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1 INTRODUCTION

The Kelvin–Helmholtz (KH) instability is one of the most
common physical processes at the magnetopause boundary of
the Earth (Fairfield et al., 2000; Hasegawa et al., 2004; Nykyri
et al., 2006; Eriksson et al., 2016; Li et al., 2016) as well as other
planets (e.g., Jupiter and Saturn) (Johnson et al., 2014; Ma et al.,
2015; Burkholder et al., 2017). It is driven by a large sheared flow,
and it can be stabilized by the magnetic field along the sheared
flow direction (Chandrasekhar, 1961), compressibility, and a
broad initial shear flow width (Miura and Pritchett, 1982).
Therefore, KH instability can occur under north, south, and
Parker-spiral interplanetary magnetic field (IMF) conditions in
the vicinity of the equatorial plane (Hwang et al., 2011; Kavosi
and Raeder, 2015; Henry et al., 2017), as well as at high latitudes
during the dawn or dusk-ward IMF condition (Hwang et al.,
2012; Ma et al., 2016; Nykyri et al., 2021a).

As a macro-scale dissipation process, the KH instability alone
can transport momentum and energy from solar wind into the
magnetosphere (Pu and Kivelson, 1983a; Pu and Kivelson,
1983b). It has been shown that the anomalous (eddy) viscosity
is about 0.02V0a in the nonlinear stage of the KH instability,
where a is the half width of the initial velocity shear layer, and V0

is total velocity jump (Miura, 1984), which is about 109 m2 s−1 for
a typical Earth’s magnetopause condition. This value is consistent
with the requirement by the “viscous-like” interaction (Axford
and Hines, 1961; Sonnerup, 1980). Furthermore, during the
nonlinear stage, the KH instability can strongly modify the
boundary, generating a thin current sheet, which triggers
magnetic reconnection (Otto and Fairfield, 2000; Nakamura
et al., 2008; Nakamura and Fujimoto, 2008) and other kinetic
physics [e.g., kinetic Alfvén wave, magnetosonic wave, see
detailed discussion in (Masson and Nykyri, 2018)]. These
secondary processes will break the frozen-in condition which
allows the plasma transport between the magnetosheath and the
magnetosphere (Otto and Fairfield, 2000; Nakamura et al., 2008;
Ma et al., 2017). In two-dimensional (2-D) geometry, there are
two types of KH driven reconnection (Nakamura et al., 2008;
Nakamura and Fujimoto, 2008). “Type I” operates if the initial
magnetic field component along the sheared flow direction is
anti-parallel across the sheared flow layer (i.e., a pre-existing large
current layer case). In this condition, the pre-existing current
layer will be further compressed in the spine region (i.e., the
region connecting two neighboring vortices) during the growth of
the KH instability, and this process will eventually trigger
magnetic reconnection. This reconnection process allows the
magnetosheath magnetic field to connect to magnetospheric
magnetic field. The “type II” operates without a pre-existing
current layer, meaning the magnetic field components across
the sheared flow layer are mostly along the same direction. In
such a condition, the well developed KH vortices can fold the
magnetic field line in the KH plane (Otto and Fairfield, 2000).
This process can change the magnetic field directions and form
thin current layers in the vortices. If the width of the current layer
is comparable to the ion inertial length, then magnetic
reconnection occurs between the magnetosheath field lines or
the magnetospheric field lines, which generates a large magnetic

island detached from the original field line which moves to the
other side of the original boundary layer. Two-dimensional MHD
and Hall MHD estimated that this type of plasma transport
process can transport plasma at a speed of several km s−1,
equivalent to a diffusion coefficient of about 109 m2 s−1 for
Earth’s typical magnetopause conditions (Nykyri and Otto,
2001; Nykyri and Otto, 2004). Although hybrid simulations
show similar overall dynamical properties (e.g., growth rate,
anomalous (eddy) viscosity, and the size of mixed region),
magnetic reconnection occurs in a more patchy manner,
which forms a series of smaller magnetic islands (Ma et al.,
2019). In order to quantify the diffusion caused by the nonlinear
KH instability, hybrid simulations define mixing region based on
the percentage of the particles from both side of the boundary in a
given cell (Terasawa et al., 1992), or calculate the standard
deviation of the normal direction displacement of the particles
in the activity region (Cowee et al., 2009; Cowee et al., 2010). For
hybrid simulation, the mixing diffusion coefficient is about
108—109 m2 s−1 for typical Earth’s environment (Cowee et al.,
2009; Cowee et al., 2010) and 1010 m2 s−1 for Saturn (Delamere
et al., 2011).

The observed KH instability at the 3-D magnetopause
boundary is often localized in the vicinity of the equatorial
plane due to the magnetic field curvature. For northward IMF
condition, the well developed KH vortex will drag low-latitude
magnetosheath magnetic field lines in the sun-ward direction and
low-latitude magnetospheric magnetic field lines in the tail-ward
direction, reminiscent of a “candy wrapper.” This process will
generate anti-parallel magnetic field components at mid-latitude,
and eventually will trigger a pair of mid-latitude reconnection
sites, which is often referred as double-mid-latitude-reconnection
(DMLR) (Otto, 2006; Faganello et al., 2012). Detailed discussions
of type-I, type-II, and DMLR can be found in recent papers by
Faganello and Califano (Faganello and Califano, 2017) and Ma
et al. (Ma et al., 2017). The net effect of this process exchanges the
low-latitude magnetosheath and magnetospheric flux tubes, and
therefore transports the mass and flux tube entropy between the
magnetosheath and the magnetosphere. It has been estimated
that the mass transport rate is about 1010 m2 s−1 (Ma et al., 2017)
for Earth’s typical magnetopause condition. For southward IMF
condition, the KH instability can occur on the equatorial plane,
while the meridian is tearing mode unstable. Thus, both KH
instability and magnetic reconnection can operate
simultaneously. The nonlinear interaction between these two
processes leads to a fast reconnection growth rate which is
close to the Petschek reconnection rate without including
kinetic physics. However, the total reconnected flux is limited
by the KH instability, since the KH instability diffuses the
boundary current layer (Ma et al., 2014a; Ma et al., 2014b).

It is also useful to consider the KH instability as a cross-scale
process. The typical KH wavelength at the Earth’s magnetopause
is about 2–6 Earth’s radii (RE), (i.e., about 50–500 ion inertial
lengths for the magnetopause density around 1–10 cm−3), and the
localization along the z direction is comparable to the KH
wavelength (Ma et al., 2014a). However, the different types of
secondary instabilities triggered by the nonlinear KH instability
often occur at sizes comparable to ion inertial scales (Nykyri et al.,
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2021b). Thus, it would be ideal to use hybrid or even fully kinetic
simulation to systematically investigate the KH instability and its
secondary instability. For instance, Karimabadi et al. (Karimabadi
et al., 2013) used kinetic PIC code VPIC to demonstrate the
formation of coherent structures in the form of current sheets
that steepen to electron scales through turbulent cascade during
the KH instability, which triggers strong localized heating of the
plasma. However, it is often computationally expensive and the
non-periodic boundary conditions along the non-wave-direction
are not trivial to incorporate in particle simulations.

One compromise is the test particle simulation approach
based on the electromagnetic field provided by fluid
simulation. This approach does not provide a feedback
mechanism from particles to the field, such that a significant
part of the kinetic physics aspect is excluded. However, it still
reproduces the anisotropic temperature and particle mixing in a
two-dimensional geometry (Ma et al., 2019). Furthermore, Henri
et al. (Henri et al., 2013) carefully compared simulation of 2-D
KH instability by using MHD, Hall-MHD, two-fluid, hybrid
kinetic, and full kinetic codes, showing that the feedback from
small, kinetic scales to large, fluid scales is negligible in the
nonlinear regime despite differences in the small scale
processes between the different models. Thus, the motivation
of this paper is to further explore the application of the test
particle simulation in a 3-D KH instability.

2 NUMERICAL METHOD

2.1 MHD Simulation
In this study, all physical quantities are normalized by their
typical values, which are given by length scale L0 � 640 km,
density n0 � 10 cm−3, magnetic field magnitude B0 � 70 nT, and
the typical value of other quantities can be derived from these
three quantities. The full set of normalized resistive MHD
equations are solved by the leap-frog scheme, which has a
long heritage of investigating mesoscale MHD instabilities
(Birn, 1976; Otto, 1990; Otto and Fairfield, 2000; Nykyri and
Otto, 2001; Ma et al., 2014a; Ma et al., 2014b; Ma et al., 2017). The
whole set of simulations are carried out in a rectangular cuboid
domain (i.e., [−Lx, Lx] × [−Ly, Ly] × [−Lz, Lz]), in which Lx � 20, Ly
� 10, and Lz � 40. Here the x direction is the normal direction of
the unperturbed magnetopause boundary, pointing from the
magnetosphere to the magnetosheath. The z direction points
to the North, which is mostly along the magnetic field direction.
The y direction is determined by the right hand rule, which is also
mostly along the sheared flow direction. The y direction uses
periodic boundary conditions. The x direction uses closed
boundary conditions (i.e., Bx � vx � 0 and zx � 0 for other
quantities), however, the dimension along the x direction is
sufficiently large, that the reflection from x boundary is
negligible to the end of the simulation. The z direction uses
open boundary conditions (i.e., zz � 0 for all quantities, except Bz
is determined by the zero-divergence of the magnetic field),
however quantities on these boundaries remain at their initial
value due to the artificial friction term we applied to the top and
bottom boundaries (see below).

The initial steady state configuration is a one-dimensional
transition layer, which is given by F � �F + δF tanh(x/D), where
D � 1 is the width of the transition layer, F � [ρ, vy, By, Bz],
�F � F1 + F2, and δF � F1 − F2. Here, the subscripts 1 and 2
represent the value on the magnetosheath side (i.e., x > 0) and the
magnetospheric side (i.e., x < 0), respectively. The other
components of the vector quantities are set to be zero (i.e., vx
� vz � Bx � 0). Two different initial conditions are used in this
study. The first case is given by F1 � [1.54, 0.42, 0, 1.02] and F2 �
[0.46, 0.42, 0, 0.98], which is referred to as the symmetric case
since By � 0. In this situation, the bulk velocity is perpendicular to
the magnetic field. In a 2-D geometry, the dynamics in the xy-
plane decouple from the z direction, which eliminates the onset of
magnetic reconnection in the MHD and hybrid description (Otto
and Fairfield, 2000; Settino et al., 2020). In the 3-D geometry, the
system maintains north-south symmetry, meaning the magnetic
field is always perpendicular to the bulk flow in the equatorial
plane. Thus, there is no low-latitude reconnection (Ma et al.,
2017). However, the localized perturbation and boundary
condition (see below) break the translational symmetry along
the z direction, which locally twists the magnetic field to generate
DMLR (Faganello et al., 2012; Faganello and Califano, 2017; Ma
et al., 2017). The second case is given by F1 � [1.54, 0.42, −0.35,
1.02] and F2 � [0.46, 0.42, −0.08, 0.98], which is referred to as the
asymmetric case and low-latitude KH driven reconnection can
occur. The initial conditions for the asymmetric case are
approximately the same as those observed by the MMS
satellites on 8 Sept 2015 (Eriksson et al., 2016). Notice, this
event has been simulated by several numerical models, which
mostly use a constant Bz [e.g., (Nakamura et al., 2017; Franci et al.,
2020)]. Due to the flexility of the MHD model, we can include a
tiny Bz variation in this study to make the model closer to the real
event. However, such a tiny variation is not expected to bring a
significant impact on the overall dynamics compared to the
constant Bz.

The KH instability is triggered by a velocity perturbation,
which is given by v � ∇Φ(x, y) × ez f(z). Here, the stream function
is Φ(x, y) � δv cos(x/lx) cosh

−1(kyy), lx � 2, ky � π/Ly and δv � vy/
20. In this study, the simulation assumes the high-latitude
magnetic field lines move with the solar wind or are tied to
the ionosphere. Thus, the KH perturbation is localized in the
vicinity of the equatorial plane, in which the localization function
f(z) is given by f(z) � 0.5{ tanh[(z + zd)/Dz] − tanh[(z − zd)/Dz]}, zd
� 0.5Lz, and Dz � 3. Furthermore, an artificial friction term −
](z)(v − v0) is applied to the right-hand side of the momentum
equation. Here, v0 is the unperturbed bulk velocity, which also
represents the solar wind or ionosphere speed. The friction term
tends to force the plasma to move at its initial velocity, or
equivalently it absorbs perturbations, maintaining the initial
boundary layer away from the equatorial plane. Therefore, the
friction coefficient is given by ](z) � 0.5{2 − tanh[(z + z])/D]] +
tanh[(z − z])/D]]}, z] � 0.75Lz, and D] � 3, which has been
switched on only near the top and bottom boundaries (Ma
et al., 2017).

In the MHD simulation, for any given point at any given time,
a magnetic field line can be traced from this point to the top and
bottom boundaries. Notice, the top and bottom boundaries in this
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simulation represent the unperturbed region. Thus, if the x-
component of the spatial location of the magnetic field line’s
footprint on the top (Xtop) or bottom boundaries (Xbot) is smaller
than zero, then it means this end of the magnetic field line is
connecting to the magnetospheric side at that moment. Similarly,
if the Xtop or Xbot is larger than zero, then it means this end of the
magnetic field line is connecting to the magnetosheath side. In
this study, we refer to the magnetic field line with both top and
bottom footprints on the magnetosheath (magnetospheric) side
as magnetosheath (magnetospheric) field lines. Magnetic field
line with one end connecting to the magnetosheath side and the
other end connecting to the magnetospheric side is referred to as
open field line.

2.2 Test Particle Simulation
The full set of non-relativistic Lorentz equations are solved using
the traditional Boris method (Boris, 1970), which has been used
to investigate high-energy particles in the cusp diamagnetic cavity
(Nykyri et al., 2012), and KH instability (Ma et al., 2019). The
symmetric treatment of the time derivative in the Boris method
maintains the temporal reversibility of the Lorentz equation.
Thus, this code can reverse trace the test particles to
reconstruct particle distributions based on Liouville’s theory
(Birn et al., 1997; Birn et al., 1998).

For the forward tracing simulation, we launch particles with
shifted Maxwellian distributions (max v < 4 in simulation unit or
2000 km s−1) inside of the MHD simulation domain (i.e., [−15,
15] × [−10, 10] × [−40, 40]) with 150 × 200 × 200 cells at t � 0,
which covers most of the KH active region. Notice, we did not
launch the particles outside of |x| � 15 to save on computational
effort, since the thermal particles there merely reach to the KH
active region toward the end of the simulation. The number of
particles in each cell is proportional to the plasma density in the
middle of the cell (i.e, 50 particles/cell ∼ ρ � 0.46), which gives a
total 6,51,320,000 particles within the MHD simulation domain.
The number of particles on the magnetospheric side is about 1/3
of the particles on the magnetosheath side. Maintaining particle
numbers in the simulation domain is an important aspect of
particle simulations (i.e., PIC, hybrid, and test particle
simulation), in which periodic boundary conditions are often
used. However, the 3-D KH instability processes, which involves
middle latitude reconnection or nonlinear interaction between
the KH instability and reconnection processes have no periodicity
along the third direction (i.e., z-direction). Therefore, the often
used periodic boundary conditions may not be appropriate for
these types of simulations. This study uses extended boundary
conditions. This type of boundary condition adds additional
domains ([−dLz − Lz, Lz + dLz]) along the top and bottom of
the fluid simulation domains ([−Lz, Lz]), in which density,
pressure, magnetic field, and bulk velocity are set to be the
same as the value at the fluid simulation top and bottom
boundaries. Consequently, the particle distribution is
initialized in the same way as it is inside of the fluid
simulation domain. For computational efficiency, we only
trace the particles that can reach the simulation domain
during the test particle simulation time. Those particles can be
easily identified by their initial location z0 and velocity v0.

Assuming that the total test particle simulation interval is τ
and the charged particles are mostly moving along the
magnetic field line (at least in the buffer region), then by the
time of τ, the z component of the particle location will be within
ze � z0 + v0‖τ ± gr � ze′ ± gr, where v0‖ is the initial parallel
velocity, and gr is the gyro-radius, which is dependent on the
initial perpendicular velocity. Notice, if By ≠ 0, the gyro motion
has a component along the z direction, which is the reason why
we have to take the gyro-radius in to account. Thus, we only need
to trace particles with |ze′ |< Lz + δz, where δz is an arbitrary value
greater than max gr. During this study, this boundary condition
leads to the total number of particles inside of the simulation box
[−Lz, Lz] changing less than 0.4% of the initial number.

For the backward tracing, we only focus on the KH active
region in the equatorial plane (i.e., [−6, 6] × [−10, 10] resolved by
61 × 101 grid points) in the nonlinear stage for the symmetric
case. For each individual grid point, we traced 513 particles
backward to t � 0, covering a range of [−3vth, 3vth]3 in
velocity space. Here, vth is the thermal velocity at the grid
point. Then, the weight of each particle, w, is estimated based
on the phase space density of the shifted Maxwellian distribution
at [x,v]t�0 with the assumption that Liouville’s theory is satisfied.
Thus, the number density, velocity, and pressure can be obtained
through the zeroth to second order moments of w integrated over
the whole [−3vth, 3vth]3 velocity space.

3 RESULTS

Figure 1 shows a fully developed KH vortex in the equatorial
plane (z � 0) at t � 130 for the symmetric case (top) and the
asymmetric case (bottom). The black arrows are the bulk velocity.
The color index represents the plasma density, ρ, (left) and
mixing rate, rM, (right). Here, the high and low density
regions indicate the magnetosheath plasma and the
magnetospheric plasma, respectively. The mixing rate is
defined as rM � 1–2|0.5 − p|, where 1 ≥ p ≥ 0 is the
probability of magnetosheath particles for a given cell
(Matsumoto and Hoshino, 2006). Thus rM � 1 means fully
mixed, rM � 0 means no mixing. The magenta line represents
the magnetosheath-magnetosphere boundary based on magnetic
field topology (i.e., the x-component of the magnetic field line
footprints on the top or bottom boundaries are zero). Thus, for
the symmetric case all the magnetic field lines on left side of the
magenta line are closed magnetospheric field lines, which also
includes regions with magnetosheath-like, high-density plasma.
Magnetic field lines in these regions have experienced the DMLR
process, changing their connection from the magnetosheath to
the magnetosphere, which are referred to as “newly connected
magnetospheric magnetic field lines.” Similarly, magnetospheric-
like, low-density plasma also observed on the right side of the
magenta line, indicating that magnetic field lines in these regions
are “newly connected magnetosheath magnetic field lines.” For
the asymmetric case, a single magnetic field line may not
experience DMLR simultaneously, which will generate open
flux regions (e.g., y ∈ [2,4] region). The right panels of mixing
rate rM show that the majority of the mixed region is along the
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density boundary layer. Note, some newly connected
magnetospheric magnetic field lines do not involve any
mixing. This means the mixing in the low latitude is mostly
via the finite gyroradius effect. Although the DMLR process
provides the connection between magnetosheath and
magnetospheric field lines, it takes time for ion particles
moving from high latitudes to lower latitudes to influence the
mixing rate in the equatorial plane.

Figure 2 shows the overall dynamic properties for the
symmetric case (left) and the asymmetric case (right). The top
to bottom panels plot the growth of the KH instability (the range
of the bulk velocity vx component), the change of mass on the
magnetosheath side (blue) and magnetospheric side (red), and
the total mixed volume Vm � ∫rM(x, y, z)dxdydz, respectively.
This demonstrates that the perturbation grows exponentially

before t � 80 (i.e., the linear stage) and saturates after t � 80
(i.e., the nonlinear stage) for the symmetric case. Stabilized by the
magnetic By component, the asymmetric case has a relatively
lower growth rate. During the nonlinear stage, a significant
amount of mass is transported from the magnetosheath into
the magnetosphere via the DMLR process for the symmetric case.
We estimated that the maximum transport rate (i.e., dM/dt) is
about 1025 particles/s, or the transport diffusion coefficient of 9 ×
109 m2 s−1, which is given by dL2M/dt, where LM �M/(4LyLzρmsh).
For the asymmetric case, the plasma lost from the magnetosheath
side moves to the magnetospheric side as well as to open flux
regions. Thus, the magnetosheath mass decrease rate is
comparable to the symmetric case, while the magnetosphere
mass increase rate is lower than it is in the symmetric case.
Actually, at the early stage, the magnetosphere loses mass into the

FIGURE 1 | A fully developed KH vortex in the equatorial plane (z � 0) at t � 130 for the symmetric case (top) and the asymmetric case (bottom). The color index
represents the plasma density (left) and mixing rate (right). The black arrows represent the x and y components of the bulk velocity. The magenta line represents the
magnetosheath-magnetosphere boundary based on magnetic field topology.
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open flux region, due to the DMLR process operating
nonsimultaneously. The total mixed volume, Vm, also shows a
significant increase during the nonlinear stage, which is due to the
elongation of the magnetosheath-magnetosphere boundary layer
via the KH vortex as well as magnetic field line topology change
via the mid-latitude reconnection process. While the asymmetric
case shows a much smaller total mixed volume than the
symmetric case by the time t � 130, it could be simply due to
the asymmetric case reaching the nonlinear stage a bit later than
the symmetric case. The maximum mixing diffusion rate for the
symmetric case is about 1010m2 s−1, given by dL2m/dt, where Lm �
Vm/(4LzLy).

In this study, we apply both fluid and particle approaches to
evaluate the total mass on the magnetosheath side and the
magnetospheric side. For the fluid approach, one can trace the
magnetic field lines from the top of the MHD simulation domain,
and calculate the flux tube content η(x, y) � ∫ρ/Bds along the
magnetic field line, then integrate the flux tube content on the top
boundary on the magnetosheath (i.e.,Mmsh � ∫mshη(x, y)Bzdxdy)
and magnetospheric sides (Mmsp � ∫mspη(x, y)Bzdxdy). This
method is computationally inexpensive, however it may incur
a large error if the boundary is not perfectly unperturbed. A more
accurate method is to integrate the plasma density in the
magnetosphere, magnetosheath, and open flux regions

(i.e., M � ∫ρdxdydz), which can be achieved via identification
of the connection of each grid point (magnetosphere,
magnetosheath or open flux) by tracing the field lines to the
top and bottom boundaries. A dense grid is needed in the KH
active region to increase the accuracy, which requires a relatively
higher computational cost. For the particle approach, one can
count the total number of particles with different connections.
However, this is a computationally expensive. A more practical
approach is to identify the x-component of footprints on the top
(Xtop) and bottom (Xbot) boundary for each individual grid point
of a dense grid covering the KH active region, and then
interpolate the Xtop and Xbot to the guiding center of the
particle to identify the connection of each individual
particle. One can also redistribute the particles to the eight
neighboring grid points to get a smoother statistical count.
However, with a large number of particles, these two methods
give almost identical results. As long as we know the total mass
each particle represents, we can easily covert the particle
approach (number of particles) into the fluid approach
(mass). The middle panel of Figure 2 shows the results
from the fluid approach (solid lines) and particle approach
(diamond) are identical, indicating the zeroth order moment
of the particle distribution is consistent with the fluid
description.

FIGURE 2 | The overall dynamical properties for the symmetric case (left) and the asymmetric case (right). The top to bottom panels show the growth of the KH
instability (the range of the bulk velocity vx component), the change of mass on the magnetosheath side (blue) and magnetospheric side (red), and the total mixed volume
Vm, respectively. In the left-middle panel, the fluid approach is represented by the solid lines and test particle approaches based on H+ and O+ are represented by
diamonds and circles, respectively. In the left-bottom panel the total mixed volume is shown based on H+ (solid line) and O+ (dashed line). In the right panels, the
results from symmetric case are in light gray lines or dashed lines for reference.
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In this study, we launch two different ion species (i.e., H+ and
O+) with the same velocity distribution for the symmetric case.
The result (left-middle panel in Figure 2) shows that althoughO+
(circle) has a much larger gyroradius compared to H+ (diamond),
it is still much smaller than the KH wavelength. Thus, the
transport rate is insensitive to the mass-to-charge ratio for
Earth’s typical magnetopause conditions. The left-bottom
panel of Figure 2 shows that with a much larger gyroradius,
the mixed volume for O+ (dashed line) is much greater than the
H+ (solid line). In the linear stage, the ratio between O+ and H+
mixed volume is close to the ratio of their gyroradii, with the
oscillation in the dashed line caused by the O+ gyro-frequency.
However, in the nonlinear stage the O+ and H+ mixed volumes
have a similar mixing diffusion rate, and their ratio decreases to
about two. This is because in the nonlinear stage the density
boundary is highly twisted and folded by the KH instability,
collapsing the original undulated boundary layer into a thick
region, which limits the efficiency of the larger gyroradius on the
increase of the mixed volume.

The large temperature and specific entropy difference between
the magnetosheath and magnetospheric plasma leads to an
important question of whether the plasma has been
(nonadiabatically) heated when it is transported from the
magnetosheath into the magnetosphere (Ma and Otto, 2014).
It has been demonstrated that magnetic reconnection cannot
provide sufficient adiabatic heating unless the plasma beta is
much smaller than unity (Ma and Otto, 2014). However, the
typical magnetosheath plasma beta is about one (Ma et al., 2020),
leading to the speculation that the KH instability may be
responsible for an additional nonadiabatic heating source
(Moore et al., 2016; Moore et al., 2017; Nykyri et al., 2021a;
Nykyri et al., 2021b). But, as an ideal instability (i.e., the onset of
the instability does not break the “frozen-in” condition), the
MHD description of the KH instability conserves specific
entropy, meaning no nonadiabatic heating source.
Nevertheless, the KH instability and the associated secondary
instabilities are naturally associated with turbulence (Matsumoto
and Hoshino, 2006; Stawarz et al., 2016; Nakamura et al., 2017;
Nykyri et al., 2017; Dong et al., 2018; Nakamura et al., 2020),
which has a long history of studies demonstrating that turbulent
heating is a very effective mechanism for ion heating [e.g.,
Quataert (Quataert, 1998), Johnson and Cheng (Johnson and
Cheng, 2001), Chandran et al. (Chandran et al., 2010), Told et al.
(Told et al., 2015), Vasquez (Vasquez, 2015), Grošelj et al.
(Grošelj et al., 2017), Arzamasskiy et al. (Arzamasskiy et al.,
2019), Cerri et al. (Cerri et al., 2021)]. Delamere et al. (Delamere
et al., 2021) estimated a turbulent ion heating rate density
≈10–15 Wm−3 during the nonlinear stage of 3-D hybrid KH
instability simulations based on the typical Saturn’s
magnetopause boundary condition, which is consistent with
the Cassini data analysis (Burkholder et al., 2020). Such
estimations should also apply to investigate Earth’s
magnetopause boundary both from numerical simulation and
observational data analysis, which, however, is out of scope of this
paper. Meanwhile, from the perspective of the particle
description, there are two plausible hypotheses to increase the
specific entropy. The first one is the free expansion of

magnetosheath plasma into the newly reconnected
magnetosphere flux tube (Johnson et al., 2014). The second
one is that higher energy particles are preferentially
transported from magnetosheath into the magnetosphere by
the KH instability, which can be easily tested by using test
particle simulation. Recently, MMS encountered trapped
energetic particles within KH waves at the high-latitude
magnetosphere (Nykyri et al., 2021a).

The top panel of Figure 3 plots the energy distribution for the
particles that moved from the magnetosheath into the
magnetosphere (blue) and the particles that moved from the
magnetosphere into the magnetosheath (red) at t � 130 for the
symmetric case. As a reference, we also plot the energy
distribution for those particles at t � 0 (dots), as well as the
energy distribution for the particles remaining in the
magnetosphere (black) and the magnetosheath (magenta).
Here, the energy is v2d, where vd is the particle velocity minus
the MHD bulk velocity. The results show the energy distributions
do not change with the time, indicating there is no heating source
during the KH process, which is consistent with the MHD
description. However, the mean energy (i.e., temperature) of
the plasma transported from the magnetosheath into the
magnetosphere is indeed higher than the plasma remaining in
the magnetosheath, and particles transported from the
magnetosphere to the magnetosheath are lower energy than
those remaining in the magnetosphere. This appears to
support that the KH instability filters higher energy particles
from magnetosheath into the magnetosphere. However, the
bottom panel of Figure 3 plots the initial energy distribution
(i.e., t � 0) for the particles that already crossed the boundary at
t � 130 as a function of their initial location along the x-direction.
The black line represents 1.5 times the initial temperature, T
(i.e., kinetic energy), demonstrating that the higher energy
(temperature) of the magnetosheath-originating particles is
simply because they are from the hotter part of the preexisting
boundary layer. Thus, the second hypothesis does not hold for the
thermal population. The super-thermal population requires
additional testing, which is out of the scope of this study.

The above results suggest that the zeroth order moment of the
particle distribution in the whole simulation domain is mostly
consistent with the density from the MHD simulation. It is of
interest to examine the consistency of higher order moments
between test particle and MHD simulation. The top panels of
Figure 4 plot the deviation between MHD bulk velocity, vM and
the first order moment from forward tracing (vF, left) and
backward tracing (vB, right) in the equatorial plane z � 0 for
the symmetric case at t � 130, while the bottom panels of Figure 4
plot the logarithmic scale of the ratio betweenMHD temperature,
TM and the second order moment from forward tracing (TF, left)
and backward tracing (TB, right). The red lines are the contour
lines of rM � 0.5. The results clearly illustrate that the region
with large deviation between MHD simulation and test particle
simulation are close to the high mixing rate, rM region. In the
nonlinear stage, althoughMHD can still well describe the region
outside of the KH active region, the increase of the particle
mixing due to the thin boundary layer generated by the KH
vortex becomes more and more important, which may
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eventually alter the MHD description. Therefore, simulations of
the later stage of the nonlinear KH instability ultimately require
including kinetic physics, that is hybrid simulation or even full
kinetic simulation. The deviation of higher order moments
between MHD and test particle simulations could be used as
an indication of when the particle description becomes
important. We also notice that fewer particles launched on
the magnetosphere side due to the lower density in the forward
tracing method leads to a higher statistical noise. As a

comparison, although overall the forward tracing and
backward tracing results are qualitatively consistent with
each other, the backward tracing method indeed reduces the
statistical noise outside of the KH active region even when
compared with the magnetosheath region. Recall that a grid
point contains about 150 particles on the magnetosheath side in
the forward tracing, and 513 particles in the backward tracing.
Thus, if we are interested in a specific region in the KH
instability, the backward tracing method is a very useful

FIGURE 3 | The top panel shows the energy distribution (see text) for four different types of particles (see legend) from the symmetric case. The solid lines represent
those particles’ energy distribution at t � 130, while the dotted lines represent those particles’ energy distribution at t � 0. The bottom panel shows the initial energy
distribution as a function of their initial location (x-component) for the particles crossing between the magnetosphere and the magnetosheath. The black line shows the
energy-associated with initial temperature 1.5T.
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method. However, if we are interested in the overall properties
(e.g., mixing rate), then the forward tracing is a more practical
approach.

Figure 5 plots the logarithmic scale of the anisotropic
temperature T‖/T⊥ (color index) at t � 0 (left) t � 130

(middle) for the symmetric case by using forward tracing
method. The right panel shows the results from the backward
tracing method. The black arrows represent the x and y
components of the bulk velocity from MHD simulation. The
magenta line represents the magnetosheath-magnetosphere

FIGURE 4 | The color index represents the deviation between the bulk velocity (top) and temperature (bottom) from MHD simulation and test particles for the
symmetric case at t � 130. The left and right panels show the forward tracing and backward tracing, respectively. The red lines are the contour lines of rM � 0.5.
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boundary based on magnetic field topology. The particles were
initialized isotropically (i.e., T‖/T⊥ � 1) at t � 0 as shown in the left
panel with small fluctuations due to the statistical noise. At t �
130, anisotropic temperature regions appears around the edges of
the KH vortex based on the forward tracing method, being
quantitatively consistent with the results from backward
tracing method, which suggests that KH instability can cause
anisotropic temperature. It is interesting to note that T‖ > T⊥ on
the magnetospheric side, while T‖ < T⊥ on the magnetosheath
side. This can be easily explained by the DMLR process. For the
newly reconnected magnetospheric closed magnetic field line, the
magnetosheath-originating cold plasma (i.e., low parallel
velocity) expand freely along the magnetic field line from low
latitudes to high latitudes. Meanwhile, magnetosphere-
originating hot plasma (i.e., high parallel velocity) expand
freely along the magnetic field line from both high-latitude
regions into low latitudes. Thus, on the low-latitude
magnetospheric side, T‖ becomes larger than T⊥. Vice versa,
on the magnetosheath side, the fast field-aligned expansion of the
hot magnetosphere-originating plasma is replaced by the cold
magnetosheath-originating plasma, which reduces T‖. Notice,
this type of anisotropic temperature generation mechanism
only occurs when there is a large temperature asymmetry
across the boundary, which is often satisfied at the Earth’s
magnetopause boundary. It also requires a relaxing time for
particles from the two sides to fully mix. One should also keep
in mind, a large anisotropic temperature or even a population
with a two streaming beams (field-aligned and anti-field-aligned)
often leads to different types of kinetic instabilities, which
eventually leads to additional nonadiabatic heating sources to
bring the particle distributions to local kinetic equilibrium. These

FIGURE 5 | The color index represents the temperature anisotropy T‖/T⊥ at t � 0 (left) t � 130 (middle) for the symmetric case by using forward tracing method.
The right panel shows the results from backward tracing method. The black arrows represent the x and y components of the bulk velocity from MHD simulation. The
magenta line represents the magnetosheath-magnetosphere boundary based on magnetic field topology.

FIGURE 6 | The overall dynamical properties for the symmetric case
(black lines) and the asymmetric case (red lines) in a normalized time scale
(i.e., ct). The top to bottom panels show the growth of the KH instability (the
range of the bulk velocity vx component), the total mixed volume, Vm
(based on H+ ), the change of < |vF − vM| > , and change of < | log(TF/TM)| > for
mixed region (solid lines) and non-mixed region (dashed lines).
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processes should also be resolved by the hybrid or PIC
simulations. On the other hand, the mixing of plasma due to
the finite gyroradius effect may also affect the temperature
anisotropy, which is out of the scope of this study.

To systematically compare the symmetric case and the
asymmetric case, we normalized the time, t, with the KH
growth rate ct (Hasegawa et al., 2004; Henri et al., 2013).
Here, the KH growth rate, c, is obtained from the logarithmic
fitting of t and max(δvx) −min(δvx) during the interval of 5 < t <
70, which gives c � 0.0487 and 0.0439 for the symmetric and
asymmetric cases, respectively. Figure 6 plots four overall
parameters as functions of normalized time for the symmetric
case (black lines) and the asymmetric case (red lines) for
comparison. The top panel shows the range of the normal
bulk velocity component to indicate the linear and nonlinear
stage, which is similar to the top-right panel of Figure 2. The
second panel plots the total mixed volume, Vm (i.e., similar to
bottom-right panel of Figure 2), showing these two lines are
almost overlapped with each other, which demonstrates that the
slower mixing rate in the asymmetric case is mainly due to the
slower growth rate. The third and fourth panel of Figure 6 plot
the change of < |vF − vM| >, and < | log(TF/TM)| >, respectively, to
illustrate the deviation of bulk velocity, and temperature between
theMHD and test particle (forward tracing method) as a function
of the normalized time. Here, the average <f> is weighted by the
mixed rate rM, (i.e., <f>M � ∫frMdV/∫rMdV) for mixed region
(solid lines) and 1 − rM, (i.e., <f>N � ∫f(1 − rM)dV/∫(1 − rM)dV)
for non-mixed region (dashed lines), and the volume integration
is taken within the volume |x| < 6 and |z| < 35, covering only the
KH active region. For a better comparison between the symmetric
case and the asymmetric case, we also subtracted the initial value of
<f>, which can be considered as background statistical noise. It
clearly shows that the deviation between the MHD and test particle
simulations is almost constant in the non-mixed region, while the
deviation significantly increases in the mixed region during the
nonlinear stage. This again suggests that within certain deviation
we can use fluid simulation with test particles to investigate the early
nonlinear stage of the KH instability. However, eventually, during the
later nonlinear stage the feedback from particles has to be taken into
account for the system, requiring hybrid or full kinetic simulations.
For both bulk velocity and temperature in the mixed region, the
deviation in the asymmetric case increases a bit faster than the
symmetric case, which could be partially due to the preexisting
magnetic shear in the asymmetric case leading to a faster onset of
magnetic reconnection with kinetic effects becoming important.
However, the onset of kinetic physics is somewhat arbitrary
during the KH instability. For instance, in a symmetric case, fast
growth of KH instability could cause secondary KH instability which
leads to a thin boundary layer without involving magnetic
reconnection, where gyro-radius effects can cause deviation
between MHD and test particle descriptions. Meanwhile, a large
magnetic shear, By may stabilized the KH instability, which
consequently delays the onset of magnetic reconnection. Thus, to
draw a general conclusion whether the test particle simulation is less
applicable for the asymmetric case or not requires a much wider and
systematic comparison in future studies.

4 SUMMARY AND DISCUSSION

In this study, we carried out two 3-D KH instability MHD
simulations accompanied by test particle simulations, in which
the initial boundary condition is close to the MMS-observed KH
event reported by Eriksson et al. (Eriksson et al., 2016). The
simulation results suggests about 1025 particles/s mass is
transported from the magnetosheath into the magnetosphere
via the mid-latitude-double-reconnection process, and the
mixing diffusion rate is about 1010 m2 s−1. The presence of the
magnetic By component reduces the KH growth rate and also
strongly reduces the mass increase rate on the magnetospheric
side. For Earth’s typical magnetopause boundary conditions, the
finite gyroradius effect does not significantly increase the mass
transport rate, even for O+. Although, a large gyroradius effect
will bring a greater mixed volume, the mixing diffusion rate is
insensitive to the charge-to-mass ratio in the nonlinear stage of
the KH instability, partially because KH scale size is larger than
gyro-radius of heavy ions (O+). However, this effect may play role
in other planets (e.g., Mercury and Mars (Poh et al., 2021)). The
DMLR process changes the magnetic field line topology which
exchanges the low-latitude magnetic flux tubes between the
magnetosheath side and the magnetosphere side. Thus, the
plasma mixing can also occur through the DMLR process;
however, it takes time for ion particles to undergo free
expansion into the newly reconnected flux tube, which limits
its effects on the mixing region.

During the KH instability process, an individual particle can
be either accelerated or decelerated, however, the overall energy
(subtracted by the bulk velocity) distributions do not vary with
time, which indicates there is no additional heating source
through this process. Although the average energy of particles
moving from the magnetosheath into the magnetosphere is
higher than the particles still remaining in the magnetosheath,
this is simply because those transported particles were originally
in a relatively higher temperature region of the initial transition
layer. Thus, for the thermal particle population there is no energy
filter effect for the KH instability. Nevertheless, it is still not clear
whether the KH instability will select higher energy particles from
the magnetosheath into the magnetosphere for the super-thermal
population.

We also compared the zeroth, first, and second order moments
of the particle velocity distributions from the test particle
simulation with the density, bulk velocity, and temperature
from the MHD simulation. It shows that the zeroth order
moment is consistent with the MHD description, which also
indicates the extended boundary condition along the z-direction
for the test particles is consistent with the MHD boundary
conditions. The first and second order moments remain
consistent with the MHD bulk velocity and temperature,
respectively, in the non-mixed region, but show clear deviation
in the mixed region. This deviation between the particle
description and the MHD description indicates that it is
essential to use hybrid simulation or even PIC simulation to
provide a self-consistent simulation of the later nonlinear stage of
the KH instability.
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Both the forward tracing method and the backward tracing
method based on Liouville’s theory suggest the KH instability can
generate temperature anisotropy at the edge of the KH vortex,
which is also observed by the MMS [(Eriksson et al., 2016), and
our companion paper (Eriksson et al., 2021)]. In this case, the
anisotropic temperature is caused by the reconnection of flux
tubes with two different temperatures, which is interesting to
compare with the results from a double-adiabatic MHD
description. This condition also brings two important
questions for future study. The first one is how long does it
take for particles in the newly reconnected flux tube to become
fully mixed? Recall that one of the plausible magnetosheath
plasma specific entropy increase mechanisms is that the
magnetosheath plasma expands freely in the newly
reconnected flux tube. Thus, this question is directly related to
this mechanism, and a related question is whether the free
expansion happens during the KH instability at the
magnetopause boundary or will it take a longer time while the
newly reconnected flux moves radially earth-ward? This question
likely can be addressed using test particle simulations in future
studies. The second question is whether additional kinetic
instabilities occur during the mixing process, bringing an
additional nonadiabatic heating source? This is essentially a
cross-scale problem, requiring hybrid or even PIC simulation.

The results from the forward tracing and the backward
tracing methods are quantitatively comparable. The backward
tracing can easily increase the resolution of the velocity space
for a given point, which is suitable for investigating a certain
region of interest. However, one should keep in mind, this
method requires the whole process be reversible. For the 3-D
KH instability, the DMLR process is an irreversible process.
Thus, strictly speaking, the backward tracing method is not
applicable. However, the mid-latitude reconnection sites are
highly localized, and no parallel electric field is present during
the particle tracing. Thus, the backward tracing method still
works in our study. However, in principle, it cannot be used to
investigate the possible nonadiabatic heating or acceleration
mechanisms.

This study also highlights the importance of using hybrid or
PIC simulation to resolve the later nonlinear stage of the KH
instability. However, due to the high computational cost and
complex boundary conditions, only a few hybrid and PIC
simulations can investigate a 3-D KH instability with a non-
periodic boundary condition along the third direction and with

strong temperature asymmetry across the flow layer condition.
This study provides a plausible approach for the non-periodic
boundary condition. Meanwhile one can use MHD and test
particle simulations to simulate the linear stage and early
nonlinear stage of the KH instability, and switch to the hybrid
simulation when the deviation between the first or second
moments from the test particle and MHD simulation is
greater than a critical value, which is another plausible
scenario to save on computational cost.

In summary, the KH instability is a cross-scale process, which
requires a spatial resolution of both meso-scale and kinetic scale
processes. Although with the development of computational
hardware, hybrid simulation and PIC simulation can
investigate ever increasing regimes of cross-scale physical
processes, MHD simulation with test particles is still a useful
tool to address many suitable questions in the KH instability, as
well as provide a helpful guide for the more computationally
expensive simulations.
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