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Abstract
We introduce new methods to numerically construct for the first time stationary
axisymmetric black hole solutions in Einstein-aether theory and study their
properties. The key technical challenge is to impose regularity at the spin-2,
1, and 0 wave mode horizons. Interestingly we find the metric horizon, and
various wave mode horizons, are not Killing horizons, having null genera-
tors to which no linear combination of Killing vectors is tangent, and which
spiral frompole to equator or vice versa. Existing phenomenological constraints
result in two regions of coupling parameters where the theory is viable and
some couplings are large; region I with a large twist coupling and region II
with also a (somewhat) large expansion coupling. Currently these constraints
do not include tests from strong field dynamics, such as observations of black
holes and their mergers. Given the large aether coupling(s) one might expect
such dynamics to deviate significantly from general relativity (GR), and hence
to further constrain the theory. Here we argue this is not the case, since for
these parameter regions solutions exist where the aether is ‘painted’ onto a
metric background that is very close to that of GR. This painting for region
I is approximately independent of the large twist coupling, and for region II is
also approximately independent of the large expansion coupling and normal to
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a maximal foliation of the spacetime. We support this picture analytically for
weak fields, and numerically for rotating black hole solutions, which closely
approximate the Kerr metric.

Keywords: Einstein-aether theory, black holes, numerical GR
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1. Introduction

With the new and remarkable ability to measure gravitational waves given off from strongly
gravitating binary systems [1], together with the recent imaging by the EHT [2], black holes
have come to the fore in testing Einstein’s general relativity (GR). Considerable effort is now
focussed on comparing the predictions of modified theories of gravity to these and proposed
future experimentswith the hope of better understanding to what extentwe believeGR to be the
correct description of our dynamical spacetime in the strong field regime4. At the heart of such
endeavours is understanding how black holes behave in these theories, and particularly rotating
stationary black holes. The focus of this paper will be the Einstein-aether theory [3]. LIGO has
given a remarkable constraint on modified theories of gravity, namely that the spin-2 graviton
speed is constrained to be equal to the speed of electromagneticwaves to within one part in 1015

[4, 5].5 We therefore restrict attention here to the case where these speeds are exactly equal.
For the Einstein-aether theory there are then two natural regions of parameter space where
some couplings are large and yet the tight bounds from Solar System tests of gravity, together
with recent constraints from binary pulsars are satisfied [7, 8]. We denote these regions I and
II in parameter space, as these have one or two couplings allowed to be large respectively, so
∼O(1), while remaining coupling combinations are constrained to be very small. The naive
expectation is that with such large couplings then in the strong field regime the behaviour
would differ significantly from GR. For stationary black holes this would mean the spacetime
would deviate significantly fromKerr, potentially allowing us to discriminate between GR and
Einstein-aether theory using observations of black holes.

Whilst it is possible there exist such exotic spacetime solutions to the Einstein-aether for
strong fields, we present new arguments that in these allowed regions of parameter space
there may still be solutions which are very close to those of conventional GR with a suitable
aether field ‘painted on’. In these parameter regions the aether action is dominated by specific
quadratic kinetic terms associated to the large couplings. For region I the single dominant term
is given by the aether’s twist, and for region II the aether’s twist and expansion form the two
large terms. We show that the aether may take approximately twist and expansion free
configurations where these terms vanish. This allows the aether to have minimal backreaction
on the geometry despite the large couplings. We show that this behaviour occurs in the weak
field regime at leading order in the post-Newtonian expansion, and is behind the consistency
of the theory with Solar System constraints. While we give the equations that the aether will
approximately satisfy for the two regions I and II, we cannot analytically prove existence
of solutions in strong field settings. We therefore turn to the study of black holes in the
Einstein-aether theory to understand whether they exhibit approximate Kerr-like behaviour
with a ‘painted on’ aether.

Black hole solutions are considerably more complicated for modified gravity theories than
for GR. We later give an argument that even in theories where different degrees of freedom
have different propagation speeds, stationary black holes may exist with a common Killing
horizon for all the degrees of freedom. It is perhaps counter-intuitive that outside the horizon
speeds differ, and yet they arrange themselves to agree at the horizon. We will find a sufficient

4 Here we mean ‘strong field regime’ in the classical sense, so spacetimes where the curvature radius is comparable
or smaller than the relevant dynamical scales or other length scales in the matter system, for example a star’s size or
orbit radius.
5 Generally in a modified theory of gravity wavespeeds may be scale dependent in such a way that these two speeds
deviate significantly on scales other than that probed by LIGO [6]. However in classical Einstein-aether theory which
we focus on here wave speeds are not scale dependent.
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condition is that the metric has a smooth bifurcate Killing horizon and that all the remaining
fields in the theory are smooth on the spacetime. In such cases the exterior spacetime to this
horizon can be approached numerically using existing formulations such as [9, 10] where the
problem is phrased as an elliptic boundary value problemwith the smooth horizon forming one
part of the boundary and the asymptotic region the other. However in Einstein-aether theory
the aether cannot be smooth at a bifurcation surface, and consequently each wave mode in the
theory possesses a different future horizon compatible with the stationary symmetry. In fact
cosmic rays provide the strong phenomenological constraint that the wave speeds of degrees
of freedom should be equal or greater than that of matter, otherwise ultra-high energy cosmic
rays would quickly decay to gravi-Cherenkov radiation. Hence themetric horizon,which (with
our parameter restriction) coincides with the spin-2 graviton horizon, must be the outermost
horizon, and the spin-1 and spin-0 horizons potentially lie inside this. Furthermore we will
see that that the rotating Einstein-aether black hole spacetimes do not have the usual t–φ
orthogonality property, and the horizons are not Killing horizons. In order to numerically
construct such stationary rotating black holes smoothness must be imposed at all these wave
mode horizons to obtain a well posed problem. Thus at least some of the spacetime inside the
metric horizon must be constructed, making this a novel problem that has not been addressed
before beyond the static spherically symmetric case6.

In the simpler static spherically symmetric case some analytic black hole solutions exist for
special values of the coupling parameters [16]. More generally static spherically symmetric
solutionsmay be found by numerically solving a coupled ode system, whose variable is a radial
coordinate, subject to the correct asymptotic behaviour and smooth behaviour at horizons.
This is relatively straightforward, and typically a ‘shooting’ method can be employed as in
[14, 15] where static black holes were numerically constructed. In [17] some static spheri-
cally symmetric black holes were constructed in parameter region I and it was observed that
Schwarzschild behaviour did indeed emerge. However for static spherical symmetry the aether
is automatically twist free [18], and so is it clear that one recoversGR-like behaviour for region
I with such solutions. Adding rotation perturbatively about static solutions has been studied in
[19] where it was seen that the rotation creates twist in the aether. Thus in the phenomenolog-
ically more relevant case of rotating black holes it is much less obvious that one could recover
GR-like behaviour with an approximately twist free aether ‘painted on’.

In order to address the question of recovering GR-like behaviour we develop novel numeri-
cal tools to directly construct rotating stationary black hole solutions with multiple wave mode
horizons. We do this employing the harmonic formulation [10] together with horizon pene-
trating ingoing coordinates that extend within this innermost future horizon. We validate our
numerical scheme by adding rotation to the static spherically symmetric solutions previously

6 One might wonder whether such a smoothness condition is the correct boundary condition for black holes which
are asymptotically stationary having formed from dynamical collapse of matter. Further one might question whether
collapse may form singular end states that have no horizons, such as the Einstein-aether solutions in [11, 12]. This is
morally the question of weak cosmic censorship, the general expectation being that well posed propagation of degrees
of freedom will act to smooth and disperse localized curvature and field gradients, leaving regular horizons shielding
any central singularity. While the status of weak cosmic censorship in modified gravity theories is far from certain,
we will assume in this work that static and stationary black holes formed from collapse have smooth horizons and are
the relevant end states for gravitational collapse. In the context of Einstein-aether theory this has been borne out by
spherically symmetric collapse simulations [13]. Note reference [13] also found that a finite area naked singularity
formed when some aether coupling parameters were large, similar to those couplings for which no static solutions with
regular spin-0 horizon were found in [14]. On the other hand, later work [15] at higher numerical resolution found
static solutions with regular spin-0 horizons and significantly larger aether coupling, which suggests that the resolution
used in the time dependent collapse calculation of [13] may have been insufficient to resolve the evolution around the
spin-0 horizon.
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constructed in [15]. Thenwe focus on the phenomenologically allowed parameter regions I and
II. As we tune the couplings towards these regions indeed we find that the spacetime and aether
tend to Kerr with an aether ‘painted on’ that is twist free for region I, and twist and expansion
free for region II. Furthermore we find that as the small couplings tend to zero, the limiting
aether depends only on the Kerr mass and angular momentum parameters and on whether the
O(1) aether couplings are in region I or II, but not on the value of those couplings. These
stationary black holes confirm our picture that GR behaviour may be recovered in the strong
field regime for these viable Einstein-aether parameter regimes, despite some aether couplings
being large. Combined with our weak field analysis, this suggests that in typical strong field
astrophysical settings the theory will exhibit approximate GR behaviour. Initial data for col-
lapse which at early times is in the weak field regime will have a small aether twist and behave
as in GR. We argue the dynamics leading to the strong field regime will closely approximate
that of GR with an aether with small twist ‘painted on’, resulting in a rotating black hole that
is approximately Kerr such as the solutions we find numerically here.

The structure of the paper is as follows. We begin by reviewing the Einstein-aether theory
in section 2, and detail the two phenomenologically allowed regions with one or two large
couplings. Next in section 3 we give the argument that in these two regimes solutions may
exist where the metric is very close to that of GR solutions, with a twist free aether ‘painted’ on
top. We discuss how this occurs in the weak field regime relevant for Solar System constraints,
and our attention then turns to the strong field regime and rotating stationary black holes. In
section 4.1 we discuss black holes in theories with multiple wave speeds, arguing that despite
modified gravity theories generally having different wavespeeds, in some theories black holes
may still exist with a single Killing horizon for all propagating degrees of freedom. We also
discuss how in Einstein-aether this is not possible, and black holes cannot have a single smooth
Killing horizon, and instead have multiple horizons. In the following section 4 we introduce
the numerical methods to find stationary black holes in theories with multiple wave mode
horizons. We demonstrate the method in the simple case of Einstein gravity and Kerr, before
applying it to the Einstein-aether theory in section 5.We firstly add rotation to previously found
static solutions. We discuss the novel non-Killing nature of the multiple wave mode horizons
of these rotating black holes. Then we focus on rotating black holes in the phenomenologically
allowed regions I and II which have some large couplings. Having found that these solutions do
approximateGR behaviour with a ‘painted on’ twist free aether, we conclude with a discussion
focussed on how this GR-like behaviour may be recovered more generally in astrophysical
settings.

2. Einstein-aether theory

We now review the Einstein-aether theory [3]. The theory contains the metric and the aether
vector uwhich is constrained to have unit timelike norm, so u2 = −1. Rather than use the usual
parameterization of the theory, here we employ the irreducible couplings introduced in [20].
Defining the acceleration of the aether, aμ = u · ∇uμ, then we may decompose the covariant
derivative of the aether as,

∇μuν =
1
3
θhμν + σμν + ωμν − uμaν , (2.1)

where the expansion θ = ∇ · u, and the shear σμν = σ(μν) with σμ
μ = 0 is orthogonal to the

aether, as is the twist ωμν = ω[μν]. Here hμν is the metric orthogonal to the aether, hμν = gμν +
uμuν . The terms in the decomposition (2.1) are irreducible with respect to the spatial rotation
group in the local rest frame of the aether. A virtue of this irreducible parameterization is that
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the gravitational part of the action,

Igrav =
1

16πG

∫
d4x

√
−g

[
R− 1

3
cθθ

2 − cσσ
2 − cωω

2 + caa
2

+ λ(gμνuμuν + 1)

]
(2.2)

can be seen to be a sum of squares of these quantities and this will play an important role
later. The field λ is a Lagrange multiplier than enforces the timelike constraint on the vector
u2 = −1. The aether coupling constants cA, A = {θ, σ,ω, a} are dimensionless and determine
the aether dynamics. For the convenience of the reader we have included appendix A where
the theory is described in the usual variables and couplings c1,2,3,4, and we detail the translation
between this and the irreducible parameterization.

In the limit cA → 0 the aether field decouples leaving the metric to be governed by Einstein
GR. The dynamical wave modes (in the absence of other matter) are the spin-0, spin-1 and
spin-2 combinations of the metric and aether field. The effective metrics for their propagation
are;

geffμν = gμν + (1− s2(a))uμuν (2.3)

with s(a) the wavespeeds in the rest frame defined by the aether. The theory has been highly
constrained by the LIGO neutron star merger observation [4, 5] which imposes to high pre-
cision (one part in ∼1015) that the spin-2 gravitational wave speed is that of light. Since,

spin− 2 : s2(2) =
1

1− cσ
(2.4)

from now on, unless otherwise stated, we assume that cσ = 0 exactly and so there is no shear
term in the action. Thus the metric and spin-2 effective metric are the same, and for a black
hole the horizon for matter is the same as that for the spin-2 graviton. Given that cσ = 0 then
the remaining wavespeeds are7,

spin− 0 : s2(0) =
cθ (2− ca)
3ca (2+ cθ)

spin− 1 : s2(1) =
cω
2ca

.

(2.5)

The theory has been shown to be well-posed for the parameter ranges we will be interested in
[21]. For black holes we will see later that these different effective metrics will generally have
different positions of their future horizons.

Written in the variables of the irreducible parameterization, once one has eliminated the
Lagrange multiplier and imposed cσ = 0, the aether equation is Aμ

Æ = 0 where,

Aμ
Æ ≡ cθ

3
(∇μθ + uμu · ∇θ)+ cω

(
∇νω

νμ − ωμνaν − uμω2
)

− ca

(
2
3
θaμ + u · ∇aμ − (σμν + ωμν) aν − uμa2

)
(2.6)

7 The full wavespeeds without taking cσ = 0 are reviewed in the appendix A.
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and given the aether vector’s timelike norm constraint, it is orthogonal to the aether field, so
u· AÆ = 0. The Einstein equation is Gμν = TÆ

μν + 8πGTmatter
μν where,

TÆ
μν ≡

cθ
3

(
−2u(μ∇ν)θ + gμν

(
1
2
θ2 + u · ∇θ

)
− uμuν(u · ∇θ)

)

+ cω

(
2ωμαω

α
ν − 1

2
gμνω

2 + uμuνω
2

)

− ca

(
aμaν + 4u(μων)αa

α − 1
2
gμνa

2 − uμuν∇ · a
)
. (2.7)

We see the structure of the action being a sum of squares manifests itself in the aether
equation and Einstein equation. If one of the quantities θ, ωμν or aμ vanishes, then the corre-
sponding terms multiplied by cθ, cω or ca respectively, vanish in both the aether and Einstein
equations, and this will play an important role later.

2.1. Phenomenological regimes

While the aether has four parameters, treating the theory as a low energy effective description
of gravity [22], these are constrained in order to have realistic phenomenology. Taking cA very
close to zero, the theory obviously behaves metrically as GR, and so passes phenomenological
tests, provided the aether obeys basic constraints (for example, having a stable evolution, and
s20,1 � 1 to avoid matter energy loss via Cherenkov radiation into aether modes), but does not
behave in an interesting manner (unless one can observe the aether vector directly).

However, having imposed the LIGO constraint, so the spin-2 wavespeed is that of light,
substantially changes the original observational constraints computed in [23]. There remain
two phenomenologically viable parameter regions, one where the twist coupling may be large,
so ∼O(1), while the other couplings are very small in magnitude, and the other where both
the twist and expansion couplings are large [7]. An important point is that these constraints do
not involve strong field dynamics (apart from considering nucleosynthesis) and given the large
couplings, this raises the fascinating possibility that observations of the strong field regime
could differ fromGR. For example, black holes in these parameter regionsmay strongly deviate
from the Kerr black hole of GR, in the sense that geometric invariants of the black holes deviate
from their Kerr counterparts by O(1) amounts for fixed mass and angular momentum. This in
principle could allow the theory to be distinguished from GR on the basis of its strong field
behaviour, such as the properties of black holes. Whether this indeed occurs is the key focus
of this paper.

We now discuss these two allowed regions. The absence of decay of cosmic rays to
Cherenkov radiation in the spin-0 and spin-1 modes implies that s20,1 � 1 to high precision.
Further constraints come from agreeing with weak field tests of gravity [23]. The two
PPN parameters α1,2 are constrained to be small, with Solar System observations requiring
|α1| � 10−4 and |α2| � 10−7. Written in terms of the couplings cω,θ,a together with the
condition that cσ = 0,8

α1 = −4ca

α2 � −ca
2

(
1− 3ca

cθ

) (2.8)

8 The general expressions are given in appendix A.
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where we have used that |α1| � 10−4 implies |ca| 	 1. Nucleosynthesis constrains |cθ| � 0.3
(assuming standard matter content)9. Positivity of the kinetic terms implies,

0 � ca, cθ. (2.9)

Dissipative dynamics of binary (and ternary) pulsar systems has recently been found to improve
the constraint on α1 by a factor of 10, i.e. |α1| � 10−5 [8]. Another strong constraint |α̂2| <
2× 10−9 comes from spin precession of a millisecond pulsar [25, 26], where α̂2 is a strong field
analog ofα2. However the translation of the constraint on α̂2 to one on the coupling parameters
is complicated as it involves the neutron star sensitivities to higher order in velocity relative to
the aether than they are currently known (see also [7] for a discussion of this point).

2.1.1. One large parameter: region I. Firstly we assume that cω ∼ O(1) and not small in mag-
nitude—otherwise we will find ourselves in the trivial regime, |cA| 	 1 where the aether
decouples from the theory10. Then taking the remaining parameters as,

cω = O(1), 10−7 	 ca � 10−5,
cθ
3

= ca + O(10−7) (2.10)

satisfies the phenomenologicalconstraints. Hence in this region cω is the only largeO(1) param-
eter. All the other parameters are of orderO(10−5) or smaller, so the aether action is dominated
by the twist term.We restrict this region to refer to the parameter rangewhere ca 
 10−7 which
implies cθ � 3ca. We will call this parameter region I. We see the spin-0 wavespeed is close to
that of light, s2(0) � 1, while the spin-1 wavespeed diverges as s2(1) ∼ 1/ca = O(105).

2.1.2. Two large parameters: region II. Taking both |α1|, |α2| ∼ 10−7, so that α1 is smaller
than necessary to satisfy current bounds, allows for two independent parameters to be large.
Again taking cω ∼ O(1) and not small in magnitude, and further allowing cθ to be an
independent large O(1) parameter, these bounds are satisfied by,

cω = O(1), 10−7 	 cθ � 0.3, ca = O(10−7). (2.11)

The aether action is then dominated by the twist and expansion terms. We term this parame-
ter region II. Now both the spin-0 and spin-1 speeds become very large as s2(0), s

2
(1) ∼ 1/ca =

O(107).

2.1.3. The transition between regions I and II. In figure 1 we depict these two regions. The
transition region joining these two regions I and II in parameter space is given by,

cω = O(1), ca = O(10−7), cθ = O(10−7). (2.12)

This joins to the region II taking cθ very small rather than O(1). On the other hand this space
joins with region I when ca = O(10−7). A subtlety of this region is that if cθ → 0 for fixed ca
then it is unclear the PPN analysis holds as the spin-0wavespeed tends to zero.As this transition
region is much smaller than the parameter regions I and II implied by the observational
constraints we will not consider it further in this work.

9 Recently it was argued [24] that in the related Hořava gravity theory that the CMB combined with other cosmological
observations provides substantially stronger constraints than those just from nucleosynthesis. It would be interesting
to see if such detailed cosmology analysis might lead to improved bounds in the Einstein-aether theory.
10 In what follows when we say a quantity is ∼O(1) we mean to imply that it is also not small in magnitude.
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Figure 1. Figure showing the two phenomenologically allowed regions, region I and II,
in the aether coupling space. The coupling cω is not shown as it is unconstrained for both
these regions.

3. Recovering GR in phenomenological large parameter regions

Both the one and two large parameter regions (I and II) haveO(1) aether parameters, so at least
some cA = O(1). Hence one would naively expect strong field solutions, such as black holes,
to deviate from those of GR by O(1) amounts. The aether with its unit timelike norm will vary
on scales comparable to the curvature scale of the metric, and one might then expect the terms
in the aether action with large couplings to give rise to significant backreaction in the Einstein
equation of the theory, deforming the metric response to matter from that of GR.

However we now discuss how GR may be recovered in these phenomenologically allowed
regions. While some terms in the aether action may have O(1) couplings, nonetheless they
may be dynamically suppressed. For our two regimes above the action is dominated by the
twist term, and for regime II also the expansion. By Frobenius’s theorem a twist free aether
field is hypersurface orthogonal, and can then be written locally as uμ = k∂μ f , for functions k
and f , where level sets of f define these hypersurfaces [20]. Due to the aether norm constraint,
k2(∂ f )2 = −1, which can be thought of as fixing k in terms of f . Hence a twist free aether is
determined by a single scalar potential function, f . The important point is that the aether has
sufficient degrees of freedom, after imposing the timelike unit norm constraint, to still be twist
free. Furthermore it also has sufficient freedom left, the scalar function f , to potentially satisfy
the further scalar constraint coming from requiring it to be expansion free. It is this ability for
the aether to be twist free, and also expansion free, that lies behind the potential recovery of
GR, as it allows the terms in the aether action with large couplings to still be small.

3.1. GR behaviour for region II

We begin by considering region II as it is simpler to analyse than region I. Here the aether action
is dominated by the quadratic twist and expansion terms. When the shear and acceleration
couplings are set to zero in the aether Lagrangian (2.2), leaving only the twist and expansion

9
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couplings, any solution to the usual GR Einstein equation admitting a maximal foliation is also
an exact Einstein-aether solution, with the aether set equal to the unit normal to the foliation.
The reason is that the twist and expansion of this aether vanish, and the action is quadratic in
those quantities, so its variation away from such a configuration vanishes when the Lagrange
multiplier for the unit norm constraint vanishes. If the acceleration coupling is instead small,
rather than strictly zero, onemay thus expect there to exist a solution that is a small perturbation
of that in which it does vanish. We will now develop this more explicitly.

We begin by taking ε ≡ ca = O(10−7) which we consider to be a small parameter. For
simplicity let us consider a vacuum solution, and hence no matter. Let us attempt to write
a consistent vacuum solution as an expansion in ε about a solution of vacuum GR and a twist
free aether configuration, given in terms of a potential function f , as,

gμν = ḡμν + εg(1)μν + O(ε2)

uμ = ūμ + εu(1)μ + O(ε2), ūμ = k∂μ f
(3.1)

where ḡμν is a vacuum GR solution, so Ricci flat. Now at order O(ε0) the aether equation
receives a contribution from the twist and expansion terms in the action. The twist term vanishes
as our leading aether configuration is twist free, and since the term is quadratic, its contribution
to the equations of motion and the aether stress tensor vanishes too. However from the aether
equation (2.6) we see the expansion term leads to the condition;

cθh̄
μν∂νθ̄ = 0 (3.2)

where indices are raised/lowered with the leading metric ḡμν and where θ̄ is the expansion of
the leading order twist-free aether,

θ̄ = kh̄μν∇̄μ∂ν f (3.3)

where h̄μν = ḡμν + ūμūν is the projection of the metric onto the constant f hypersurfaces. Thus
the expansion θ̄ must be constant on the hypersurfaces of constant f .

Having taken a vacuumGR solution, then the Einstein tensor Ḡμν of themetric ḡμν vanishes,
and we must also check consistency with the Einstein equation. From (2.7) at leading O(ε0)
order we find the expansion term backreacts as,

0 = Ḡμν =
cθ
3

(
−2ū(μ∇̄ν)θ̄ + ḡμν

(
1
2
θ̄2 + ū · ∇̄θ̄

)
− ūμūν (ū · ∇̄θ̄)

)
(3.4)

and again indices are raised/lowered with the leading metric ḡμν . Since the twist vanishes and
the twist term in the action is quadratic it does not backreact. Now contracting with uμuν yields
the condition,

θ̄2 = 0 (3.5)

which in fact forces the expansion to vanish for consistency.
Thus we see that we may consistently take the spacetime to be that of vacuumGR at leading

order O(ε0) with a ‘painted on’ aether vector that is twist and expansion free, provided we can
find a potential function f which obeys the vanishing expansion condition on this spacetime,
given by the non-linear p.d.e.,(

ḡμν − 1
(∂ f )2

∂μ f ∂ν f

)
∇̄μ∂ν f = 0. (3.6)

10
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We note the two derivative terms in f are contracted by the induced inverse metric on a con-
stant f surface. This induced inverse metric must be Riemannian, since it is orthogonal to the
aether which is constrained to be timelike, and hence this p.d.e. has elliptic character. We may
view the aether as locally defining a foliation of the spacetime by the constant f hypersurfaces,
with the unit timelike norm and expansion free condition implying that it is a maximal slicing.
This leading order Ricci flat spacetime is then perturbed at order O(ε1) by g(1)μν , and the aether
by u(1)μ . However for region II we have ε = O(10−7) so to one part in 107 the spacetime geom-
etry is simply that of vacuum GR. Thus to a great accuracy the vacuum behaviour of GR can
potentially be recovered even though both cω and cθ are O(1).

While for convenience we have excluded matter, including it does not change the picture.
With matter, ḡμν and the leading matter behaviour will be a solution to the usual GR Einstein-
matter equations. The aether will again be twist and expansion free at leading order, and to high
accuracy the usual Einstein-matter dynamics will be recovered for such solutions. Furthermore
these conditions on the aether are independent of the values of the large aether couplings cω
and cθ. Thus the aether behaviour for these near GR solutions is approximately (i.e. to one part
in 107) universal within region II.

An important point to emphasize is that there is no guarantee that solutions to the above
twist and expansion free equation (3.6) exist for all GR spacetimes. For example, in a
cosmological setting the asymptotic expansion of the aether will not vanish and hence one
could not hope to find a global solution to the above conditions. While it was long ago proved
that vacuum spacetimes ‘close’ to Minkowski spacetime admit a maximal foliation, to our
knowledge there is no stronger result that could guarantee such a foliation more generally,
such as for black hole spacetimes that we will later be interested in11. For the case of Kerr,
maximal spacelike foliations have been constructed numerically [28].12 We will shortly give
numerical evidence that a twist and expansion free aether, associated to such a foliation, indeed
describes the behaviour of black holes that we are able to construct associated to region II.

If solutions do exist another question is whether these are unique, and whether there might
be a moduli space of such solutions. While the above elliptic p.d.e. for the potential f above
locally determines f , such a moduli space may arise if there is global data for solutions
once boundary conditions are prescribed. A key point is that if a solution or moduli space
of solutions for f exist, they are universal to region II in the sense that they are independent
of the O(1) couplings cω and cθ, as we see explicitly from the coupling independence of
equation (3.6)

3.2. GR behaviour for region I

Now let us consider region I which has one large parameter, the twist coupling cω . The logic is
similar to that above for region II. If the expansion and acceleration couplings vanish exactly,
then any solution to the usual GR Einstein equation that admits a twist free aether will be
an exact solution to the Einstein-aether equations. Now if the expansion and acceleration
couplings are not zero, but are small, we then expect a solution to exist which is a small
perturbation of this solution where it does vanish.

We again take the small parameter to perform our expansion to be ε ≡ ca = O(10−5). The
aether action is now dominated only by the twist term. The expansion and acceleration terms

11 For a discussion and references see [27]. Interestingly, that paper includes an example of a spherical, pressureless
dust collapse solution to GR for which there is no maximal foliation that covers the entire exterior of the black hole.
12 The constant Boyer–Lindquist time slices of Kerr spacetime provide a maximal foliation [29, 30]. However, this
foliation is not suitable for the aether construction since it is not spacelike inside the horizon.

11



Class. Quantum Grav. 39 (2022) 125001 A Adam et al

have small coefficients obeying the phenomenological constraint above, cθ
3 = ca + O(10−7).

Since we have restricted region I to have 10−7 	 ε � 10−5 then we can write,

cθ
3

= ε+ kθε
2 (3.7)

so that |kθε2| 	 ε. Again for simplicity let us consider the spacetime at leading order to be a
GR vacuum solution, so ḡμν is Ricci flat and there is no matter. Then ‘painting on’ a twist free
aether, given by the potential function f , we again expand the metric and aether as above in
equation (3.1).

Now since at leading orderO(ε0) the aether action comprises only the quadratic twist term,
and the leading aether is twist free, both the aether and Einstein equations are trivially satisfied
at this order. One might then wonder whether the aether potential f can be arbitrary? In fact
it cannot, as it is constrained by consistency of the O(ε1) equations. At this order the aether
equation gives,

cω
(
∇̄νω

(1)νμ + āνω
(1)νμ

)
= j̄μ (3.8)

where ωμν = εω(1)
μν + O(ε2) and we note that ūμω(1)μν = 0, and consequently ūμ j̄μ = 0 and,

j̄μ = −
(
∇̄μθ̄ + ūμū · ∇̄θ̄

)
+

(
ū · ∇̄āμ − ūμā2 +

2
3
θ̄āμ − σ̄μν āν

)
(3.9)

which we emphasize is constructed only from the leading metric and aether, ḡμν and ūμ. We
may regard equation (3.8) as determining the aether perturbation ω(1)

μν . However, somewhat
analogously to source conservation in the Maxwell equation, one also finds the constraint,

∇̄ · j̄+ ā · j̄ = 0 (3.10)

a key point being that this involves only the leading order aether and metric. This appears to
be a complicated differential equation for the potential f which is fourth order in derivatives
and which we may think of as its equation of motion. Another important point is that solutions
for f of this p.d.e. are universal for region I in the sense that they do not depend on the O(1)
aether coupling cω , as we explicitly see from the above equation.

The origin of this condition may be understood by considering the aether action under an
O(ε) variation of the aether, u(1)μ → u(1)μ + δu(1)μ ; the variation of the action at order O(ε2) is,

δS(2) =
1

8πG

∫
d4x

√
−ḡ

(
−cωω(1)μνδω(1)

μν − δu(1)μ j̄μ
)

(3.11)

which gives rise to the equation (3.8) for ω(1) above. Now consider the variation generated by
changing the foliation at order O(ε);

f → f + εδ f (1) =⇒ δu(1)μ = kh̄νμ∇̄νδ f
(1). (3.12)

In analogy to a gauge transformation for Maxwell leaving the field strength invariant, this
variation leaves the twist ω(1) invariant, so δω(1)

μν = 0. Then taking the remaining variation and
integrating by parts,

δS(2) =
1

8πG

∫
d4x

√
−ḡδ f (1)∇̄μ

(
k j̄μ

)
(3.13)
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and since the action should be stationary for a solution, ∇̄μ
(
k j̄μ

)
= 0. Then using

āμ = h̄ ν
μ ∂ν(ln k) implies equation (3.10) above.

As for the region II discussion,we have no argument that guarantees solutions to (3.10) for f
must generally exist given an underlyingGR spacetime. If they do, given that it is a fourth order
differential equation in f , it is also unclear how much global data would characterize them.
However, we will shortly give numerical evidence that for stationary black holes a solution
does exist and furthermore it appears to be unique given the boundary condition that the aether
is asymptotically at rest with respect to the black hole.

A possible solution to (3.10) is j̄ = 0, which is a simpler condition involving only three
derivatives of f . For example, if one considers static spherically symmetric black holes
where the aether is twist free by symmetry, then indeed j̄ must vanish (as ω(1) vanishes in
equation (3.8)). Could it be the case that while (3.10) holds true, it only does so because of
the more fundamental condition j̄ = 0 which really plays the role of the equation governing
the potential f ? We later show that this is not the case. For stationary rotating black holes our
numerical solutions will show that in region I these take the approximate form of Kerr with
the aether ‘painted on’, and further that equation (3.10) is satisfied by an aether where j̄ �= 0.
Hence it appears that (3.10) is indeed the true condition governing the leading aether potential.
Moreover,we find that θ̄, āμ, and σ̄μν are all nonvanishing, so there is no obvious simplification
of the form of j̄μ in (3.9).

Subject to the existence of solutions for f , again we have solutions in region I that are very
close to GR solutions, now to one part in ∼105, and where the aether is close to being twist
free and determined by a single function f obeying a somewhat complicated four derivative
condition. Interestingly this condition for f , and hence the leading aether solution, is indepen-
dent of where the theory is in region I, given by the large parameter cω . Thus such GR-like
solutions will have an approximately universal aether behaviour, to one part in ∼105, in this
phenomenological parameter region13.

3.3. The weak field limit for regions I and II

The conditions (2.8) define regions I and II precisely so that the deviation of the metric from a
GR response to matter in the weak field regime is small at leading order in a PPN expansion.
However our discussion above suggests that not only should the metric behaviour in region I
and II be close to GR, but the aether should also be approximately twist free and in the case of
region II additionally expansion free. It is instructive to see this emerge in the weak field PPN
calculation. In appendix Bwe review the relevant results from the original Einstein-aether PPN
calculation [23] and use them to compute the twist and expansion of the aether.

Interestingly we find that the condition cσ = 0 is sufficient at leading non-trivial PPN order
to give a twist free aether. Thus the aether being twist free in weak field at leading PPN order
is generic for cσ = 0, even if the metric response does not behave as GR (as seen through the
preferred frame parameters α1,2). Indeed this is precisely the reason that cω does not enter the
expressions for α1,2 in equation (2.8).

Further restricting to regions I and II the aether takes the expected form uμ = ūμ + cau(1)μ

+ O(c2a) with universal ūμ = k∂μ f . As shown in appendix B, in region II one finds the potential
function simply goes as time, f = t, at leading non-trivial PPN order, which indeed results in
ūμ being expansion free. For region I the potential involves a contribution from the matter, and
consequently the expansion does not vanish, again as expected. Since cσ = 0 is sufficient to

13 In the transition region discussed in section 2.1 where both ca, cθ ∼ 10−7, then the function f is determined in the
same way as for region I, except that now the analog of (3.9) will explicitly depend on the ratio cθ/ca ∼ O(1).
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give a twist free aether at leading PPN order, in this weak field limit the leading correction
to ūμ, given by u(1)μ , and all subsequent terms in the ca expansion of uμ must also be twist
free. More generally for strong fields the aether will only be twist free in the ca → 0 limit, so
these corrections will have non-vanishing twist as we explicitly see later for stationary black
holes.

3.4. Region II static black holes in the near GR limit

An example of this GR limit for black holes in region II can be given analytically in the static
case via the exact solutions in [16] which were found for ca = 0. Taking cσ = 0 as we do
here, then for any cω and cθ, an exact solution for the metric and aether is simply given by
Schwarzschild,

ds2 = −
(
1− r0

r

)
dv2 + 2 dv dr + r2 dΩ2 (3.14)

with the aether taking the form,

u = α(r)
∂

∂v
+ β(r)

∂

∂r
, β(r) = − r2æ

r2
(3.15)

with α(r) determined from β(r) by the norm condition, and ræ being a parameter. In spherical
symmetry any aether is twist free. Writing the aether as uμ = k∂μ f we see the potential takes
the form, f = v + φ(r). One can verify that this aether has zero expansion. Hence this repre-
sents the leading aether behaviour as ca → 0 for the parameter region II. From the discussion
above, a static black hole in region II would approximate Schwarzschild with this aether to an
accuracy of order O(10−7).

The parameter ræ above reflects the fact that the expansion free condition is a differential
equation with global data. However, as shown in [16], if one requires the existence of a
universal horizon, then ræ = 33/4

4 r0. For region II in the limit ca → 0 both the spin-0 and spin-1
wavespeeds diverge, and hence existence of a smooth universal horizon is the same statement
as existence of smooth horizons for these degrees of freedom. Thus in the static spherically
symmetric case for region II it seems that, for a given mass, determined here by r0, there is a
unique aether independent of the aether coupling parameters in the limit ca → 0.

The universal horizon is located at r = 3
4 r0. While the aether vector field is smooth there,

the function φ, and hence f , diverges as ∼− log |r − 3
4 r0|, being explicitly given as,

φ(r) = −r − r0 log

⎡
⎢⎣(√3(20r + 7r0)+ 9Δ

)( ∣∣r − 3
4r0

∣∣
4r + 3

2r0 +
3
√
2

4 Δ

)√
27
32

⎤
⎥⎦
(3.16)

where we have defined Δ =
√

16r2 + 8rr0 + 3r20. Thus the twist potential f is not globally
smooth, but is smooth separately in the interior and exterior of the universal horizon where it
defines maximal foliations. The exterior foliation is one discussed in [31, 32]. In the case of
Kerr again one expects that maximal foliations with the correct asymptotics only penetrate a
certain distance inside the Kerr horizon [28].

For region I we expect an analogous solution, but with a different function β corresponding
to an aether potential function that satisfies the condition j̄ = 0. (As discussed above, since
any static spherically symmetric aether is twist free, the only solution to (3.10) is that with
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vanishing j̄.) We note this solution for the aether is implicit in numerical solutions in [17]
where static spherical black holes in region I were found, and indeed seen to be approximately
Schwarzschild.

4. Constructing stationary black holes with multiple wave mode horizons

We have argued that GRmay emerge dynamically in the strong field regime for Einstein-aether
theory in the phenomenologically allowed regions I and II to a good approximation. Even
though various couplings are large, provided that suitable solutions for the twist free aether
potential, f , exist to equations (3.6) and (3.10) for regions I and II respectively, the solution
closely approximates an aether ‘painted on’ to a usual GR spacetime solution. We have shown
the solution for weak fields indeed takes this form at leading order in the PPN expansion.
The key question is now whether solutions to these equations for the aether potential exist
in the strong field regime. We thus consider numerical construction of stationary black holes
to deduce how solutions behave in parameter regions I and II. From this point onwards, for
convenience we choose units such that 8πG = 1.

While static spherically symmetric black holes are numerically straightforward to construct,
since they trivially have a twist free aether due to the symmetry, they are not a good testing
ground for studying this behaviour. For example, as discussed above, in region I it is obvious
that GR behaviour will emerge if the aether is automatically twist free, as the only large cou-
pling is that associated to the twist term in the action. The key question is then does this persist
when rotation is added, as then there is no symmetry reason to protect the aether from having a
twist. We ultimately will give evidence that ‘nearly Kerr’ black holes with a ‘painted on’ aether
indeed exist for both regions I and II.

Black holes in Einstein-aether are subtle due to having multiple horizons associated to the
wave modes propagating at different speeds. This makes the problem novel and we therefore
develop new numerical methods to tackle it. While it is generic in modified gravity theories to
have multiple wave mode speeds, this by no means implies multiple horizons. For many such
theories more conventional numerical methods may be used. Thus before we outline the new
numerical methods for Einstein-aether, we briefly review some general facts about horizons in
theories with more than one mode speed. Focussing on theories with multiple effective metrics
governing wavemode propagation, we pinpoint the key difference between scalar-tensor
theories and those with a timelike vector field, such as Einstein-aether theory, which makes
this problem more subtle.

4.1. Black hole horizons in theories with different wavespeeds

The setting under discussion is a spacetimewith various tensor fields, including ametric, which
are all invariant under the flow of a Killing vector χ that possesses a Killing horizon, i.e. a null
surface generated byχ.We divide the discussion into two parts. In the first part, we suppose that
the Killing horizon has a bifurcation surface whereχ vanishes and all the fields are regular, and
explain, following an argument in [33], why this implies that the Killing horizon is a Killing
horizon with respect to the effective metrics for all wave modes. We also highlight why the
Einstein-aether theory cannot have such solutions. In the second part we review the results
of [34] that establish conditions under which the existence of such a bifurcation surface is
guaranteed.

We label the different linearized modes in the theory by an index i, and we suppose that the
mode equations are all hyperbolic, with local characteristic surfaces (a.k.a. ‘causal cones’)
determined by metric tensors giμν that are constructed from the fields of the theory. Since
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by assumption all the fields of the configuration are invariant under the flow of χ, we have
Lχgiμν = 0. That is, χ is a Killing vector for all of the metrics. Moreover, this implies that
the scalar quantities giμνχ

μχν are constant on the flow lines of χ, and in particular on the null
curves that generate the Killing horizon. Since these generators all pass through the bifurcation
surface where χ = 0, it follows that these scalars all vanish everywhere on the Killing horizon,
which means that it is a Killing horizon for all of the metrics giμν .

This is a very powerful argument, but it relies on a strong assumption: the existence of a
bifurcation surface at which all of the fields are regular. The Einstein-aether theory cannot have
such solutions, since a regular unit timelike vector field cannot be invariant under the Killing
flow at the bifurcation surface, because the flow acts there as a boost in the tangent space at each
point and a nonzero timelike vector is not invariant under any boost. Instead the Einstein-aether
theory has black hole solutionswhich have different future horizons for eachwavemode, as one
can see for the earlier example in equations (3.14) and (3.15), but these cannot be smoothly
extended back to a bifurcation surface where the aether is regular. Furthermore for rotating
black holes we will later see these horizons are not even Killing horizons.

Let us briefly return to theories that admit such black holes with a common Killing horizon
for all wave modes. The above argument for a common Killing horizon requires a bifur-
cation surface and fields to be smooth there. In a maximally extended, analytic solution
that requirement might be manifestly met, but this is not an adequate criterion in the more
phenomenological setting in which a black hole forms via collapse of matter, and asymptoti-
cally approaches a stationary black hole solution in the future. What, if anything, can be said
in that case? Some strong results due to Rácz andWald [34] are useful here. What they showed
(among other things) is, roughly speaking, that if (1) a spacetime possesses a neighbourhood
of a future portion of a Killing horizon; (2) any fields on the spacetime other than the metric are
also invariant under the Killing flow; (3) the metric and other fields are either static (and there-
fore time-reflection symmetric) or stationary-axisymmetric and invariant under a t–φ reflection
isometry, then the spacetime metric and other fields are all extendable to a neighbourhood of
a regular bifurcation surface. Field equations play no role in the argument. What this means is
that while a physical spacetime in which a black hole forms by collapse has no real bifurcation
surface, it has what might be called a ‘virtual bifurcation surface’. The existence of such a
virtual bifurcation surface suffices for running the argument given above, so we may conclude
that, under the hypotheses of the Rácz–Wald theorem, a Killing horizon is a causal horizon for
all of the fields in a gravity theory.

The first two assumptions are routine, but that of the reflection symmetry is more subtle.
For a nonrotating black hole, it seems plausible that the metric would generically admit a static
Killing vector, whose time reflection isometry would be shared by any scalar fields. But a unit
timelike vector, as occurs in Einstein-aether theory, would reverse its time orientation under
the reflection, and hence would not satisfy the requirement. Furthermore we will later show
that rotating Einstein-aether black holes do not possess the t–φ orthogonality property, which
presumably means they do not admit a t–φ reflection isometry.

Above we have assumed the local characteristic surfaces are governed by metric tensors.
However as recently discussed in [35] one may have more complicated situations where the
principle symbol may not be decomposed in such a simple manner. Interestingly in the explicit
scalar-tensor theories considered there, which all had second order equations of motion, it was
shown by direct analysis of the principle symbol, that ametric Killing horizon is a characteristic
surface for all degrees of freedom in the theory, without direct reference to the bifurcation
surface of the metric horizon.
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4.2. Harmonic formulation

In order to numerically construct the stationary black hole spacetimes we will employ the
harmonic method outlined in [10, 36, 37]. The harmonic Einstein equation takes the form (in
four dimensions),

RHμν[g] ≡ Rμν +∇(μξν) = Tμν −
1
2
Tgμν (4.1)

whereTμν is the stress tensor, and the vector ξμ = gαβ
(
Γμ
αβ − Γ̄μ

αβ

)
, with Γ̄ a smooth reference

connection on the manifold which we take to be the Levi-Civita connection of a smooth refer-
ence metric ḡ. In the context of Riemannian geometry this modification of the Ricci tensor was
due to DeTurck who used it in the analysis of Ricci flow [38]. The harmonic Einstein equation
is then solved in conjunction with the matter equations of motion. This formulation removes
the coordinate invariance of the equations, and in the vacuum gravity case (i.e. Tμν = 0) gives
a principle symbol controlled by the metric itself. The vector ξ should vanish if we wish to
find a solution to the Einstein equation, rather than a solution with non-vanishing ξ, which
we term a ‘soliton’ as in vacuum equation (4.1) is known as the Ricci soliton equation. We
may view the vanishing of ξ as a gauge condition, with the resulting coordinates determined
by the prescribed reference metric ḡ. This takes the form of a generalized harmonic gauge
condition [39, 40] with the coordinate functions locally obeying∇2

Sx
μ = −gαβΓ̄μ

αβ , where∇2
S

is the scalar Laplacian. Clearly in order to find solutions of the Einstein equation we must
ensure boundary/asymptotic conditions such that ξ may vanish there.

The existence of solutions with non-vanishing ξ is constrained. We may understand this as
the vector satisfies the linear equation

Oξμ = ∇2ξμ + R ν
μ ξν = 0. (4.2)

Clearly ξ = 0 is a solution. However for ξ �= 0 to be a solution, the linear operatorOmust have
a non-trivial kernel. If boundary/asymptotic conditions ensure ξ → 0, then the kernel may be
forced to be trivial. This has been proven to occur in the vacuum GR setting for stationary
black holes in [41, 42]. In practice one may simply check that solutions obtained by solving
the harmonic Einstein equation are not solitons.

4.3. Review of method for stationary black holes with a Killing horizon

We nowbriefly review the use of this harmonic formulation in the conventional stationary black
hole setting where there is a single Killing horizon. In the rotating case we assume rigidity
holds so that the black hole rotates in the direction of an asymptotically spatial Killing vector
(e.g. ∂φ for Kerr). Then the problem of finding the exterior to the horizon may be phrased as
an elliptic boundary value problem on a spatial slice that extends from infinity and terminates
at the bifurcation surface [36]. The horizon and asymptotic regions form the boundaries, and
the lack of dependence of the metric components on time or the rotation direction implies that
the principle symbol is elliptic. The boundary conditions at the horizon ensure its regularity,
and also fix the physical data of the black hole; its surface gravity and the velocities of the
horizon.

In this stationary setting, with a reasonable initial guess, one can hope to solve the resulting
elliptic p.d.e.’s to find the desired ξ = 0 solution. This is typically achieved either as a flow
(such as DeTurck flow in the vacuum case) or more directly as we will do here, using a Newton
method.While one usually thinks of using the Newtonmethod after finite differencing in order
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to solve the resulting coupled non-linear algebraic equations, we may formally think of it prior
to this in the continuum. In the case of the vacuum equations it is simply,

gi = gi−1 −Δ[gi−1]−1RH[gi−1] (4.3)

where gi are metrics with g0 an initial guess and Δ is the linearization, RH[g+ εh] = RH[g]
+ εΔ[g]h+ O(ε2), and the aim is that given a good initial guess g0 then gi tends to a solution
as i→∞. Considering the Newton method in the continuum we see that provided gi−1 is a
smooth metric, and the problem is well posed so that the inverse Δ−1 exists, then we expect
the new metric gi to remain smooth.

4.4. An in-going approach

The approach described above is based implicitly on the black hole of interest having a smooth
Killing horizon, and hence a bifurcation surface that forms a boundary of the domain. This will
not work if the theory does not admit black holes with a common horizon for all wave modes,
as for the Einstein-aether theory. If there are other fields with effective metrics which have
horizons inside the metric one, as is the situation for Einstein-aether due to the Cherenkov
constraints s20,1 � 1, such an approach cannot correctly impose regularity of these horizons
and the problem will be ill-posed.

Instead here we will introduce a new approach using in-going coordinates, taking the coor-
dinate domain to pierce inside the horizon of the problem, or horizons if there are multiple
effective metrics. This in-going approach has previously been used in [37, 43] where certain
exotic black holes with ‘non-Killing horizons’ were found that naturally occur in the holo-
graphic contextwith AdS asymptotics. Herewewill use a similar approach, although the reason
is somewhat different. In that holographic setting there was a unique horizon, but it failed to
be Killing. Here the issue we must address is the presence of multiple effective horizons for
different degrees of freedom inside the metric horizon. Our aim is to extend the domain far
enough inside the metric horizon to capture all these effective horizons. An early version of
this method applied to Einstein-aether black holes can be found in [44].

Let us firstly consider the case where the metric controls all wave speeds using such in-going
horizon piercing coordinates. The problem no longer has an elliptic character and becomes
hyperbolic inside the Killing horizon. Smoothness of the horizon is imposed simply by the
metric functions being smooth in the interior of the domainwhere the horizon lies. As discussed
above, considering the Newton method in the continuum, then if the metric at some step is
smooth we expect the updated metric will also be smooth, and hence provided the method
convergesand one starts with a smooth initial guess, the resulting solution should have a smooth
horizon. Inside the horizon the problem is hyperbolicwith the solution determined by the initial
data set by the metric functions at the horizon. Thus the innermost boundary of the domain
should be regarded as the last slice of this hyperbolic evolution, and no boundary condition
should be imposed there. Now consider the case where there are multiple wave modes with
different effective metrics controlling their propagation.We may apply the method in the same
way, solving the Einstein and matter equations on an in-going slice that pierces all the horizons
associated to these wave modes. Provided the metric functions are smooth, regularity of all the
wave mode horizons will be ensured. Starting with a smooth initial guess close enough to a
solution we expect the Newton method to maintain smoothness as it iterates to the solution.
Outside all the horizons we expect the problem to be elliptic in character, and inside all the
horizons we expect it to be hyperbolic. It will have a mixed character in the region between
the various wave mode horizons. Again since the problem should be hyperbolic inside all the
horizons, no boundary condition should be imposed on the innermost points of the coordinate
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Figure 2. Figure schematically showing the computational domain embedded in a sta-
tionary spacetime with multiple wave mode horizons H0,1,2. The conformal diagram is
drawn with respect to the effective metric with the outermost horizon, H2. Outside the
horizons the harmonic Einstein equation has an elliptic character, while inside all the
horizons it will be hyperbolic in character. Consequently there is no boundary condition
to impose at the innermost points of the coordinate domain. Although a rotating black
hole does not actually admit a planar Penrose diagram like this one, the relation between
the computational domain and the horizons is faithful, and each point on the red line has
the topology of an angular two-sphere. The computational domain is therefore closed
except at its inner and outer ends.

domain, and instead the equations of motion should be solved there. This is schematically
illustrated in figure 2.

In the previously described elliptic setting we expect a solution given the boundary data
which fixes the particular black hole of interest by specifying the moduli of the solution, the
surface gravity and angular velocities. In our ingoing setting we are imposing only smoothness
at the horizon. Thus there is no unique solution to the problem, but rather any stationary black
hole will be a solution. In order to have a tractable numerical problem we must have a unique
solution (or at least a discrete set of solutions) and thus must fix the surface gravity, angular
velocities and any other moduli. Without fixing these physical data a method such as the
Newton method will fail as the linearized operatorΔ above will not be invertible. An iterative
method will also typically fail to produce a solution, and will likely drift around in the space of
solutions not settling on any one, or if it does settle it will be arbitrary which one it has chosen.
Here we will employ a simple and numerically stable way to fix the physical data. Suppose
we have n moduli that should be fixed, we fix the values of n metric functions at some specific
point in the domain. Thus the values of certain metric functions are mapped to physical data,
assuming solutions exist with those values.

While this in-going approach is certainly more complicated than the usual method outlined
above for a single Killing horizon, its strength is that the generalization to multiple wave mode
horizons is straightforward.Onemust simply ensure the coordinate domain pierces sufficiently
into the interior of the black hole to capture all horizons of the effective propagation metrics
of the various wave modes. Before applying this approach to black holes in Einstein-aether we
firstly illustrate this method explicitly with the toy example of recovering the Kerr solution in
the simplest setting of vacuum Einstein gravity.
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4.5. Example: GR and the Kerr black hole

Suppose we wish to numerically ‘find’ the Kerr solution in vacuum gravity using this ingoing
approach. Then we wish to solve the harmonic Einstein equation (4.1) with no stress tensor.
We begin by taking an in-going coordinate chart that will cover the exterior of the black hole
and penetrate the future horizon so that smoothness is imposed there. We do this by taking the
most general metric ansatz compatible with stationarity and axisymmetry generated by ∂v and
∂φ respectively;

g = − (T0 + T) dv2 − 2 (V0 + V)
z2

dv dz+
2U
z

sin θ cos θ dv dθ

− 2 (W0 +W) sin2 θ dv dφ+
A
z4

dz2 +
2F
z2

sin θ cos θ dz dθ

+
2 (P0 + P)

z2
sin2 θ dz dφ+

B0

z2
eS+sin2 θB dθ2 +

2Q
z2

sin θ cos θ dθ dφ

+
S0
z2

sin2 θ eS dφ2 (4.4)

where F0 = {T0,V0,W0,P0, S0,B0} are fixed functions of z and θ and the unknown functions
to be solved for are then the 10 functions F = {T,V ,W,U,A,P,F, S,Q,B}, again depending
on z and θ. We choose the reference metric ḡ to be that above, g, with the unknown functions
F vanishing, so that it is given by the fixed functions F0. Here we will restrict our solutions
to have a reflection symmetry in the equatorial plane of the black holes. We emphasize that
the form of the metric above does not impose the ‘t–φ’ orthogonality property, i.e. that the
two planes orthogonal to the Killing vectors ∂v and ∂φ are integrable. As we discuss later,
this implies that the above ansatz does not assume horizons will take the form of a Killing
horizon.

Here we think of v, θ and φ as analogous to those in ingoing Eddington–Finklestein coor-
dinates for Schwarzschild, with M/z being analogous to the usual radial coordinate r in that
coordinate system, whereM is the black hole mass. Hence we take z = 0 to be the asymptotic
infinity I−, and the computation domain (given reflection symmetry in the equatorial plane) is
then rectangular with z ∈ [0, zmax] and θ ∈ [0, π/2] with θ = 0 the rotation axis and θ = π/2
the equatorial plane. The value zmax should be large enough that this boundary of the domain
is entirely contained within the horizon so that smoothness is imposed there provided the
functions F are smooth. If the value zmax is too small so that the boundary is outside (any)
horizon then the problem will not be well-posed—it will be analogous to an elliptic problem
lacking data on one boundary.

The various powers of z and factors of sin θ and cos θ are included in (4.4) to simplify the
various boundary and asymptotic conditions. Regularity of the axis of symmetry and equatorial
plane requires the functions F0 and F to be even in θ and in (π/2− θ). Taking the F0 to be
smooth functions at the boundary z = 0 with Dirichlet boundary conditions,

T0 → 1, W0 → 0, V0 → μ, P0 → μa, B0, S0 → μ2 (4.5)

where μ and a are constants then imposes the requirement that the reference metric be asymp-
totically flat. We then impose analogous conditions on the metric g by taking F to be smooth
functions at z = 0 that all vanish there.

We now must make a choice for F0, which determines the metric ansatz and the reference
metric, subject to these boundary conditions. Later we will take the reference metric to be the
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Kerr solution in appropriate ingoing coordinates by choosing,

T0 = 1− 2μ2z
Σ

, W0 =
2aμ2z
Σ

, V0 = μ, P0 = μa

B0 = Σ, S0 =

(
μ2 + a2z2

)2 − z2Δa2 sin2 θ
Σ

(4.6)

with Δ = μ2 − 2μ2z+ a2z2 and Σ = μ2 + a2z2 cos2 θ. Here μ is the mass of the reference
metric Kerr spacetime and its angular momentum is aμ. However, in the example of finding
Kerr itself in vacuum gravity it would be ‘cheating’ to take Kerr as the reference already! Thus
we choose the simpler F0;

T0 = 1− 2z, W0 = 2az, V0 = μ, P0 = μa

B0 = μ2, S0 = μ2
(4.7)

so that the reference metric is not Kerr, and we have not built in Kerr to our metric ansatz. In
either case of F0 above we compute the mass and angular momentum of the metric g to be;

M =
μ

2
∂zgvv

∣∣∣
z=0

J = − μ

2 sin2 θ
∂zgvφ

∣∣∣
z=0

(4.8)

and hence these are determined by the normal gradients of the functions T andW at the z = 0
boundary. For a solution these quantities should be independent of θ, and we indeed see this
in all numerical solutions found. We also define the dimensionless ‘spin’ of the black hole,

j =
J
M2

(4.9)

which for Kerr equals a/μ and obeys | j| � 1. An important point is that since the metric and
referencemetric agree asymptotically as z→ 0, this implies that the vector ξ vanishes there. As
discussed above, it is crucial to ensure that ξ may vanish on boundaries of the domain where
boundary conditions are imposed.

In our ingoing method we construct a portion of the spacetime interior to the horizons.
Smoothness at these and elsewhere is imposed when solving by the Newton method provided
our initial guess is smooth since, as discussed above, we expect each update of the metric will
preserve smoothness. We generally take this initial guess simply to be the reference metric.
While the reference metric above has a particular mass and angular momentum, determined
byμ and a, the solutions (which in this simple example should be Kerr) still admit a two param-
eter moduli space given by their mass M and angular momentum J. The metric and reference
metric need not have the same values for these. As discussed above, in order for the problem
to be well posed we must constrain the physical dataM and J. There are many such ways to do
this, but we have found a convenient and reasonably stable one is to simply fix the value of the
metric functions T andW at the innermost point of the equatorial plane, z = zmax and θ = π/2.
We call the values there Tdata and Wdata respectively. Using the Newton method to solve the
system we have found this much more stable than trying to fix the point in moduli space
by constraining the actual mass and angular momentum. Having found solutions for given
Tdata and Wdata one can then tune these to obtain the desired mass and angular momentum by
using a Newton method wrapped around the Newton method that solves the harmonic Einstein
equation.
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Finally one must choose a sufficiently large value of zmax that the coordinates penetrate
inside the horizon, but not too near the singularity that the numerical system becomes desta-
bilized. Of course one does not know where this coordinate position of the horizon will be a
priori, but in practice it is straightforward by trial and error to find values of zmax.

This method is pragmatic and works well, and accurately reproduces the Kerr family of
metrics using theNewtonmethod startingwith an initial guesswhere the metric g is equal to the
reference metric ḡ. We use sixth order finite differencing to compute derivatives of the metric
functions in their rectangular domain. Interestingly we have found higher order pseudospectral
methods render our scheme numerically unstable, presumably due to their non-local nature. At
the asymptotic boundary the metric functions F are fixed to zero. We choose to include the
boundary points θ = 0, π/2 in the domain (one could choose not to) and there we impose
Neumann boundary conditions (one could also choose to impose the equations at these points
instead)with the exception of the functionsT,W at the innermost equatorial point whose values
we fix to Tdata andWdata. We then impose the harmonic Einstein equation at all interior points
and also at the remaining boundary of the domain, z = zmax. Having found a solution we check
that it is indeed consistent with having ξ = 0. In this simple vacuum gravity setting ‘solitons’
with ξ �= 0 cannot exist [42]. While there is no proof for general matter that solitons cannot
exist, later when we construct black holes in Einstein-aether we will only find solutions with
ξ = 0 in the continuum.

We wish to prescribe the dimensionless spin j = J/M2 of the black hole solution. However,
due to scale invariance of vacuum GR we do not need to fix the overall mass as we will be
interested in only dimensionless measures of the solution. We arbitrarily fix the scale choosing
μ = 1 in the referencemetric and ansatz.We take a to be equal to the desired ratio a = J/M. As
discussed above, the metric solution foundwill generally not have the same values of mass and
angular momentum as the referencemetric. Instead the values of Tdata andWdata will determine
the physical data of the solution. Due to the scale invariance we choose to fix Tdata to be zero.
Then we find solutions varying Wdata using a Newton method until the one with the desired
dimensionless spin j is found. See appendix D for more details.

We provide details of convergence to the continuum for these Kerr solutions in appendix C,
but in summary here using 40× 40 points for the given reference metric allows a wide family
of Kerr solutions to be found with a pointwise metric accuracy of ∼10−6.

5. Rotating black holes in Einstein-aether theory

Having demonstrated an implementation of the method in the simple vacuum gravity setting,
we now turn to the case of interest, construction of rotating stationary black holes in the
Einstein-aether theory. We are interested in the case where the spacetime is asymptotically
flat and the aether asymptotes to be oriented in the future time direction, and further we restrict
to solutions that have a reflection symmetry in their equatorial plane. We use the same ansatz
as above for the metric in equation (4.4) and take the functionsF0 in equation (4.6) so that the
reference metric is Kerr. Note that we then are implicitly assuming the Einstein-aether black
holes, like Kerr, have the rigidity property that they possess both the stationary asymptotically
timelike Killing vector ∂v and also the commuting azimuthal Killing vector ∂φ. We also assume
the solutions possess the same reflection symmetry that Kerr has in its equatorial plane. In
addition we require an ansatz for the aether and the Lagrange multiplier which we take as
follows;

u = H dv + K sin2 θ dφ− X
z2

dz+
Y sin θ cos θ

z
dθ (5.1)
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λ = z3 L. (5.2)

We solve for the functions in the metric ansatz, together with those of the aether vector and
λ, so H,K,X, Y, L which again are functions of z and θ, making 15 functions altogether. The
boundary conditions for the metric functions are as described above, and for these five new
functions we impose asymptotically at z = 0 that,

X→ μ, H→−1 (5.3)

with the remainingK, Y, L vanishing there, corresponding to an aether vector which asymptot-
ically is u = ∂

∂v
as we require. The factors of z, sin θ and cos θ ensure that these five functions

are smooth at z = 0 and also even in θ and (π/2− θ) as for the functions in the metric.We then
proceed to find black holes, where we solve the harmonic Einstein equation with the Einstein-
aether stress tensor, together with the constraint u2 = −1 and the aether vector equation (part
of which determines the Lagrangemultiplier).We have implemented these equations using the
original formulation given in appendix A rather than using the irreducible parameterization in
the main text. These differ only in the Lagrange multiplier variable.

In the previous toy example of finding Kerr we know from uniqueness theorems that there
are two moduli that specify a solution. These can be thought of as the mass and angular
momentum of the black hole which, given a reference metric, translate into the values Tdata

and Wdata. For Einstein-aether black holes there are no such uniqueness theorems known. In
the case of spherically symmetric static black holes one can count the data specifying solutions
and deduce that for asymptotically flat solutions with regular horizons there is one modulus
corresponding to the mass [14]. In particular, once smoothness of horizons for the various
degrees of freedom is imposed, there is no additional continuous data associated to the aether.
In the axisymmetric rotating case here we assume that the continuous moduli are mass and
angular momentum as in the vacuum GR case, once asymptotic flatness and smoothness of all
horizons is imposed. This is compatible with our numerical results, since to obtain a numerical
system that is solved by the Newton method we must fix two pieces of data as in the toy Kerr
example. If we do not fix this no solution is found, as a continuum of solutions then exists
and the Newton algorithm does not converge to any one of these. Furthermore, starting with
different initial guesses we always find precisely the same solution, which indicates that there
are nomore continuousmoduli than the two we expect.We note that while it is possible there is
a discrete set of black hole solutions for a given spin, in all cases we studied we only found one
solution. It would clearly be interesting to prove that stationary black holes have two continuous
moduli.

As for pure gravity the vacuum Einstein-aether theory is scale invariant. Thus again we
do not need to fix the overall mass and are interested only in dimensionless measures of the
geometry and aether. As detailed above for pure gravity we again take μ = 1, choose Tdata to
be zero. Making a reasonable initial guess for the aether functions H,K,X, Y and L, we are
then able to find rotating Einstein-aether black holes. We may then use the Newton method to
varyWdata to move between solutions to find one with the desired spin j = J/M2.

Solutions presented here were computed using a resolution of 40× 40. In the appendix C
we give detailed information about convergence tests for Einstein-aether black holes. The dif-
ferencing is implemented using sixth order accurate stencils, and we find the method achieves
this order of convergence in practice. We note that the order of convergence is sensitive to the
relative location of the various horizons and the extent of our computational domain in the
radial direction; if zmax is too large compared to the coordinate location of the innermost hori-
zon, we observe the convergence order can drop down to fourth order. From the convergence
tests we estimate 40× 40 typically gives a pointwise accuracy in the metric functions of better
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than 10−5. For all solutions we checked that the vector used to define the harmonic Einstein
equation, ξμ in equation (4.1), was numerically consistent with vanishing. Interestingly we
found no ‘soliton’ solutions where ξμ did not vanish in the continuum limit.

We note that it is sometimes convenient in Einstein-aether theory to work with a redefined
metric which can be chosen as one of the effective metrics governing the propagation of the
variouswavemodes. This was used when constructing static spherically symmetric black holes
in [14, 15] to set the spin-0 effective metric to be the metric of the redefined theory, i.e. to
ensure s20 = 1. In that context the only active degree of freedom is the spin-0 mode and hence
this considerably simplifies construction of the black holes, as there is really only one horizon
to be concerned with. However for rotating black holes which have only axisymmetry all the
wave modes modes are active, and thus we have not used this freedom. It would allow one
degree of freedom to have its horizon made to coincide with the metric horizon but there will
remain ones that generally do not, and so no fundamental simplification would be made.

5.1. Adding rotation to previously found static black holes

Before turning to the phenomenologicallyallowed couplingswe first verify our numerical code
by reproducing results for static spherically symmetric black holes found previously in [14,
15] where c1 is varied taking c3 = c4 = 0 and s20 = 1, with the last condition fixing c2. While
in the rest of this paper we take vanishing cσ motivated by the strong LIGO constraints, in
order to compare with these older results we take non-vanishing cσ . In terms of the irreducible
couplings cω,σ,θ,a this corresponds to varying cω while fixing cω = cσ = ca, again with s20 = 1
which determines cθ.

For that parameter range the static black holes tend to Schwarzschild as cω → 0, as then
all the aether couplings become small. On the other hand taking cω → 1− gives strong devi-
ations from GR. It is interesting to then consider intermediate cω , so that deviations from
GR behaviour are quite small in the static case. Do rotating solutions deviate more from GR
behaviour and hence from Kerr?

We show data here for the intermediate value cω = c1 = 0.5. We find qualitatively simi-
lar results for other intermediate values where we are able to find solutions. Varying the spin
j up to ∼0.8 it is straightforward to find rotating black hole solutions. In figure 3 we show
various quantities computed for these Einstein-aether black holes and compared to Kerr for
the same mass and spin. We show the ratio of the equatorial radius of the horizon (defined as
the circumference divided by 2π) of Kerr to that of the metric horizon in the aether theory,
rGR/rAE. For zero spin this value is given in [15] as rGR/rAE = 0.933 04. We reproduce this
value for zero spin, and see that at least out to spins of � 0.8 this ratio is remarkably inde-
pendent of the spin, indicating a larger equatorial radius for the aether black holes than for
Kerr of the same mass and spin. We also plot the quantity

√
AH/4πr2H , with AH the horizon

area and rH the equatorial radius, which measures the deviation from sphericity, both for Kerr
and the aether black holes. Again we see little variation between these as spin is added, the
aether black holes being marginally more spherical than Kerr. Interestingly, taken together
these results suggest the aether carries a net negative energy for these solutions, allowing
a larger black hole for the same mass and spin than for Kerr. Finally we show the ratio of
the ISCO frequency of Kerr to that of the aether black hole with the same mass and spin.
Here we see that a greater deviation from GR develops as we increase the spin of the solu-
tions, although it is not a dramatic change in behaviour, at least out to spin � 0.8. Since the
ISCO is closer to the horizon for higher spin, it is natural that the deviation in the frequency is
greater for higher spin, since it is more sensitive to the change of horizon radius. Note also that
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Figure 3. Comparison of properties of rotating Einstein-aether black holes with Kerr for
the same spin and mass, for coupling parameters cω = cσ = ca = 0.5 and cθ determined
by s20 = 1 (the same couplings as a case previously considered for static black holes
in [15]). The top left plot shows the ratio of the equatorial horizon radius for Kerr to
that of the aether black holes, vs spin j = J/M2. The top right plot shows

√
AH/4πr2H

with aether black holes in blue (upper) and Kerr in orange (lower). The lower left plot
shows the ratio of the ISCO frequency for Kerr to the aether solutions. The lower right
plot shows the ratios of the angular velocity Ωφ at the pole to that at the equator for
the spin-0 (blue, upper), 1 (orange, middle) and 2 (green, lower) wave mode horizons.
These deviate from one since, unlike for the Kerr metric horizon, these are not Killing
horizons.

the larger horizon for the aether black holes relative to Kerr naturally leads to a lower ISCO
frequency.

An interesting possibility is that closed timelike curves may be present in the effective met-
rics for the various degrees of freedom behind their horizons. A simple class of such curves are
those generated by the φ circle, such as occur inside the inner horizon of Kerr.We have checked
whether such curves occur by examining the component (geff)φφ which if negative would yield
such a closed timelike curve, and found it to be positive within the coordinate domain of all
obtained solutions. Of course this does not preclude closed timelike curves of this form further
in the interior of the spacetimes than we have constructed, or the existence of more general
closed timelike curves than those purely generated by ∂φ.

5.2. Horizons

A black hole horizon is usually defined as the boundary of the causal past of future null infin-
ity, where the causal structure is determined by the spacetimemetric. In Einstein-aether theory,
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each of the wave modes is associated with an effective metric geffμν (2.3), which defines a cor-
responding notion of event horizon14. These horizons are all hypersurfaces that are null with
respect to the appropriate metric. For stationary axisymmetric solutions, as considered here,
the Killing vectors ∂v and ∂φ are tangent to any horizon, so the horizon is the hypersurface
which, at least locally, can be defined by z = zH(θ). Then defining the normal one-form,

n ≡ d(z− zH(θ)), (5.4)

the condition that the horizon is a null hypersurface is the condition that n is null with respect
to geff , i.e. (g

−1
eff )

μνnμnν = 0.15

Stationary axisymmetric black hole horizons in GR are typically Killing horizons, that is,
there is a Killing vector tangent to their null generators. This is automatically the case for static,
spherically symmetric black holes, but for rotating black holes it is a nontrivial property. For
the Kerr horizon, for example, the null generators are tangent to the Killing field ∂v +ΩH∂φ,
whereΩH , the angular velocity of the horizon, is a constant. A theorem ofHawking [45] proved
that stationary black hole horizons in vacuum or electrovac analytic solutions to Einstein’s
equation are Killing horizons. That theorem is not relevant to us here, however, since the
Einstein-aether field equations are different, and since we have no reason to assume analyticity.
However, a different theorem does apply: without invoking field equations, Carter [46] showed
that an event horizonmust be a Killing horizon if the spacetime is stationary and axisymmetric,
with two commuting Killing fields whose integral two-surfaces are themselves orthogonal to
two-surfaces. This integrability condition is called the t–φ orthogonality property. We find
that in our Einstein-aether theory solutions the t–φ orthogonality property fails to hold, and
the horizons are in fact not Killing horizons! On each wave mode horizon the surface spanned
by the two Killing vectors is spacelike with respect to the wavemode metric except at the poles
and the equator, and hence does not include the null direction. The null generators are therefore
not parallel to a linear combination of the Killing vectors; rather, they are parallel to

χ = ∂v +Ωφ∂φ +Ωθ∂θ + χz∂z, (5.5)

with nonzero Ωθ and χz.
We expect that in any solution found by our numerical method all the wave mode hori-

zons are captured within the computational domain, since without imposing smoothness at the
horizons the system is not expected to be well posed with a unique solution (or possibly a finite
set of solutions). Indeed this is borne out in our computations.We generally find solutions only
when the coordinate domain extends deep enough to capture all the horizons. If the coordinate
domain ends too far out, so that it does not contain all the horizons, the Newton method does
not converge16.

The t–φ—here actually v–φ—orthogonality property discussed above corresponds
(according to the Frobenius theorem) to the vanishing of the two four-forms, ∂�

v ∧ ∂�
φ ∧ d∂�

v

and ∂�
v ∧ ∂�

φ ∧ d∂�
φ (where (∂�

v)a := geffab∂
b
v ). In figure 4 we plot the norm of the Hodge dual of

the first of these (which is a scalar), for the metric horizon in the lefthand of the two solutions
shown in figure 5. And for the righthand solution in that figure we plot the same quantity for

14 For all the cases studied here either the spin-0 or the spin-2 horizon coincides with the metric horizon.
15We emphasize that g−1

eff is the inverse of geff , rather than that metric with indices raised with the usual spacetime
metric g. Explicitly this is (g−1

eff )
μν = gμν + (1− 1

s2(a)
)uμuν .

16 Interestingly in certain cases we have found solutions with the coordinate domain just missing the innermost
wave mode horizon, but when resolution is increased these do not have the correct sixth order convergence, and
so presumably cannot be trusted.
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Figure 4. The lefthand plot shows | � ∂�
v ∧ ∂�

φ ∧ d∂�
v| for the metric (the same as the

spin-0 wave mode metric) for the lefthand solution shown in figure 5. The righthand
plot shows the same quantity for the spin-1 wave mode metric for the righthand solution
shown in figure 5. These do not vanish, indicating these metrics do not have the v–φ
orthogonality property.

Figure 5. Location zH(θ) of the spin-0 (blue; lower left, middle right), 1 (orange; mid-
dle left, upper right) and 2 (green; upper left, lower right) horizons in the coordinate
domain. Left: the j = 0.77 solution for cω = cσ = ca = 0.5, with s20 = 1. The coordinate
chart extended to zmax = 0.78 in this case. Right: the j = 0.80 solution for cθ = 0.043,
cσ = 0, cω = 0.264 and ca = 0.014 in the family IA (see section 5.3). In this case, the
speeds of the various modes are s20 = 1.038, s21 = 9.753 and s22 = 1 respectively, and the
coordinate chart extends to zmax = 0.8.

the spin-1 horizon, where we note the quantity is very small for the metric horizon since that
solution is close to Kerr. As seen in the plots, this integrability condition fails to hold, so there
is no reason the horizon must be a Killing horizon. We see similar non-vanishing behaviour
for the second integrability condition. In appendix C both these conditions are checked for the
Kerr solution, where it is shown they hold to very good numerical accuracy, despite the use of
a non-adapted coordinate system.

The function zH(θ) is determined by the condition that the normal one-form (5.4) be null,
(g−1

eff )
μνnμnν = 0, which defines a non-linear first order ordinary differential equation for zH(θ).

27



Class. Quantum Grav. 39 (2022) 125001 A Adam et al

It is a quadratic in z′H(θ) with two solutions,

z′H(θ) =
(g−1

eff )
zθ ±

√(
(g−1

eff )
zθ
)2 − (g−1

eff )
zz(g−1

eff )
θθ

(g−1
eff )

θθ
. (5.6)

At θ = 0 and θ = π/2 the normal one-form reduces to n = dz, so this equation reduces
to the condition (g−1

eff )
zz = 0, whose solution serves as the initial data for integration of

zH(θ) from pole to equator or vice versa. In principle multiple solutions might exist, in
which case the outermost, i.e. the one with the smallest z, would correspond to the event
horizon. In practice we find only one root within our coordinate domains. Away from the
poles and equator the plane spanned by ∂v and ∂φ is spacelike with respect to (geff)μν so
has two orthogonal null directions which correspond to the two roots in the solution for
z′H(θ). Only one of these null directions limits to the unique null normal at the poles and
equator17.

In figure 5 we plot the various horizons within the coordinate domain for an example solu-
tion, the spin j = 0.77 solution considered in the previous section. For that solution the chart
was taken to extend to zmax = 0.78. The spin-0, 1 and 2 horizons are distinct, and the curves
defining them are θ dependent. Note that for those parameters the spin-0 horizon coincides
with the metric horizon. In the figure we also present a similar plot for a typical solution taken
from a family we construct in the next section 5.3, where the ordering of the wave mode hori-
zons is different, and now the metric horizon coincides with the spin-2 horizon as cσ is taken
to vanish. As discussed in detail later, the spacetime geometry for this solution is close to the
Kerr metric with the same spin, and the spin-0 and spin-2 horizons are close to each other and
lie close to the correspondingKerr value 0.625. Interestingly for our choice of referencemetric
the coordinate positions, zH(θ), of the various wave mode horizons appear to have a surpris-
ingly weak dependence on the angle θ for all the Einstein-aether black holes we have found in
this work.

In figure 6 we plot the angular velocities Ωφ and Ωθ, corresponding to the horizons shown
in figure 5. The presence of a nonzero Ωθ, and the explicit dependence of Ωφ on θ, indicate
that the horizons are not Killing horizons. It goes linearly to zero at the pole and the equator,
and in each case has one sign everywhere else. Thus on any given horizon the generators spiral
either from the pole to the equator, or vice versa, over an infinite range of Killing time, with
exponential behaviour of θ with v at the two ends.

Since the rotating black hole horizons are not Killing, the velocity Ωφ is not constant on
them. For small spins we expect the variation in Ωφ across the horizon to be quadratic in the
spin, rather than linear. This is because the degree of variation should have an expansion in
powers of the spin and yet be independent of the sense of the black hole rotation, hence inde-
pendent of the sign of the spin. We confirm this by computing the spin dependence of the
ratio of the value of Ωφ at the pole to that at the equator, for the various wave mode horizons.
This quantity is shown in the previous figure 3 for the same solutions that are discussed there.

17 In practice we identify the appropriate root as the one that ensures the discriminant in the quadratic above becomes
positive as one integrates away from the pole or equator. We find the other root leads to a negative discriminant, and
hence to an unphysical, complex-valued solution. Depending on the horizon, the physical solution may be the one with
the positive square root or that with the negative square root. For reasons we do not understand, numerical stability of
the integration appears to require us to integrate the former from the equator to the pole and the latter from the pole
to the equator. The numerical solutions are then simple to find using Mathematica’s NDSolve, and they interpolate
precisely from the location of the horizon at the starting point of the integration to that at the end point, as determined
by (g−1

eff )
zz = 0. Attempting to integrate in the opposite sense gives poor numerical behaviour, with strong sensitivity

to the initial conditions.
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Figure 6. The angular velocities Ωφ(θ) and Ωθ(θ), made dimensionless with the
black hole mass M, for the wave mode horizons shown in figure 5. (Spin-0,1,2 hori-
zon curves in left panels: lower, middle, upper; in top right panel: middle, upper
lower; in bottom right panel: lower, upper, middle.) The non-vanishing Ωθ(θ), and
the explicit dependence of Ωφ on θ, show that these are not Killing horizons.
The corresponding values for Kerr with the same mass and angular momentum are
ΩHM = {0.235, 0.250} for the black holes on the {left, right}, respectively.

It deviates from 1 with precisely j2 dependence for small spins. We see a similar quadratic
dependence on spin for the maximum absolute value of the angular velocity Ωθ, as the above
argument also predicts.

While black holes with non-Killing horizons have been numerically constructed in asymp-
totically AdS spacetimes [37, 43, 47], we believe our solutions are the first instance of black
holes which are asymptotically flat and lack t–φ orthogonality, and further have non-Killing
horizons of the effective metrics for the physical degrees of freedom, including in this case
the usual spacetime metric horizon. This was not previously evident for Einstein-aether black
holes since a static, spherically symmetric horizon is always a Killing horizon. Presumably it
is also not evident in the slow rotation approximation, working to first order in the spin as in
[19], since the non-constancy of the angular velocity Ωφ and non-vanishingΩθ appear only at
second order.

5.3. Black holes in phenomenological regimes I and II

Following our earlier discussion showing that in the phenomenological parameter regions I
and II cf figure 1 a solution may take the approximate form of a GR solution for the metric,
with a twist free aether ‘painted’ on top we might expect to find that the metric is close to Kerr.
Indeed we will show numerically that this does occur, by examining three families of aether
parameters that tend towards region I when taking |ca| small, and three that tend towards region
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II. We will call these the region I and region II families respectively. We write

ca = ε (5.7)

and then explore the black hole behaviours in the ca = ε→ 0 limit, to understand whether the
behaviour matches the expected behaviour in equation (3.1). In particular we will demonstrate
that Kerr with a twist free aether ‘painted’ on emerges in the ε→ 0 limit, and also we will
study the leading O(ε) approach to this limit. For both families I and II we make the choice

cω = λ+ ε, (5.8)

so that as ε→ 0 we have cω → λ. For the region I families we take

• Family IA: λ = 0.25 and cθ
3 = ε+ 5ε2

• Family IB: λ = 1.25 and cθ
3 = ε+ 5ε2

• Family IC: λ = 0.5 and cθ
3 = ε+ 3ε2

so that for |ε| = O(10−5) these parameters are within the viable region I. For region II
families we take

• Family IIA: λ = 1 and cθ
3 = 0.7− ε

• Family IIB: λ = 0.2 and cθ
3 = 0.475− ε

• Family IIC: λ = 0.5 and cθ
3 = 1+ 0.5ε

so that for |ε| = O(10−7) these lie within the viable region II. The families above are
representative of a more general behaviour.We have computed black holes for other parameter
choices that limit to region I and II for small ε, and these give the same behaviours in the limit
ε→ 0.

For these parameter familieswe have constructed numerical black hole solutionwith various
spins j startingwith ε = O(1) and reducing it to see the limiting behaviour as ε→ 0. The largest
spin we were able to comfortably find for a good range of ε was j = 0.8. With more effort it
would presumably be possible to push to greater spins. The results we present in what follows
are for this j = 0.8 case, but we emphasize that we see exactly the same behaviour for the
smaller spins as well.

As we construct the solutions we must make sure zmax is sufficiently large to capture all the
horizons. In the appendix D we discuss details of the construction of these solutions, and in
particular the values of zmax chosen for them. An important point is that, for both the region I
and II families, as ε→ 0 the spin-1 speed diverges. Thus the spin-1 horizon becomes a universal
horizon in this limit. We find that constructing such black holes becomes numerically harder
for small ε, precisely as to reach a given ε one must ensure the extent of the coordinate chart,
zmax, is large enough to still capture this spin-1 horizon. Typically we find it difficult to extend
the families to ε smaller than ∼O(10−2). However, as we shall see, this is certainly sufficient
to see the limiting ε→ 0 behaviour emerging. For O(1) values of ε, and hence away from the
phenomenological regime, it also becomes hard to find solutions. In both limits, i.e. small and
large ε, the difficulties seem to arise from the fact that the speeds of the various modes differ
significantly, and consequently the coordinate locations of the corresponding horizons become
widely separated in our grid. Then the computational domain necessarily covers a large part of
the interior of some of the horizons, and we observe it becomes harder to obtain convergence
to a solution.
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Figure 7. L2−norm of the metric function T taken over the coordinate domain up to
zcut = 0.6 plotted against ε. This domain includes the spin 2 horizon for all families con-
sidered and some of the other horizons, depending on the parameters. This norm tends
to zero as ε→ 0 for all the families of black holes, consistent with the spacetime
approaching Kerr.

We wish to show the metric (4.4) tends to Kerr in the limit ε→ 0. Due to our choice of
the reference metric being Kerr with a = J/M, and since we further fix Tdata = 0, then conve-
niently if the metric indeed tends to Kerr it does so by becoming equal to the reference metric
so we may see this simply by showing that the various metric functions F all tend to zero18.
The L2−norm of the metric function T over the coordinate domain is displayed in figure 7 for
black holes with spin j = J/M2 = 0.8, where

‖T‖2 =
[∫ zcut

0
dz
∫ π/2

0
dφ|T|2

] 1
2

. (5.9)

To compute this norm, we first interpolate the function T to sixth order (in accordance with
the order of our differencing scheme) and then calculate the integral using Mathematica’s
NIntegrate function. Figure 7 clearly shows that ‖T‖2 → 0 as ε→ 0 for all the families.
Furthermore the gradient of the linear behaviour in this log-log plot is precisely consistent
with ‖T‖2 ∝ ε for small ε, agreeing with the ‘painting’ picture encapsulated in equation (3.1).
While we must take different values of zmax for the various solutions in a family as ε is varied,
we choose zcut � zmax to be the largest value common to all solutions found so that the norms
of these are taken over the same coordinate range and hence can be compared. For the data in
the figure we have taken zcut = 0.6 which is the smallest value of zmax we used in constructing
that family of solutions.

We see the same behaviour for all the other metric functions for each of the families of
solutions with various spin values of j for which we have constructed solutions. Thus we
indeed confirm that Kerr emerges in the limit ε→ 0 of the families of black holes we study.We
then expect the aether to be ‘painted’ on to the Kerr spacetime in a twist free configuration as
discussed in sections 3.1 and 3.2. We confirm this in figure 8 by plotting the L2−norm of the

18 Had we taken Tdata �= 0 the metric would have tended to Kerr but not in the same coordinate presentation as the
reference metric, and so the functions in the metric ansatz would be non-trivial.
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Figure 8. Figure showing the aether twist vanishes in the limit ε→ 0. We plot the
L2−norm of ωμν , over the coordinate domain extending up to zcut = 0.6 for different
families of solution, here all with j = 0.8, against ca = ε. We see the twist tends to zero
as ε→ 0 for each family. We see analogous behaviour for other spin values of j tested.

twist field,

‖ω‖2 =
[∫ zcut

0
dz
∫ π/2

0
dφ|ωμνω

μν|
] 1

2

, (5.10)

for the different families for a particular spin j = 0.8. This figure shows the twist vanishing
linearly with ε as we take ε→ 0, again compatible with the ‘painting’ picture in equation (3.1),
and shows that u(1)μ , which gives the O(ε) correction to the leading twist free aether ūμ, has
non-vanishing twist. The same behaviour is seen for all the spinswe have constructed.Note that
in this figure we see the expected deviation from the small ε linear behaviour, corresponding
to the leading term in the expansion (3.1), as ε is increased towards O(1) values. This is seen
also for the other quantities we shortly discuss.

From our earlier discussion in sections 3.1 and 3.2, as ε→ 0 we expect the aether to obey
equation (3.10) in region I and (3.6) in region II. These are different relations, the latter being
the expansion free condition, the former allowing non-trivial expansion. Indeed in figure 9 we
see the L2−norm of the expansion θ vanishing for the region II families linearly in ε as ε→ 0,
whereas for the region I families it does not vanish.

We now proceed to confirm another important aspect of our ‘painted’ on aether picture. We
expect the aether (5.1) in the limit ε→ 0, when uμ → ūμ, to be universal in the sense that it
depends only on the GR spacetime that it is ‘painted’ onto, ḡμν , and whether one is in region
I or II, but does not depend on the O(1) couplings that define the theory in that region in the
ε→ 0 limit. Recall this is because the aether potential is determined by the equation (3.10) for
region I in the limit ε→ 0, or equation (3.6) for region II in that limit, and these are explicitly
independent of all the couplings. Furthermore for these stationary black holes we can also
determine the answer to our earlier question of whether there is a moduli space of solutions for
the limiting aether ūμ or not. Our numerical solutions demonstrate that as ε→ 0 there exists
a unique and universal aether for both region I and II families given our asymptotic boundary
conditions. For a given mass and spin, the region I families give the same aether vector field
as ε→ 0. Likewise one obtains the same aether for the region II families in this limit, although
this is a different aether from that for the region I families. This is suggested in figure 9 in the
case of region I families where the non-zero value of the norm of the expansion is the same in
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Figure 9. The L2-norm of the aether expansion over the coordinate range extending up
to zcut = 0.6with j = 0.8, vs ε. For the region II families this norm vanishes linearly with
ε. For region I families the aether has a non-zero expansion as ε→ 0, which depends on
the spin of the black hole but is independent of the coupling cω .

Figure 10. The L2-norm difference of the function H in the aether vector between the
different region I families as a function of ε for black holes with spin j = 0.8, and the
same for the region II families. The aether tends to a universal form as ε→ 0 for both
families.

the limit ε→ 0 for the different families shown. In figure 10 we confirm this in detail by giving
the L2−norm (with the same zcut as previously) of the difference of the aether vector functionH
between different region I families. We see these norms vanish as ε→ 0. In that figure we plot
the same for different region II families, and again see that the function H tends to the same
form as ε→ 0. The same holds true for the other aether functions K, X and Y . The expansion
free condition associated to region II given in equation (3.6), and likewise equation (3.10) for
region I, locally govern the leading twist free aether behaviour in a manner independent of the
large aether couplings. However there could have been global data which would be reflected
in the different families giving different limiting forms of the aether. Since we see the same
limiting aether for all the families within region I, and correspondingly for region II, in fact it
seems that regularity of the various aether horizons is sufficient to uniquely fix the solution.
Thus, the aether behaviour in the limit ε→ 0 is universal, i.e. different for region I or II but not
depending on the large aether couplings.

Finally, we compare with some analytical results available in the literature. Recall that for
the region II families in the static spherically symmetric case we expect that as ε→ 0 the
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Figure 11. The L2-norm of the difference of the aether functionH from its ε = 0 analytic
form Hexact (determined from equation (3.15)) for static spherically symmetric family
IIA solutions with no spin. The correct analytic form is indeed reproduced in this spinless
case.

solution tends to the exact analytic solution with Schwarzschild metric as in equation (3.14)
and aether as in equation (3.15). If we compute these static family II solutions, and rescale
them to have massM = 1, so that r0 = 2, then in the limit ε→ 0 the aether function H should
take the form,

Hexact = −
√
1− 2z+ r4æz4 (5.11)

in our coordinate system for the resulting Schwarzschild metric, which is related to that in

equation (3.14) by z = 1/r. As discussed earlier, the parameter ræ is determined as ræ = 33/4

2
(for r0 = 2) to ensure existence of a regular spin-0 and spin-1 horizon (or equivalently ensure
existence of a universal horizon). We indeed see precisely this behaviour emerge as ε→ 0.
For family IIA we plot in figure 11 the L2-norm of the difference H − Hexact for solutions
as we vary ε, where we scale the z coordinate for each solution so that it has mass M = 1,
and we use a cut-off zcut = 0.6 for the norm in this rescaled coordinate (note that as ε→ 0
the metric horizon is at z = 0.5 so the norm is computed including some interior to this
horizon).

The comparison with analytic solutions can be extended a bit further, to first order in the
spin of rotating solutions. In [19] the linear in spin correction to a static solutionwas considered
analytically in the case ca = 0. For cσ = 0 this is precisely the slowly spinning correction to
our limiting family II static solution. In this case the metric found in [19] is the Kerr metric,
to linear order in the spin. As discussed above, we indeed find Kerr in the ε→ 0 limit for the
family II solutions for all spins (as expected due to the vanishing of the aether stress tensor in
this limit for an aether orthogonal to a maximal foliation), so our numerical solutions for the
metric match the approximate analytic ones for slow rotation. As for the aether covector ua,
reference [19] found that it is not perturbed at linear order in the spin. This is also consistent
with our numerical limiting family II solution. As discussed in the next section (see figure 12),
the uφ aether component vanishes as ε→ 0 for any spin. This is a consequence of the aether
being orthogonal to an axisymmetric maximal foliation, hence in particular orthogonal to ∂φ.
The remaining components, uv , uz and uθ, should be even functions of spin (as they should be
invariant under flipping the spin j→− j), and hence have no linear deviation from their static
form, which is indeed what we see numerically.
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Figure 12. L2-norm of the aether function K taken over the coordinate domain up to
zcut = 0.6. This domain includes the spin 2 horizon for all families considered and some
of the other horizons, depending on the parameters. This norm tends to zero as ε→ 0 for
all the families of black holes, indicating that the φ-component of the aether co-vector
vanishes in this limit.

5.4. Universal aether for regions I and II

As discussed above we have seen the limiting behaviour we expect for small ε, namely, an
aether ‘painted on’ to a near-Kerr spacetime, independent of the coupling constants for regions
I and II. In this subsection we shall characterize the configuration of these universal aether
fields.

For reasonable spins, such as j = 0.8 as presented above, it becomes difficult numerically
to find the black hole solutions when ε � 0.01, as one must solve the system far inside the
metric horizon as the spin-1 wavespeed diverges (as does the spin-0 wavespeed for region II).
We believe our failure to find solutions is a technical problem due to stability of the Newton
solver, rather than a reflection that such solutions do not exist. To find solutions truly in region
I we require ε ∼ 10−5 or less, and for region II we need ε ∼ 10−7, and this is not possible with
our numerical code. However already for ε ∼ 10−2 we clearly see the solutions take the form of
the expansion in ε in equation (3.1), and we can accurately extrapolate the leading behaviours
ḡμν and ūμ. We have seen the leadingmetric ḡμν is Kerr. By linear extrapolation of our solutions
we can deduce the leading aether ūμ for both the region I and region II families as a function
of the Kerr parameters. We obtain the same result, up to expected numerical accuracy, for all
the region I families, confirming the universal behaviour. Likewise for the region II families
such extrapolation yields the same aether ūμ.

This twist free leading aether takes the form ū = k∂ f . Recalling our aether ansatz in
equation (5.1) and the asymptotic boundary conditions the potential must take the form

f = v +Φ(z, θ) (5.12)

and so we should have,

k = H, ∂zΦ = − X
z2H

, ∂θΦ =
Y sin θ cos θ

zH
(5.13)

in the ε→ 0 limit. We note that the requirement that the aether asymptotically tends to ∂v
implies there is no linear term in φ, so that the aether congruence consists of zero angular
momentum worldlines. By linearly extrapolating the functions H,X and Y for our small ε
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Figure 13. L2-norm of the integrability condition Int ≡ z2H[
∂θ

(
X
z2H

)
+ ∂z

(
Y sin θ cos θ

zH

)]
= 0, taken over the coordinate domain up to zcut = 0.6.

This norm tends to zero as ε→ 0 for all the families of black holes. Note that we have
multiplied the integrability condition by an extra factor of z2H to improve its behaviour
near infinity (z = 0).

solutions we can accurately deduce this limiting form for ε→ 0. Comparison of the aether
ansatz with the form ū = k∂ f also implies that in the limit ε→ 0 the aether function K should
vanish, and we indeed see this in the numerical solutions. In figure 12 we display the L2-
norm of the function K in the aether co-vector, confirming that indeed K vanishes in the
ε→ 0 limit.

We have also checked from the numerical solutions that the integrability condition,

∂θ

(
X
z2H

)
+ ∂z

(
Y sin θ cos θ

zH

)
= 0, holds in the limit ε→ 0, see figure 13. Using our small

ε solutions to extrapolate the potential, in figure 14 we show the z and θ derivatives of the
potential, ∂zΦ and ∂θΦ, over the coordinate domain for solutions with j = 0.8 for region I and
for region II. We see that for both region I and region II the radial derivatives, ∂zΦ, are far
greater than the angular ones, ∂θΦ, in magnitude. One can see by eye that, as expected, the
radial dependence is different in detail for region I and region II. We note that ḡμν is the same
Kerr metric in the same coordinates for both region I and II solutions, and hence this difference
is physical and not related to a difference of coordinates. There is a small θ dependence in the
aether as we see from the plots of ∂θΦ, and it is again quite different for the two regions.

It is not easy to see from the aether potential how the aether vector behaves in the ε→ 0
limit. Aether worldlines are determined by the ‘upstairs’ components of the aether, uμ, and
while the metric approaches Kerr for ε→ 0, the off-diagonal components of the metric entail
a complicated relationship of these ‘upstairs’ aether components with the derivatives of the
aether potential. Thus in figure 15 we plot these upstairs aether vector components for the
region I family black holes with spin j = 0.8 extrapolated to ε→ 0 using our small ε solutions.
We note that in this ε→ 0 Kerr limit our coordinate z = 1/r where r is the corresponding
Boyer–Lindquist radial coordinate, and θ is the same as the Boyer–Lindquist coordinate. We
see that uv and uz are everywhere positive, so dz/dv > 0 along the aether worldlines, and hence
they ‘fall into’ the black hole spin-0 and spin-2 horizons. It is very likely they also fall into
the spin-1 horizon too, although our smallest ε solution, with ε = 0.01, is constructed with a
coordinate domain that does not extend as far as is required to cover the extrapolated position
of the spin-1 horizon in the ε→ 0 limit, and hence we cannot say for sure. We have computed
the aether worldlines and do not display them on these diagrams as their motion in the (z, θ)

36



Class. Quantum Grav. 39 (2022) 125001 A Adam et al

Figure 14. Figure showing the spatial z and θ derivatives of the potential for the universal
twist free aether ū = k∂ f for spin j = 0.8 black holes for region I (top frames) and II
(bottom frames). The potential is computed by using the functions H, X and Y from our
small ε solutions to extrapolate ε→ 0. The dashed, dotted and solid black lines show the
spin 0, 1 and 2 horizons respectively of the last black hole solution with j = 0.8 that we
have constructed, corresponding to ε = 0.01.

plane appears indistinguishable by eye from a horizontal line, due to the relative smallness of
uθ. We find very similar behaviour for the region II family in the ε→ 0 limit, although the
aether components are quantitatively different.

In figure 16 we show the limiting shear tensor (squared), σμνσ
μν , and the limiting acceler-

ation (squared), aμaμ, for families IA and IIB for black holes with j = 0.8. We have obtained
the limiting shear and acceleration by pointwise quadratic extrapolation of the same objects
calculated for finite values of ε. As the figure shows, both σμνσ

μν and aμaμ are smooth and look
quite similar in regions I and II. In particular, these objects are O(1) and develop non-trivial
θ-dependence near the horizons, while they decay quite fast near infinity.

Recall that for region I the limiting aether obeys the equation (3.10). As discussed
earlier this may be simply satisfied if j̄μ = 0. Here we show that the limiting region I
aether has a non-vanishing j̄μ, confirming that the fourth order equation (3.10) for the twist
potential is the true equation of motion, rather than the simpler condition j̄μ = 0. From the
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Figure 15. The aether components uv , uz, uθ and uφ for the region I family for spin
j = 0.8 extrapolated to ε→ 0 using our small ε solutions. These ‘upstairs’ components
control integral curves of the aether. The positivity of uv and uz shows that the aether
worldlines fall into the black hole as v increases along them. Due to the relative smallness
of uθ, integral curves are approximately radial with little tilt in the θ direction when pro-
jected into the (z, θ) plane—if plotted on these figures they would be indistinguishable
from horizontal lines. As for the previous figure, the dashed, dotted and solid black lines
depict the horizons of our smallest ε solution. The region II family yields qualitatively
similar behaviour for these aether components, although they differ in detail.

earlier discussion we may compute j̄μ two different ways. Firstly we may compute it using
equation (3.8) as;

j̄μ = lim
ε→0

cω (∇νω
νμ + aνωνμ)
ε

(5.14)

and secondly we may compute it using equation (3.9) as,

j̄μ = lim
ε→0

(
− (∇μθ + uμu · ∇θ)+

(
u · ∇aμ − uμa2 +

2
3
θaμ − σμνaν

))
.

(5.15)
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Figure 16. Figure showing the shear squared, σμνσ
μν , (top) and acceleration squared,

aμaμ (bottom) for the families IA (left) and IIB (right) for black holes with j = 0.8 in the
limit ε→ 0. These are calculated using extrapolation to ε = 0 from our small ε solutions.
The dashed, dotted and solid black lines show the spin 0, 1 and 2 horizons respectively
of the last black hole solution with j = 0.8 that we have constructed, corresponding to
ε = 0.01.

We compute j̄ both ways, using multiple small ε solutions to extrapolate to compute the ε→ 0
limits. Both methods agree, providing a further check on our numerical code. Since the form of
the aether in this limit, ū, appears to be universal and hence the same for the different families
IA, B and C we see the same function j̄ for each. In figure 17 we show j̄2 for these families
and see clearly that it is non-vanishing and O(1).

5.5. Universal horizons

A hypersurface everywhere orthogonal to the aether, and lying inside the fastest wave mode
horizon for a black hole, is called a universal horizon, because it is a causal barrier for
influences of any speed with respect to the aether rest frame. Universal horizons would be
relevant if higher spatial derivatives are present in the field equations, producing unbounded
propagation speeds. Such higher derivative terms are present for example in Hořava–Lifshitz
gravity, and in that theory the aether is always hypersurface orthogonal, so black holes in
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Figure 17. Figure showing j̄2 for black holes with j = 0.8 in the parameter region I
extrapolated from our small ε solutions. This figure shows that j̄μ is non-vanishing. The
dashed, dotted and solid black lines are as for the previous figures.

that theory presumably always possess universal horizons. The presence of universal horizons
in static spherically symmetric black holes in Einstein-aether theory is also generic, since in
spherical symmetry the aether is always hypersurface orthogonal, and indeed they were found
in numerical solutions of this sort [15]. For rotating black holes, however, their existence is not
guaranteed. In fact, already in [19] it was shown perturbatively that slowly rotating Einstein-
aether black holes have no universal horizons. Given our numerical solutions for rotating black
holes, what can be said at the nonperturbative level?

If a universal horizon does exist then, since the aether is orthogonal to that hypersurface, its
twist must vanish there. To rule out the presence of a universal horizon, it thus suffices to show
that the twist is nowhere vanishing. This is themethod that was used in the perturbative analysis
of [19]. For the various rotating black holes we have constructed here, this criterion allows us
to conclude that there is no universal horizonwithin our coordinate domains, which do cover at
least the spin-0, 1, and 2 horizons. If a universal horizon were to be present it would of course
lie inside these horizons, however, and we cannot presently rule out the possibility that one
might be lurking deeper in the interior. Nevertheless, we do have some evidence against that
possibility.

Recall that for the ‘painted’ on aether the twist vanishes as ε→ 0, going as, ωμν = εω(1)
μν

+ · · · . In figure 18 is plotted the squared norm of the leading twist ω(1)
μν for the region I

and region II families, extrapolated from our small ε solutions. This quantity takes a slightly
different form for each family of solutions, but common to all of them is firstly that it does not
vanish in the interior of our coordinate domain, and secondly this leading twist grows larger
at points deeper in the black hole interior. If it continues to grow, there can be no universal
horizon. In the limit ca = ε→ 0, on the other hand, the aether becomes twist free. We expect
that in that limit a universal horizon arises, because the spin-1 (and spin-0 for region II) wave
speed diverges, so the horizon for that wave mode becomes a universal horizon.
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Figure 18. Figure showing ω(1)2 in our coordinate domain for black holes with spin
j = 0.8 for the family IA (left) and IIB (right), extrapolated from our small ε solutions.
The dashed, dotted and solid black lines are as for the previous figures.

6. Discussion

In this work we have numerically constructed families of rotating black hole solutions in
Einstein-aether theory, focussing on on the case of coupling parameters that are consistent
with the many observational and theoretical constraints. Constraining the spin-2 wavespeed to
be that of light leaves the two regions of parameter space, regions I and II, which have one
and two large couplings respectively, but still obey all existing constraints. In the strong field
regime one would have naively expected quantitatively different behaviour from that of GR,
for example for stationary black holes. However we have found that while the aether action
has terms in with large couplings, the aether may be approximately twist free, and for region II
also expansion free, such that these terms are small. The aether then has little backreaction on
the spacetime geometry which is then approximately that of a GR solution. Furthermore the
leading aether behaviour then does not depend on theO(1) aether couplings, taking an approx-
imately universal form that depends only on the GR solution it is ‘painted’ on to, and whether
the couplings lie in region I or II.

We expect that this approximate GR behaviour applies not just for stationary black hole
spacetimes, butmore generally for dynamical strong field solutions includingmatter. It requires
asymptotic behaviour that is compatible with the twist and expansion free conditions, such as
asymptotic flatness, but a cosmological setting would not allow an expansion free aether com-
patible with cosmological symmetry.While we have argued such approximatelyGR behaviour
may occur, we are unable to analytically prove existence of such solutions beyond weak field
settings, as the aether twist potential obeys complicated equations of motion for both region I
and II. For region II the question is whether there exists a foliation by maximal slices, whose
unit normal congruence would serve as an aether with vanishing twist and expansion. As
mentioned earlier, existence has been proved for vacuum spacetimes ‘close’ to Minkowski
spacetime, but we know of no result that could apply in strong field regimes such as for black
hole spacetimes. It is also possible there may exist solutions with a non-GR behaviour where
the aether does not take such a nearly twist (and expansion) free form.

We have used a new numerical approach to construct rotating stationary black holes in the
Einstein-aether theory, and using these we show this approximate GR behaviour persists to the
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strong field regime. The main challenge to numerical construction is that there are multiple
horizons corresponding to the spin-2, -1 and -0 degrees of freedom. A fascinating property
of these rotating black hole solutions is that they do not possess the familiar t–φ orthogo-
nality property usually enjoyed by asymptotically flat black holes. Furthermore the metric
horizon and the wave mode horizons defined by the effective propagation metrics for the
various degrees of freedom are not Killing horizons. Indeed we believe these are the first
examples of black holes without t–φ orthogonality and with non-Killing horizons which are
asymptotically flat. That they are not Killing horizons is presumably of paramount importance
to whether and how the laws of black hole mechanics might or might not apply to them. Since
no linear combination of the Killing vectors is tangent to the horizon generators, none of the
available definitions of surface gravity is suitable19, so the zeroth law fails not only because
the surface gravity is not constant, but because it is undefined. The ‘first law’, if one exists,
might at best involve an integral of some local variation over the horizon, but that could not
have the integrated form TδS. In fact, it seems unlikely that even a meaningful local notion of
temperature or surface entropy density exists. Previous attempts to make sense of these laws
sometimes assumed that the horizon is a Killing horizon, and floundered even in spherical
symmetry [49–51]. A different approach to Lorentz violating black hole thermodynamics has
focussed on the universal horizon, and has found partial success in limited cases [16, 52, 53].
This program, too, is called into question for the case of Einstein-aether theory (but not for
Hořava gravity), since our results strongly suggest that rotating Einstein-aether black holes
possess no universal horizon.

Perhaps the most interesting feature of these solutions is that in the allowed parameter
regions I and II these solutions do indeed take the approximate form of Kerr, with the nearly
twist free aether ‘painted’ on top and taking a universal form which is approximately indepen-
dent of the O(1) aether parameters within these regions. The existence of smooth horizons for
all degrees of freedom then seems sufficient to determine a unique aether profile that depends
only on the mass and angular momentum parameters.We have found no non-GR behaviours in
the families of solutions we have been able to construct for these phenomenologically allowed
parameters.

This new numericalmethod is based on the harmonic Einstein equation (4.1) with a suitable
choice of reference metric, and solved using an iteration scheme starting from an initial guess
for the solution. It is suitable for studying black holes in theories with multiple wave mode
speeds leading to distinct horizons at all of which the spacetime should be regular. Rather
than solving for the metric exterior to a black hole Killing horizon on a spacelike surface
extending from spatial infinity to the bifurcation surface, which yields an elliptic pde problem
that may be solved as a boundary value problem with the horizon forming one such boundary,
instead the equation is solved on an ingoing slice that pierces the future metric horizon and all
future horizons associated to the differentwavemodes. The resulting pde system is only elliptic
outside all wave mode horizons. Inside all wave mode horizons we expect it is hyperbolic,
and correspondingly we do not impose a boundary condition on the innermost boundary of
the coordinate domain. Instead the solution is specified by requiring asymptotic flatness and
regularity at all wave mode horizons, which in turn is achieved by having suitably regular
metric functions in the ingoing coordinate chart, and fixing the physical data for the solution,
which for our rotating Einstein-aether black holes is their mass and angular momentum. The
pde system is solved by the Newton method. Starting with an initial guess metric with smooth
metric functions, we expect iterations of the method to maintain this smoothness. If the method

19 This is unlike for the non-Killing horizons considered in [48], which have well-defined surface gravity.
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converges—which we expect and indeed find happens only when all horizons are captured in
the coordinate domain—then smoothness of the metric functions ensures these horizons are
smooth.

The method works reasonably well in practice, although we have found that reasonably
good initial guesses are required to achieve convergence to a solution. One interesting question
that remains from our work is how far the coordinate domain may be extended inside the
wave mode horizons. If the domain did not extend far enough into the spacetime to include
all horizons, then smoothness could not be imposed on these, and no unique solution to the
p.d.e. problem would exist for the Newton method to find. However we also find that we are
unable to find solutions if we extend the coordinate domain too far into the interior of the the
spacetime. Perhaps this is because the domain then approaches closer to a singularity which
destabilizes the numerical system. Alternatively perhaps in the region inside all horizons the
expected hyperbolic character leads to behaviour of metric or aether functions that is hard to
resolve, such as oscillations [14, 15]. It would be interesting to better understandmore formally
how the method works, and how best to choose the reference metric and coordinate domain
for a given problem.

Unfortunately our method gives no obvious information about the dynamical stability of the
black holes we find. Even for the previously found static spherically symmetric black holes of
[14, 15], this remains an open question for general perturbations. For perturbations respecting
the spherical symmetry the dynamical simulations of [13] show certain black holes are stable
since they form the end state of collapse, although these are not for phenomenologically
allowed parameters. However, the recent [54] reports some static spherically symmetric solu-
tions are unstable to perturbations that break the spherical symmetry. Constructing dynamical
linearized Einstein-aether perturbations about our numerical stationary solutions seems like a
difficult task. Since for the phenomenological regimes the spacetime is close to Kerr, an inter-
esting and simpler question might be to ask whether the aether on a fixed Kerr background is
stable.

Let us return to the Einstein-aether theory and its phenomenology. In appendix B we have
shown that for regions I and II in the weak field regime the aether is approximately twist free
and is ‘painted on’ to a metric that is approximately that of usual GR. If weak field initial data
later enters the strong field regime, such as in gravitational collapse, then the painting picture
dictates that the metric and matter will evolve to remain approximately that of GR, with the
aether continuing to be painted on top during this strong field dynamics. The only caveat to
this is if at some point in the evolution there fails to be a smooth solution to the aether twist
potential equation (so for region II the zero expansion condition, and for I equation (3.10)). In
this case one might expect that either a singularity forms in the aether, or the subleading terms
in ca become large and the aether departs from the painting picture in the future of where this
singular behaviour develops. In particular using this argument we deduce that the Kerr-like
black hole solutions found here numerically are presumably the ones that originate from weak
field gravitational collapse.

An important question is whether for coupling parameters in regions I and II one may con-
struct initial data for a Cauchy evolutionwith large twist. If such data did exist then its evolution
would give rise to non-GR behaviours, in contrast to that of the ‘painted on’ dynamics. The
question would then be does the large twist quickly dissipate, or can it persist so that the non-
GR behaviour is not just localized near this initial data surface? For example, if strong field
initial data with large twist collapses to a black hole, can the twist fall into the black hole and
produce an exotic black hole, different from the approximately Kerr black holes found here?
While it is possible that there exist such exotic solutions for region I and II which do not have a
4dGR-like behaviour, it seems likely that in phenomenological settings the relevant behaviours
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would closely follow GR, as in practice, apart from cosmological solutions, strong field gravi-
tational dynamics in our Universe originate from the evolution of weak field initial conditions.
For example, we expect astrophysical black holes will have formed from a prior gravitational
collapse of weak field initial data.

Assuming this picture is correct, our conclusion is that in these phenomenologicalparameter
regions, where some aether couplings are O(1), approximate GR behaviour for black holes is
nonetheless recovered, with the metric deviating from a GR solution by ∼O(ca). Recall that
the largest this can be is for region I, where ca = O(10−5). If deviations of the quadrupole
moment from the Kerr value are of that same order, they would lie around the lower limit
of what is projected to be measurable using LISA observations of EMRIs [55]. It would be
very interesting to understand precisely what is the potential for observing small deviations in
physical observables such as this and others, using LISA and other high precision observations
of gravitational dynamics.

We note that any twist free solution to Einstein-aether can be embedded as a solution
of the low energy limit of Hořava gravity [56]. The limiting solutions, taking ε→ 0 for the
various region I and II families in section 5.3, have a twist free aether on an exact Kerr back-
ground. The limiting couplings all vanish in Hořava gravity for the region I families, but for
the region II families a nonzero cθ remains. Hence this limiting universal solution we have
found for the region II families is also a nontrivial solution in Hořava gravity. Other solu-
tions identical to GR in Hořava gravity with only nonvanishing coupling cθ are the slowly
moving spherical black hole found in [57] and the spherical collapse and quasinormal mode
solutions found in [58]. These are all examples of the general fact, argued in [59], that the
asymptotically flat solutions of (the IR limit of) Hořava gravity with only nonzero cθ coupling
are all identical to GR solutions, with the aether orthogonal to an asymptotically static maximal
foliation20.

Finally, we conclude by considering why Einstein-aether admits this ‘painted on’ aether,
and hence approximate GR behaviour, in the phenomenological parameter regions I and II
where the twist coupling and, for region II, also the expansion coupling, are large. Such a
painting picture does not work generally in the parameter space of the theory. Why in the
regimes where the theory satisfies the tight weak field Solar System constraints does it allow
for such approximate non-linear GR behaviour?

We have shown that for weak fields, at leading order in the PPN expansion, a vanishing
shear coupling cσ implies the aether is in fact twist free. Exactly for this reason the weak
field Solar System observations do not constrain the twist coupling cω . Taking this to be
O(1) then results in the allowed regions I and II. In the weak field regime the aether theory
passes the phenomenological tests since the metric behaves as for GR up to corrections
suppressed by the small coupling parameters precisely because the aether takes a twist free, and
for region II also an approximately expansion free, configuration painted over a GR weak field
solution.

Thus the recovery of GR at a non-linear level can be viewed as an extension of the recovery
of GR in the weak field regime. It is the samemechanismbehind both—a near twist free aether,
allowing little backreaction given a large twist coupling.And for region II the key point is that it
is compatible to have an aether that is both twist and expansion free. The twist condition reduces
the aether to one scalar function, the twist potential, and then an expansion free condition gives
a local equation of motion for that scalar function. Hence it is no coincidence that the large

20 It was not shown in [59] that the foliation must be asymptotically static, but this has been explicitly established for
the spherical solutions in [58].

44



Class. Quantum Grav. 39 (2022) 125001 A Adam et al

parameter regions I and II determined by weak field constraints happen to allow non-linear
near-GR behaviour.
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Appendix A. Relation between irreducible and original parameterization
of Einstein-aether theory

In the original form of the Einstein-aether in [3] the action is written as,

I =
∫

d4x
√
−g

[
R− Kabcd(∇auc)(∇bud)+ λ̃(gabuaub + 1)

]
(A.1)

where,

Kabcd = c1g
abgcd + c2g

acgbd + c3g
adgbc − c4u

aubgcd (A.2)

with c1,2,3,4 the dimensionless parameters that govern the aether dynamics. The translation to
the couplings we use in the main text is,

cθ
3

=
1
3
c13 + c2 (A.3)

cσ = c13 (A.4)

cω = c1 − c3 (A.5)

ca = c14. (A.6)

A subtlety is that the two forms of action only agree when u2 = −1, and as a consequence
the Lagrange multiplier in the main text λ, and λ̃ here are not equal. Following [3] the various
degrees of freedom have speeds,

spin− 0 : s2(0) =
c123 (2− c14)

c14 (1− c13) (2+ c13 + 3c2)
(A.7)

spin− 1 : s2(1) =
2c1 − c21 + c23
2c14 (1− c13)

(A.8)
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spin− 2 : s2(2) =
1

1− c13
(A.9)

where we use the notation c13 = c1 + c3, c14 = c1 + c4, c123 = c1 + c2 + c3, and the PPN
parameters were determined in [23] to be,

α1 = − 8
(
c23 + c1c4

)
2c1 − c21 + c23

(A.10)

α2 =
α1

2
− (c1 + 2c3 − c4) (2c1 + 3c2 + c3 + c4)

c123 (2− c14)
(A.11)

with Solar System tests and binary pulsar constraints requiring |α1| � 10−5 and |α2| � 10−7.

Appendix B. Weak field calculation of the aether

In order to give a brief discussion we will follow exactly the conventions of [23] so that we
can use results from that paper. Note in particular the opposite metric sign convention in that
work, which we will employ within this section of the appendix.

Let us collect the relevant results. At PPN order O(1) we see from [23] that the metric
perturbation to Minkowski spacetime is,

h00 = −2U, hi j = −2Uδi j. (B.1)

The leading order behaviour for h0i is at PPN order O(1.5), and we will not need the explicit
form although we will use the gauge condition for h0i,

h0i,i = −3U,0 + θni,i, ni = ui − h0i, θ = −c1 + 2c3 − c4
2− c14

. (B.2)

The potential U is derived from the matter energy density ρ as,

U(t,�x) = GN

∫
d�y

ρ(t,�y)
|�x −�y| (B.3)

where GN = G(1− c14
2 )−1. From [23] the leading PPN behaviour at O(1.5) for the aether

uμ is,

u0 = 1− U, ui = h0i

(
1− c−

2c1

)
+

1
2c1

(
2c1A+ c−

(
3
2
+ Aθ

))
χ,0i

(B.4)

where the constant A and potential χ are,

A = −2c1 + 3c2 + c3 + c4
2c123

, χ(t,�x) = −GN

∫
d�y ρ(t,�y)|�x −�y|. (B.5)

First we reexpress these formulae using the couplings of the irreducible parameterization,
cω,σ,θ,a:

θ =
ca − 2cσ
2− ca

, A = −3
2
cθ + ca
cθ + 2cσ
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ui =
cσ

cω + cσ
h0i +

(
A+

cω
cω + cσ

(
3
2
+ Aθ

))
χ,0i.

Now imposing the constraint that cσ = 0 yields for the spatial aether components,

ui = −3ca
2cθ

(
2+ cθ
2− ca

)
χ,0i (B.6)

and then we see that to O(1.5) the aether takes the twist free form,

uμ = k(PPN)∂μ f
(PPN), f (PPN) = t − 3ca

2cθ

(
2+ cθ
2− ca

)
χ,0, k(PPN) = 1− U.

(B.7)

Thus we see that simply the condition cσ = 0 implies the weak field aether at leading PPN
order is twist free.

In region I we have |ca| 	 1 and cθ � 3ca so that the twist potential takes the form,

f (PPN) = t − 1
2
χ,0 + O(ca) (B.8)

which determines the twist potential for ūμ = k∂μ f in our ‘painting’ picture—it is just the
expression above setting ca → 0, so

f = f (PPN)
∣∣
ca=0

, k = k(PPN)
∣∣
ca=0

. (B.9)

We see this is indeed universal, being independent of the aether parameters within region I.
For region II we have |ca| 	 1 and cθ = O(1) so the twist potential is approximately trivial,

f (PPN) = t + O(ca). (B.10)

Hence this simply yields the leading twist free aether ū = (1− U)dt. Thus indeed the aether
at leading order in PPN is compatible with the painting picture for a twist free leading aether
ū as given above for region I and II. Furthermore since at this PPN order equation (B.7) gives
a twist free aether for any ca, the correction u(1)μ to the leading twist free aether in the painting
picture is in fact also twist free, as are all subleading corrections in ca.

The leading order expansion of the aether at O(1.5) is,

∇ · u = −∇iui = −ui,i + h0i,i −
1
2
hii,0

= − 1
1+ θ

ui,i +
3θ

1+ θ
U,0, (B.11)

using h0i,i = (θui,i − 3U,0)/(1+ θ) from (B.2). Then, setting cσ = 0 so that θ = ca/(2− ca),
we find

∇ · u =
3ca
4cθ

(2+ cθ)χ,0ii +
3
2
caU,0. (B.12)

In region I this yields an expansion,

∇ · u =
1
2
χ,0ii + O(ca) (B.13)
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and hence the painted leading twist free aether ūμ has expansion ∇̄ · ū = 1
2χ,0ii. For region

II the painted leading aether must be twist and expansion free, and indeed (B.12) yields
∇ · u = O(ca), so that the expansion vanishes in the limit ca → 0.

Appendix C. Convergence and accuracy for Kerr and for Einstein-aether
black holes

In this section we provide convergence tests for both our example construction of the Kerr
black hole in section 4.5 and some representative rotating Einstein-aether black holes from
section 5. Our numerical code uses sixth order finite differencing on uniform grids in both
the z and θ directions of our rectangular coordinate domain. We take Nz grid points in the
z direction and Nθ in the θ direction. We wish to investigate the order at which our numer-
ical solutions converge to a continuum limit. We note it is possible to have lower than sixth
order convergence if the functions one solves for are less differentiable than C6. At the least
we must have second order convergence as the Einstein-aether equations involve second
derivatives. As we will show, we generally find convergence consistent with our sixth order
differencing.

C.1. Convergence tests for Kerr

In section 4.5 we demonstrated our in-going method using the toy problem of ‘finding’ the
Kerr solution in vacuum GR. Here we present several convergence tests that provide evidence
that our numerical solutions indeed converge to Kerr.

In the first test, we show that each of the functions that we solve for in our code converges,
pointwise, to the continuum limit with a convergence order which is close to 6, as it should
be given our differencing stencils. To see this, for each of the metric functions, for example A,
we consider the differences between solutions computed at some resolution (Nz,Nθ) = (N,N),
at (2N, 2N) and at (3N, 3N). We denote these solutions AN , A2N and A3N respectively. Let us
define,

L(A)N =‖ AN − A2N ‖, R(A)
N =‖ A2N − A3N ‖ × hQN − hQ2N

hQ2N − hQ3N
, (C.1)

where the norm above is taken to be the L1-norm of the function values at the grid points at the
resolution (N,N) (which are common to the higher resolutions since the grids are uniform),
and where hN , h2N , h3N are the grid spacing for those resolutions. Then if the numerical scheme
converges with an order of convergenceQ, asymptotically for increasing resolution we would
expect,

lim
N→∞

(
L(A)N − R(A)

N

)
→ 0 (C.2)

and similarly for the other nine metric functions F = {T,V ,W, . . .}. To estimate the order of
convergence from our solutions in figure 19 we show L20 and R20 for all the metric functions
for convergence ordersQ = 2, 4, 6, 8 for the solution with spin j = 0.70 and zmax = 0.65. This
compares the resolutions (Nz,Nθ) = (20, 20), (40, 40) and (60, 60). As this figure shows, the
order of convergence for all variables is very close to 6. We see similar behaviours for other
spins.

Another relevant test that we can carry out to check that the geometry constructed with
our method approaches the Kerr spacetime is to verify that it enjoys the v–φ orthogonality
property, i.e. that the planes spanned by the Killing directions v–φ are integrable. Recall
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Figure 19. Convergence order for all the variables in our numerical construction
of a Kerr black hole with j = 0.70. We have considered the resolutions (Nz,Nθ) =
(20, 20), (40, 40), (60, 60). For all variables, we see that the convergence order is very
close to 6, in accordance with our differencing scheme.

that our metric ansatz does not have this property built in so recovering it in the contin-
uum limit is non-trivial. Following our discussion in section 5.2, in figure 20 we show that
�(∂�

v ∧ ∂�
φ ∧ d∂�

v) approaches zero in the continuum limit with a slope that is consistent with

our differencing scheme. We observe a similar behaviour for �(∂�
v ∧ ∂�

φ ∧ d∂�
φ). The vanishing

of these two quantities implies that indeed the continuum spacetime has the v–φ orthogonality
property.

In figure 21 we display the L1-norm of
√
|ξμξμ| evaluated in our computational domain for

resolutions (Nz,Nθ) = (N,N) as N is varied. We compute the norm as,

‖
√
|ξμξμ|‖1 =

∫ zmax

0
dz
∫ π/2

0
dφ

√
|ξμξμ| (C.3)

first constructing the function
√
|ξμξμ| from our numerical solution using sixth order interpola-

tion, and then computing the integral using Mathematica’s NIntegrate function. Recall
that we are solving the Einstein–DeTurck equation (4.1) and we need ξa → 0 in the continuum
limit to recover an actual solution of the Einstein equations. This figure indicates that indeed√
|ξμξμ| → 0 in the continuum limit. Moreover, the slope of the fit turns out to be ∼− 5.93,

and hence close to the order of our finite differencing scheme.
Finally in figure 22 since we know the numerical solution should tend to Kerr in the con-

tinuum, we study the convergence of the radius of the horizon S2 at its equator to its true value
for the Kerr black hole. This is a geometric quantity which is gauge invariant in the symmetry
class of spacetimes that we consider in this paper. For the actual Kerr black hole, this quantity
turns out to be 2M, whereM is the mass parameter. The figure shows data for spin j = 0.70, but
we observe similar behaviour for other spins. In order to compute this quantity the equatorial
coordinate position of the horizon must be found, and we do this by interpolating the metric
functions to sixth order (in accordance with our differencing order) in Mathematica and
then using the FindRoot function to locate the horizon. As this plot indicates, our numerical
solutions converge to the analytic solution. The fit to our numerical data has slope ∼− 3.38,
which would suggest a convergence order less than four (but still greater than two, which is
the highest derivative order in the Einstein equations). Note however that this convergence
reflects not only that of the underlying numerical solution of the harmonic Einstein equation,
but also the subsequent post-processing to locate the horizon. It is therefore not surprising that
the convergence order is less than that of the sixth order differencing of the p.d.e.s.
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Figure 20. L1 norm of �∂�
v ∧ ∂�

φ ∧ d∂�
v and �∂

�
v ∧ ∂�

φ ∧ d∂�
φ for our numerical construc-

tion of a Kerr black hole with j = 0.70 and zmax = 0.65. This quantity should vanish
for a spacetime with v–φ orthogonality property such as Kerr. The slopes of the fits
are −6.76 (top) and −6.93 (bottom), indicating better than sixth order convergence.
Here N denotes the number of grid points along the z and θ directions.

C.2. Convergence tests for rotating Einstein-aether black holes

In this subsection we present results of the convergence tests for some representative rotating
Einstein-aether black holes. We show results for a black hole with j = 0.8 in family IA with
ε = 0.10 and zmax = 0.75 and also one with ε = 0.61 and zmax = 0.63 as two representative
examples. The latter is the largest value of ε for which we could construct black holes with
this spin in this family. We have considered other families, other values of ε, and also different
spins and find similar results.

We first consider the pointwise convergence of the 15 metric and aether functions, J , by
computing the L1 norms of their differences for various resolutions as for the Kerr toy example
using the resolutions (Nz,Nθ) = (20, 20), (40, 40) and (60, 60). This is shown in figure 23. For
the solution with ε = 0.10 (top plot) we observe a sixth order or better convergence. For the
ε = 0.61 solution we see most metric functions give sixth order convergence, although some
seem to display slightly worse fourth order convergence, although we note that since this is
the largest ε where solutions were found for this family and spin this is perhaps not surprising.
Also as mentioned in the main text, we observe that the order of convergence is sensitive to
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Figure 21. L1 norm of
√

|ξμξμ| for a Kerr black hole with j = 0.70 and zmax = 0.65. The
slope of the fit is −5.93, indicating near sixth order convergence, as one would expect.
Here N denotes the number of grid points along the z and θ directions.

Figure 22. Convergence of the equatorial radius of the horizon S2 for a Kerr black hole
with j = 0.70. The slope of the fit is −3.38. Here N denotes the number of grid points
along the z or θ directions (we take them to be the same).

the relative location of the various horizons and also the extent of our computational domain
in the radial direction, zmax.

In figure 24 we show the L1 norm of
√

|ξμξμ| for different resolutions for the same
Einstein-aether black holes in family IA. For the solutions with ε = 0.1, the convergence
order of this quantity is better than six, while for the solutions with ε = 0.61, the conver-
gence order is slightly less than four. We note for the black holes with ε = 0.1, the quantity√
|ξμξμ| obtained from solutions with 50× 50 grid points or more is already affected by

finite machine precision (for our C implementation we represent real numbers using double
precision).
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Figure 23. Convergence of the L1 norms of the unknown variables for two rotating
Einstein-aether black holes in family IA with j = 0.8 and ε = 0.1 (top) and ε = 0.612
(bottom).

Appendix D. Details of Einstein-aether black hole constructions

In this appendix we provide more details about the construction of the rotating Einstein-aether
black holes presented in the main text.

As discussed in the main text, our solutions have two moduli, which we determine by fixing
T = Tdata and W = Wdata at z = zmax and θ = π/2. Because of the scale invariance of the
theory, we can set Tdata = 0 without loss of generality; then, we varyWdata to obtain the desired
value of the dimensionless spin j. In figure 25 we illustrate the map betweenWdata and the spin
j in the case of the toy example of finding Kerr in section 4.5. Fixing the referencemetric given
in equation (4.7), here taking μ = 1 and a = 0, then varying the dataWdata gives solutions with
different spins. We see a smooth relation between Wdata and j which then allows one to tune
solutions to a desired value of j using a Newton solver wrapped around the harmonic Einstein
equation solver to then determine the necessary Wdata. This works in the same way for the
rotating Einstein-aether black holes we find in section 5.

One of the key points of our method is to consider a computational domain that covers
all horizons; in the particular case of the Einstein-aether black holes, these are the spin 0, 1
and 2 horizons. For a given mass and spin, we do not know a priori where the coordinate
locations of the various horizons are going to be until we have found the full solution. As we
discussed in the main text, the location of each of the horizons depends on the effective metric
(2.3) which controls the propagation of the corresponding wave mode. This effective metric
depends on both the spacetime metric and the aether. To illustrate this, in figure 26 we show
the coordinate position of the horizon on the equatorial plane for the various spin degrees of
freedom for a representative j = 0.8 black hole in the family IA, and for another in the family
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Figure 24. Convergence of the L1 norms of |ξμξμ| for two rotating Einstein-aether black
holes in family IA with j = 0.8 and ε = 0.1 (top) and ε = 0.61 (bottom). For the solu-
tions with ε = 0.1 the slope is ∼ −6.9, while for the solutions with ε = 0.61 the slope
is ∼ −3.9. Here N denotes the number of grid points in both the z and θ directions.

IIC, as a function of ε. As noted earlier, for our choice of referencemetric we find the coordinate
position of the various horizons varies only slightly as a function of θ for the Einstein-aether
black holes found here, as we saw already in the earlier figure 5.

In practice, to find the rotating Einstein-aether black holes we start by considering a com-
putational domain with extent zmax such that it covers the horizon of a Kerr black hole with
the same dimensionless spin j as our sought Einstein-aether black hole. Once we have found
the black hole solution, we can locate the various horizons. If we do not find a solution we try
with slightly larger values for zmax. Sometimes our method converges to solutions where the
innermost horizon is not quite captured in the coordinate domain, but appears to lie just outside
it. In such a case one can estimate the slightly larger zmax required to capture all the horizons
and then try to solve the equations again.

Once we have found an Einstein-aether black hole with dimensionless spin j in a given
family, we move along the family by varying the parameter ε while keeping zmax fixed. As we
vary ε, the coordinate locations of the various horizons change and eventually one (or more)
horizon(s) will no longer be covered by the computational domain. To proceed we first guess
by extrapolation where the horizons are going to be, and then extend zmax accordingly, and
finally extrapolate the previous solution to obtain a good initial guess for the new computational
domain.
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Figure 25. Example of the map from Wdata to the dimensionless spin j for Kerr black
holes found with our ingoing method (see section 4.5). In this case we fixed zmax = 0.56
and took μ = 1, a = 0 for the reference metric in equation (4.7). Then varying Wdata
gives solutions with spins j as shown above.

Figure 26. Coordinate positions of various spin horizons for two representative families
as a function of ε and fixed j = 0.8. The spin 2 horizon is always the outermost and it
approaches the location of the horizon of a Kerr black hole with the same j, i.e. zKerrH =
0.625, in the ε→ 0 limit. For family I, the spin 1 horizon is the innermost one and it
approaches a limiting value as ε→ 0, corresponding to s21 →∞. Similarly, for family
II, the spin 0 and the spin 1 horizons are inside the spin 2 horizon, and they approach
the same limiting value in the Kerr limit. Note that the coordinate location of the spin-0
and spin-1 horizons in the limit ε→ 0 is different for families I and II since the limiting
aether configuration is different.

Note that when we move along a given family by decreasing ε, we approach the phe-
nomenological regime discussed in section 5.3. In this region, depending on the family that we
consider, the propagation speeds of the spin 1 and spin 0 modes diverge, which implies that the
correspondinghorizon limits to become a universal horizon,while the spin 2 horizon converges
to the horizon of aKerr black holewith the same j. This forces us to increase zmax aswe decrease
ε. On the other hand, as ε→ 0, the backreaction of the aether configuration on the background
Kerr black hole becomes less important. In practice, for ε � 0.1, we do not need to tuneWdata to
keep j fixed to a reasonable accuracy; for the spin j = 0.8 solutions presented here we choose
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the parameters of the backgroundmetric μ = 1 and a = 0.8 and takingWdata = 0, we find that
the dimensionless spin j of the resulting Einstein-aether black hole satisfies j = 0.8 to a few
percent or better for ε � 0.1. This accuracy increases for smaller ε, and for ε � 0.01 the black
holes satisfy having spin j = 0.8 to∼0.01%. On the other hand, as we increase ε toO(1) values
the propagation speeds of the spin 0 and 1 modes drop below the speed of light and hence their
respective horizons lie outside the spin 2 horizon. In this case, we have to decrease zmax while
making sure that the spin 2 horizon lies within our computational domain. For ε � 0.1 the
backreaction of the aether is strong and we need to tune Wdata so that j = 0.8 is kept fixed to
good accuracy as we move along the family. We do this by solving forWdata using the Newton
method, and this gives solutions with a spin accurate to better than 1 part in 108.

We require a good initial guess for the Newton–Raphson scheme. We have tried a variety
of initial guesses, and importantly precisely the same numerical solutions were found (up to
numerical precision) indicating the system of equations is well-posed. For a spin j Einstein-
aether black hole we use a referencemetric which is the Kerr black hole with parametersμ = 1
and a = j and also take this as the initial guess for the metric; for the aether, an example of the
initial guess we use is

X = μ(1+ 0.4z),

Y = 0,

K = −azH,

L = −0.01z2,

(D.1)

and the function H is fixed by requiring that the aether vector has unit timelike norm. Finally
we take Tdata = 0 andWdata = 0. If a solution is found, then it will have spin close to, but not
equal to the desired value j. ThenWdata can be tuned by a separate Newton solver to accurately
obtain this spin j. As mentioned above for the spin j = 0.8 black holes of the region I and
II families presented here with ε � 0.1 the spin is sufficiently close to the desired spin (to
better than a few percent) that we do not tune Wdata. However we must tune it for the ε > 0.1
solutions. Often the above initial guess for the metric and aether are not good enough, and in
practice we often start with the above initial guess for the aether (D.1) and solve the aether
equations on a fixed Kerr background. Once we have found this aether configuration, we use
it as an improved initial guess for the full Einstein-aether system. This procedure works well
for the region I and II families of solutions with ε � 0.1. Having found a first Einstein-aether
black hole for a given family it is then straightforward to move along that family taking small
steps in ε by using the previous solution as the initial guess. For each solution found we check
that the vector ξμ is consistent with being zero within numerical error to ensure it is a solution
of the Einstein equation, rather than a Ricci soliton. In fact none of the solutions we found in
this work were Ricci solitons.

Finally, we implement solution of the Einstein-aether equations in C. Following [37], we
evaluate the full harmonic Einstein and aether equations directly in the C code. Similarly, we
compute the linearised operator that we need for the Newton solver iterations by numerically
differentiating these. The reason is that while substituting our metric and aether ansatz into the
Einstein-aether equations would in principle give analytic expressions for the equations and
their linearization, in practice they result in exceedingly complicated expressions that we have
not been able to use.
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