Network Traffic Generation: A Survey and Methodology

OLUWAMAYOWA ADE ADELEKE, NICHOLAS BASTIN, and DENIZ GURKAN, University
of Houston, USA

Network traffic workloads are widely utilized in applied research to verify correctness and to measure the
impact of novel algorithms, protocols, and network functions. We provide a comprehensive survey of traffic
generators referenced by researchers over the last 13 years, providing in-depth classification of the functional
behaviors of the most frequently cited generators. These classifications are then used as a critical component
of a methodology presented to aid in the selection of generators derived from the workload requirements of
future research.

CCS Concepts: « Networks — Network experimentation; Network performance analysis; Network
measurement.

Additional Key Words and Phrases: network, packet, traffic, workload, generator, experiment, survey, analysis

ACM Reference Format:
Oluwamayowa Ade Adeleke, Nicholas Bastin, and Deniz Gurkan. 2021. Network Traffic Generation: A Survey
and Methodology. ACM Comput. Surv. 111, 11, Article 11 (January 2021), 25 pages. https://doi.org/111

1 INTRODUCTION

The internet has become ubiquitous. Although it started as a small network with wired connections
between 4 computers in 4 universities in the western part of USA, it has evolved into a massive web
with over 18 billion networked devices and over 3.9 billion users as of 2018, according to the Cisco
Annual Internet Report [39]. The implication is that nearly half of the population of the world uses
internet based services on daily basis, and numbers continue to increase every day. This sustained
increase in the internet size and utility continues to ride on the tireless work of researchers in the
field of computer networks and distributed computing.

Over the last decade, there has been significant research output from academia in the field of
computer networks as a result of the advent of software defined networking (SDN) and network
function virtualization (NFV). In-depth research experiments with network topologies that resem-
ble production networks in terms of the number and diversity of nodes and links have become
considerably more accessible. Consequently, more sophisticated requirements arise on traffic work-
loads in order to provide a realistic testing environment. Since actual production traffic traces are
almost never available to academic researchers due to privacy policies [127], a plethora of traffic
generators are utilized in network science and engineering research. Even when privacy policies
are not an issue [53, 95, 124], the logistical hurdles of scaling an existing production traffic capture
into a testbed can be daunting. Furthermore, the effective replay of existing traffic traces only
enables very specific research experiments where the local topology matches the exact graph of the
network where the packets were originally captured. In essence, the capability to replay such traces

Authors’ address: Oluwamayowa Ade Adeleke, oaadeleke@uh.edu; Nicholas Bastin, nbastin@uh.edu; Deniz Gurkan,
dgurkan@uh.edu, University of Houston, 4730 Calhoun Rd, Houston, Texas, USA, 77204.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

0360-0300/2021/1-ART11 $15.00

https://doi.org/111

ACM Comput. Surv., Vol. 111, No. 11, Article 11. Publication date: January 2021.

https://doi.org/111
https://doi.org/111

11:2 Adeleke, Bastin and Gurkan

becomes considerably limited on network topologies that differ significantly from the original
capture network. Therefore, researchers have to resort to alternative methods for creating traffic
workloads for their experiments, and one of the most popular options is the use of traffic generators.
This paper presents a survey on traffic generation methods and a selection methodology for traffic
generators to match experiment objectives in applied research.

We present a comprehensive survey of network traffic generators in academia and industry.
Unlike existing traffic generator surveys [48, 86, 101], our objective is not a performance comparison,
rather a determination of the functional behaviors. The performance of traffic generators has
been studied extensively in the literature, and our survey focuses on the types of variances and
functionality of the available traffic generators even though it is possible that they could be run in
a high-performance setting with the support of hardware platforms and techniques guaranteeing a
wire-speed generation capability. In fact, most generators in our analysis are software programs that
are vulnerable to the limitations of the runtime environment and the hardware systems. Our goal is
to analyze available characteristics and features of commonly preferred tools, provide a structured
digest of our compilations on these features, and then to present a systematic methodology to pick
suitable generators for individualized research goals.

We first present our survey of traffic generators and their usage in a comprehensive set of
publications in the top ACM and USENIX conferences where we collect information on the usage
frequency of a traffic generation method of any kind. (IEEE publications were not included in our
corpus as the API to pull papers from the IEEE database made it difficult to perform extensive
downloads of a large number of papers.) We compile over 90 traffic generators used in academia and
industry. For each one, we attempt to obtain the binaries or the source code and then study available
documentation or reference papers. We then categorize the generators into a taxonomy based on
what kind of traffic they are able to generate. Afterward, based on the usage scenarios in papers
from prestigious networking research conferences over the last 13 years (over 7000 papers), we
rank them per popularity using our custom built analysis tool [105]. The top 10 of these generators
are analyzed in more detail for their individual features.

The paper is organized to cover the analysis of the survey results first in section 2. The next
section is on the classification of traffic generation tools. We then present the top 10 popular traffic
generators, their features, and a process for traffic generator selection in section 4. In section 5, we
provide an overview of existing surveys in the literature and finally, we conclude in section 6.

2 SURVEY OF TRAFFIC GENERATORS AND THEIR USAGE IN RESEARCH

In this section, we provide a comprehensive list of traffic generators (subsection 2.1), and we provide
results of analysis of tool popularity in subsection 2.2. We assembled an exhaustive list of network
traffic generators used across research and industry, finding 92 traffic generators created between
1995 and 2018. Our list of traffic generators was sourced from computer networking research papers
(over 7000 papers in [120, 121]) and general internet document searches [90, 108, 126, 135].

2.1 List of Traffic Generators

The Table 1 below lists all 92 traffic generators we considered in this survey. We have included the
information on licensing, software maintenance status, supported operating systems, the genera-
tion category as outlined in the taxonomy section 3, and the best available web link to get further
information about each traffic generator. The generators in the table have been listed in descending
order of popularity based on our findings in the section 2.2.

ACM Comput. Surv., Vol. 111, No. 11, Article 11. Publication date: January 2021.

Network Traffic Generation: A Survey and Methodology

11:3

Table 1. Status of traffic generators in Research and Industry as of Jan 2021. Generators sorted on descending
order of popularity per section 2.2

ID Name License Status Platform® Category Link (Source, Binaries, Paper)
Date
1 iPerf2 [99] BSD 2019-01 Al CMT? https://sourceforge.net/projects/
iperf2/
2 Netperf[78] Free! 2018-06 All CMT? https://hewlettpackard.github.io/
netperf/
3 httperf[102] GPLv2 2018-11 All App level https://github.com/httperf/httperf
gen
4 moongen[47] MIT 2018-12 Unix, Script https://github.com/emmericp/
Linux driven MoonGen
5 scapy[33] GPLv2 2019-01 Al Script http://www.secdev.org/projects/
driven scapy/
6 Linux GPLvl 2018-09 linux Script https://github.com/torvalds/linux/
pktgen[109] driven blob/master/net/core/pktgen.c
7 netcat[76] 2019-01 Al Other® http://nc110.sourceforge.net/
8 iperf3[91] BSD-3- 2018-12 All CMT? https://github.com/esnet/iperf
Clause
9 TCPreplay GPLv3 2018-12 All Traffic re- http://tcpreplay.appneta.com/
[5] play
10 DPDK BSD 2019-01 Unix, Script https://pktgen-dpdk.readthedocs.
pktgen[149] Linux driven io/en/latest/
11 Harpoon[132] GPLv2 2018-01 Unix, Trace https://github.com/jsommers/
Linux driven harpoon
12 D-ITG[27] GPLv3 2013-03 Al Model http://www.grid.unina.it/software/
based ITG/
13 TMIX[148] MIT 2011-11 NS2 or Other’ https://github.com/weiglemc/tmix-
NS3 ns2
14 Nuttep[51] GPLv2 2018-07 All CMT https://www.nuttcp.net/
15 SWING[143] Free! 2008-09 Unix, Trace http://cseweb.ucsd.edu/
Linux driven ~kvishwanath/Swing/
16 Surge[30] Free! 1998-11 All App level http://cs-www.bu.edu/faculty/
gen crovella/surge_1.00a.tar.gz
17 OSNT [4] - 2019-01 NetFPGA Script http://osnt.org/
driven
18 Bit- GPLv2 2012-04 All Traffic re- http://bittwist.sourceforge.net/
Twist[152] play
19 Globetraff[82] - 2016-09 All Trace https://github.com/lookat119/
driven GlobeTraff
20 Ixnetwork[85] Comm- - - - https://www.ixiacom.com/
ercial products/ixnetwork
21 Nping[107] GPLv2 2018-03 All CMT https://nmap.org/nping/
22 TRex[37] Apache- 2019-01 Unix, Script https://trex-tgn.cisco.com/
v2 Linux driven

ACM Comput. Surv., Vol. 111, No. 11, Article 11. Publication date: January 2021.

https://sourceforge.net/projects/iperf2/
https://sourceforge.net/projects/iperf2/
https://hewlettpackard.github.io/netperf/
https://hewlettpackard.github.io/netperf/
https://github.com/httperf/httperf
https://github.com/emmericp/MoonGen
https://github.com/emmericp/MoonGen
http://www.secdev.org/projects/scapy/
http://www.secdev.org/projects/scapy/
https://github.com/torvalds/linux/blob/master/net/core/pktgen.c
https://github.com/torvalds/linux/blob/master/net/core/pktgen.c
http://nc110.sourceforge.net/
https://github.com/esnet/iperf
http://tcpreplay.appneta.com/
https://pktgen-dpdk.readthedocs.io/en/latest/
https://pktgen-dpdk.readthedocs.io/en/latest/
https://github.com/jsommers/harpoon
https://github.com/jsommers/harpoon
http://www.grid.unina.it/software/ITG/
http://www.grid.unina.it/software/ITG/
https://github.com/weiglemc/tmix-ns2
https://github.com/weiglemc/tmix-ns2
https://www.nuttcp.net/
http://cseweb.ucsd.edu/~kvishwanath/Swing/
http://cseweb.ucsd.edu/~kvishwanath/Swing/
http://cs-www.bu.edu/faculty/crovella/surge_1.00a.tar.gz
http://cs-www.bu.edu/faculty/crovella/surge_1.00a.tar.gz
http://osnt.org/
http://bittwist.sourceforge.net/
https://github.com/lookat119/GlobeTraff
https://github.com/lookat119/GlobeTraff
https://www.ixiacom.com/products/ixnetwork
https://www.ixiacom.com/products/ixnetwork
https://nmap.org/nping/
https://trex-tgn.cisco.com/

Adeleke, Bastin and Gurkan

Table 1. (continued). Status of traffic generators in Research and Industry as of Jan 2019.
Generators sorted in descending order of popularity - per section 2.2

ID Name License Status Platform Category Link (Source, Binaries, Paper)
Date
23 Ostinato[113] GPLv3 2019-01 All Script https://ostinato.org/
driven
24 libcrafter[118] MIT 2017-09 Unix, Script https://github.com/pellegre/
Linux driven libcrafter
25 PackMime- MIT 2005-06 NS2 App level https://www.cs.odu.edu/~mweigle/
HTTP gen research/packmime/
[147]
26 Spirent Comm- - - - https://www.spirent.com/
SmartBits ercial products/testcenter
[134]°
27 Nemesis[104] GPLv2 2003-11 All Script http://nemesis.sourceforge.net/
driven
28 LANforge Comm- - All - http://www.candelatech.com/
FIRE[35]° ercial
29 Mtools[26] - - - - http://www.grid.unina.it/grid/
mtools/
30 Netspec[79] - 1997-12 Unix, Trace http://www.ittc.ku.edu/netspec/
Linux driven
31 Skaion Comm- - - Other http://www.skaion.com/
TGS[130] ercial
32 Trafgen[75] GPLv2 2019-01 Unix, App level http://netsniff-ng.org/
Linux, gen
Mac
33 RAMP[%4] - - - Trace http://www.csie.ncku.edu.tw/
driven ~klan/data/materials/ramp.pdf
34 BRUTE[34] GPLv2 2016-11 Linux CMT? https://github.com/awgn/brute
35 Breaking- Comm- - - App level https://www.ixiacom.com/
Point[83] ercial gen products/breakingpoint-ve
36 IP- GPLv2 2003-11 Linux, CMT? http://p-a-t-h.sourceforge.net/
Packet[29] FreeBSD html/index.php
37 Rude/ GPLv2 2002-06 All CMT? http://www.atm.tut.fi/rude
Crude[93]
38 Bruno[3] - - - Trace https://ieeexplore.ieee.org/
driven document/4667607
39 Divide & - - - Traffic re- https://doi.org/10.1109/TRIDNT.
Conquer[151] play 2005.18
40 Byte- Comm- - - - https://www.excentis.com/
Blower[49] ercial products/byteblower/
41 Colosoft Free! 2016-06 Windows CMT? http://www.colasoft.com/
Packet download/products/download_
Builder[77] packet_builder.php

ACM Comput. Surv., Vol. 111, No. 11, Article 11. Publication date: January 2021.

https://ostinato.org/
https://github.com/pellegre/libcrafter
https://github.com/pellegre/libcrafter
https://www.cs.odu.edu/~mweigle/research/packmime/
https://www.cs.odu.edu/~mweigle/research/packmime/
https://www.spirent.com/products/testcenter
https://www.spirent.com/products/testcenter
http://nemesis.sourceforge.net/
http://www.candelatech.com/
http://www.grid.unina.it/grid/mtools/
http://www.grid.unina.it/grid/mtools/
http://www.ittc.ku.edu/netspec/
http://www.skaion.com/
http://netsniff-ng.org/
http://www.csie.ncku.edu.tw/~klan/data/materials/ramp.pdf
http://www.csie.ncku.edu.tw/~klan/data/materials/ramp.pdf
https://github.com/awgn/brute
https://www.ixiacom.com/products/breakingpoint-ve
https://www.ixiacom.com/products/breakingpoint-ve
http://p-a-t-h.sourceforge.net/html/index.php
http://p-a-t-h.sourceforge.net/html/index.php
http://www.atm.tut.fi/rude
https://ieeexplore.ieee.org/document/4667607
https://ieeexplore.ieee.org/document/4667607
https://doi.org/10.1109/TRIDNT.2005.18
https://doi.org/10.1109/TRIDNT.2005.18
https://www.excentis.com/products/byteblower/
https://www.excentis.com/products/byteblower/
http://www.colasoft.com/download/products/download_packet_builder.php
http://www.colasoft.com/download/products/download_packet_builder.php
http://www.colasoft.com/download/products/download_packet_builder.php

Network Traffic Generation: A Survey and Methodology

Table 1. (continued). Status of traffic generators in Research and Industry as of Jan 2019.
Generators sorted in descending order of popularity - per section 2.2

ID Name License Status Platform Category Link (Source, Binaries, Paper)
Date
42 EAR Replay - - - Traffic re- https://doi.org/10.1109/WCNC.
[89] play 2012.6214199
43 GL traffic Comm- - - - https://www.gl.com/traffic-
generator[74] ercial generators.html
44 HexInject[1] BSD-2- 2017-01 Linux CMT? http://hexinject.sourceforge.net/
Clause
45 TPGen[97] - 2001-03 - CMT? http://sourceforge.net/projects/
ipgen/
46 IxChariot[84] Comm- - - Trace https://www.ixiacom.com/
ercial driven products/ixchariot
47 PIM-SM - - - - https://literature.cdn.keysight.
Packet com/litweb/pdf/5988-6560EN.pdf?
Generator[2] id=1649878
48 EPB[141] Free! 2019-05 All(C) Script http://m-a-z.github.io/epb/
driven
49 NETI@ - - - - http://neti.gatech.edu/
home[128]
50 TTCP, Test - - - - https://www.cisco.com/c/en/
TCP [38] us/support/docs/dial-access/
asynchronous-connections/10340-
ttep.html
51 LANTraffic Comm- 2015-11 Windows CMT? https://www.zti-communications.
[40] ercial com/lantrafficv2/
52 Libtins [52] BSD 2019-01 Al Script https://github.com/mfontanini/
driven libtins
53 LitGen[123] - - - Trace https://dl.acm.org/doi/10.5555/
driven 1762888.1762896
54 MGEN [92] MIT- 2018-11 All Model https://www.nrl.navy.mil/itd/ncs/
ish based. products/mgen
55 UDP MIT 1999-05 Linux, CMT? http://www.citi.umich.edu/
Generator[136] Unix projects/qbone/generator.html
56 Network - - Unix, CMT? http://www.netexpect.org/
Expect[46] Linux,
Mac
57 Cat Karat Comm- 2010-01 Windows CMT? https://sites.google.com/site/
[43] ercial catkaratpacketbuilder/
58 NTG[153] - - - App level http://www.wseas.us/e-
gen library/conferences/2013/Paris/
CCTC/CCTC-35.pdf
59 Fragout BSD-3- 2002-04 All CMT? http://www.monkey.org/
[133] Clause ~dugsong/fragroute/

ACM Comput. Surv., Vol. 111, No. 11, Article 11. Publication date: January 2021.

https://doi.org/10.1109/WCNC.2012.6214199
https://doi.org/10.1109/WCNC.2012.6214199
https://www.gl.com/traffic-generators.html
https://www.gl.com/traffic-generators.html
http://hexinject.sourceforge.net/
http://sourceforge.net/projects/ipgen/
http://sourceforge.net/projects/ipgen/
https://www.ixiacom.com/products/ixchariot
https://www.ixiacom.com/products/ixchariot
https://literature.cdn.keysight.com/litweb/pdf/5988-6560EN.pdf?id=1649878
https://literature.cdn.keysight.com/litweb/pdf/5988-6560EN.pdf?id=1649878
https://literature.cdn.keysight.com/litweb/pdf/5988-6560EN.pdf?id=1649878
http://m-a-z.github.io/epb/
http://neti.gatech.edu/
https://www.cisco.com/c/en/us/support/docs/dial-access/asynchronous-connections/10340-ttcp.html
https://www.cisco.com/c/en/us/support/docs/dial-access/asynchronous-connections/10340-ttcp.html
https://www.cisco.com/c/en/us/support/docs/dial-access/asynchronous-connections/10340-ttcp.html
https://www.cisco.com/c/en/us/support/docs/dial-access/asynchronous-connections/10340-ttcp.html
https://www.zti-communications.com/lantrafficv2/
https://www.zti-communications.com/lantrafficv2/
https://github.com/mfontanini/libtins
https://github.com/mfontanini/libtins
https://dl.acm.org/doi/10.5555/1762888.1762896
https://dl.acm.org/doi/10.5555/1762888.1762896
https://www.nrl.navy.mil/itd/ncs/products/mgen
https://www.nrl.navy.mil/itd/ncs/products/mgen
http://www.citi.umich.edu/projects/qbone/generator.html
http://www.citi.umich.edu/projects/qbone/generator.html
http://www.netexpect.org/
https://sites.google.com/site/catkaratpacketbuilder/
https://sites.google.com/site/catkaratpacketbuilder/
http://www.wseas.us/e-library/conferences/2013/Paris/CCTC/CCTC-35.pdf
http://www.wseas.us/e-library/conferences/2013/Paris/CCTC/CCTC-35.pdf
http://www.wseas.us/e-library/conferences/2013/Paris/CCTC/CCTC-35.pdf
http://www.monkey.org/~dugsong/fragroute/
http://www.monkey.org/~dugsong/fragroute/

Adeleke, Bastin and Gurkan

Table 1. (continued). Status of traffic generators in Research and Industry as of Jan 2019.
Generators sorted in descending order of popularity - per section 2.2

ID Name License Status Platform Category Link (Source, Binaries, Paper)
Date
60 GEIST [80] BSD-2- 2012-11 All Model http://kkant.net/geist/
Clause based

61 NTGM[117] Comm- 2018-10 Windows CMT? http://pbsftwr.tripod.com/id17.

ercial html

62 Graph- - - - - http://rvs.unibe.ch/research/pub_
Based files/SSKB10.pdf
TG[129]*

63 Inter- - - - - http://www.donfraysoftware.com/
networking MITS/MITS.htm
Test TG[44]*

64 Omnicor TG Comm- - - Model https://www.omnicor.com/
[110]* ercial based products/network-testing-tools

65 Jugi’'s TG GPLv2 2010-11 Linux CMT? http://www.netlab.tkk.fi/

[98]* ~jmanner/jtg.html

66 KUTE[154] GPLv2 2007-09 Linux CMT? http://caia.swin.edu.au/genius/

tools/kute/

67 LAN- - - - - http://www.triticom.com/triticom/
decoder32T 1d32/trafgen.htm
[139]

68 packet GPLv2 2018-12 Al CMT? https://packetsender.com/
sender[103]

69 PackETH GPLv3 2017-12 Al CMT? http://packeth.sourceforge.net/
[116]

70 Mausezhan GPLv2 2011-12 Linux = CMT? https://github.com/uweber/

[146] ©) mausezahn

71 MxTraf [88] GPLv2 - - - http://mxtraf.sourceforge.net/

72 Solarwinds Comm- - Windows CMT? https://www.solarwinds.com/
WAN ercial topics/traffic-generator-wan-killer
killer[131]

73 NSWEB[145] - - NS2 - https://www.net.t-labs.tu-

berlin.de/~joerg/

74 NTGen[28] - 2002-11 Linux - http://softlab-pro-web.technion.ac.

(C/C++) il/projects/NTGen/html/ntgen.htm

75 STG- Comm- - - Model https://www.ecdata.com/products/
10G[45] ercial based stateful-traffic-generator/

76 PacGen[114] GPL- 2006-09 Linux CMT? http://sourceforge.net/projects/

v2 ©) pacgen/

77 PlayCap[112] GPLv3 2010-03 All Traffic re- https://github.com/signal11/

play PlayCap

78 Poisson - 2003-06 (C) Model http://www.spin.rice.edu/
TG[122]* based Software/poisson_gen/

ACM Comput. Surv., Vol. 111, No. 11, Article 11. Publication date: January 2021.

http://kkant.net/geist/
http://pbsftwr.tripod.com/id17.html
http://pbsftwr.tripod.com/id17.html
http://rvs.unibe.ch/research/pub_files/SSKB10.pdf
http://rvs.unibe.ch/research/pub_files/SSKB10.pdf
http://www.donfraysoftware.com/MITS/MITS.htm
http://www.donfraysoftware.com/MITS/MITS.htm
https://www.omnicor.com/products/network-testing-tools
https://www.omnicor.com/products/network-testing-tools
http://www.netlab.tkk.fi/~jmanner/jtg.html
http://www.netlab.tkk.fi/~jmanner/jtg.html
http://caia.swin.edu.au/genius/tools/kute/
http://caia.swin.edu.au/genius/tools/kute/
http://www.triticom.com/triticom/ld32/trafgen.htm
http://www.triticom.com/triticom/ld32/trafgen.htm
https://packetsender.com/
http://packeth.sourceforge.net/
https://github.com/uweber/mausezahn
https://github.com/uweber/mausezahn
http://mxtraf.sourceforge.net/
https://www.solarwinds.com/topics/traffic-generator-wan-killer
https://www.solarwinds.com/topics/traffic-generator-wan-killer
https://www.net.t-labs.tu-berlin.de/~joerg/
https://www.net.t-labs.tu-berlin.de/~joerg/
http://softlab-pro-web.technion.ac.il/projects/NTGen/html/ntgen.htm
http://softlab-pro-web.technion.ac.il/projects/NTGen/html/ntgen.htm
https://www.ecdata.com/products/stateful-traffic-generator/
https://www.ecdata.com/products/stateful-traffic-generator/
http://sourceforge.net/projects/pacgen/
http://sourceforge.net/projects/pacgen/
https://github.com/signal11/PlayCap
https://github.com/signal11/PlayCap
http://www.spin.rice.edu/Software/poisson_gen/
http://www.spin.rice.edu/Software/poisson_gen/

Network Traffic Generation: A Survey and Methodology

Table 1. (continued). Status of traffic generators in Research and Industry as of Jan 2019.
Generators sorted in descending order of popularity - per section 2.2

ID Name License Status Platform Category Link (Source, Binaries, Paper)
Date

79 ProvaGEN - - - - http://www.provanet.com/packet_
3.0[42] generator_tts_page.htm

80 Qosnetics - - - - http://www.qosnetics.com/
TG[126]*

81 Real-Time - - - - http://www.cs.ucr.edu/~msamidi/
Voice projects.htm
TG[125]*

82 VOIP - 2005-11 (perl) App level http://voiptg.sourceforge.net/
TG[32]* gen

83 Self Similar MIT 2001-04 (C) Model http://research.glenkramer.com/
TG[87]* based code/trf_gen3.shtml

84 Sources- GPLv3, 2013-03 Linux Model http://www.recherche.enac.fr/
OnOff[140] Ce- ©) based ~avaret/sourcesonoff

CILL

85 SPAK[381] - - - - http://static.lwn.net/lwn/1998/
Packet 0312/a/spak.html
Generator

86 TCPivo[50] - 2002-09 Linux Traffic re- https://www.thefengs.com/

©) play wuchang/work/tcpivo/

87 TfGen[137] - 1998-02 Windows CMT? http://www.pgcgi.com/hptools/

88 IP- Comm- 2019 Windows CMT? https://www.pds-test.co.uk/
traffic[115] ercial products/ip_test_measure.html

89 Traffic - - - - http://www.postel.org/tg/
Generator
Tool[119]

90 WRAP[106] BSD 2019-01 Al Script https://github.com/Juniper/warp17

clause driven

91 Yersinia[31] GPLv2 2017-09 All CMT? https://github.com/tomac/yersinia

92 YouTube - - - - http://citeseerx.ist.psu.edu/
Workload viewdoc/download?doi=10.1.1.471.
generator 4292&rep=rep1&type=pdf
[36]

Table 1 Footnotes

1 Some traffic generators classified as free require attribution

2 CMT stands for constant or maximum throughput traffic generators (see section 3)
3 Other, when not listed in the pre-defined traffic generator categories in section 3

4 TG is used as an abbreviation for traffic generator
5 Platform refers to supported operating systems

6 Hardware traffic generators, all others are software traffic generators

ACM Comput. Surv., Vol. 111, No. 11, Article 11. Publication date: January 2021.

http://www.provanet.com/packet_generator_tts_page.htm
http://www.provanet.com/packet_generator_tts_page.htm
http://www.qosnetics.com/
http://www.cs.ucr.edu/~msamidi/projects.htm
http://www.cs.ucr.edu/~msamidi/projects.htm
http://voiptg.sourceforge.net/
http://research.glenkramer.com/code/trf_gen3.shtml
http://research.glenkramer.com/code/trf_gen3.shtml
http://www.recherche.enac.fr/~avaret/sourcesonoff
http://www.recherche.enac.fr/~avaret/sourcesonoff
http://static.lwn.net/lwn/1998/0312/a/spak.html
http://static.lwn.net/lwn/1998/0312/a/spak.html
https://www.thefengs.com/wuchang/work/tcpivo/
https://www.thefengs.com/wuchang/work/tcpivo/
http://www.pgcgi.com/hptools/
https://www.pds-test.co.uk/products/ip_test_measure.html
https://www.pds-test.co.uk/products/ip_test_measure.html
http://www.postel.org/tg/
https://github.com/Juniper/warp17
https://github.com/tomac/yersinia
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.471.4292&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.471.4292&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.471.4292&rep=rep1&type=pdf

11:8 Adeleke, Bastin and Gurkan

2.2 Tool Popularity

We collected the 92 traffic generators listed in the Table 1 based on their usage in papers published
over a 13 year period (from 2006 to 2018). We started at 2006 to capture traffic generators usage
trends beginning from the early days of virtualization and software defined networking. Using
our custom built analysis tool [105] we examined a total of 7479 computer networking related
papers, including 2856 papers published in various conferences and journals by the Association
for Computing Machinery’s (ACM) Special Interest Group on Data Communications (SSIGCOMM)
[120]. The ACM conferences we explored include ACM-ICN [64], AllThingsCellular [66], ANRW
[69], APNet [72], CHANTS [57], Cnet [41], GreenNets [63], HomeNets [61], HotNets [62], HotSDN
[65], IoTS&P [70], LANCOMM [68], MECOMM [71], MobiArch [54], NetAlI [56], NetEcon [60],
NSEthics [67], NSDR [59], SIGCOMM [58], SOSR [55] and 43 others. The remaining 4623 papers
were published in various conference proceedings and journals of the Advanced Computing Systems
Association (USENIX) computer networking related conferences [121] between the years 2006 to
2018. The conferences we explored include the ATC [10], APSys [20], CoolDC [24], CSET [17],
EVT [9], FOCI [22], HotCloud [19], HotEdge [25], HotSec [7], IPTPS [18], LISA [8], NetDB [14],
NSDI [12], ONS [23], OSDI [13], Security [11], SRUTI [6], SustainIT [6], SysML [16], WASL [15],
WebApps [21] and 37 others. We could not include any of the Institute of Electrical and Electronics
Engineers (IEEE) papers in the analysis because the API of the IEEE digital library made it difficult
to perform extensive downloads of a large number of papers.

We conducted a detailed n-gram analysis of all 7000+ papers. First, we created a list of terms/phrases
that uniquely describe each identified generator, collected from a sample of referenced papers. For
example, search terms for the DPDK packet generator included ’dpdk pktgen’, ’pktgen dpdk’, *dpdk
packet generator’, ’dpdk generator’, ’dpdk based packet generator’ and ’dpdk based generator’. We
then created n-gram indices with n = 1 to 5, from the raw text of the entire corpus of selected
papers. We searched these indices to locate matches of the traffic generator terms/phrases across
the entire set of papers. For each match, we ran a script that captured the surrounding sentences
for the location of the match, which resulted in about 1800+ papers. We manually examined the
sentences for each match in order to determine whether the generator was actually used, cited, or
just merely mentioned in the paper. Based on the surrounding text we were also able to identify
and exclude cases where the search terms in the paper was found to refer to something other than
the traffic generation context. The scripts that we wrote and used for the search and analysis of
papers is open source and made publicly available online [105].

The result of the analysis is a set of traffic generators and the associated lists of papers where the
generators are used, cited, and mentioned. Based on the result, we rank the generators and select the
top 10 based on their usage popularity in the last 13 years for further examination. The top 10 list
consists of: iperf2 [99], netperf [78], httperf [102], moongen [47], scapy [33], linux pktgen
[109], netcat [76], TCPreplay [5], iperf3 [91], DPDK pktgen [149] in descending order of usage.
Figure 1 gives the details of the results of this analysis, and we recall that Table 1 gives the complete
list of traffic generators in descending order of usage. All top 10 traffic generators are open source
[111], and they are all software-based generators.

The usage reference of each of these generators is given in Figure 2 per year from 2006 to 2018.
Based on the results, constant / max throughput traffic generators — particularly iperf2 [138] —
continue to dominate in terms of usage. More recently developed realistic traffic generators that
are based on stochastic models, e.g. swing, DITG, etc., are not cited as frequently as the constant /
max throughput traffic generators, even when controlling for the smaller set of recent publications.
Although they do not make the top 10, there are many of other realistic traffic generators in the
next 10 on the list in Table 1.

ACM Comput. Surv., Vol. 111, No. 11, Article 11. Publication date: January 2021.

Network Traffic Generation: A Survey and Methodology 11:9

200

190

60 BN Mentions
I Citations
I Usages

50

40

30

20

10

netperf
moongen
linux pktgen
tcpreplay
dpdk pktgen

Fig. 1. Top traffic generators from ACM and USENIX networking-related conference publications [121]

In recent years usage of script driven traffic generators like moongen [47], and DPDK pktgen
[149] that allow extensive variations in specific header values have gained more traction, and we
expect that trend to continue. In addition, some of these script driven traffic generators like trex
[37] do not feature among the top 10. However, we believe that generators of this type will find
increasing utility in research in the near term.

Most constant / maximum throughput traffic generators create packets with almost no variation
in header and payload contents — they usually only allow for selection of a single value for specific
header fields before the beginning of their generation process. As such, they are useful for a narrow
class of applications and may not reflect a true mix of network traffic in typical topologies. For
example, one such generator is iperf2. Per each run, iperf2 can provide a TCP or UDP flow that
is driven by a constant throughput goal. Despite these limitations, these types of generators are
quite popular. We examined all papers where iperf2 was used to find out if such papers used
any other traffic generation mechanisms in combination, but found almost none. The count of the
number of papers per year in which iperf2 was used exclusively is plotted in Figure 3, mirroring
the baseline numbers in Figure 2.

We need to note that bespoke generation techniques are not included in our analysis. In some
types of experiments that require specific traffic patterns, researchers may write appropriate
wrapper scripts and native packet creators for the generation task with the desired traffic patterns.
Nevertheless, there were not a significant number of papers referring to traffic generation without
a reference to a specific generator.

3 A TAXONOMY OF TRAFFIC GENERATORS

Traffic generators are software tools or hardware devices that create network packets based on
scripted, recorded, or configured patterns. That is, packets from traffic generators are not generated
through actual application conversation workflows, even though the traffic generation system may

ACM Comput. Surv., Vol. 111, No. 11, Article 11. Publication date: January 2021.

11:10 Adeleke, Bastin and Gurkan

30
iperf2 netperf
20
10
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
30
httperf moongen
20
10
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
30
scapy linux pktgen
20
10
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
30
netcat tcpreplay
20
10
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
30
iperf3 dpdk pktgen
20
10
T T u T T T T T T B T T T T T T T T T T
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Fig. 2. Usage by year of top 10 generators as cited in ACM and USENIX networking-related conference
publications

25
2 iperf only
15

10

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Fig. 3. Per year exclusive usage citations of iperf2.

be designed to generate packets that mimic what may be seen in a real production environment.
Different network traffic generators are designed with different goals. While some are designed to
stress-test network devices and software, some others are designed to be able to craft packets for
tests of performance and behavior correctness. In this survey we focus on the behavior analysis of
traffic generators, as performance is strongly influenced by individual deployment environments.

ACM Comput. Surv., Vol. 111, No. 11, Article 11. Publication date: January 2021.

Network Traffic Generation: A Survey and Methodology 11:11

We expand on the classifications provided by Molnar et al. [101] from the perspective of their
techniques for pushing packets into the network. Traffic generators can be categorized into constant
/ maximum throughput generators, application-level synthetic workload generators, trace file replay
systems, model-based generators, and script driven traffic generators. We describe each class below.

Table 2. Classification of traffic generators per section 3

Traffic Generator Category All
1 Constant or maximum throughput generators 26
2 Application level generators 7
3 Trace file replay tools 7
4 Model-based traffic generators 11
5 Trace driven model-based traffic generators 5
6 Script driven traffic generators 11
7 Others 25
Total 92

3.1 Constant or Maximum Throughput Generators

A packet is created with specific application-layer header fields and then repeatedly sent out on a
network interface at a constant rate or at the maximum possible rate (in bits per second or packets
per second). Popular examples of traffic generators in this category are iperf2 [138] and netperf
[78]. These are often the easiest to use, and are suitable for quick network throughput stress testing.
A characteristic of generators in this category is that they offer little or no variation in header and
payload content of the packets that are blasted out the interfaces. In most traffic generators in this
class — while some are capable of preserving the semantics of connection-oriented network layer
(TCP, etc.) — a user can specify only a single set of flow parameters per running instance (such as
the source and destination IP address and port numbers).

3.2 Application Level Synthetic Workload Generators

These generate network packet traffic for a specific type of application or higher-layer protocol
such as the httperf [102]. In some cases, researchers may launch actual application programs and
run a specific set of workloads using their data exchanges to generate the traffic. This approach of
workload generation is often capable of realistic variations on packets for the specific application or
protocol. However, the resulting workload still consists of a limited set of application events. Exclu-
sive usage of these approaches may result in network behavior deprived of realistic simultaneous
background traffic or the application-user interaction in a typical production environment [142].

3.3 Trace File Replay Systems

Replay systems inject packets from a pre-existing trace file into a network interface at the indicated
time intervals in the capture file. In some cases, users are able to specify the speed at which
they would like to replay the packets. Many researchers obtain trace files with anonymous data
and empty payload contents from public data sets [53, 95, 124], and replay them on the nodes of
their individual experiment topologies using tools like TCPreplay [5]. These replay systems can
produce traffic workloads that mirror the original traffic, especially if the workload can be run
on an experiment topology that is similar to the original network. However, most replay systems

ACM Comput. Surv., Vol. 111, No. 11, Article 11. Publication date: January 2021.

11:12 Adeleke, Bastin and Gurkan

are stateless and are unable to send the packets in a manner that will be responsive to network
congestion or topology events in the experiment. For example, such a replay will continue to send
out TCP packets even when the links between endpoints are down whereas a realistic TCP flow
control would have limited further packet transmissions. In addition, continuous replay of the
same trace file on a network will keep producing the same events periodically resulting in traffic
patterns that are unrealistic for many use cases.

3.4 Model-Based Traffic Generators

Given that network traffic is quite random, bursty, and self similar [73, 96, 150], a popular method
of generating realistic traffic is the creation and transmission of packets following random distribu-
tions of their time intervals, packet sizes, etc. One example of these is the Multi-Generator (MGEN)
[92] traffic generator. These generators allow users to specify a random distribution model with
parameters that may match the intended scenario of network traffic workload. With carefully se-
lected random distributions, they can generate traffic that is statistically similar to traffic workloads
in specific production environments.

3.5 Trace Driven Model-Based Traffic Generators

Some traffic generators go a step further than the purely model-based approach by allowing
experimenters to supply a trace file input or log files of actual traffic from production networks.
The input trace file or log file is analyzed to create a model by fitting the various traffic parameters
to random distributions which are then used to generate packets. Good examples are harpoon
[132] and swing [144]. They generate packets that are statistically similar to actual packets seen in
the corresponding input production network trace or log file.

3.6 Script Driven Traffic Generators

In recent years many new script driven traffic generators have been developed. These generators
allow users to dynamically modify the full range of packet header and data content through complex
coded logic. Popular examples of generators in this category are DPDK pktgen [149] and moongen
[47]. These allow users to create any type of packet, with almost any packet header value, and
while also dynamically modifying the packets at run time.

4 TRAFFIC GENERATOR SELECTION: COMMON REQUIREMENTS AND FEATURES

Traffic generators have diverse sets of features and they typically report a small set of built-in
metrics. There is no single traffic generator that is better in all experiment use cases than every
other one in terms of serving a research objective through these features and reported metrics. For
instance, while a particular traffic generator may be good at injecting packets into a network at very
high speeds, it may not provide dynamic packet length variations. In this respect, our analysis of
capabilities of generators resulted in a structured digests of features as presented below in tabular
form.

In Table 3 we show whether there is support for a particular feature among the top 10 traffic
generators in our survey. We examined the experiments, evaluations and methodology sections of
the surveyed papers for the research goals, the types of traffic workloads and their corresponding
required features. We then examined the documentation, source code, man pages, help information
and the associated research papers for each of the generators in the top 10 list to verify the presence
of a particular capability in the Table 3.

Table 4 further gives a list of the header fields in the Ethernet, IPv4, TCP and UDP protocol
stacks, and provides information on how each of the traffic generators in the top 10 list supports
the configuration of that header field. In some cases header fields can be set only to a constant

ACM Comput. Surv., Vol. 111, No. 11, Article 11. Publication date: January 2021.

Network Traffic Generation: A Survey and Methodology 11:13

Table 3. Traffic generator selection: common features and experiment requirements

Generator
Feature ! iperf2 net- http- moon- scapy Linux netcat iperf3 TCP- DPDK
perferf gen? pkt- replay pkt-
gen? gen?

1 set # of packets v v v v v
2 set total bytes v v v
3 set fixed throughput V3 v v v v v v
4 set randomized throughput v v
5 set packet rate v v v v v
6 set time duration v v v v v v v
7 send data files v v v v
8 replay traffic traces v v v
9 set fixed packet size v v v v
10 set randomized packet sizes v v v v
11 set fixed inter-packet time v v
12 setrandomized inter-packet v v

times
13 support TCP connections v v v v v v
14 support SCTP connections v v v
15 set MSS v v v
16 set reporting intervals v v v v v v v
17 set interface v v v v v
18 specify IP addr. of interface v v v v
19 set CPU affinity v v v v v
20 generate IP fragments v v v v
21 bi-directional generation v v v v
22 multiple parallel connec- v v v v v v v

tions/flows
23 arbitrary http requests v v v

Table 3 Footnotes
1 Feature descriptions are provided in appendix A.1
2 Requires exclusive control of the network interface
3 UDP only

value, while in other cases header fields can be set to vary within a range or be fully randomized
during the packet generation process.

Table 5 presents a list of common metrics among the auto-generated reports of traffic generators.
No single traffic generator reports a set of metrics that would be regarded as comprehensive, and
there are some that do not give a report at all. It is important to note that even when a generator is
able to report metrics, the limitations of execution environments may affect timing information or
strip low-level header data before reaching the generator, introducing uncontrolled error. Therefore
it is always advised to validate metrics through packet traces of the generated traffic that are
captured on the wire.

ACM Comput. Surv., Vol. 111, No. 11, Article 11. Publication date: January 2021.

11:14 Adeleke, Bastin and Gurkan

Table 4. Supported configuration of header fields for the top 10 traffic generators

Generator
Header Field iperf2 net- http- moon- scapy Linux netcat iperf3 TCP- DPDK
perf erf gen pktgen replay pktgen
1 L2 source MAC * * * * *
2 L2 destination MAC * * * * *
3 L2VLANID * * v * *
4 L2 ethertype * * * *
5 L3 source IP v v * * * v v * *
6 L3 destination IP v v Vv ok * * v v * *
7 L3 header length * * * *
8 L3 DSCP/TOS v * * v v v * *
9 L3ECN * * * *
10 L3 total length * * * *
11 L3 identification * * * *
12 L3 don’t fragment * * * *
13 L3 more fragments * * * *
14 L3 fragment offset * * * *
15 L3 TTL v * * * *
16 L3 protocol * * * *
17 L3 header checksum * * * *
18 L4 source port v * * *! v v % *
19 L4 destination port v v vk * *! v v * *
20 TCP sequence num * * * *
21 TCP ack number * * * *
22 TCP data offset * * * *
23 TCP reserved bits * * * *
24 TCP flags * * * *
25 TCP window size v v * * v * *
26 TCP checksum * * * *
27 TCP urgent pointer * * * *
28 TCP options vtz * * vioox *
29 UDP length * * * *
30 UDP checksum * * * *

Table 4 Legend

V': set to single value (no variation of the header field is supported during generation)
* : single, varying, or randomized values can be set for the header field

Table 4 Footnotes

1 UDP only
2 TCP_NODELAY option only

ACM Comput. Surv., Vol. 111, No. 11, Article 11. Publication date: January 2021.

Network Traffic Generation: A Survey and Methodology 11:15

Table 5. Reported metrics for the top 10 generators

Generator
Reported Metric ! iperf2 net- http- moon- scapy Linux netcat iperf3 TCP- DPDK
perferf gen pktgen replay pktgen
1 throughput v v v/ v v v v
2 latency v v v v
3 packet rate v v v v
4 total no. of packets v v v v v v
5 total no. of bytes v v v v v v
6 duration v v v v v v v v
7 jitter v v v v
8 no. of retransmissions v v v
9 no. of drops v v v v v v
10 MSS v v v
11 congestion win. size(s) v v
12 CPU demand v v
13 number of flows or con- v v/ v v v v
nections
14 request/response trans- v V2

action rates

Table 5 Footnotes
1 Metric descriptions are provided in appendix A.2
2 http only

4.1 Traffic Generator Selection Methodology

The Table 3 presents the top 10 list with varying levels of support for the list of features. There are
some generators that support all of the features in addition to giving a comprehensive set of metric
reports, but they usually require commercial licenses that are quite expensive [85, 130]. Researchers
are tasked with a preliminary assessment of generator features and an evaluation of each generator
for the research objectives. We provide a method to select a traffic generator using this paper’s
compilations on generator categories and their respective features. As features of each generator
advances and as new generators are created, we expect that there will be the community updates
on the tabular digests.

(1) Definition of Workload Requirements: Before selecting a generator, an experimenter
first needs to identify specific requirements of the traffic workload that are of vital importance
for the experimental goals of the research. Based on the traffic generation objectives, the
researcher must then identify the specific features of the desired traffic workload picked from
the Tables 3 and 4. This first step is in a sense the most important one in the methodology.

ACM Comput. Surv., Vol. 111, No. 11, Article 11. Publication date: January 2021.

11:16 Adeleke, Bastin and Gurkan

The chosen requirements will serve as the driving input for each of the subsequent steps
below:.

(2) Availability: A researcher may start with the list of 92 traffic generators given in the Table 1
to determine which generators are available. We note that the generator has to be within the
skill-set, resources and capabilities of the researcher from the perspectives of the research
platform requirements and ease-of-use.

(3) Validation of the Workload: The initial list is then filtered based on the category of traffic
workloads. A taxonomy for the workload characteristics has been provided in section 3. The
specific requirements of the traffic workload can then be validated by the characteristics of
the generators of choice.

(4) Features: One of the key decision points for the researcher is what features are supported
by a generator of choice (Tables 3 and 4). The desired workload properties for the specific
research goals could result in a trade-off when generators that lack some of the key features
are preferred per availability, ease-of-use, performance and other concerns.

The tabulated digests provide a guideline in picking features to address traffic generation ob-
jectives of the researcher. We expect that these digests will be kept up to date with the new
developments on existing generators and as new generators are added while preserving most of
the structure.

4.2 An Example: Load-Balancing Research

To demonstrate a typical walk-through of the steps in the previous section, we present a research
project on a new fictitious layer 4 load-balancing network function that leverages TCP header
information.

Step 1 - Requirements: The traffic workload required for this research has diverse transaction
characteristics with relatively fixed total throughput. Therefore, the features are:

(1) multiple parallel TCP connections or flows
(2) ability to generate packets with varying packet sizes
(3) ability to vary header fields: L3 source IP addresses and L4 source port numbers

Step 2 - Availability: Based on the constraints of our runtime environment, licensing require-
ments, and current availability of each generator, we filter the options in Table 1 down to 31 choices.
Among this number we have all those in the top 10 list - iperf2, netperf, httperf, moongen,
scapy, linux pktgen, netcat, TCPreplay, iperf3, DPDK pktgen and 21 others.

Step 3 - Characteristics of Desired Traffic: Many classes of traffic generators have support
for diverse transactions and relatively fixed total throughput. For example, some constant/max-
imum throughput traffic generators (section 3.1) allow for multiple simultaneous TCP and UDP
connections. Many model-based generators (section 3.4 and 3.5) and script driven traffic generators
(section 3.6) also support the type of traffic desired.

Step 4 - Features: Tables 3 and 4 are utilized to narrow down the generators of interest for the
research task. Based on the feature list in step-1, shortlisted generators must have check marks
on rows 3, 10, and 22 of Table 3 and a star in rows 5 and 18 of Table 4. Thus, the resulting list
includes scapy, moongen and dpdk pktgen. We do not include 1inux pktgen in the shortlist
because randomization of L4 source port numbers is not possible as shown in footnote 1 of Table 4,
even though all other requirements are met by this generator.

Further discrimination among the selected tools will require experiment-specific considerations.

ACM Comput. Surv., Vol. 111, No. 11, Article 11. Publication date: January 2021.

Network Traffic Generation: A Survey and Methodology 11:17

5 EXISTING SURVEYS

There have been a few surveys on network traffic generators in the past. Kolahi et al. [86] evaluated
the TCP throughput performance of four traffic generators, and provided a comparison of their
features. The generators compared include Iperf, Netperf, D-ITG and IP Traffic. The experiments
were exclusively carried out between 2 computers running the Windows operating system. Authors
observed that the bandwidth that the tools measure can vary as much as 16.5 Mbps for a TCP
connection over a 100 Mbps link. For the same network set up, Iperf measured the highest bandwidth
(93.1 Mbps) while IP traffic the lowest (76.7 Mbps).

Molnar et al. [101] unveiled the fact that there is no consensus in the research community how
to validate network traffic generators. They recommended 9 metrics that could be used to validate
traffic generators and classified 19 traffic generators into 5 classes, presenting specific validation
techniques for each class of generators.

Mishra et al. [100] compared six traffic generators in terms of TCP and UDP throughput perfor-
mance under various scenarios. The generators compared include D-ITG, PackETH, Ostinato, Iperf,
Netperf and IP Traffic. Their results showed different generators excelled in terms of various metrics
under different circumstances. They concluded that a single traffic generator is not applicable for
all types of networks. Traffic Generators are designed for specific applications depending upon the
need and characteristics of application and network.

More recently, Emmerich et al. [48] undertook a performance comparison for high-performance
software traffic generators in terms of their approach to rate control, performance, precision and
accuracy of packet injection times. The traffic generators compared include Moongen, DPDK Pktgen,
Linux Pktgen and pfq-gen. They observed that for most of these software based high performance
generators can offer good thoughput performance and high accuracy of packet injection times as
long as overloading does not occur. The work also showed that the performance and precision
of most high frequency software generators is greatly dependent on clock frequency of the CPU
hardware used.

Most of the surveys cited above directly compare the performance of a selected short list of
traffic generators. We realize that each generator may have unique features that make it more
suitable for specific types of traffic generation than the others. Therefore we do not attempt to
directly compare the performance of the traffic generators — something that should be validated
independently in each new experiment configuration — but we present their features along with a
methodology to qualitatively make a shortlist of traffic generators that meet the requirements for
specific experimental objectives.

6 SUMMARY

We present a survey that identifies 92 traffic generators from a large corpus of conference proceeding
publications. We perform a classification of the generators based on the method of traffic generation.
From the results of our survey, we determine the top 10 most popular traffic generators through
analysis of over 7000 papers published in ACM SIGCOMM and USENIX conferences over the last 13
years. We observe that the set of supported features by each traffic generator vary considerably. By
determining the main functionality of each generator at hand, we categorize features for individual
generators into a structured form to eventually serve research objectives. Our compilations provide
the traffic generator outcomes and functionality which are then used in the traffic generation
selection mechanism in section 4.1. The compilations in the tables are expected to be updated
as individual generator functionalities evolve and new generators are released. However, the
methodology will stay the same for the alignment of experimental objectives to the choice of the
generator capabilities.

ACM Comput. Surv., Vol. 111, No. 11, Article 11. Publication date: January 2021.

11:18 Adeleke, Bastin and Gurkan

ACKNOWLEDGMENTS

This work is funded in part by the National Science Foundation (NSF) Division of Computer and
Network Systems (CNS) core grant award no. 1908974.

REFERENCES

[1] Emanuele Acri. 2017. HexInject: The Power of Raw Hex Network Access. http://hexinject.sourceforge.net/

[2] Agilent Technologies. 2002. PIM-SM Multicast Performance Testing. https://literature.cdn.keysight.com/litweb/pdf/
5988-6560EN.pdf?id=1649878

[3] Gianni Antichi, Andrea Di Pietro, Domenico Ficara, Stefano Giordano, Gregorio Procissi, and Fabio Vitucci. 2008.
Bruno: A High Performance Traffic Generator for Network Processor. In Performance Evaluation of Computer and
Telecommunication Systems, 2008. SPECTS 2008. International Symposium on. IEEE, Edinburgh, UK, 526-533.

[4] Gianni Antichi, Muhammad Shahbaz, Yilong Geng, Noa Zilberman, Adam Covington, Marc Bruyere, Nick Mckeown,
Nick Feamster, Bob Felderman, Michaela Blott, Andrew Moore, and Philippe Owezarski. 2014. OSNT: Open Source
Network Tester. IEEE Network 28, 5 (Sept. 2014), 6-12. https://doi.org/10.1109/MNET.2014.6915433

[5] AppNeta. 2011. Tepreplay. AppNeta Inc. https://tcpreplay.appneta.com/

[6] USENIX (Advanced Computing Systems Association). 2006-2007. Workshop on Steps to Reducing Unwanted Traffic
on the Internet (SRUTI). All published papers in the proceedings.

[7] USENIX (Advanced Computing Systems Association). 2006-2012. USENIX Summit on Hot Topics in Security(HotSec).
All published papers in the proceedings.

[8] USENIX (Advanced Computing Systems Association). 2006-2013. Large Installation System Administration Confer-
ence(LISA). All published papers in the proceedings.

[9] USENIX (Advanced Computing Systems Association). 2006-2014. Electronic Voting Technology Workshop/Workshop

on Trustworthy Elections (EVT). All published papers in the proceedings.

USENIX (Advanced Computing Systems Association). 2006-2018. USENIX Annual Technical Conference(ATC). All

published papers in the proceedings.

[11] USENIX (Advanced Computing Systems Association). 2006-2018. USENIX Security Symposium. All published papers

in the proceedings.

[12] USENIX (Advanced Computing Systems Association). 2006-2018. USENIX Symposium on Networked Systems Design

and Implementation (NSDI). All published papers in the proceedings.

USENIX (Advanced Computing Systems Association). 2006-2018. USENIX Symposium on Operating Systems Design

and Implementation (OSDI). All published papers in the proceedings.

[14] USENIX (Advanced Computing Systems Association). 2007. International Workshop on Networking Meets Databases

(NetDB). All published papers in the proceedings.

USENIX (Advanced Computing Systems Association). 2008. USENIX Workshop on the Analysis of System Logs(WASL).

All published papers in the proceedings.

[16] USENIX (Advanced Computing Systems Association). 2008. Workshop on Tackling Computer Systems Problems

with Machine Learning Techniques(SysML). All published papers in the proceedings.

[17] USENIX (Advanced Computing Systems Association). 2008-2018. USENIX Workshop on Cyber Security Experimenta-

tion and Test(CSET). All published papers in the proceedings.

USENIX (Advanced Computing Systems Association). 2009-2010. International Workshop on Peer-to-Peer Sys-

tems(IPTPS). All published papers in the proceedings.

USENIX (Advanced Computing Systems Association). 2009-2018. USENIX Workshop on Hot Topics in Cloud

Computing (HotCloud). All published papers in the proceedings.

[20] USENIX (Advanced Computing Systems Association). 2010. Asia-Pacific Workshop on Systems(APSYS). All published

papers in the proceedings.

[21] USENIX (Advanced Computing Systems Association). 2010-2012. USENIX Conference on Web Application Develop-

ment(WebApps). All published papers in the proceedings.

USENIX (Advanced Computing Systems Association). 2011-2018. USENIX Workshop on Free and Open Communica-

tions on the Internet (FOCI). All published papers in the proceedings.

[23] USENIX (Advanced Computing Systems Association). 2014. Open Networking Summit (ONS). All published papers

in the proceedings.

USENIX (Advanced Computing Systems Association). 2016. USENIX Workshop on Cool Topics in Sustainable Data

Centers(CoolDC). All published papers in the proceedings.

[25] USENIX (Advanced Computing Systems Association). 2018. USENIX Workshop on Hot Topics in Edge Computing

(HotEdge). All published papers in the proceedings.

[10

=

[13

=

(15

=

(18

=

(19

—

[22

—

(24

[l

ACM Comput. Surv., Vol. 111, No. 11, Article 11. Publication date: January 2021.

http://hexinject.sourceforge.net/
https://literature.cdn.keysight.com/litweb/pdf/5988-6560EN.pdf?id=1649878
https://literature.cdn.keysight.com/litweb/pdf/5988-6560EN.pdf?id=1649878
https://doi.org/10.1109/MNET.2014.6915433
https://tcpreplay.appneta.com/

Network Traffic Generation: A Survey and Methodology 11:19

[26]

[27

—

—
N
(=)}

—

[49

—

(50]

— ——
(SIS, IS,
W N =
[t/ i/ R}

[54]

Stefano Avallone, Marcello Esposito, Antonio Pescape, Simon Pietro Romano, and Giorgio Ventre. 2002. Mtools: A
One-Way Delay and Round-Trip-Time Meter. In Recent Advances in Computers, Computing and Communications.
WSEAS PRESS, Eindhoven, Netherlands.

Stefano Avallone, Salvatore Guadagno, Donato Emma, Antonio Pescape, and Giorgio Ventre. 2004. D-ITG Distributed
Internet Traffic Generator. In Quantitative Evaluation of Systems, 2004. QEST 2004. Proceedings. First International
Conference on the. IEEE, Enschede, Netherlands, 316-317.

Yariv Bachar and Ophir Ovadia. 2002. NTGen Project. http://softlab-pro-web.technion.ac.il/projects/NTGen/html/
ntgen.htm

Bastian Ballman and Stefan Krecher. 2005. IP-Packet Generator. http://p-a-t-h.sourceforge.net/html/index.php
Paul Barford and Mark Crovella. 1998. Generating Representative Web Workloads for Network and Server Performance
Evaluation. In Proceedings of the 1998 ACM SIGMETRICS joint international conference on Measurement and modeling
of computer systems. ACM (Association of Computing Machinery), Madison Wisconson, USA, 151-160.

David Barroso. 2020. Yersinia Traffic Generator. https://github.com/tomac/yersinia

Bruno Benchimol. 2005. VoIP Traffic Generator. http://voiptg.sourceforge.net/

Philippe Biondi. 2011. Scapy. Scapy community. https://scapy.net/

Nicola Bonelli, Stefano Giordano, Gregorio Procissi, and Raffaello Secchi. 2005. Brute: A High Performance and
Extensible Traffic Generator. In Proceedings of SPECTS. International Society for Modeling and Simulation (SCS),
Cherry Hill, NJ, USA, 839-845.

Candela Technologies. 2020. Lanforge: Stateful IP Traffic Generators and Network Emulators. http://www.candelatech.
com/

Pedro Casas, Andreas Sackl, Sebastian Egger-Lampl, and Raimund Schatz. 2012. YouTube & Facebook Quality of
Experience in Mobile Broadband Networks. In 2012 IEEE Globecom Workshops. IEEE, Anaheim, California, USA,
1269-1274. https://doi.org/10.1109/GLOCOMW.2012.6477764

Cisco. 2019. TRex: Realistic Traffic Generator. Cisco. https://trex-tgn.cisco.com/

Cisco Inc. 2005. Using Test TCP (TTCP) to Test Throughput. https://www.cisco.com/c/en/us/support/docs/dial-
access/asynchronous-connections/10340- ttcp.html

Cisco Inc. 2020. Cisco Annual Internet Report, 2018-2023. Global Mobile Data Traffic Forecast 2020 (2020), 5.

ZTI Communications. 2020. LanTraffic V2. https://www.zti-communications.com/lantrafficv2/

ITC (International Teletraffic Congress). 2011. International Workshop on Modeling, Analysis, and Control of Complex
Networks(CNet11). All published papers in the proceedings.

Universita’ degli Studi di Napoli. 2020. Other Internet Traffic Generators. http://www.grid.unina.it/software/ITG/
link.php

Valery Diomin and Yakov Tetruashvili. 2010. Cat Karat Packet Builder. https://sites.google.com/site/
catkaratpacketbuilder/

Donfrays Software. 2018. Inter-Networking Test Traffic Generator. http://www.donfraysoftware.com/MITS/MITS.htm
East Coast Data Comm Inc. 2019. Stateful Traffic Generator. https://www.ecdata.com/Products/Stateful-Traffic-
Generator/

Paris Eloy. 2018. The Network Expect Project. https://www.netexpect.org/

Paul Emmerich, Sebastian Gallenmiiller, Daniel Raumer, Florian Wohlfart, and Georg Carle. 2015. MoonGen: A
Scriptable High-Speed Packet Generator. In Proceedings of the 2015 Internet Measurement Conference (Tokyo, Japan)
(IMC ’15). ACM, New York, NY, USA, 275-287. https://doi.org/10.1145/2815675.2815692

Paul Emmerich, Sebastian Gallenmiiller, Gianni Antichi, Andrew W. Moore, and Georg Carle. 2017. Mind the Gap: A
Comparison of Software Packet Generators. In Proceedings of the Symposium on Architectures for Networking and
Communications Systems (Beijing, China) (ANCS ’17). IEEE Press, Piscataway, NJ, USA, 191-203. https://doi.org/10.
1109/ANCS.2017.32

Excentis Inc. 2013. ByteBlower - Making Accurate IP Testing Quick and Easy. https://www.excentis.com/products/
byteblower

Wu-chang Feng, Ashvin Goel, Abdelmajid Bezzaz, Wu-chi Feng, and Jonathan Walpole. 2003. Tcpivo: A High-
Performance Packet Replay Engine. In Proceedings of the ACM SIGCOMM workshop on Models, methods and tools for
reproducible network research. ACM, Karlsruhe, Germany, 57-64.

B Fink and R Scott. 2006. Nuttcp, v5. 3.1. https://www.nuttcp.net/

Matias Fontanini. 2019. Libtins: C++ Packet Sniffing and Crafting Library. https://libtins.github.io/

Romain Fontugne, Pierre Borgnat, Patrice Abry, and Kensuke Fukuda. 2010. MAWILab: Combining Diverse Anomaly
Detectors for Automated Anomaly Labeling and Performance Benchmarking. In ACM CoNEXT ’10. ACM (Association
of Computing Machinery, Philadelphia, USA, 12 pages.

ACM (Association for Computing Machinery). 2006-2017. ACM SIGCOMM Workshop on Mobility in the Evolving
Internet Architecture (MobiArch). All published papers in the proceedings.

ACM Comput. Surv., Vol. 111, No. 11, Article 11. Publication date: January 2021.

http://softlab-pro-web.technion.ac.il/projects/NTGen/html/ntgen.htm
http://softlab-pro-web.technion.ac.il/projects/NTGen/html/ntgen.htm
http://p-a-t-h.sourceforge.net/html/index.php
https://github.com/tomac/yersinia
http://voiptg.sourceforge.net/
https://scapy.net/
http://www.candelatech.com/
http://www.candelatech.com/
https://doi.org/10.1109/GLOCOMW.2012.6477764
https://trex-tgn.cisco.com/
https://www.cisco.com/c/en/us/support/docs/dial-access/asynchronous-connections/10340-ttcp.html
https://www.cisco.com/c/en/us/support/docs/dial-access/asynchronous-connections/10340-ttcp.html
https://www.zti-communications.com/lantrafficv2/
http://www.grid.unina.it/software/ITG/link.php
http://www.grid.unina.it/software/ITG/link.php
https://sites.google.com/site/catkaratpacketbuilder/
https://sites.google.com/site/catkaratpacketbuilder/
http://www.donfraysoftware.com/MITS/MITS.htm
https://www.ecdata.com/Products/Stateful-Traffic-Generator/
https://www.ecdata.com/Products/Stateful-Traffic-Generator/
https://www.netexpect.org/
https://doi.org/10.1145/2815675.2815692
https://doi.org/10.1109/ANCS.2017.32
https://doi.org/10.1109/ANCS.2017.32
https://www.excentis.com/products/byteblower
https://www.excentis.com/products/byteblower
https://www.nuttcp.net/
https://libtins.github.io/

11:20 Adeleke, Bastin and Gurkan

[55] ACM (Association for Computing Machinery). 2006-2018. ACM SIGCOMM Symposium on SDN Research. All
published papers in the proceedings.

[56] ACM (Association for Computing Machinery). 2006-2018. ACM SIGCOMM Workshop on Network Meets Al & ML
(NetAlI). All published papers in the proceedings.

[57] ACM (Association for Computing Machinery). 2006-2018. ACM Workshop on Challenged Networks (CHANTs. All
published papers in the proceedings.

[58] ACM (Association for Computing Machinery). 2006-2018. Special Interest Group on Data Communication (SIGCOMM).
All published papers in the proceedings.

[59] ACM (Association for Computing Machinery). 2008-2018. ACM SIGCOMM Workshop on Networked Systems for
Developing Regions (NSDR). All published papers in the proceedings.

[60] ACM (Association for Computing Machinery). 2008-2018. ACM Workshop on the Economics of Networks, Systems
and Computation. All published papers in the proceedings.

[61] ACM (Association for Computing Machinery). 2010-2011. ACM SIGCOMM Workshop on Home Networks (HomeNets).
All published papers in the proceedings.

[62] ACM (Association for Computing Machinery). 2010-2018. ACM SIGCOMM Workshop on Hot Topics in Networks
(HotNets). All published papers in the proceedings.

[63] ACM (Association for Computing Machinery). 2011. ACM SIGCOMM workshop on Green networking (GreenNets).
All published papers in the proceedings.

[64] ACM (Association for Computing Machinery). 2011-2017. ACM Conference on Information-Centric Networking
(ACM-ICN. All published papers in the proceedings.

[65] ACM (Association for Computing Machinery). 2012-2014. ACM SIGCOMM Workshop on Hot Topics in Software
Defined Networking. All published papers in the proceedings.

[66] ACM (Association for Computing Machinery). 2014-2016. ACM Workshop on All Things Cellular (AllThingsCellular).
All published papers in the proceedings.

[67] ACM (Association for Computing Machinery). 2015. ACM SIGCOMM Workshop on Ethics in Networked Systems
Research (NSEthics). All published papers in the proceedings.

[68] ACM (Association for Computing Machinery). 2016. ACM SIGCOMM Workshop on Fostering Latin-American
Research in Data Communication (LANCOMM). All published papers in the proceedings.

[69] ACM (Association for Computing Machinery). 2016-2018. Applied Networking Research Workshop (ANRW). All
published papers in the proceedings.

[70] ACM (Association for Computing Machinery). 2017-2018. ACM SIGCOMM 2018 Workshop on IoT Security and
Privacy (IoT S&P). All published papers in the proceedings.

[71] ACM (Association for Computing Machinery). 2017-2018. ACM SIGCOMM Workshop on Mobile Edge Communica-
tions (MECOMM). All published papers in the proceedings.

[72] ACM (Association for Computing Machinery). 2017-2018. Asia-Pacific Workshop on Networking (APNet). All
published papers in the proceedings.

[73] V.S.Frost and B. Melamed. 1994. Traffic modeling for telecommunications networks. IEEE Communications Magazine
32, 3 (March 1994), 70-81. https://doi.org/10.1109/35.267444

[74] GL Communications. 2020. GL Traffic Generator: Simulation & Analysis Network Traffic Characteristics. https:
/Iwww.gl.com/traffic-generators.html

[75] Eric Lee Helvey. 1998. Trafgen: An Efficient Approach to Statistically Accurate Artificial Network Traffic Generation. Ph.D.
Dissertation. Ohio University. https://etd.ohiolink.edu/pg_10?70::NO:10:P10_ACCESSION_NUM:ohiou1176494135

[76] *Hobbit*. 1995. Netcat. Netcat. http://nc110.sourceforge.net/

[77] Colasoft Inc. 2020. Colasoft Packet Builder - Colasoft. https://www.colasoft.com/download/products/download_
packet_builder.php

[78] Rick Jones. 1996. Netperf. Hewlett-Packard. https://github.com/HewlettPackard/netperf

[79] Roel Jonkman. 1994. Netspec: Philosopy, Design and Implementation. Ph.D. Dissertation. University of Kansas,
Lawrence, Kansas, USA.

[80] K. Kant, V. Tewari, and R. Iyer. 2001. Geist: A Generator for E-Commerce & Internet Server Traffic. In 2001 IEEE
International Symposium on Performance Analysis of Systems and Software. ISPASS. IEEE, Tucson, Arizona, USA, 49-56.
https://doi.org/10.1109/ISPASS.2001.990676

[81] Stein Karyl. 1998. Spak-0.6b - Arbitrary Packet Generator/Sender. http://static.lwn.net/lwn/1998/0312/a/spak.html

[82] Konstantinos V. Katsaros, George Xylomenos, and George C. Polyzos. 2012. GlobeTraff: A Traffic Workload Gener-
ator for the Performance Evaluation of Future Internet Architectures. In 2012 5th International Conference on New
Technologies, Mobility and Security (NTMS). IFIP, Istanbul, Turkey, 1-5. https://doi.org/10.1109/NTMS.2012.6208742

[83] Keysight Technologies. 2020. BreakingPoint VE - Virtualized Security Resilience Testing for Enterprise-Wide Networks.
https://www.ixiacom.com/products/breakingpoint-ve

ACM Comput. Surv., Vol. 111, No. 11, Article 11. Publication date: January 2021.

https://doi.org/10.1109/35.267444
https://www.gl.com/traffic-generators.html
https://www.gl.com/traffic-generators.html
https://etd.ohiolink.edu/pg_10?0::NO:10:P10_ACCESSION_NUM:ohiou1176494135
http://nc110.sourceforge.net/
https://www.colasoft.com/download/products/download_packet_builder.php
https://www.colasoft.com/download/products/download_packet_builder.php
https://github.com/HewlettPackard/netperf
https://doi.org/10.1109/ISPASS.2001.990676
http://static.lwn.net/lwn/1998/0312/a/spak.html
https://doi.org/10.1109/NTMS.2012.6208742
https://www.ixiacom.com/products/breakingpoint-ve

Network Traffic Generation: A Survey and Methodology 11:21

[84] Keysight Technologies. 2020. Ixchariot - Instant Performance Assessment of Complex Networks from Pre- to
Post-Deployment. https://www.ixiacom.com/products/ixchariot

[85] Keysight Technologies. 2020. Ixnetwork - L2-3 Network Infrastructure Performance Testing That Scales to Business
Needs. https://www.ixiacom.com/products/ixnetwork

[86] S.S.Kolahi, S. Narayan, D. D. T. Nguyen, and Y. Sunarto. 2011. Performance Monitoring of Various Network Traffic
Generators. In 2011 UkSim 13th International Conference on Computer Modelling and Simulation. UKSIM, Cambridge,
Cambridgeshire, United Kingdom, 501-506. https://doi.org/10.1109/UKSIM.2011.102

[87] G Kramer. 2014. Generator of Self-Similar Traffic. http://research.glenkramer.com/code/trf_gen3.shtml

Charles Krasic. 2002. Home Page of Mxtraf. http://mxtraf.sourceforge.net/

[89] Chia-Yu Ku, Ying-Dar Lin, Yuan-Cheng Lai, Pei-Hsuan Li, and Kate Ching-Ju Lin. 2012. Real Traffic Replay Over
Wlan with Environment Emulation. In 2012 IEEE Wireless Communications and Networking Conference (WCNC). IEEE,
Paris, France, 2406-2411. https://doi.org/10.1109/WCNC.2012.6214199

[90] Hakawati Security Lab. 2018. Traffic Generators. Hakawati Security Lab. http://www.hakawati.co.kr/318

[91] ESnet / Lawrence Berkeley National Laboratory. 2014. iperf3: A TCP, UDP, and SCTP network bandwidth measurement
tool. Energy Sciences Network (ESnet). https://github.com/esnet/iperf

[92] Naval Research Laboratory. 2019. Multi-Generator (MGEN). U.S. Naval Research Laboratory. https://www.nrl.navy.
mil/itd/ncs/products/mgen

[93] Juha Laine, Sampo Saariso, and Ruii Prior. 2002. RUDE & CRUDE Traffic Generator. http://rude.sourceforge.net/

[94] Kun-Chan Lan and John Heidemann. 2002. Rapid Model Parameterization from Traffic Measurements. ACM
Transactions on Modeling and Computer Simulation (TOMACS) 12, 3 (2002), 201-229.

[95] LBNL/ICSI berkley lab. 2005. LBNL/LCSI Enterprise Tracing Project - Trace File Download. http://www.icir.org/
enterprise-tracing/download.html

[96] W.E.Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson. 1994. On the self-similar nature of Ethernet traffic (extended
version). IEEE/ACM Transactions on Networking 2, 1 (Feb 1994), 1-15. https://doi.org/10.1109/90.282603

[97] Leo Liang. 2016. IPGen IP Packets Generator. https://sourceforge.net/projects/ipgen/

[98] Jukka Manner. 2006. Jugi’s Traffic Generator (jtg). http://www.netlab.tkk.fi/~jmanner/jtg. html

Robert McMahon, Battu Kaushik, and Tim Auckland. 2005. Iperf: The TCP/UDP bandwidth measurement tool. NLANR

/ DAST. https://sourceforge.net/projects/iperf2/

[100] Sudhakar Mishra, Shefali Sonavane, and Anil Gupta. 2015. Study of traffic generation tools. International Journal of

Advanced Research in Computer and Communication Engineering 4, 6 (2015), 4-7.
[101] S. Molnar, P. Megyesi, and G. Szabd. 2013. How to validate traffic generators?. In 2013 IEEE International Conference on
Communications Workshops (ICC). IEEE, Budapest, Hungary, 1340-1344. https://doi.org/10.1109/ICCW.2013.6649445
[102] David Mosberger and Tai Jin. 1998. Httperf — a Tool for Measuring Web Server Performance. SIGMETRICS Perform.
Ewval. Rev. 26, 3 (Dec. 1998), 31-37. https://doi.org/10.1145/306225.306235

[103] Dan Nagle. 2020. Packet Sender - Free Utility to for Sending and Receiving of Network Packets. https://PacketSender.

com/

[104] Nathan Jeff. 2013. Nemesis Packet Injection Tool Suite. http://nemesis.sourceforge.net/

[105] UH Netlab. 2019-2021. Traffic Generators Survey. UH Netlab, University of Houston. http://docs.uh-netlab.org/

projects/surveypaperanalysis

[106] Juniper Networks. 2020. WRAP17 Traffic Generator. https://github.com/Juniper/warp17

[107] NMap. 2019. Nping - Network Packet Generation Tool / Ping Utiliy. https://nmap.org/nping/

[108] University of Zilina. 2019. Network Information Library - Traffic Generators. Network Information Library, University

of Zilina. https://nil.uniza.sk/traffic-generators-list/

[109] Robert Olsson. 2005. Pktgen the linux packet generator. In Proceedings of the Linux Symposium, Vol. 2. Ottawa Linux

Symposium, Ottawa, Canada, 11-24.

—
[o]
oo

=

—
O
O

—

flan)

=

[110] Omnicor. 2018. Network Testing Tools. http://www.omnicor.com/products/network-testing-tools
[111] Open Source Initiative. 2020. The Open Source Definition. https://opensource.org/osd
[112] Alan Ott. 2020. PlayCap Packet Replay. https://github.com/signal11/PlayCap
[113] Srivats P. 2017. Ostinato — Packet Generator. Ostinato. https://ostinato.org/
[114] Pacgen Team. 2013. Pacgen Packet Generator. https://sourceforge.net/projects/pacgen/
] Packet Data Systems Ltd. 2019. IP-Traffic Test and Measure. https://www.pds-test.co.uk/products/ip_test_measure.
html
] Packeth Team. 2018. packeth. http://packeth.sourceforge.net/packeth/Home.html
[117] PB Software. 2018. Network Traffic Generator and Monitor. http://pbsftwr.tripod.com/id17.html
] Esteban Pellegrino. 2020. pellegre/libcrafter. https://github.com/pellegre/libcrafter
]

Postel. 2017. TG Tool. http://www.postel.org/tg/

ACM Comput. Surv., Vol. 111, No. 11, Article 11. Publication date: January 2021.

https://www.ixiacom.com/products/ixchariot
https://www.ixiacom.com/products/ixnetwork
https://doi.org/10.1109/UKSIM.2011.102
http://research.glenkramer.com/code/trf_gen3.shtml
http://mxtraf.sourceforge.net/
https://doi.org/10.1109/WCNC.2012.6214199
http://www.hakawati.co.kr/318
https://github.com/esnet/iperf
https://www.nrl.navy.mil/itd/ncs/products/mgen
https://www.nrl.navy.mil/itd/ncs/products/mgen
http://rude.sourceforge.net/
http://www.icir.org/enterprise-tracing/download.html
http://www.icir.org/enterprise-tracing/download.html
https://doi.org/10.1109/90.282603
https://sourceforge.net/projects/ipgen/
http://www.netlab.tkk.fi/~jmanner/jtg.html
https://sourceforge.net/projects/iperf2/
https://doi.org/10.1109/ICCW.2013.6649445
https://doi.org/10.1145/306225.306235
https://PacketSender.com/
https://PacketSender.com/
http://nemesis.sourceforge.net/
http://docs.uh-netlab.org/projects/surveypaperanalysis
http://docs.uh-netlab.org/projects/surveypaperanalysis
https://github.com/Juniper/warp17
https://nmap.org/nping/
https://nil.uniza.sk/traffic-generators-list/
http://www.omnicor.com/products/network-testing-tools
https://opensource.org/osd
https://github.com/signal11/PlayCap
https://ostinato.org/
https://sourceforge.net/projects/pacgen/
https://www.pds-test.co.uk/products/ip_test_measure.html
https://www.pds-test.co.uk/products/ip_test_measure.html
http://packeth.sourceforge.net/packeth/Home.html
http://pbsftwr.tripod.com/id17.html
https://github.com/pellegre/libcrafter
http://www.postel.org/tg/

11:22 Adeleke, Bastin and Gurkan

[120] ACM SIGCOMM Conference Proceedings. 2006-2019. Publications within the Proceedings of all ACM SIGCOMM
Conferences and Journals.

[121] USENIX Conference Proceedings and Journals. 2006-2019. Publications within the Proceedings of all USENIX
Conferences and Journals.

[122] Vinay Ribeiro, Ryan King, and Niels Hoven. 2003. Poisson Traffic Generator. http://www.spin.rice.edu/Software/
poisson_gen/

[123] Chloé Rolland, Julien Ridoux, Bruno Baynat, and Vincent Borrel. 2008. Using LitGen, a Realistic IP Traffic Model, to
Evaluate the Impact of Burstiness on Performance. In Proceedings of the 1st international conference on Simulation
tools and techniques for communications, networks and systems & workshops. Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering (ICST), Marseille, France, 26.

[124] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C Snoeren. 2015. Inside the social network’s

(datacenter) network. In Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication.

ACM (Association for Computing Machinery), London, UK, 123-137.

M Samidi. 2004. Real-Time Voice Traffic Generator. http://static.lwn.net/lwn/1998/0312/a/spak.html

Henning Schulzrinne. 2017. Traffic Generators. Columbia University. https://www.cs.columbia.edu/~hgs/internet/

traffic-generator.html

Douglas C. Sicker, Paul Ohm, and Dirk Grunwald. 2007. Legal Issues Surrounding Monitoring During Network

Research. In Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement (San Diego, California, USA)

(IMC °07). ACM, New York, NY, USA, 141-148. https://doi.org/10.1145/1298306.1298307

Charles Robert Simpson and George F. Riley. 2004. NETI@home: A Distributed Approach to Collecting End-to-End

Network Performance Measurements. In Passive and Active Network Measurement (Lecture Notes in Computer Science),

Chadi Barakat and Ian Pratt (Eds.). Springer, Berlin, Heidelberg, 168-174. https://doi.org/10.1007/978-3-540-24668-

8_17

[129] Peter Siska, Marc Ph Stoecklin, Andreas Kind, and Torsten Braun. 2010. A Flow Trace Generator Using Graph-Based
Traffic Classification Techniques. In Proceedings of the 6th international wireless communications and mobile computing
conference. ACM, Caen, France, 457-462.

[130] Skaion Corporation. 2015. Skaion Traffic Generation System (TGS). http://www.skaion.com/

[131] SolarWinds. 2020. Network Traffic Generator - WAN Killer Test. https://www.solarwinds.com/engineers-toolset/use-
cases/traffic-generator-wan-killer

[132] Joel Sommers, Hyungsuk Kim, Paul Barford, and Paul Barford. 2004. Harpoon: A Flow-level Traffic Generator for
Router and Network Tests. SIGMETRICS Perform. Eval. Rev. 32, 1 (June 2004), 392-392. https://doi.org/10.1145/
1012888.1005733

[133] Dug Song. 2000. Fragroute. https://www.monkey.org/~dugsong/fragroute/

[134] Spirent Communications. 2020. Spirent TestCenter—Verifying Network and Cloud Evolution - Spirent. https:
//www.spirent.com/products/testcenter

[135] Wireshark Team. 2019. Wireshark - Tools. Wireshark Foundation. https://wiki.wireshark.org/Tools

[136] Qbone Testbed. 2013. Gen_send, Gen_recv: A Simple Udp Traffic Generator Application. http://www.citi.umich.edu/
projects/qbone/generator.html

[137] TFGen Team. 2000. TFGen Traffic Generator. http://www.pgcgi.com/hptools/

[138] Ajay Tirumala, Feng Qin, Jon Dugan, Jim Ferguson, and Kevin Gibbs. 2005. Iperf: The TCP/UDP bandwidth measurement
tool. Iperf. http://dast.nlanr.net/Projects

[139] Triticom. 2006. LANDecoder32 LAN Protocol Analyzer and Traffic Monitor. http://www.netunlim.com/master_site/
pdfs/LD32_V3.4.pdf

[140] Antoine Varet and Nicolas Larrieu. 2014. Realistic Network Traffic Profile Generation: Theory and Practice. Computer
and Information Science 7, 2 (2014), pp—1.

[141] Matti Vattinen. 2019. epb - Ethernet Packet Generator. http://m-a-z.github.io/epb/

[142] Kashi Venkatesh Vishwanath and Amin Vahdat. 2008. Evaluating distributed systems: Does background traffic
matter?. In USENIX annual technical conference. USENIX, Boston, MA, USA, 227-240.

[143] Kashi Venkatesh Vishwanath and Amin Vahdat. 2009. Swing: Realistic and Responsive Network Traffic Generation.
IEEE/ACM Transactions on Networking (TON) 17, 3 (2009), 712-725.

[144] K. V. Vishwanath and A. Vahdat. 2009. Swing: Realistic and Responsive Network Traffic Generation. IEEE/ACM
Transactions on Networking 17, 3 (June 2009), 712-725. https://doi.org/10.1109/TNET.2009.2020830

[145] Joerg Wallerich. 2008. NSWEB Traffic Generator. https://www.net.t-labs.tu-berlin.de/~joerg/

[146] Ulrich Weber. 2019. mausezahn. https://github.com/uweber/mausezahn

[147] Michele C. Weigle. 2011. Web Traffic Generation in NS2 with PackMime-HTTP. https://www.cs.odu.edu/~mweigle/
research/packmime/

[125
[126

—_

[127

—

[128

[

=

=

—

—

s

ACM Comput. Surv., Vol. 111, No. 11, Article 11. Publication date: January 2021.

http://www.spin.rice.edu/Software/poisson_gen/
http://www.spin.rice.edu/Software/poisson_gen/
http://static.lwn.net/lwn/1998/0312/a/spak.html
https://www.cs.columbia.edu/~hgs/internet/traffic-generator.html
https://www.cs.columbia.edu/~hgs/internet/traffic-generator.html
https://doi.org/10.1145/1298306.1298307
https://doi.org/10.1007/978-3-540-24668-8_17
https://doi.org/10.1007/978-3-540-24668-8_17
http://www.skaion.com/
https://www.solarwinds.com/engineers-toolset/use-cases/traffic-generator-wan-killer
https://www.solarwinds.com/engineers-toolset/use-cases/traffic-generator-wan-killer
https://doi.org/10.1145/1012888.1005733
https://doi.org/10.1145/1012888.1005733
https://www.monkey.org/~dugsong/fragroute/
https://www.spirent.com/products/testcenter
https://www.spirent.com/products/testcenter
https://wiki.wireshark.org/Tools
http://www.citi.umich.edu/projects/qbone/generator.html
http://www.citi.umich.edu/projects/qbone/generator.html
http://www.pgcgi.com/hptools/
http://dast.nlanr.net/Projects
http://www.netunlim.com/master_site/pdfs/LD32_V3.4.pdf
http://www.netunlim.com/master_site/pdfs/LD32_V3.4.pdf
http://m-a-z.github.io/epb/
https://doi.org/10.1109/TNET.2009.2020830
https://www.net.t-labs.tu-berlin.de/~joerg/
https://github.com/uweber/mausezahn
https://www.cs.odu.edu/~mweigle/research/packmime/
https://www.cs.odu.edu/~mweigle/research/packmime/

Network Traffic Generation: A Survey and Methodology 11:23

[148] Michele C. Weigle, Prashanth Adurthi, Félix Herndndez-Campos, Kevin Jeffay, and F. Donelson Smith. 2006. Tmix: A
Tool for Generating Realistic Tcp Application Workloads in NS2. SIGCOMM Comput. Commun. Rev. 36, 3 (July 2006),
65-76. https://doi.org/10.1145/1140086.1140094

[149] Keith Wiles. 2019. The DPDK Pktgen Application - Documentation. https://pktgen-dpdk.readthedocs.io/en/latest/

[150] W. Willinger, M. S. Taqqu, R. Sherman, and D. V. Wilson. 1997. Self-similarity through high-variability: statistical
analysis of Ethernet LAN traffic at the source level. IEEE/ACM Transactions on Networking 5, 1 (Feb 1997), 71-86.
https://doi.org/10.1109/90.554723

[151] Tao Ye, Darryl Veitch, Gianluca Iannaccone, and S Bhattacharya. 2005. Divide and Conquer: PC-based Packet Trace
Replay at OC-48 Speeds. In First International Conference on Testbeds and Research Infrastructures for the Development
of Networks and Communities (TridentCom). IEEE, Trento, Italy, 262-271.

[152] Andy Yeow and Chin Heng. 2006. Bit-Twist: Libpcap-Based Ethernet Packet Generator. http://bittwist.sourceforge.net/

[153] Petr Zach, MARTIN Pokorny, and ARNOST Motycka. 2013. Design of Software Network Traffic Generator. Recent
Advances in Circuits, Systems, Telecommunications and Control 1 (2013), 244-251.

[154] Sebastian Zander, David Kennedy, and Grenville Armitage. 2005. Kute a High Performance Kernel-Based Udp Traffic
Engine. Technical Report 0501118A. Swinburne University of Technology. Centre for Advanced Internet Architectures
(CAIA).

=

ACM Comput. Surv., Vol. 111, No. 11, Article 11. Publication date: January 2021.

https://doi.org/10.1145/1140086.1140094
https://pktgen-dpdk.readthedocs.io/en/latest/
https://doi.org/10.1109/90.554723
http://bittwist.sourceforge.net/

11:24 Adeleke, Bastin and Gurkan

A DEFINITIONS OF TABLE ROW HEADERS
A.1 Table3
The descriptions for each feature listed in Table 3 are given below.

1 Set # of packets: Configure the total number of packets to send.
2 Set total bytes: Configure the total number of bytes to send.
3 Set fixed throughput: Set a fixed value for the throughput in bits per second (bps).
4 Set randomized throughput: Configure set of values, or a random distribution for the
throughput at which to send packets.
5 Set packet rate: Configure a fixed value in packet rates per second (pps) at which packets
should be sent.
6 Set time duration: Set a time limit for the duration of the traffic generation process.
7 Send data files: Configure the generator to use an arbitrary data file as data source for the
payload of the packets to be sent.
8 Replay traffic traces: Generator supports the replay network traffic trace files.
9 Set fixed packet size: Configure a packet size in bytes, for all packets to be sent by the
generator.
10 Set randomized packet sizes: Configure packet sizes to be picked from a set of values.
These values can be picked from a particular random distribution.
11 Set fixed inter-packet time: Set a fixed value for inter-packet time intervals in seconds for
the packets.
12 Set randomized inter-packet times: Configure inter-packet time values to be picket from
a set of values or from a random distribution.
13 Support TCP connections: Generator supports actual TCP connections, and not just 1-sided
flows.
14 Support SCTP connections: Generator supports actual SCTP connections, and not just
1-sided flows.
15 Set MSS: Configure a fixed value for maximum segment size(MSS).
16 Set reporting intervals: Configure time intervals at which to show a summary of the
packets sent so far, while the generation process is ongoing.
17 Set interface: Select the network interface on which to send out packets.
18 Specify IP address of interface: Select the interface on which to send out packets, by
specifying the IP address associated with the interface.
19 Set CPU affinity: Select a CPU core to use for the packet generation process on multi-core
systems.
20 Generate IP fragments: Native support for the generation of fragmented IP packets.
21 Bi-directional generation: Native support for sending packets in both directions, from
the source and the target, each one towards the other.
22 Multiple parallel connections/ flows: Native support for sending packets associated with
multiple flows or connections simultaneously.
23 Arbitrary http requests: Configure to send any HTTP request to a target host.

A.2 Table5
The descriptions for each feature listed in Table 5 are given below.

1 Throughput: The amount of data delivered by the traffic generator from the source to target
per unit time, usually measured in bytes per second (bps).

ACM Comput. Surv., Vol. 111, No. 11, Article 11. Publication date: January 2021.

Network Traffic Generation: A Survey and Methodology 11:25

2 Latency: The interval between the time a packet is sent from a source, and the time it is
received at the destination.
3 Packet rate: The number of packets delivered by the traffic generator from the source to
target, usually measured in packets per second (pps).
4 Total no. of packets: The total number of packets sent from the source to the target during
the entire traffic generation process.
5 Total no. of bytes: The total amount of data in bytes sent from the source to the sink during
the traffic generation process.
6 Duration: The total time elapsed during the traffic generation process usually measured in
seconds.
7 Jitter: The variation in latency of packets usually measured in seconds.
8 No. of retransmissions: The total number of packets that had to be re-transmitted during
the packet generation process.
9 No. of drops: The total number of packets that were sent from the source but not successfully
received at the receiver.
10 MSS: The maximum segment size of TCP packets sent by the generator.
11 Congestion win. size(s): The congestion window size of the sending host of the traffic
generator.
12 CPU demand: The amount of CPU utilized by the traffic generator.
13 Number of flows or connections: The total number of unique connections or the total
number of unique flows created by the traffic generation process.
14 Request/response transaction rates: For the traffic generators that conform to the request-
response model, this is the number of request and response pairs completed per unit time.

ACM Comput. Surv., Vol. 111, No. 11, Article 11. Publication date: January 2021.

	Abstract
	1 Introduction
	2 Survey of Traffic Generators and Their Usage in Research
	2.1 List of Traffic Generators
	2.2 Tool Popularity

	3 A Taxonomy of Traffic Generators
	3.1 Constant or Maximum Throughput Generators
	3.2 Application Level Synthetic Workload Generators
	3.3 Trace File Replay Systems
	3.4 Model-Based Traffic Generators
	3.5 Trace Driven Model-Based Traffic Generators
	3.6 Script Driven Traffic Generators

	4 Traffic Generator Selection: Common Requirements and Features
	4.1 Traffic Generator Selection Methodology
	4.2 An Example: Load-Balancing Research

	5 Existing Surveys
	6 Summary
	Acknowledgments
	References
	A Definitions of Table Row Headers
	A.1 Table 3
	A.2 Table 5

