu-
tion. We try four different values K = 1, 10, 100, 1000 . The corresponding con-
figurations are denoted as MUA-incremental-K1, MUA-incremental-K10, MUA-
incremental-K100 and MUA-incremental-K1000 respectively. Figure 10 shows
the average runtime by different configurations on K. As in the figure, increas-
ing the value of K increases the run-time: From k = 1 to k = 10000 , the run time
increase by more than 2 orders of magnitude.

We now compare the solution quality for different settings of K. We use MIGP
as a reference, since when solve to optimality, it returns the globally optimal solu-
tion. Specifically, let p1, p2 denote the objective value by MIGP and MUA-incre-
mental-K[K] respectively, then the sub-optimality of MUA-incremental-K[K]
is evaluated as s = max{p2−p1,0}

p1
 . Note MIGP may not be able to finish within the

time limit and give a worse solution than MUA-incremental-K[K], and s essen-
tially only considers the cases where MIGP outperforms MUA-incremental-K[K
]. Figure 11 gives the whisker box plot of sub-optimality for different K. When
K = 1 , the sub-optimality of MUA-incremental-K1 can be as large as 7% . As K
increases, the maximum sub-optimality becomes smaller. For K = 10000 , we
only observe 3 cases where the framework obtains worse solution than MIGP,
and the worst sub-optimality is only 0.08%.

4 6 8 10 12 14 16 18 20 22

Number of Tasks

10-3

10-2

10-1

100

101

102

R
un

-t
im

e
(s

)

MUA-incremental-K1
MUA-incremental-K10
MUA-incremental-K100
MUA-incremental-K1000
MUA-incremental-K10000

Fig. 10   Runtime by different settings of K 

306	 Real-Time Systems (2022) 58:275–312

1 3

In the next experiment, we remove the assumption that priority assignment is
given and allows it to be co-optimized instead. For this problem, it is optimal by
just combining MUA-incremental with the deadline monotonic priority assign-
ment policy, where task deadlines are returned by solving step 1. This is optimal
since we assume tasks have constrained deadlines and the response time analysis
follows Equation (2).. This approach is denoted as MUA-incremental-PA. Since

 5 6 7 8 9 10 11 12 13

Number of Tasks

0

1

2

3

4

5

6

7
su

b-
op

tim
al

ity
 (

%
)

K = 1

(a) K = 1

 5 6 7 8 9 10 11 12 13

Number of Tasks

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

su
b-

op
tim

al
ity

 (
%

)

K = 10

(b) K = 10

 5 6 7 8 9 10 11 12 13

Number of Tasks

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

su
b-

op
tim

al
ity

 (
%

)

K = 100

(c) K = 100

 5 6 7 8 9 10 11 12 13

Number of Tasks

0

0.05

0.1

0.15

0.2

0.25
su

b-
op

tim
al

ity
 (

%
)

K = 1000

(d) K = 1000

 5 6 7 8 9 10 11 12 13

Number of Tasks

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

su
b-

op
tim

al
ity

 (
%

)

K = 10000

(e) K = 10000

Fig. 11   Sub-optimality for different settings of K 

307

1 3

Real-Time Systems (2022) 58:275–312	

MIGP is no longer applicable, we evaluate the improvement in solution quality
brought by co-optimizing priority assignment. Let p1, p2 denote the objective
value by MUA-incremental and MUA-incremental-PA respectively. The
improvement is calculated as s = max{p1−p2,0}

p1
.

Figure 12 gives a whisker box plot of the distribution of improvement. Co-opti-
mizing priority assignment gives an average of 30% improvement in solution qual-
ity. In quite a number of cases, the improvement can be as high as 70%. This dem-
onstrates the benefit of the flexibility of the proposed framework, which is usually
difficult to achieved with traditional mathematical programming framework. Fig-
ure 13 compares its average runtime with MUA-incremental. The increased runtime
is mainly due to the additional decision space from the extra design variables of task
priority assignments, which requires more iterations to solve.

8 � Future work

As shown earlier, the performance by the proposed framework can be heav-
ily impacted by how the MUA-driven branching tree is built and searched. In this
paper, we introduce a rather simple solution of using fixed size limit parameters K
and only adding/searching at most K nodes with the best objective values. Some
potential problems for further investigation include (1) how K should be selected,
(2) can K be adaptively adjusted from iteration to iteration, and (3) is there another
way to choose the K nodes that gives better performance. Finding the best answers
to these question is generally difficult and would almost certainly vary depending

 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Number of Tasks

0

10

20

30

40

50

60

70

80

90

100

Im
pr

ov
em

en
t (

%
)

Fig. 12   Improvement in solution quality by co-optimizing priority assignment

308	 Real-Time Systems (2022) 58:275–312

1 3

on the optimization problem. However, this is where learning based technique may
be helpful. For example, when the algorithm terminates, a separate step can be per-
formed to revisit the branching path and evaluate how decisions in different iteration
have contributed to the final solution. A simple question would be if the same path,
and thus the solution, can be reached using a different, perhaps smaller K in different
iterations. This process can be repeated over a large number of randomly generated
systems and eventually have the algorithm learn a policy that works effectively for
this particular problem formulation.

So far we have only consider problems where schedulability is the only constraint.
However, the system may often times include additional constraints, such as end-
to-end deadline (Davare et al. 2007), memory limitations (Ferrari et al. 2009), and
so on. Usually these constraints may be conflicting with the schedulability require-
ment. For example, while higher task period helps schedulability, it may increase the
end-to-end latency. How the framework can be adapted to accommodate additional
constraints is another topic for further investigation. Some possible options include
taking into account the constraints while constructing new layer of branching tree
nodes, or modelling the constraints as an additional cost in the objective function.

9 � Conclusion

In this paper, we propose a framework for optimizing the design of real-time sys-
tem with sustainable schedulability analysis. We propose the concept of Maximal-
Unschedulable-Assignment (MUA) and show how it can be used to abstractly
interpret the schedulability constraints. Based on the concept, we develop an

4 6 8 10 12 14 16 18 20 22

Number of Tasks

10-3

10-2

10-1

100

101

102

R
un

-T
im

e
(s

)

MUA-incremental
MUA-incremental-PA

Fig. 13   Comparison of run time w/wo co-optimizing priority assignment

309

1 3

Real-Time Systems (2022) 58:275–312	

iterative optimization procedure that uses MUAs to iteratively refine the schedulabil-
ity region. It contains three key steps: (i) an algorithm for solving the optimization
problem consisting of MUA-implied constraints, (ii) an algorithm for computing
MUAs that leads to faster convergence, and (iii) use of MUAs to exploring good-
quality schedulable solutions. We perform experiments on two optimization prob-
lems with different settings to demonstrate the advantage of the proposed approach
in applicability and scalability. This paper extends the original RTSS 2020 confer-
ence version (Zhao et al. 2020) with the discussion of an improved MUA conversion
algorithm, and new experiments to evaluate its effectiveness and the impact of dif-
ferent settings of K for building the MUA-driven branching tree.

Acknowledgements  This work is partially funded by NSF Grants No. 1812963 and No. 1837519.

References

Al-Bayati Z, Sun Y, Zeng H, Di Natale M (2015) Zhu, Q., Meyer, B.: Task placement and selection of
data consistency mechanisms for real-time multicore applications. In: IEEE Real-Time and Embed-
ded Technology and Applications Symposium, pp. 172–181. IEEE

Audsley N (2001) On priority assignment in fixed priority scheduling. Informat Proc Lett 79(1):39–44
Audsley NC, Burns A, Richardson MF, Wellings AJ (1991) in proc. ieee workshop on real-time operat-

ing systems and software. In: real-time scheduling: the deadline-monotonic approach, pp. 133–137
Baker T, Baruah S (2009) Sustainable multiprocessor scheduling of sporadic task systems. In: Euromicro

Conference on Real-Time Systems
Bambagini M, Marinoni M, Aydin H, Buttazzo G (2016) Energy-aware scheduling for real-time systems:

a survey. ACM Transact Embedded Comput Sys (TECS) 15(1):1–34
Bansal S, Zhao Y, Zeng H, Yang K (2018) Optimal implementation of simulink models on multicore

architectures with partitioned fixed priority scheduling. In: IEEE Real-Time Systems Symposium,
pp. 242–253. IEEE

Baruah S, Burns A (2006) Sustainable scheduling analysis. In: 27th IEEE Real-Time Systems Symposium
Baruah S, Burns A, Davis R (2011) Response-time analysis for mixed criticality systems. In: IEEE Real-

Time Systems Symposium
Bate I, Emberson P (2006) Incorporating scenarios and heuristics to improve flexibility in real-time

embedded systems. In: IEEE Real-Time and Embedded Technology and Applications Symposium
Bini E, Di Natale M (2005) Optimal task rate selection in fixed priority systems. In: 26th IEEE Real-Time

Systems Symposium
Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cambridge
Davare A, Zhu Q, Di Natale M. Pinello C, Kanajan S (2007) Sangiovanni-Vincentelli, A.: Period opti-

mization for hard real-time distributed automotive systems. In: ACM/IEEE Design Automation
Conference

Davare A, Zhu Q, Di Natale M, Pinello C, Kanajan S, Sangiovanni-Vincentelli A (2007) Period optimiza-
tion for hard real-time distributed automotive systems. In: Design Automation Conference

Davis R, Burns A (2009) Priority assignment for global fixed priority pre-emptive scheduling in multi-
processor real-time systems. In: 30th IEEE Real-Time Systems Symposium

Davis RI, Cucu-Grosjean L, Bertogna M, Burns A (2016) A review of priority assignment in real-time
systems. J Sys Architec 65:64–82

Ebert C, Favaro J (2017) Automotive software. IEEE Soft 34(3):33–39
Ekberg P, Yi W (2015) Uniprocessor feasibility of sporadic tasks with constrained deadlines is strongly

conp-complete. In: 27th Euromicro Conference on Real-Time Systems, pp. 281–286
Ekberg P, Yi W (2017) Fixed-priority schedulability of sporadic tasks on uniprocessors is np-hard. In:

IEEE Real-Time Systems Symposium

310	 Real-Time Systems (2022) 58:275–312

1 3

Ferrari A, Di Natale M, Gentile G, Reggiani G, Gai P (2009) Time and memory tradeoffs in the imple-
mentation of autosar components. In: 2009 Design, Automation & Test in Europe Conference &
Exhibition, pp. 864–869. IEEE

Gu Z, Han G, Zeng H, Zhao Q (2016) Security-aware mapping and scheduling with hardware co-pro-
cessors for flexray-based distributed embedded systems. IEEE Transac Parallel Distributed Sys
27(10):3044–3057

Guo Z, Sruti S, Ward BC, Baruah S (2017) Sustainability in mixed-criticality scheduling. In: IEEE Real-
Time Systems Symposium

Hamann A, Jersak M, Richter K, Ernst R (2004) Design space exploration and system optimization with
symta/s - symbolic timing analysis for systems. In: IEEE Real-Time Systems Symposium

Han G, Zeng H, Di Natale M, Liu X, Dou W (2013) Experimental evaluation and selection of data con-
sistency mechanisms for hard real-time applications on multicore platforms. IEEE Transac Indus
Informat 10(2):903–918

Hassanalian M, Abdelkefi A (2017) Classifications, applications, and design challenges of drones: A
review. Prog Aerospace Sci 91:99–131

Huang P, Giannopoulou G, Stoimenov N, Thiele L (2014) Service adaptions for mixed-criticality sys-
tems. In: IEEE Asia and South Pacific Design Automation Conference

Huang P, Kumar P, Giannopoulou G, Thiele L (2014) Energy efficient dvfs scheduling for mixed-critical-
ity systems. In: ACM Conference on Embedded Software

International Business Machines Corporation: CPLEX Optimizer
Liu CL, Layland JW (1973) Scheduling algorithms for multiprogramming in a hard-real-time environ-

ment. J. ACM 20(1):46–61. https://​doi.​org/​10.​1145/​321738.​321743
Löfberg J (2004) Yalmip : A toolbox for modeling and optimization in matlab. In: IEEE Symposium on

Computer Aided Control Systems Design
Mancuso G, Bini E, Pannocchia G (2014) Optimal priority assignment to control tasks. ACM Trans

Embedded Comput Syst 13(5s):161
Mutapcic A, Koh K, Kim S, Boyd S (2006) Ggplab version 1.00: a matlab toolbox for geometric

programming
Nelson A, Moreira O, Molnos A, Stuijk S, Nguyen BT, Goossens K (2011) Power minimisation for real-

time dataflow applications. In: Euromicro Conference on Digital System Design
Pagani S, Chen JJ (2014) Energy efficiency analysis for the single frequency approximation (sfa) scheme.

ACM Transact Embedded Comput Syst (TECS) 13(5s):158
Saksena M, Wang Y (2000) Scalable real-time system design using preemption thresholds. In: IEEE

Real-Time Systems Symposium
Seto D, Lehoczky JP, Sha L (1998) Task period selection and schedulability in real-time systems. In: 19th

IEEE Real-Time Systems Symposium
Shin M, Sunwoo M (2007) Optimal period and priority assignment for a networked control system sched-

uled by a fixed priority scheduling system. Int J Automotive Technol 8:39–48
Tindell K, Burns A, Wellings A (1992) Allocating hard real-time tasks: An np-hard problem made easy.

Real-Time Syst. 4(2):145–165
Tripakis S, Lublinerman R (2018) Modular code generation from synchronous block diagrams: Inter-

faces, abstraction, compositionality. In: Principles of Modeling, pp. 449–477. Springer
Wang C, Gu Z, Zeng H (2016) Global fixed priority scheduling with preemption threshold: Schedulability

analysis and stack size minimization. IEEE Trans. Parallel and Distributed Sys 27(11):3242–3255
Wang Y, Saksena M (1999) Scheduling fixed-priority tasks with preemption threshold. In: International

Conference on Real-Time Computing Systems and Applications
Zeng, H., Di Natale, M.: Mechanisms for guaranteeing data consistency and flow preservation in auto-

sar software on multi-core platforms. In: IEEE Symposium on Industrial and Embedded Systems
(2011)

Zeng H, Di Natale M (2012) Efficient implementation of autosar components with minimal memory
usage. In: 7th IEEE Symposium on Industrial Embedded Systems

Zhao Y, Gala V, Zeng H (2018) A unified framework for period and priority optimization in distributed
hard real-time systems. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 37(11):2188–2199

Zhao Y, Zeng H (2017) The concept of unschedulability core for optimizing priority assignment in real-
time systems. In: Conference on Design, Automation and Test in Europe

Zhao Y, Zeng H (2017) The virtual deadline based optimization algorithm for priority assignment in
fixed-priority scheduling. In: IEEE Real-Time Systems Symposium

https://doi.org/10.1145/321738.321743

311

1 3

Real-Time Systems (2022) 58:275–312	

Zhao Y, Zeng H (2018) The concept of response time estimation range for optimizing systems scheduled
with fixed priority. In: IEEE Real-Time and Embedded Technology and Applications Symposium
(2018)

Zhao Y, Zeng H (2018) The concept of unschedulability core for optimizing real-time systems with fixed-
priority scheduling. IEEE Transact Comput 68(6):926–938

Zhao Y, Zeng H (2019) The concept of maximal unschedulable deadline assignment for optimization in
fixed-priority scheduled real-time systems. Real-Time Syst 55(3):667–707

Zhao Y, Zhou R, Zeng H (2020) An optimization framework for real-time systems with sustainable
schedulability analysis. In: 2020 IEEE Real-Time Systems Symposium (RTSS), pp. 333–344. IEEE

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article
is solely governed by the terms of such publishing agreement and applicable law.

Yecheng Zhao  received his B.E. in Electrical Engineering from Har-
bin Institute of Technology, Harbin, China, and PhD degree in Com-
puter Engineering from Virginia Tech. His main research focus is
design optimization for real-time embedded systems. He is current
working as a software engineer with Google Inc on secure firmware
and OS.

Runzhi Zhou  is a master student in Electrical Engineering at Univer-
sity of Pennsylvania School of Engineering and Applied Science. He
received a bachelor’s degree in Computer Science and Electrical
Engineering from Case Western Reserve University. His research
interests include real-time system and optimization.

312	 Real-Time Systems (2022) 58:275–312

1 3

Haibo Zeng  is with Department of Electrical and Computer Engi-
neering at Virginia Tech, USA. He received his Ph.D. in Electrical
Engineering and Computer Sciences from University of California at
Berkeley. He was a senior researcher at General Motors R&D until
October 2011, and an assistant professor at McGill University until
August 2014. His research interests are embedded systems, cyber-
physical systems, and real-time systems. He received five paper
awards in the above fields.

	Design optimization for real-time systems with sustainable schedulability analysis
	Abstract
	1 Introduction
	2 Related work
	3 System model
	3.1 Examples on sustainable schedulability analysis
	3.2 Example optimization problems
	3.2.1 Optimizing control quality
	3.2.2 Energy minimization with DVFS

	4 Maximal unschedulable assignment
	5 Optimization framework
	5.1 MUA-guided iterative procedure
	5.2 MUA-driven branching tree
	5.3 Step 1: Solving
	5.4 Step 3: Converting an Unschedulable Assignment to MUA
	5.5 Step 4: finding feasible solutions

	6 Applicability and efficiency
	7 Experiment result
	7.1 Optimizing energy consumption with DVFS
	7.2 Control performance

	8 Future work
	9 Conclusion
	Acknowledgements
	References

