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A high-order hybrid continuous-Galerkin numerical method, designed for the simulation of non-linear, non-
hydrostatic internal waves and turbulence in long computational domains with complex bathymetry, is
presented. The spatial discretization in the non-periodic wave-propagating directions, utilizes the nodal spectral
element method. Such a high-order element-based discretization allows the highly accurate representation of
complex domain geometry along with the flexibility of concentrating resolution in areas of interest. Under
the assumption of the normal-to-isobath propagation of non-linear internal waves, a third periodic direction is
incorporated via a Fourier-Galerkin discretization. The distinct non-hydrostatic nature of non-linear internal
waves and, any instabilities and turbulence therein, necessitates the numerically challenging solution of the
pressure Poisson problem. A defining feature of this work is the application of a domain decomposition
approach, combined with block-Jacobi/deflation-based preconditioning to the pressure Poisson problem. Such
a combined approach is particularly suitable for the long high aspect-ratio complex domains of interest and
enables the efficient high-accuracy reproduction of the non-hydrostatic dynamics of non-linear internal waves.
Implementation details are also described in the context of the stability of the solver and its parallelization
strategy. A series of benchmarks of increasing complexity demonstrate the robustness of the flow solver. The
benchmarks culminate with the three-dimensional simulation of a convectively breaking mode-one non-linear
internal wave over a realistic South-China-Sea bathymetric transect and background current/stratification
profiles.

1. Introduction characterized by a precarious balance between their non-linearity and
physical dispersion. The breaking of an ISW is a process of critical
significance to ocean energetics where the associated turbulence and
mixing are induced via either a shear instability (Moum et al., 2003)
or a convective instability (Lien et al., 2012, 2014; Lamb et al., 2019)
as they shoal into shallower coastal waters.

The simulation of a shoaling ISW over an actual bathymetry poses
a challenge to state-of-the-art numerical modeling. Essentially, the
wave-scale response to the bathymetry, given the particular back-

1.1. Non-linear internal waves and turbulence

Non-linear internal waves (NLIWs) in the ocean are at the receiving
end of the cascade of energy originally injected into the water-column
by winds and tides (Alford et al., 2015; Egbert and Ray, 2000). Propa-
gating over long distances, NLIWs dissipate and mix the water column
along their propagation path and deposit energy away from their
generation site through breaking as a result of turbulence and insta-

bilities in wave interior and wave-seafloor interactions (Rivera-Rosario
et al., 2017; Boegman and Stastna, 2019). Inherently strongly non-
linear and non-hydrostatic phenomena, NLIWs are often encountered
in the form of mode-one internal solitary waves (ISWs) of depression,

ground shear and stratification, has to be effectively captured over long
propagation distances without being spuriously altered by numerical
dispersion and dissipation. Furthermore, the numerical discretization
has to be carefully chosen for any finer-scale motions developing within

* Correspondence to: School of Civil and Environmental Engineering, 220 Hollister Hall, Cornell University, Ithaca, NY, 14853, USA

E-mail address: td353@cornell.edu (T. Diamantopoulos).
1 Deceased.

https://doi.org/10.1016/j.ocemod.2022.102065

Received 16 December 2021; Received in revised form 24 May 2022; Accepted 14 June 2022

Available online 18 June 2022
1463-5003/© 2022 Elsevier Ltd. All rights reserved.


https://doi.org/10.1016/j.ocemod.2022.102065
http://www.elsevier.com/locate/ocemod
http://www.elsevier.com/locate/ocemod
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ocemod.2022.102065&domain=pdf
mailto:td353@cornell.edu
https://doi.org/10.1016/j.ocemod.2022.102065

T. Diamantopoulos, S.M. Joshi, G.N. Thomsen et al.

the simulated wave to be as close as possible to their oceanic counter-
parts by reproducing, for a given grid resolution, the broad range of
scales within a turbulent flow occurring inside the wave.

1.2. High-order element-based techniques

In this regard, high-accuracy pseudo-spectral discretizations have
emerged as powerful approaches for simulating stratified flows. Aside
from triply periodic discretizations (de Bruyn Kops, 2015; Winters
et al., 2004), features such as complex boundary conditions and ge-
ometries, necessary for the simulation of NLIWs, have been recently
developed for Fourier-based (Winters and de la Fuente, 2012) and
Chebyshev-collocation techniques (Subich et al., 2013). An alterna-
tive to global spectral discretizations, such as those discussed above,
are high-order element-based techniques. Sporadically used for the
simulation of stratified flows (Diamessis et al., 2005; Rivera-Rosario
et al., 2020; Ozgokmen et al.,, 2004), high-order element-based dis-
cretizations are attractive for the simulation of NLIWs and their re-
sultant instabilities/turbulence since they support the exponential con-
vergence of global spectral methods with the inherent flexibility of
elemental discretizations that can localize resolution in areas of inter-
est (Deville et al., 2002; Kopriva, 2009). As such, high-order element-
based discretizations are a powerful potential alternative to Adaptive-
Mesh-Refinement techniques (Barad et al., 2009; Santilli and Scotti,
2015).

In this study, a continuous Galerkin Spectral Element Method (SEM)
(Patera, 1984) is used for discretizing the along-wave propagation and
vertical directions as well as representing any complex topographic
features by employing curvilinear quadrilateral elements. First, local-
ized flow resolution in the vertical allows the reliable representation
of background stratification and currents along with any finer-scale
motions in wave interior, typically concentrated in the upper layer
of the water column for ISWs of depression (Lien et al., 2012) or
at the bottom boundary when studying their bottom boundary layer
induced by the wave (Sakai et al., 2020a,b). Second, as in the case
for a convectively breaking, shoaling ISWs, grid resolution in the
along-wave propagating direction is increased in the breaking region
(i.e., shallower waters) while remaining coarse in deep waters, enabling
a reduction to the computational cost compared to the uniform grid
case. Lastly, by adhering to a high polynomial order (N > 7) within
each element, the smallest resolved scales are not numerically damped
as any artificial dissipation is minimized at these scales for the partic-
ular resolution. In tandem, a high polynomial order also ensures that
any error introduced by the commonly used linear interpolation of the
bathymetry is avoided (Steinmoeller et al., 2016). It is worth noting
that high polynomial orders introduce minimal numerical dispersion
which does not artificially impact the physical dispersion of the wave.
This is essential for preserving the ISW’s waveform over long propagat-
ing distances and ensuring that any numerical phase errors, which may
lead to the development of artificial trailing waves, are mitigated.

Note that the authors have established a significant knowledge
base in the context of high-order element discretizations, through the
adaptation and implementation of the Spectral Multidomain Penalty
Method (SMPM), i.e., a discontinuous collocation-based numerical
method (Hesthaven, 1998; Escobar-Vargas et al., 2014; Diamessis et al.,
2005), in the framework of the incompressible Navier-Stokes equations
(INSE). Nonetheless, on account of its inherently discontinuous nature,
the SMPM is found to develop elevated spurious divergence at the
elemental interfaces for highly under-resolved simulations (Joshi et al.,
2016a). Consequently, the spatial discretization is replaced by the SEM,
i.e, a weak-form-based continuous numerical method.
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1.3. Pressure Poisson equation

A crucial aspect of implementation which has to be addressed when
using a high-order element-wise discretization for the INSE, is the
numerical linear algebra associated with the solution of the pressure
Poisson equation (PPE) which is essential for the accurate reproduction
of non-hydrostatic dynamics (Joshi et al., 2016b; Scotti and Mitran,
2008; Lamb et al., 2019). Admittedly the most computationally costly
part of an INSE solver, the PPE solver design is constrained by the
leptic grids (Scotti and Mitran, 2008) which are inherited from the high
aspect ratio nature of NLIWs and the long, shallow computational do-
mains connected to their propagation properties. Consequently, when
simulating NLIWs, the PPE solver to be used, and its adopted precon-
ditioning strategy, need to carefully take into account these design
considerations, to achieve convergence with the minimum number of
iterations possible.

As such, the numerical solution of the pressure Poisson problem
in this work is broken down into the following steps. First, the dis-
cretized PPE is reformulated via the use of multi-level static conden-
sation/iterative substructuring (Couzy and Deville, 1995; Karniadakis
and Sherwin, 2013), a domain decomposition technique which takes
into account the geometry of the discretization and local support
of the elemental basis functions (Canuto et al., 2007). This domain
decomposition approach, which leads to a smaller global system of
equations, is one of the main advantages of the SEM when solving
an elliptic equation, compared to other high-order Galerkin discretiza-
tions (Yakovlev et al., 2016). Hence, the discretized system of equations
is condensed, via block Gaussian eliminations, into a hierarchy of
smaller Schur complement problems where each matrix division takes
place locally except for the last level of the condensation. Secondly,
the last Schur complement problem is solved iteratively via a two-level
deflated preconditioned conjugate gradient solver. Based on the work
of Joshi et al. (2016b), albeit for a symmetric discretization in this case,
deflation enchanced by a block-Jacobi preconditioner is an effective
preconditioning approach irrespective of the grid’s aspect-ratio, number
of elements used, and polynomial order of the approximation.

1.4. Hybrid element-based fourier numerical methods

The extension of the SEM two-dimensional solver, and the respec-
tive PPE computational kernel, into three dimensions is guided by
in situ observations regarding the propagation of NLIWs (Lien et al.,
2012, 2014). Since the propagation of NLIWs may be reasonably ap-
proximated as operating along a trajectory normal to the isobaths,
an additional third periodic direction is incorporated via a Fourier—
Galerkin (FG) discretization (Kopriva, 2009). Although hybrid SEM/FG
have been developed in the past (Karniadakis, 1990; Moxey et al.,
2020; Blackburn et al., 2019), to the best of the authors knowledge,
a high-order hybrid SEM/FG discretization specifically designed for
high-aspect ratio complex, long domains combined with a robust PPE
preconditioning strategy has yet to appear in the literature.

1.5. Implementation

The development of a new solver is not a light undertaking and
requires significant resources to develop a method, scalably implement
the technique, verify correctness, and maintain the tool over its lifetime
so that it is both flexible and performant. As such, utilizing or adapting
existing high performance frameworks (Balay et al., 2021; Paul F. Fis-
cher and Kerkemeier, 2008; Moxey et al., 2020) for one’s application
is the obvious, and best, approach for most. While a fully three-
dimensional element-based discretization in the form of hexahedral or
tetrahedral elements offers a more general framework, the discretized
three-dimensional SEM operator has a larger condition number than
its two-dimensional counterpart (Canuto et al., 2007). In addition to
the increased iteration counts of the conjugate gradient solver used for
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the PPE and viscous/diffusive solves (cf. Section 1.3), the work done
per iteration increases as the elemental matrix is proportional to the
problem size, O(N3) where N is the order of the polynomial expansion
per element.

In the flow solver considered in this paper, the choice of a two-
dimensional discretization, motivated by physical considerations, en-
ables the use of an identical computational grid for of each transverse
plane. As such each x — z plane may be solved concurrently rather than
having to resort to the fully coupled solve of its three-dimensional coun-
terpart. To best of the authors’ knowledge there are no existing solvers
that allow exploitation of high aspect-ratio, long-domain physics of
interest, and, thus, creating SEM/FG in terms of discretization and
implementation to solve loosely coupled two-dimensional subproblems
was a necessary path forward.

From an implementation standpoint the predecessor SMPM flow
solver uses a one-dimensional parallelization strategy (Joshi et al.,
2016b) where a subset of the computational domain in the x-direction
is assigned to each parallel process. This choice restricts the overall
resolution and parallel scalability for three-dimensional simulations.
Therefore, in the newly developed SEM flow solver, the parallelization
strategy takes place in two dimensions enabling the use of much
larger number of parallel processes with the associated decrease of the
memory footprint per parallel process.

1.6. Paper structure

This paper is organized as follows: In Section 2, the main model
equations are presented. Section 3 presents the implicit—explicit stiffly
stable splitting scheme of the INSE along with the necessary implicit
solves needed to integrate the field variables in time. Section 4 dis-
cusses the spatial discretization and the associated domain decompo-
sition and preconditioning strategies adopted for the pressure Poisson
problem along with a brief discussion of the viscous term treatment.
Section 5 discusses the implementation of the discretization and an-
alyzes its major components to understand its potential performance
bottlenecks and scalability. Section 6 covers the stabilization tech-
niques used in the SEM/FG discretization. In Section 7, a series of
unstratified and stratified benchmarks are shown, with the latter cul-
minating in the simulation of a convectively breaking, shoaling ISW,
thereby demonstrating the efficacy of the flow solver. Section 8 consists
of the concluding remarks.

2. Equations of motion

The equations of motion of an incompressible fluid under the
Boussinesq approximation are typically written as:

M u-Vo- ép’k— in’+vV2u (@))
or o Po

ap’ _ ’r o, = 2 7

7_—u~v(p +p)+xVp 2
V.ou=0, 3

where u is the velocity vector field with components (u, v, w) in the
(x,, z) directions, respectively. For stratified flows, the horizontal ve-
locity component u is decomposed into a fluctuating «’ and a steady

state background current U = U(z) which leads to the following
notation

u=u+U

w=uw (@)
v="0",

where the prime symbol denotes the deviation of the velocity field
from the background state, p, is the reference density, g is the grav-
itational acceleration and k is the unit vector in the upward (positive)
vertical direction. In the momentum equation (1), p’ is the pressure
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perturbation from the background hydrostatic pressure and v, « are the
molecular diffusivities which are assumed to be constant. Note that the
representation of the viscous terms, i.e., vector Laplacian, is a direct
result of incompressibility (Diamantopoulos et al., 2021). Additionally,
p' is the density perturbation which originates from the decomposition
(Kundu and Cohen, 2008),

p=py+px,y,2)+p (x,y,z,0) with o/ < p< py , 5)

where p is the background density.
3. Time discretization

The semi-discrete equations which arise from the velocity projec-
tion scheme (Karniadakis et al., 1991) are comprised of three frac-
tional steps, treated separately and in succession: (1) the advective
(non-linear) term, (2) the pressure and (3) the viscous term.

3.1. Non-linear term

The non-linear term is advanced in time using an explicit extrapola-
tion (J = 3) (Karniadakis et al., 1991) where an intermediate velocity
field @ is obtained
- J-1 i J-1
u- Zi=0 (aiun I) n—i n—i g Al

r =—Zﬁ,~ u"" - Vu +p—0(p) k), (6)

i=0
where o; and p; are the respective time-stepping coefficients which
depend on the time discretization order and time-step 4t for a variable
time-step (Peyret, 2002). Details regarding the spatial discretization
and implementation of the non-linear term are provided in Appendix B.

3.2. Pressure Poisson equation and projection step

The equation for the pressure arises from the time-advancement
of the first intermediate velocity field @ into a second intermediate,
divergent-free velocity field 8,

—u
At
where p is the temporal mean of the pressure perturbation calcu-
lated over one time-step (not to be confused with the instantaneous
pressure (Diamessis et al., 2005)). Eq. (7) can be reformulated as

=

— _Vpn+l , (7)

12 1.
~ A \vi ntl _ 2 . 8
Azu+ i Atu ®)

The equation above is effectively the Helmholtz decomposition of the
first intermediate velocity field i@ into a solenoidal vector field & and
an irrotational vector field Vp"*!. Taking the divergence of Eq. (8), a
Poisson equation arises for the pressure

_iv i )]
The consistent boundary conditions for the pressure Poisson equation
aimed towards ensuring O (4r%) accuracy of the time-discretization
scheme are specified in Karniadakis et al. (1991). Once the pressure
is computed, the second intermediate velocity @ is computed from the
projection

_ V2pn+1 —

G=i—avp! . 10
3.3. Viscous equation

The evaluation of the velocity field at the next time step is com-
puted implicitly by solving a vector Helmholtz equation. Notice that
as written in Eq. (1), the viscous term of the incompressible Navier—
Stokes equations is expressed in the form of a vector Laplacian, under
the assumption of a constant kinematic viscosity

—aViut put = . an
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Here, a = vAt/y, is a positive scaling coefficient, with y, a time stepping
coefficient, and f = i/y, is the right-hand side. Note that for viscous
flows with complex boundaries of non-zero curvature, enforcement of
free-slip boundary condition is performed by solving each component
of Eq. (11), separately (Diamantopoulos et al., 2021).

3.4. Density equation

The advection—diffusion equation for the density perturbation,
Eq. (2), follows the same implicit-explicit temporal discretization. First
an intermediate density perturbation is computed through the explicit
advancement of the advective term. Second, an implicit solve of a scalar
Helmbholtz equation, i.e., the diffusive term takes place for computing
the density perturbation at the next time-step. It is during this last step
where boundary conditions are imposed for the density perturbation.
Throughout this work, the boundary conditions for the density per-
turbation are considered of the homogeneous Neumann-type, i.e, zero
flux.

4. Spatial discretization of elliptic equation

In this section, the spatial discretization of the pressure Poisson
equation (PPE) and the ensuing domain decomposition technique,
along with its underlying numerical linear algebra, are presented in
detail. To avoid redundancy, the rest of the field variables adhere to the
same spatial discretization as for the pressure during their respective
implicit steps of the solver (see Eq. (11) and Section 3.4). Nevertheless,
the overall computational kernel for the PPE differs drastically in terms
of complexity with respect to the velocity/density implicit solves (see
Section 4.5). Therefore, emphasis is given to the numerical linear alge-
bra when solving the Poisson problem which is inextricably linked to
long computational complex domains encountered in the simulation of
NLIWs and their non-hydrostatic dynamics. The overall preconditioning
strategy, along with the adopted domain decomposition/parallelization
scheme, which are tailored specifically to solve robustly the PPE under
these computational meshes, are then further discussed.

4.1. Periodic direction

Denoting as 2 C R? a two-dimensional domain and as Q' =
2 x[0,L,], the extruded three-dimensional domain in the transverse
periodic direction y € [0, L,], and a field variable p, which can be any
of the field variables, is approximated by the truncated Fourier series
as

Ny/2-1
Pz = Y b5 Db, a2)
n=0

where ¢, = ¢’ are the Fourier basis functions, N, the number of
grid points in the transverse direction, k, is the wavenumber, and
Pn(x, k,,z) = p,(x, z) € C is the respective Fourier coefficient. Following
a Fourier Galerkin discretization in y (Kopriva, 2009), the Poisson
problem (see Eq. (9)) for a single transverse wavenumber becomes

= V2 bu(x,2) + K2p,(x,2) = f, , a3

where V2, stands for the Laplacian operator in the non-homogeneous
directions, and f,,(x, z) = f,,(x, z,k,) corresponds to the Fourier coef-
ficients of the right-hand-side of the Poisson problem. Now, by virtue
of the orthogonality of the Fourier basis functions and for all of the
transverse non-zero wavenumbers k,, Eq. (13) is a two-dimensional
complex Helmholtz equation in Fourier space. Therefore, a series of
two-dimensional solves in the x — z plane of the Helmholtz equation
Eq. (13), one for each transverse wavenumber, has to be performed to
compute p in Q'.
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4.2. Non-homogeneous directions

The discretization in the non-homogeneous directions x — z is pre-
sented for a single transverse wavenumber with each of the two parts
(real and imaginary) of the complex Fourier coefficient p, following
naturally the discretization herein. Let VNV < H!(RQ), be a finite
subspace where p,v € VN are a part of the solution, i.e., the real or
imaginary part of a Fourier coefficient and the test function respec-
tively. Note that the wavenumber dependence of p and right-hand-side
f are not included here to simplify notation. Accordingly, the weak
form of Eq. (13) under the Galerkin approximation becomes

/Vv-Vpd.Q+k2/Upd.Q:/vfd.Q+}{ vVp-ndS , 14
Q Q Q o0

where Vp - n = 0dp/on is the natural boundary condition (Deville
et al,, 2002). By defining VN as the finite subspace spanned by
two-dimensional Lagrangian basis functions up to order N, VN =
span{hy(x,z),...,h,(x,2)}, p and v are approximated as p = Y, p;h;
and v = Y, v, h;, where k € {1,...,n} is the corresponding index set,
and n is the total number of degrees of freedom in the x —z plane. Note
that each element has the same polynomial order. Thus, the discretized
Eq. (14) is written in a matrix form

H(k,)p=Mft= Hk,)p=¢g, (15)
where H (k,) is the discrete-weak-form-based Helmholtz operator
H(k,)=K+kM , (16)

and K;; = [, Vh; - Vh;dQ and M;; = [, h;h;dQ are the respective
entries of the assembled stiffness and mass matrices (Deville et al.,
2002) where i,j € {1,...,n}. For Eq. (15), and without loss of gener-
ality, homogeneous Neumann boundary conditions are assumed for p,
since non-homogeneous Neumann boundary conditions contribute only
on the left-hand-side of the equation (Deville et al., 2002). Note that
the viscous/diffusive equations for the velocity and density field follow
the same weak-form-based formulation and discretization as further
discussed in Section 4.5.

4.2.1. Domain-decomposition of the PPE and the Schur complement
problem

A non-overlapping, domain decomposition (DD) method with it-
erative substructuring/static condensation is used for each transverse
wavenumber when solving for the pressure (Karniadakis and Sherwin,
2013). In tandem with a logically Cartesian topology, Eq. (15) is broken
down into a hierarchy of smaller, trivially parallel, problems with
homogeneous Dirichlet boundary conditions for the two levels of the
condensation (Karniadakis and Sherwin, 2013; Huismann et al., 2017;
Deville et al., 2002). Once the second and last stage of the DD is
reached, a Schur complement problem on the vertical interfaces, I'’,
of the subdomains is iteratively solved. In the context of hierarchy
of problems, a subsequent backwards sweep ensures the solution on
the global computational domain. An example grid demonstrating the
decomposition is shown in Fig. 1.

Using a conforming nodal SEM discretization, the solution of Eq. (15)
is sought for exactly at the grid points. For the DD to take place, the
unknowns are first ordered in groups based on their grid point location
on the x — z plane. Three groups of unknowns are therefore identified:
(a) the interior elemental unknowns p; € Q', (b) the unknowns which
reside on the horizontal edges of the computational domain p, €
r" and (c) the vertical edge’s degrees of freedom p, € I'” where
'’ = 2n (R u . The resulting diagonal block-matrices which then
emerge in Eq. (17), and are shown in Fig. 2, correspond to the self-
interaction between unknowns of the same group of unknowns with
the off-diagonal block-matrices expressing the coupling across different
groups

Hy Hy, Hy||p 8i
Hy  Hpy  Hpy||pn| =88] - a7
Hui Huh Huv Py &v
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A

X

Fig. 1. Grid example for each level of the domain decomposition. (a) The full
computational grid where grid points are color-coded based on their location. Black
dots denote the interior elemental grid points (£;), whereas blue and red solid lines
represent the horizontal (I7,) and vertical edges (I',), respectively. (b) The skeleton
mesh of SO matrix (Eq. (18) and Fig. 3). (c) The vertical edges (red lines) of the
second Schur problem S® matrix (Eq. (19) and Fig. 4). The blue dashed lines denote
the elimination of the horizontal edges from the last level of the condensation. The
black outline which encloses a vertical strip of elements corresponds to a subdomain.

Fig. 2 demonstrates the sparsity structure of the block-based repre-
sentation of the H matrix in Eq. (17) for the computational grid shown
in the top panel of Fig. 1. Although this corresponds to the assembled,
i.e, global matrix, in practice, global matrices are not explicitly built
due to memory limitations for large problem sizes. Nevertheless, for
the better illustration of the DD technique all of the resulting matrices
and their sparsity structures correspond to the assembled ones shown
in Fig. 2.

As a first stage of the DD, the elemental interior unknowns u; are
eliminated, via a block Gaussian elimination, condensing Eq. (17) to
a Schur complement matrix S) on the horizontal and vertical edges,
skeleton mesh, with the following algebraic structure:

O] (1) (Q))
2 o] = (2] as)

Suh SUU Py 8v
where S = 7, - H,;H;'H,, are the block matrices of the first

Schur problem, gtV = g, — H,H;'g, is its right-hand-side and m,n =
{h,v}. Note that each level of condensation entails the division by
the self-interaction block matrix of the group of unknowns eliminated
by the condensed equations. In this first level of condensation, the
elimination group refers to the interior elemental unknowns p; and
thus the inversion of the H;; matrix is required. Now, since the H;
matrix is block-diagonal (Canuto et al., 2007; Karniadakis and Sherwin,
2013) (cf. black blocks of Fig. 2), with each block corresponding
strictly to the interior unknowns of each quadrilateral element, its
inversion is trivially parallel. Consequently, the block entries of the
SO matrix in Eq. (18) are computed first in an element-wise fashion
with a subsequent assembly of the shared interfaces, i.e., direct stiffness

summation, to enforce continuity (Deville et al., 2002; Patera, 1986).
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Fig. 2. Sparsity structure of the reordered Helmholtz matrix of Eq. (17) for the grid
shown in Fig. 1 with the block diagonal matrix H,; in black. The horizontal H,, and
vertical H,, block matrices are shown in blue and red, respectively. The off-diagonal
block matrices are shown in gray.

The second, and last, level of condensation refers to the computation
of a second Schur matrix (Eq. (19)) for the vertical edges of the
computational domain (cf. Fig. 1(c)) which results from the block-
Gaussian elimination when solving for the p, group of unknowns in
Eq. (19)

SV = 8 = 8, S 1)
S@p, =g®

where gl()z) = gl()l) —Sf}iz) S;llh) _lg;!” is the respective right-hand-side. Notice
the division with the S;,]}l) matrix for the computation of the second
Schur matrix and its right-hand-side. Similar to the case of Hy, S,(llh)
is block diagonal but now each block geometrically belongs to the
horizontal edges of a vertical collection of elements, i.e., subdomain (cf.
Fig. 3). Once the second Schur system of equations is solved iteratively,
two successive Dirichlet problems (Eq. (20)) are solved directly, follow-
ing the backward substitution step of the block-Gaussian elimination
(Eq. (17)-(18)). First, the horizontal-edge unknowns are computed
with a subsequent computation of the elemental interior unknowns
(Eq. (20)). These inversions are local at a subdomain/element level
with corresponding Dirichlet boundary conditions enforced by “lifting”
the known solution (Karniadakis and Sherwin, 2013). Lifting is a com-
monly used strategy for prescribing the contribution of the Dirichlet
boundary conditions to the interior unknowns by updating accordingly
the right-hand-side of the system of equations (cf. Eq. (20)) (Blackburn
et al., 2019)

1)\— 1 1
pr =S =5,

B (20)
pi=(H;)" (g — Hyupp, — Hi,p,) -

4.3. Solving the second schur problem

The second Schur problem of Eq. (19) represents geometrically
the coupling among the vertical edges of the computational domain.
S@ is block-tridiagonal (Fig. 4), since each vertical edge has at most
two neighboring edges, with a bandwidth directly proportional to the
vertical grid point count, N,. For high-aspect ratio grids, where the
number of elements in x, m,, is much larger than that of the elements
in z, m,, my > m,, as in the simulation of highly NLIWs, S® is
a large matrix with a relatively small bandwidth. Furthermore, 5@
is symmetric positive definite a property inherited from the original
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Fig. 3. Sparsity structure of the first Schur complement matrix SV of Eq. (18) with
Sﬁl'h) in blue, SL}) in red, and the off-diagonal block matrices are delineated in gray,
following the same stylistic structure as Fig. 2. Note that the Sﬁl'h) matrix is block-
diagonal with each block corresponding to the coupling among the horizontal edges
within a subdomain.

matrix H of Eq. (17). Note that for k, = 0, the S@® matrix is positive
semi-definite and thus it is regularized via a nullspace projection of
the right-hand-side vector (Pozrikidis, 2001). Essentially, the inverse
of S@ is a full matrix which effectively enforces the coupling of all of
the vertical-edges degrees of freedom, therefore imposing a global com-
munication pattern among computational processes (Tufo and Fischer,
2001). Consequently, once a solution is obtained for the vertical edges,
the remaining solves (Eq. (20)) are local and embarrassingly parallel.

The block-tridiagonal structure of the condensed Schur matrix S@
is amenable to the use of a direct solver in a purely serial framework.
Nonetheless, since a naive parallel block Thomas algorithm performs
poorly (Hirshman et al., 2010), various techniques have been proposed
for the solution of statically condensed/coarse grid problems with ef-
forts being concentrated on mitigating memory limitations and overall
parallelization bottlenecks (Borrell et al., 2011; Tufo and Fischer, 2001;
Lee and Wright, 2014; Seal et al., 2013). Nevertheless, for computation-
ally intensive simulations the use of an iterative solver is preferred due
to efficiency considerations (Offermans et al., 2019).

4.4. Deflation block-Jacobi preconditioned conjugate gradient solver

A deflation-based, block-Jacobi preconditioned, conjugate gradient
solver is utilized for the solution of the second Schur system of equa-
tions (see Eq. (19)) (Aubry et al., 2008; Saad et al., 2000; Mansfield,
1990). As demonstrated in Joshi et al. (2016b) for high-aspect ratio
leptic grids, the combination of a block-Jacobi preconditioner with
deflation, ensures convergence independent of the domain aspect ratio,
the polynomial order of the elemental expansion, and the number of el-
ements used in the x-direction. Although the convergence properties of
this combined approach have been demonstrated for a high-order col-
location discontinuous element based method, the effectiveness of this
approach is transferable to symmetric discretizations like the spectral
element method (Nicolaides, 1987).

As such, for the domain-decomposed second Schur matrix, its main
block-diagonal (see Fig. 4) is used as a block-Jacobi preconditioner.
Note that the choice of a non-overlapping block-Jacobi preconditioner
is a commonly adopted strategy (Fischer and Rgnquist, 1994; Couzy
and Deville, 1995; Joshi et al., 2016b; Huismann et al., 2017) which
ensures that no communication overhead among processes is intro-
duced during its application in parallel. More specifically, the block
preconditioner is factorized during the set-up stage of the solver with

Ocean Modelling 176 (2022) 102065

Fig. 4. The second block-tridiagonal Schur complement matrix S@ for the vertical
edges of the computational domain shown in Fig. 1. The tridiagonal structure of S®
denotes that each vertical edge is coupled with at most two of its adjacent vertical
edges.

the overall factorization cost being amortized over the many pressure
Poisson solves per simulation.

For the deflation component of the iterative solver, a deflation
matrix Z € R’ is defined, where n, = dim(S®) is the total number
of unknowns which reside on all of the vertical edges and n, = m,+1 is
the number of vertical edges, whose columns are the deflation vectors
z; with their entries given by Joshi et al. (2016b),

1, ifx; e Fj”
(Zj),- = 0, B (21)

if x; & Iy

where i € {1,...,n,}, j € {l,...,n.} and x; is a grid point that
if resides on the Iy vertical edge then the respective entry of the
deflation vector is unity and zero if otherwise. Note that the choice
of deflation vectors may affect the convergence rate of the iterative
solver (Vermolen et al., 2004) and the investigation of optimal defla-
tion vectors is left for future work. Essentially, Z and Z” can been
interpreted as the prolongation and restriction operators commonly
used in multigrid methods (Tang et al., 2009). A coarse grid matrix
Clk,) = ZTSP(k,)Z € R'*"% of the second Schur matrix is then
constructed. This coarse Schur matrix C is a good approximation of
S@ and is subsequently used to update the search direction of the
deflated preconditioned conjugate gradient method, achieving faster
convergence (Aubry et al., 2008; Saad et al., 2000). Note that the coarse
version of the second Schur complement C(k,,) is tridiagonal and can be
seen as the one-dimensional x-direction equivalent of Eq. (13) using
linear basis functions, i.e., the Helmholtz matrix for the FEM (Joshi
et al.,, 2016b). Particularly for a high polynomial order where fewer
elements are used in the x-direction than in the equivalent in resolution
lower polynomial order case, the C matrix is much smaller in size than
the original Schur complement matrix, i.e., n, < n,. Therefore, the
coarse problem is solved directly and redundantly within each process
to avoid any introduced communication overhead.

Notice that the rank deficiency of the second Schur complement
matrix S@ for the zeroth mode is passed onto C(k, = 0). Nonetheless,
since the coarse matrix C is solved directly, a regularization tech-
nique via Householder matrices (Escobar-Vargas, 2012), equivalent to
the right-hand-side null-space projection of the S® matrix (see also
Section 4.3), is used (Pozrikidis, 2001). However, since the regular-
ization technique on C is not sparsity-preserving, a one-dimensional
DD technique is adopted between the interior and the two boundary
unknowns of the C(k, = 0) matrix. First, a 2 x 2 Schur complement



T. Diamantopoulos, S.M. Joshi, G.N. Thomsen et al.

matrix is computed corresponding to the first and last unknowns of
C(k, = 0). Once this Schur complement matrix is regularized and
the two boundary values are computed, a final tridiagonal solve is
performed for the interior unknowns of C(k, = 0) matrix.

4.5. Viscous/diffusive solves

A simple strategy is adopted for the numerical solution of the
viscous (Eq. (11)) and diffusive (see Section 3.4) parts of the solver.
It is during this step of the solver where boundary conditions for
the velocity field and the density perturbation are enforced (Diaman-
topoulos et al., 2021). Consequently, adhering to a DD approach for
these implicit solves, such as that described in Section 4.2.1, would
introduce an additional complexity regarding the enforcement of dif-
ferent types of boundary conditions. For instance, the dimensionality
of the discretized system of equations will be accordingly reduced;
as for the case of Dirichlet boundary conditions where the solution
is already known at the boundaries (Karniadakis and Sherwin, 2013).
Following the discretization presented in Section 4.1-4.2, the respective
Helmbholtz matrix H“(k,) of Eq. (11) for a given transverse wavenumber
k, is given by

H'(k,) = aK+(1+ k)M, (22)

where the time-step coefficient « (Eq. (11)) scales linearly with vAr or
xAt. Thus, for high Reynolds number flows, H* is diagonally dominant
and H* ~ (1 + kﬁ)M. Therefore, the implicit viscous/diffusive solves
are performed iteratively for the uncondensed system of equations
using the diagonal mass matrix M as a preconditioner (Blackburn
et al., 2019) which is an efficient preconditioning strategy for achieving
convergence in a few iterations.

5. Implementation

This section assesses the implementation’s scalability and ability
to tackle environmental scale domains for the temporal and spatial
discretizations outlined in Section 4. Specifically the implementation
of the SEM/FG flow solver is evaluated against its design goals to
understand its bottlenecks and identify areas of interest for a future
scaling study.

The SEM/FG flow solver’s implementation was guided by three
objectives to support scaling to large node and core counts: (1) loose
coupling between two-dimensional subproblems, (2) minimize com-
munication, and (3) maximize arithmetic intensity of computations.
Nonetheless, these goals alone are not sufficient for an efficient im-
plementation (e.g. use of efficient vendor libraries for computation
is required), but provide the foundations that frame its scalability.
Both loose coupling and minimizing communication are necessary to
maximize parallel execution and set an upper bound on performance
through Amdahl’s law (Magoulés et al., 2016), though the former is
necessary to maximize gains from the method’s parallel domain decom-
position. Structuring computations to maximize arithmetic intensity
provides opportunities for efficient execution, often through external
acceleration libraries for FFTs and dense linear algebra. Each of these
objectives drives towards an implementation that can be applied to
large environmental scale problems.

The SEM/FG solver was designed as a pure MPI solver targeting a
single rank per core on multi-core HPC systems. The structured nature
of solver’s computations admits flexible distribution of work to either
MPI ranks or threads, though a hybrid MPI/OpenMP implementation
was not pursued since the anticipated performance was comparable.
Moreover, a hybrid approach increases complexity in both maintenance
and execution.

The analysis presented is limited to the parallel domain decompo-
sition and the viscous and pressure solvers, as their implementations
directly reflect the discretization as outlined in Section 4.2.1. Compo-
nents such as solver setup, input and output, and post-processing are
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omitted as they are independent of the method. For each component of
interest, an outline on how the method maps onto its implementation
is provided along with a qualitative assessment of bottlenecks with
respect to the aforementioned objectives.

5.1. Parallel domain decomposition

Following the hybrid approach of Bolis et al. (2016) a
two-dimensional parallel decomposition in the x and y directions is
used. The y dimension is a natural choice due to the Fourier dis-
cretization, allowing the solution of a three-dimensional system to be
pursued through solving parallel two-dimensional subproblems. The x
dimension is chosen over the z since SEM/FG target problems have a
high horizontal aspect ratio (~ 10 : 1) and the parallel decomposition
along x provides greater opportunities for scaling due to significantly
more horizontal elements. Additionally, this results in minimizing the
data exchanged between ranks as the vertical surface area between
subdomains is significantly smaller than the horizontal surface area.

Two communication patterns emerge when decomposing in x and y:
(1) along x — z planes with point-to-point exchanges of vertical subdo-
main edges and collective communications during conjugate gradient
iterations, and (2) along x—y planes with all-to-all data exchanges cou-
pling all the transverse Fourier modes during non-linear advection term
computations. Each two-dimensional subproblem spends the majority
of its time communicating with the ranks in its x — z plane, with the
coupling communications in the y direction occurring a fixed number
of times per time step, ultimately framing SEM/FG’s execution as a
collection of loosely coupled, two-dimensional subproblems.

From an implementation standpoint, SEM/FG maps its MPI ranks,
P, onto a two-dimensional Cartesian topology, P; — P,,. Subsets of the
computational domain are assigned to each process, both in the subdo-
main (x) and wavenumber (y) sense, such that each process P, holds
one or more subdomains in x and one or more transverse wavenum-
bers in y directions, respectively. Fig. 5 illustrates the aforementioned
decomposition, topology, and communication patterns.

As part of the pressure and viscous solves, vertical edge exchanges
are performed between adjacent ranks within an x — z plane to enforce
CY continuity and are performed simultaneously across all ranks within
a local two-dimensional subproblem. Due to the parallel decomposition
in x, the data size transferred between adjacent ranks is fixed at N, =
m,N +1 values, i.e., the grid resolution in the vertical direction. Collec-
tive communication within each two-dimensional subproblem occurs
as a small, fixed number of reductions to compute dot products during
conjugate gradient iterations. Due to deflation-based preconditioning,
the pressure solve also has a collective exchange to distribute deflation
vectors.

Computation of non-linear advective terms is done in physical space
which necessitates transforming grid points from Fourier space and
back. Since wavenumbers are distributed along y, collective exchange
amongst ranks in the transverse dimension is required to compute each
Fourier transform. The exact number of FFTs depends whether the
flow is stratified and, thus, Eq. (2) is solved, though needs to compute
O(10m,N?) N,-point real-valued FFTs per timestep. The volume of
data exchanged between ranks is O(8m N ,N 2) bytes per transform.
Advection terms are computed once per timestep and result in the only
synchronization point across all ranks in the y dimension.

To better understand loose coupling and explore SEM/FG’s scal-
ability limitations, the aforementioned communication patterns are
qualitatively analyzed. This is performed by examining the choices for
allocating subdomains to individual ranks and assessing the bottlenecks
that emerge. For the scaling analysis discussed below, one dimension,
either x or y, is fixed to an arbitrary size and the other dimension is
varied between extremes.

Choices for distributing vertical subdomains amongst ranks in x
range from all subdomains on a single rank to one subdomain per rank.
While it eliminates communications, the extreme where a single rank
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Fig. 5. Example of the parallel domain decomposition and its Cartesian topology.
Each process owns two points in the y-direction and four subdomains per x — z
plane. Data transposition (solid arrows) takes place during the forward and inverse
Fourier transforms among processes which reside on the same column. The vertical
edge overlap between two adjacent processes of each x — z plane is exchanged
(dashed arrows) via point-to-point non-blocking communications. Each x — z point-
to-point communication takes place during the direct stiffness summation, typical of
all fractional steps of the time-splitting scheme, and a global communication among
processes residing on the same x — z plane during the deflation preconditioning of the
pressure Poisson problem (dotted arrows).

has an entire x — z plane is infeasible due to memory requirements,
and is not considered further. On the other extreme, mapping a single
subdomain to one rank results in minimal computation per rank with a
slight increase in communications overhead as more ranks participate
in the collective reductions. The time saved in per-rank computation
is expected to exceed the increased communication overhead for all
environmental scale problems, resulting in an overall smaller time per
timestep. Finally, execution with more than one subdomain per rank
results in a larger time per timestep than in the single subdomain per
rank, though by how much is unknown without a strong scaling study.

Distributing transverse subdomains amongst ranks in y follows a
similar argument, though differs in that the time per timestep is limited
by the slowest two-dimensional subproblem. Since each subproblem’s
wavenumber correlates to its condition number (cf. Eq. (16), (22)),
which is proportional to the number of conjugate gradient iterations
required, the time per timestep is max; 7;, where the ith rank’s total
time, T, = ¥, T, , is the sum total time of each of its k-many two-
dimensional subproblems. As a result, the extreme case where each
rank solves a single two-dimensional subproblem minimizes the total
time per timestep. The case where ranks solve multiple subproblems
results in a load imbalance requiring partitioning wavenumbers across
ranks to avoid such an inefficiency. The current implementation of
SEM/FG naively partitions wavenumbers in sequential order and leaves
load balancing in y as a future effort.

Given the aforementioned communication patterns the method de-
scribed in Section 4 maps well to the parallel domain decomposition.
Increasing ranks in y reduces total time per timestep, while increasing
ranks in x trades per-rank computation for slightly increased collective
communication overhead. Increasing ranks in both x and y will reduce
time per timestep for environmental scale problems, though cannot be
quantified without a scaling study.

5.2. Pressure solve

The method’s domain decomposition results in a smaller, isolated
problem where only the shared vertical edges are collectively solved,
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allowing the shared horizontal edges and interior elements to be com-
puted locally and without additional communication as a direct result
of the two-level static condensation. Since x(S®) <« x(H) (Carvalho
et al., 2001), this results in fewer iterations of deflation-based precon-
ditioned conjugate gradient (DPCG), each operating only on the vertical
edges rather than the entire subdomain. Both solving D~'x, = f, where
D stands for the block-Jacobi preconditioner, and computing S®x,
operate on matrices sized N, x N,, which are a factor of (N + 1)?
smaller than the entire subdomain. Additionally, these operations map
directly onto LAPACK and BLAS routines, dpotrs() and dgemv ()
respectively, that are accelerated by vendor implementations.

In addition to reducing the size of the collective problem, the
method’s two-level condensation also trades communications for local
work. First, the coarse direct solve of C-! ZT x, in the DPCG iterations
is redundantly computed in each rank rather than collectively. Given
the tridiagonal, symmetric positive definite nature of C~! Z7 this can
be efficiently solved O(8m,) FLOPS (Golub and Van Loan, 2013) and
is an obvious trade for fewer collective communications within each
iteration. Once an iterative solution is computed for the shared vertical
edges, each rank can compute solutions to horizontal edges and interior
elements without any further communication within the x — z plane.

The matrices involved in lifting and solving the RHS for the interior
the elements (cf. Eq. (20)), sized 4N x (N — 1)> and (N — 1)2 x (N —1)?,
respectively, lends itself to exploring acceleration libraries tailored to
small sizes and batched execution. Both BLASFEO (Frison et al., 2018)
and libxsmm (Heinecke et al., 2016) provide tuned implementations
for small dense linear algebra problems, including matrix-vector oper-
ations, while BLASFEO also solves systems of equations with Cholesky
factorization.

While increasing the efficiency of the DPCG iterations reduces the
total time per timestep, potentially larger gains are available by re-
ducing the number of iterations required. As seen in Eq. (15) and
described in Section 4, SEM/FG’s time per timestep is directly limited
by the number of iterations required by the k, = 0 wavenumber
subproblem. As such, improvements to the preconditioning strategy
have a significant impact in reducing the time spent in the pressure
solve. Identifying a better selection of deflation vectors is an area of
future work.

5.3. Viscous solve

Compared to the pressure solve, SEM/FG’s viscous solve is both a
smaller and better conditioned problem due to its dominant diagonal
structure (c.f. second term of right-hand-side of Eq. (22)). Applica-
tion of boundary conditions and lifting the RHS result in per-element
matrix-vector multiplications, of M and H, all of size (N + 1)® x (N +
1)2. Preconditioned conjugate gradient (PCG) iterations consist of per-
element matrix—vector multiplications with H though the conjugate
gradient solution operates on vertical edges due to the domain decom-
position, resulting in scalar operations of size N, X (m, N + 1), where
m,_stands for the number of subdomains per MPI-process. Of note, the
block-Jacobi preconditioner is applied through an element-by-element
Hadamard product (Golub and Van Loan, 2013) since the matrix M~
can be precomputed during solver setup due to its diagonal structure.
As a result, all of the viscous solve’s operations are either matrix—vector
multiplications that map directly onto BLAS routines or vectorizable
array operations. Similar to the pressure problem, the viscous solve
may benefit from a BLAS implementation tuned for small matrices so as
to accelerate the small matrix—vector multiplications contained in PCG
iterations.

6. Stabilization techniques

In under-resolved simulations, which is predominately the case in
environmental flow modeling, SEM/FG uses an exponential filter (Di-
amessis et al.,, 2005; Vandeven, 1991) as a surrogate of a hyper-
viscous operator (Moura et al., 2016) both in the periodic y, and
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non-homogeneous directions x—z. Each velocity component and density
perturbation are filtered once every time-step after the computation
of the non-linear (Eq. (6)) and advective terms respectively. The fil-
ter orders in y, g, and x — z directions, ¢, are reported for each
benchmark in Section 7. Additional stabilization is achieved in the
x — z non-homogeneous directions via polynomial over-integration,
or equivalently referred to as polynomial dealiasing (Kirby and Kar-
niadakis, 2003), of the non-linear and advective terms (Malm et al.,
2013). Details regarding the stabilization techniques used in this work
are provided on Appendices A and B.

7. Benchmarks

In this section, the overall accuracy of the solver is demonstrated
for a series of benchmarks of increasing complexity, ultimately building
up to a three-dimensional benchmark of a convectively breaking ISW
propagating over a realistic bathymetry (Rivera-Rosario et al., 2022).
Results are validated, when applicable, with analytical solutions or with
other studies for both unstratified and stratified flows.

7.1. Kovasznay flow

The steady-state Kovasznay flow (Kovasznay, 1948) is a commonly
used test case for the validation of high-order two-dimensional incom-
pressible flow solvers. It is based on an exact solution of the incompress-
ible Navier-Stokes equations for a laminar flow past a two-dimensional
grid (Eq. (23)) (Hesthaven and Warburton, 2007; Manzanero et al.,
2020; Kirby and Sherwin, 2006) on 2 = [-0.5,1] x [-0.5,1.5] (m?) . A
time step of dr = 1073 s is chosen for a constant number of equally sized
elements 8 x 8 and a varying polynomial order, i.e., p-refinement (Hes-
thaven and Warburton, 2007). Simulations are initialized with the exact
solution of the velocity field, given in Eq. (23) for non-homogeneous
Dirichlet boundary conditions and performed over a time span of t =
[0, 1] (s). Lastly, viscosity is uniform and set equal to v = 1/40m?2/s. No
exponential filtering is used since the flow is laminar and well-resolved.
The L, error norm of the field variables is shown in Fig. 6 at time ¢t =1s
as a function of the polynomial order per element per dimension. Notice
the exponential convergence (Kopriva, 2009) of SEM, similar to a global
spectral method, achieving an error close to machine precision as the
polynomial order within each element increases.

1 1
A= — —/— +4n2
o 2 +4n
u=1-—exp(Ax)cos (2zz) (23)

w= A exp (Ax) sin 27 z)
2z

p=(1—-exp(24ix)) /2.

7.2. Normal collision of a vortex dipole with a no-slip wall

The normal collision of a vortex dipole enables the validation of
the fully non-linear time-dependent INSE by examining the propagation
of a distinct flow feature, namely the vortex dipole, and its interac-
tion with the finer-scale boundary-induced vorticity as it reaches the
bottom wall. The work of Subich et al. (2013) is used as a reference
since it offers a detailed comparison with previous numerical experi-
ments in the context of high-order discretizations (Clercx and Bruneau,
2006; Kramer et al., 2007). The two-dimensional collision is initially
investigated with a subsequent extension to three-dimensions by incor-
porating a third periodic transverse direction as in Subich et al. (2013).
In this study, simulations were performed for a moderate Reynolds
number of Re = UH /v = 1250 (Clercx and Bruneau, 2006), where
H = lm is the half length of the normalized computational domain
Q=[-1,1]x[-1,1] and U is the computed full-domain-averaged RMS
velocity

4 /o
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Fig. 6. Lin-log plot of the L, error norm of the (u,w) velocity components and
instantaneous pressure p as a function of the polynomial order of the element
approximation at 1 =1 s.

The initial two-dimensional velocity field u = (4, w) induced by the
dipole is given by the following expressions

- % (z—z;)exp (=r2/r2) - % (z=z2) exp (-r3/r5) (25)
= % (x—x;) exp (—ri/r?)) - ? (x—x)exp (—rf/ré) ’

u
U
w
U
where (x;,z;) = (=0.1,0) is the initial dimensionless location of the
positive monopole, (x,, z,) = (0.1, 0) is the initial dimensionless location
of the negative monopole, r;, r, is the distance from the center of
the positive and negative monopole respectively, r, is the radius of
each monopole and w, ~ 299.5284 is the amplitude of the monopole’s
vorticity w computed from Eq. (24). Note that the x — z plane is used
for this benchmark. Therefore, the y-component of vorticity is reported
throughout the presentation of two-dimensional and three-dimensional
results. In particular, the sign of vorticity, not its direction, is inverted
due to a different choice of Cartesian axes when compared to previous
studies (Clercx and Bruneau, 2006; Kramer et al., 2007; Subich et al.,
2013).

A constant polynomial order of N = 8 per element per direction
is used for a varying number of elements (m,, m,) with m, = m,.
Additionally, a grid stretching strategy is used in the bottom half of
the domain, to better resolve the fine bottom boundary layer features
resulting from the dipole collision with the wall. The ratio of the heights
of two adjacent elements in the vertical is equal to a constant ¢, =
Az*1 /A7l < 1. Varying width elements with a constant ratio of ¢, =
0.92, symmetrically placed around the center of the domain, are used
for two of the cases (Fig. 7). In total, three simulations were performed
by increasing the grid resolution in x and z directions through an
increase of the number of elements with the corresponding minimum
horizontal (4x,,;,) and vertical grid spacings (4z,,,) shown in Table 1.
A weak filter of g,, = 14 order is used for both the two-dimensional and
three-dimensional simulations with a transverse filter order of g, = 48,
affecting only the top 23% of the transverse wavenumber range, is used
for the three-dimensional test-case.

Three metrics are used to assess the efficacy of the simulations, the
total kinetic energy

2
KE(t):%/ <%’)> aQ, (26)
Q

the magnitude and time of occurence of the maximum enstrophy

1 o)’
E(t)_E/Q<U/H>d.Q, 27)

and the location and strength of the maximum negative vorticity of the
primary monopole as described in Subich et al. (2013).
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Fig. 7. Initial vorticity of the dipole overlapped by the computational mesh for the
321 x 321 case. Each element has a 9 X 9 Gauss-Lobatto-Legendre grid.
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Fig. 8. Vortex dipole interaction with the bottom boundary induced vorticity shortly
after the maximum enstrophy time of occurence (¢/(H /U) = 0.363).
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Table 1

Grid parameters and resolution for the two-dimensional vortex dipole wall-normal
collision. Polynomial order N, number of elements in the horizontal m, and vertical m,
directions and the respective number of grid points N,, N, in the x and z directions
respectively are shown. The grid stretching constants (¢,, ¢.) are also reported along
with the minimum resolution (4x,,,, 4z,,). Note that the grid points within each
element are the Gauss-Lobatto-Legendre points which are non-equidistant.

(N, my,m.) Ny XN, Px ®: A Az,

(8.40,40) 321 x 321 0.92  0.96 2506 x 1073 1.014x 107
(8,64,64) 513 x 513 092  0.96 3249%x107* 3306 1074
(8.144,144) 1153 x 1153 1 0.985  6961x10™  3.114x10™*

As the dipole propagates downward and comes sufficiently close
to the wall, a bottom boundary layer is formed with an induced
vorticity of opposite sign from that of the primary monopole. Once the
boundary-layer-induced vorticity interacts with the primary monopole
(Fig. 8), the total enstrophy assumes a maximum value and dissipation
of kinetic energy increases (Fig. 9). A secondary smaller increase of
enstrophy occurs later in time when the primary vortex recirculates and
interacts again with the bottom-boundary-generated vortices. The max-
imum enstrophy and time of its occurence for different grid resolutions,
as compared to previous studies (Clercx and Bruneau, 2006; Kramer
et al., 2007; Subich et al., 2013), are reported in Table 2. Lastly, the
strength of the maximum negative vorticity of the primary monopole
at t/(H/U) = 0.6 and the corresponding location of this maximum are
reported in Table 3. For all the reported quantities in both Tables 2 and
3 agreement with previous studies improves for increasing resolution.

7.2.1. Extension to three-dimensions
The three-dimensional benchmark of the vortex-dipole collision is
performed by extruding the x — z computational domain £ into Q' =

10
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Table 2

Maximum enstrophy and its time of occurence for different grid resolutions and
reported values from previous studies (Clercx and Bruneau, 2006; Kramer et al., 2007;
Subich et al., 2013).

N, XN, Enstrophy Time

321 x 321 1883.550 0.341672
513 x 513 1893.337 0.341576
1153 x 1153 1897.243 0.341454
Clercx and Bruneau (2006) 1899 0.3414
Kramer et al. (2007) 1899.2 0.3414
Subich et al. (2013) 1899.921 0.341369

Table 3

Maximum absolute value of vorticity of the primary negative monopole and its location
(x,,, z,) for different grid resolutions at ¢+ = 0.6 and reported values from previous
studies (Clercx and Bruneau, 2006; Kramer et al.,, 2007; Subich et al.,, 2013). The
reported values of vorticity correspond to the same dipole location albeit for a different
sign of vorticity but same direction as defined by the right-hand rule for a given
coordinate system. The coordinate z,, is the vertical distance of the primary monopole
from the bottom wall.

Grid points (x> Zpn) Vorticity
321 x 321 (0.1495, 0.1269) 218.8496
513 x 513 (0.1489, 0.1258) 219.0806
1153 x 1153 (0.1505, 0.1257) 219.1692
Clercx and Bruneau (2006) (0.151, 0.126) 219.4
Kramer et al. (2007) (0.1506, 0.126) 219.29
Subich et al. (2013) (0.1514, 0.1257) 219.2434

Q % [0,0.4]. The x — z resolution corresponds to the 513 x 513 grid
shown in Table 1 along with a discretized y-direction of N, = 96 grid
points. White Gaussian noise is added onto every velocity component
at each grid point of the computational domain, following the same
approach as in Subich et al. (2013). In total, two three-dimensional runs
are performed for the same grid resolution albeit with different noise
amplitudes determined by the standard deviation (¢) of the Gaussian
white noise which is set equal to ¢ = 1072, as in (Subich et al., 2013),
and o = 1073 for the stronger and for the weaker noise run, respectively.

The evolution of averaged-in-y enstrophy and kinetic energy (KE)
for the three-dimensional benchmarks is shown in Fig. 9. The ¢ = 1072
test-case follows the same behavior as the two-dimensional simulation
up until the first interaction of the dipole with the no-slip-driven
vorticity at the bottom boundary. At this point, enstrophy continues
increasing which is a signature of fine structure, assuming larger values
due to vortex stretching, with a concurrent increase of KE dissipation
when compared to its two-dimensional counterpart. Although, the stan-
dard deviation of the noise is equal to the one reported in Subich
et al. (2013), the three-dimensionalization of the flow starts much
earlier, where any initial secondary transverse instabilities (Harris and
Williamson, 2012) are bypassed due to the strong amplitude noise. This
deviation is attributed to the weak filtering order (¢, = 48) in the
periodic direction which is further enforced by examining the evolution
of the enstrophy and KE for the ¢ = 1073 run and possible subtle
changes in the structure of the noise.

In that case due to the weaker perturbations which drive a slower
growth rate of any transverse flow structure, enstrophy starts deviating
later in time from the two-dimensional benchmark, after the first inter-
action of the dipole with the bottom-generated vorticity. A second peak
of enstrophy of almost equal strength with the first one is now observed
during the second interaction of the dipole with the bottom boundary-
generated vorticity similar to the one reported in Subich et al. (2013).
The second enstrophy peak drives an increase in KE dissipation as in
the o = 1072 case, albeit less intense. Lastly, in Fig. 10 two isosurfaces
of the transverse vorticity », and one iso-surface of the magnitude of

vorticity |o| = (coi + wi + wﬁ)l/z are shown for the ¢ = 1073 test-case
soon after the second enstrophy peak. The almost parallel to the x — z
plane generated vorticity, indicates the three-dimensionalization of the
flow; similar patterns are also observed in Subich et al. (2013).
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Fig. 9. Evolution of enstrophy (top) and kinetic energy (bottom) of the vortex-dipole normal wall collision for a resolution of N, X N, = 1153 x 1153 grid points (solid black line).
Dashed lines correspond to the three-dimensional time evolution of, averaged in y-direction, enstrophy and kinetic energy for an additive white Gaussian noise of a 10~2 standard
deviation (red) and 103 (green) respectively for a resolution of N, x N, X N_=513x96x513 grid points.

Fig. 10. Isosurfaces of the transverse vorticity o, = —50 (blue), », = 50 (red) and the magnitude of vorticity || = 40 (gray), soon after the second interaction of the vortex dipole

with the no-slip-driven generated vorticity at t/(H /U) = 0.605 for ¢ = 1073.
7.3. Stratified test-cases

The stratified test-cases share the common theme of the propaga-
tion of an internal solitary wave (ISW) of depression under different
conditions. Starting from an idealized configuration, i.e., two-layer con-
tinuous stratification with no background current, uniform depth and
inviscid flow, the complexity of the simulations is gradually increased.
Initially, a small bathymetric feature is incorporated, culminating into
a study of the three-dimensional propagation of an ISW over a realis-
tic bathymetry, with realistic background currents and stratification,
inspired by actual measurement in the South China Sea (SCS) (Lien
et al., 2012, 2014). The propagation of an ISW is used as a platform to
assess the robustness of the flow solver because of the delicate inherent
balance between their non-linear steepening and physical dispersion.
Consequently, if a numerical discretization is not carefully chosen, any
spurious flow features, such as non-physical dispersive trailing waves,
erroneous propagation speed or artificial amplitude attenuation due
to numerical diffusion, introduced by the flow solver, will eventually
compromise the simulation. By virtue of the hybrid SEM/FG numerical
method used, the dynamic nature of the two-dimensional convectively
breaking ISW is successfully captured along with the three-dimensional
scales down to grid resolution.

7.3.1. Tankscale ISW in uniform depth water
The initial ISW satisfies the Dubreil-Jacotin-Long (DJL) equation
(Long, 1953; Dunphy et al.,, 2011) for an initial available potential

11

energy (APE) of APE = 0.05 J/m under a continuous two-layer

stratification

A z+h
i:l——ptanh< 1>, (28)
Po 2po 6

where p, = 1000kg/m3 is the reference density, 4p = 40kg/m? is the
difference between the lower and upper densities, 4, = 3cm is the
upper layer depth and § = 0.5cm is the interface thickness. The ISW
propagates inviscidly where the viscous/diffusive terms in Egs (1),(2)
are deactivated and the time discretization is adjusted accordingly. The
wave is expected to propagate in a uniform depth tank of H = 15cm
and length L = 10x L, = 6.9m, where L, ~ 0.69m is the ISW’s width,
with a DJL-prescribed constant propagation speed of ¢ = 0.1145412 m/s.
In regards to spatial discretization, a resolution of N, X N, = 513 x 257
grid points is used in the x and z directions respectively for a polyno-
mial order N = 8 per element in each dimension and uniform sized
quadrilateral elements. Fig. 11(a) shows the DJL-based ISW which is
used as an initial condition for the tankscale uniform depth propagation
as well as for the wave propagation over a small bathymetric feature
as examined in Section 7.3.2.

The overall numerical dissipation of the flow solver, as generated by
the numerical filtering, is investigated by calculating the kinetic energy
KE = py/2 fg v? (x,1) dQ2 of the ISW as a function of time. In the case of
the inviscid propagation of an ISW in a constant depth waveguide, on
purely physical grounds the KE of the ISW should remain constant. In
practice however, when a high-order discretization is used, mitigation
of any aliasing induced instabilities attributed to the non-linear terms
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Fig. 11. The computational mesh for the simulation of the inviscid propagation of a tankscale ISW of depression over a Gaussian bump at x/L, = 3.5. Shown in color are
the isopycnal contours of the total density, equispaced from the reference density, for two different snapshots of the simulation. Grid resolution, domain dimensions and initial

conditions are the same as for the flat-bottom test-case of Section 7.3.1.
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Fig. 12. Evolution of the kinetic energy of the inviscidly propagating tankscale ISW for
the uniform depth (black dots) and the bump (solid red) test-cases, non-dimensionalized
by the initial kinetic energy of the wave.

of INSE requires the introduction of an artificial, albeit controlled,
dissipative mechanism. An initial increase of the KE dissipation rate
is observed due to the reduced order of the time integration scheme
for the first two time-steps of the solver (Fig. 12). Once the high-order
time integration is established, the dominant source of dissipation is the
weak exponential filter, of order ¢,, = 14, used. More specifically, the
KE assumes a constant value of 0KE/dt ~ —1.6x10~* which corresponds
to ~ 0.1% KE* loss per width of propagation where KE* is the ISW’s
kinetic energy normalized by the initial KE of the wave. Note that the

12

t/(L /)

Fig. 13. Position of the trough of the ISW as a function of time for the flat bottom
(black dots) and the bump (solid red). Bottom right panel is a detail of the position of
the wave as it propagates over the bump. Notice the change of slope in the timeseries,
i.e, propagation speed, as the wave goes over the bump and how the ISW recuperates
its initial propagation speed as it moves back into uniform-depth water.

overall loss of KE* can be used as a useful metric to assess the artificial
dissipation introduced by a stratified flow solver.

For a uniform depth waveguide, inviscidly propagating ISWs should
have a constant propagation speed c¢. Consequently, by tracking the
position of the wave as a function of time, one should expect a straight
line of slope c. The ability of the flow solver to perform reliably in
this context is shown in Fig. 13, where the position of the trough
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Fig. 14. Density field of the initial ISW shoaling over the realistic SCS bathymetric transect. The 20 km artificial plateau is also shown. The vertical black dashed line denotes

where the 3-D simulation is initialized.

of the wave is given as a function of time. Obtained through linear
regression, the numerically computed propagation speed of the wave,
Cum = 0.1145173m/s is in excellent agreement with the DJL-based
initial propagation speed of the ISW with a relative error of 2.1 x 10~*.

7.3.2. Tankscale ISW over a Gaussian bump

An additional level of complexity is now introduced by inserting a
small bathymetric feature in the propagation path of the DJL-based ISW
considered in Section 7.3.1. To accurately represent the Gaussian bump,
the computational mesh and the respective elements in the vicinity of
the topographic feature are curvilinear and highly deformed as shown
in Fig. 11. Thus, the capability of the solver for supporting complex
boundary geometries is tested. The ISW propagates over a Gaussian
bump of height 4, = 0.03H and width L, = 3L, /4, with the initial
configuration shown in Fig. 11(a). The dimensions of the bump are
chosen for the ISW to propagate over this feature without inducing
any convective or shear instabilities. Over such a gentle bathymetric
feature, the ISW responds to the bathymetric change, by slightly ad-
justing its waveform, but recovers its original shape (Fig. 11(b)) and
propagation speed as soon as it moves back into uniform-depth water.
Therefore, this adjustment and recovery of the ISW waveform are an
additional aspect of the flow solver testing provided by this benchmark.

As the wave approaches the bump, it slows down and its KE is
converted into available potential energy (APE) (Lamb and Nguyen,
2009). Note that, the computation of the ISW’s APE is not included
in this work. The reverse energy exchange is observed once the ISW
goes over the bump: the wave accelerates, its APE decreases with an
accompanying increase of its KE. The evolution of the ISW’s KE as it
propagates over the bump are shown in Fig. 12. Notice, when the ISW
has gone over the bump, its KE assumes values close to the uniform
bottom test-case, indicating how the ISW recuperates its original wave-
form as it propagates again over a uniform bottom. The position of
the trough of the wave as function of time is shown in Fig. 13. As
the wave propagates over the bump, the slope, i.e., the propagation
speed, changes but quickly returns close to the original values as the
water depth becomes uniform. Lastly, no error is introduced by the
representation of the complex boundary due to the high polynomial
order used for each element (Steinmoeller et al., 2016).

7.4. South China sea shoaling ISW

In this section, the three-dimensional inviscid shoaling of an ISW
of depression over a realistic gentle bathymetric slope in the South
China Sea (SCS) and its three-dimensional convective instability are
explored. This benchmark problem consists of the ultimate objective
of code development regarding the three-dimensional propagation of
ISWs, and NLIWs in general, over realistic configurations. Namely, the
flow solver has to successfully capture the ISW adjustment over long
distances on a constantly varying waveguide by combining realistic
background stratification/current profiles based on the observational
work of Lien et al. (2012, 2014) in the SCS. Simulations (Towns et al.,
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Table 4

Grid parameters and resolution for the shoaling ISW. Minimum resolution in the x —z
directions (4x,,,, 4z,,;,) and orders of the exponential filter (g, ¢,), for different ranges
of the SCS transect, are reported. Transverse parameters of the 3-D simulation, as the
resolution (4y), number of transverse points (N,), and time-step (4r) are also included.
Note that the reported number of elements in the x-direction, m,, is the total number
of elements of the computational domain and not the number of elements per window.

Range (km) Ax,,;, (m) Az,,;, (m) 425 9,)
0 4.13 0.52 (14, 20)
54 2.07 0.29 (13, 20)
60 2.07 0.24 (13, 20)
(N, m,, m,)) Ay (m) At (s) Ny
(7, 2374, 60) 0.7812 0.227 64

2014) are performed primarily following the methodology of Rivera-
Rosario et al. (2020, 2022) albeit for a different numerical method,
filtering order used, and value of viscosity.

In regards to the three-dimensional shoaling ISW simulation, adher-
ing to a hybrid spatial discretization may at first seem restrictive, since
transverse bathymetric variations cannot be represented. Nonetheless,
the restriction to such a bathymetric homogeneity in the y-direction
is offset by the solver’s implementation and the resulting performance
gains. As such, the decoupling of the transverse direction during the
implicit solves, greatly reduces the computational cost per time-step
and hence allows the optimal resolution of as large as possible a range
of turbulent length scales (Diamantopoulos, 2021). Consequently, and
without deviating from the observed normal-to-isobath propagation of
ISWs in the SCS, this hybrid approach allows, in an optimized fashion,
the investigation of the onset of the convective instability, and the
subsequent development of turbulence, induced solely by bathymetric
variations on the x — z plane.

The initial ISW is the baseline wave of amplitude A = 143m as
in Rivera-Rosario et al. (2020). Initially, the ISW starts propagating
from an artificial plateau of 921 m, to bypass any artificial shoaling
response at the wavescale. The simulation is originally performed
in two-dimensions up to approximately the 25.7km of the transect
(Fig. 14). At this stage of the simulation, the computational domain
is extruded in the y-direction with a width of L, = 50 m.

In this work, a weak filtering is utilized until the onset of the
convective instability where the flow is highly energetic and thus
the filtering becomes slightly stronger in the x — z plane as shown
in Table 4. Other modeling parameters and grid resolution for the
whole computational domain are shown in the same table. Notice
the variation of the resolution in the x-direction for increasing range
values. Although the minimum resolution in the x-direction is restricted
to Ax ~ 2m as the wave becomes convectively unstable, finer-scale
three-dimensional structures within the core of the wave can still be
identified (cf. Fig. 18). Further quantitative results, outside of the
scope of this paper, are needed to determine whether the observed
finer-scale three-dimensional structure developed inside the wave is
truly turbulent. Such computationally demanding, turbulence-resolving
simulations will be the topic of a future study (Diamantopoulos, 2021).
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Fig. 15. An example of two successive simulations of the ISW in the SCS using overlapping computational windows. The two red vertical dashed lines denote the limits of the
overlapping region among the two computational domains. Once the ISW propagates, from left to right, within the desired overlapping region (top), another simulation is initialized
(bottom) where the new computational domain includes the overlapping region of the previous window as well as the subset of the oceanic transect immediately downstream.
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Fig. 16. Evolution of the convective instability as the ISW shoals through visualization of the y-averaged density field. The ISW retains its symmetric shape while heavier
fluid detaches from the rear of the wave and plunges on top of lighter fluid within the wave interior. The colored solid lines are the y-averaged isopycnals of 1022.58 kg/m?
(gray/reference density), 1022.30kg/m? (blue) and 1022.26 kg/m> (red) as shown in Fig. 18.

Both the two-dimensional and three-dimensional simulations were
performed in overlapping windows, i.e., successive subsets of the com-
putational domain on the x — z plane which encompass the wave
as it propagates over approximately 7 wavelengths across each win-
dow (Fig. 15). For the three-dimensional runs each window spans
approximately 13km of the transect with an overlapping region of
6 km.

This overlapping technique greatly reduces the overall computa-
tional cost per time-step since only a fraction of the degrees of freedom,
which account for the full SCS transect, are solved during each frac-
tional step of the solver (Rivera-Rosario et al., 2020). Therefore, the
resulting FLOPS, the introduced parallel communication overhead per
time-step as well as the memory footprint are substantially smaller
when compared to a simulation that would be performed over the full
SCS transect.

Upon the initialization of the first three-dimensional windowed
run, perturbations (Rivera-Rosario et al., 2022) of amplitude equal
to 3 x 10~ (units are m/s for velocity and kg/m3 for density) are
inserted to each field variable. The noise is added once in every velocity
component and in the density perturbation on every grid point of the

14

computational domain. Specifically, white noise is inserted on each x—z
plane, adhering to a —5/3 slope spectra in the transverse y-direction.
As the ISW shoals and enters shallower waters, its propagation
speed decreases below the maximum induced horizontal velocity (c.f.
Fig. 19). Consequently, it undergoes a distinct convective instabil-
ity at a critical depth. Unlike the setup of Vlasenko et al. (2005)
where the rear of the wave significantly steepens because of the much
higher proximity of pycnocline to the bottom, the SCS shoaling ISW
preserves its symmetric waveform. Fig. 16 shows the onset of the
trapped core formation and evolution of the convective instability for
the SCS shoaling ISW. As the wave shoals, heavier isopycnals than
those in its interior detach from the rear of the wave (Fig. 16a) and
eventually plunge, in the form of an inclined gravity current, into the
interior of the wave (Fig. 16b-c). The resulting flow structure inside the
wave resembles the corresponding one reported in recent studies on
subsurface trapped cores (He et al., 2019; Rivera-Rosario et al., 2020,
2022). The onset of the convective instability leads to the development
of a lateral instability (Fig. 17) which eventually grows in amplitude as
the core develops. This heavy-over-light configuration eventually drives
the formation of the subsurface core (He et al., 2019) and the associated
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Fig. 17. Structure of the transverse velocity at 58.2km of the transect on the 1022.26kg/m® density isosurface. The early manifestation of the secondary lateral instability and

its structure are shown.

turbulent-like structure and localized mixed regions inside the wave in
three-dimensions (Fig. 18).

Once the ISW starts to become convectively unstable, a secondary
transverse instability gradually grows in amplitude (Fig. 17) which
drives the three-dimensionalization of the flow field as the ISW contin-
ues to shoal (Fig. 18). As previously stated, the transition to turbulence
from the formation of the trapped core, its persistence, as well as the
induced mixing, will be further explored via higher resolution simula-
tions in a future study. Note that the initial transverse mode differs
from the one reported in Rivera-Rosario et al. (2022) possibly due
to differences in the inserted perturbations. Specifically, perturbations
are inserted only in two of the velocity components with the trans-
verse velocity component being computed by virtue of the projection
onto a solenoidal velocity field during the time-advancement of INSE
(Eq. (10)). The development of three-dimensional transition (Fig. 17)
and turbulent-like structure of the ISW’s interior (Fig. 18) is delayed
as compared to field measurements (Lien et al., 2014) where a fully
turbulent trapped core at approximately the 54th km of the transect
was observed. For further comparison to field data and different noise
insertion strategies for accelerating the three-dimensionalization of the
flow field, the reader is referred to the study of Rivera-Rosario et al.
(2022).

Fig. 19 shows the variations of the maximum induced horizontal
velocity U,,,, and propagation speed ¢ as the wave shoals. For more
details on the methodology of computing ¢ the reader is referred to the
work of Rivera-Rosario et al. (2020, 2022). Both of these properties
are computed from the y-averaged velocity field since it is shown that
their differences per x — z plane are negligible. The along propagation-
path location of the onset of the convective instability which takes
place when the maximum horizontal induced velocity exceeds the
propagation speed of the wave, i.e., U,,,./c > 1, is consistent with the
locations of snapshots of the isopycnal overturning shown in Fig. 16.
Furthermore, as the wave shoals, the U,,,./c ratio follows the same
evolution (Fig. 19) as in Rivera-Rosario et al. (2020).

8. Conclusions and future work

In this work, a continuous hybrid nodal spectral element/Fourier
Galerkin flow solver for the simulation of fully non-hydrostatic strati-
fied flows is presented. The solver is specifically designed for the long,
high aspect ratio and variable bathymetry computational domains en-
countered in the normal to isobaths propagation of non-linear internal
waves and the resulting turbulence in the wave interior.

A defining feature of the non-linear internal waves is their strong
non-hydrostatic nature which necessitates the solution of a pressure
Poisson problem. When combined with the high aspect ratio complex
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Fig. 18. Evolution of the 3-D convectively breaking, shoaling ISW. Three density
isosurfaces are shown: 1022.58kg/m® (gray/reference density), 1022.30kg/m? (blue)
and 1022.26kg/m® (red). Top: Onset of the primary convective instability which is
mainly two-dimensional. Middle: Heavier fluid clearly detaches from the rear of the
wave while the signature of the lateral secondary instability starts becoming noticeable.
Bottom: The flow is fully three-dimensional and turbulent-like. The arrow indicates the
propagating direction of the ISW.

bathymetry domains, the efficacy of numerically solving the pressure
Poisson equation is of paramount importance for the overall perfor-
mance of the flow solver. Adopting a domain decomposition technique
for the pressure Poisson equation, the resulting condensed Schur com-
plement problem is solved via a block-Jacobi deflated preconditioned
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conjugate gradient iterative solver. A robust preconditioning technique
is used, which ensures favorable convergence properties, i.e., low iter-
ation count for the examined domains and flow problems, as recently
demonstrated in Joshi et al. (2016b).

The initial flow solver implementation meets its design goals of
producing three-dimensional physics from a collection of coupled two-
dimensional problems, minimizing communications, and expressing the
method as regions of structured computations. Qualitative assessments
indicate the implementation will scale well to tackle environmental
scale problems and will be validated with a future scaling study.
Future performance improvements include identifying more efficient
choices of deflation vectors to reduce the pressure solver’s iteration
count, as well as exploring acceleration libraries providing tuned im-
plementations for small dense linear algebra problems as reported in
Section 5.2.

The overall accuracy of the flow solver is demonstrated through
a suite of benchmarks showing a good agreement when compared
to analytical solutions and previous studies. The benchmarking effort
culminates with the three-dimensional shoaling of an internal solitary
wave of depression over realistic bathymetry and background con-
ditions in the South China Sea motivated by in situ observations of
Lien et al. (2012, 2014). The flow solver captures the key features of
the shoaling wave along with turbulent-like structures in its interior,
showing a really good agreement with previous studies (Rivera-Rosario
et al., 2020, 2022). Future turbulence resolving/computationally inten-
sive simulations of the shoaling internal solitary wave in the South
China Sea will be performed utilizing this solver (Diamantopoulos,
2021). Additional applications in stratified flows such as the simulation
of internal swash zones (Emery and Gunnerson, 1973; Thorpe and
Lemmin, 1999; Davis et al., 2020) and the potentially related boundary-
interior exchange (McPhee-Shaw et al., 2021), excited by deep water
waves will also be investigated.
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Appendix A. Exponential filtering

Since a continuous Galerkin discretization is used in the x — z
directions, it is crucial for the filtered quantity to preserve the C°
continuity of the numerical method (Boyd, 1998). Therefore, a discrete
polynomial transform (DPT) takes place before the application of the
exponential filter using appropriate basis functions which ensure the
CY continuity among elemental interfaces. Essentially, a DPT is the
mapping from the nodal coefficient space, i.e., Lagrange polynomials,
to the modal coefficient space. Instead of the commonly used Legendre
basis functions, the modal coefficients of a field variable are computed
for the boundary-adaptive basis functions (Canuto et al., 2007; Karni-
adakis and Sherwin, 2013). In one-dimension, the boundary-adaptive
basis functions are comprised of two linear basis functions which are
non-zero at the two boundaries and a series of basis functions or bubble
modes of increasing polynomial order, i.e, hierarchical, which are zero
at the boundaries. Thus, a subsequent filtering, only of the respective
bubble modes, ensures the continuity among element interfaces.

Let ¥ € RN+XN+1 be an exponential filtering diagonal matrix with
corresponding entries the values of the filtering function evaluated at a
given polynomial mode (see Eq. (36) in Diamessis et al., 2005) where
N is the polynomial order of the expansion. Then the one-dimensional
filtering matrix F € RN*1XN+1 is given by the following expression

F=vVZvl, (A1)
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where V € RN+IXN+l js the forward discrete-polynomial-transform
matrix with columns the computed boundary-adaptive basis at the
Gauss-Lobatto-Legendre points (Canuto et al., 2007). Lastly, the inverse
V-! denotes the backward transform from nodal to modal coefficient
space. Note that the two-dimensional equivalent filter matrix is simply
computed by taking the Kronecker product of the one-dimensional filter
matrix F with itself.

Appendix B. Non-linear terms calculation

The explicit step of the time-splitting scheme (Eq. (6)) for any
velocity component u of the velocity vector is shown following a
Galerkin approximation in the non-periodic domain 2. To simplify
notation, the density perturbation term is omitted and the intermediate
velocity @ is time-advanced using a first order time integration scheme
(J = 1), i.e., Euler method, which can be easily extended to a higher
accuracy time integration. Therefore, Eq. (6), for a given test function
v, is written as

/UﬁdQZ/UMdQ—At/UN{M}d.Q,
Q Q Q

where N{u} = u- Vu is the non-linear operator. Based on the discretiza-
tion presented on Section 4 the non-linear term N {u} is approximated
in £, as a linear combination of two-dimensional Lagrange polynomials

(B.1)

n
N{u}(x,y,2) = ) N{uh(0he(x.2) , (B.2)
k=1
where n are the degrees of freedom within a x — z plane. Note that
the test-function v, the intermediate velocity # and the previous time-
step velocity u adhere to the same discretization. Thus, Eq. (B.1) is

discretized into the following matrix form

Ma(y) = Mu(y) — AIMN{u}(y) , (B.3)

where M is the mass matrix and N{u}(y) = {N{u},(»}, u(») = {u, (M},
i(y) = {ii;(»)} are the nodal values of N{u}, u and i respectively.
Now the second term of the right-hand-side of Eq. (B.3) is equal to

MN{u}(y) = Cu(y) , B4

where C;; = [,hu - Vh;dQ is the weak-form-based discrete non-
linear operator. In high Re advection dominated flows, such as the
propagation of non-linear internal waves and the associated turbulence,
aliasing induced instabilities due to inexact integration of the entries
of C matrix may compromise the simulation. This is of particular
importance on complex computational domains where the integrand
of C;; includes the associated metric terms for the mapping of the
physical domain to the computational domain. Furthermore, since it
is a common practice for the use of an isoparametric mapping (Ko-
priva, 2009) (see Appendix C for more details), the integrand of C; ;
has an elevated polynomial order and, thus, any inexact numerical
integration using the Gauss-Lobatto-Legendre points (Karniadakis and
Sherwin, 2013) is exacerbated if not properly treated. On this account,
stability is ensured via polynomial over-integration on C to retain its
skew-symmetry (Malm et al., 2013). Briefly, the integrand of C;; is
spectrally interpolated into an over-integration grid for its integral to
be computed exactly through numerical integration. For more details
regarding the computation of C in deformed geometries the reader is
referred to Deville et al. (2002), Malm et al. (2013).

Lastly, the Fourier coefficients of the intermediate velocity 7 are
obtained by first inverting the diagonal mass matrix M of Eq. (B.3)
followed by a discrete Fourier transform in y, 7,
ii(k,) = F,{u(y) — AAN{u}(»)} . (B.5)

where k,, is a transverse in y wavenumber.
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Appendix C. Mapping to curvilinear elements

An isoparametric approximation (Kopriva, 2009) is adopted for
representing the mapping between the computational grid coordinates
of the reference quadrilateral element &, € 2, = [-1,1] X [-1,1] and
the physical coordinates x,(&, ), z,(£, ) € R? for each element

N N
N EDIOIEHACE)

i=0 j=0

NN (C.1)
EXEDIDIENCHON

i=0 j=0

where x;;, z;; are the physical grid coordinates within a quadrilateral
element and /;, /; are the one-dimensional Lagrange polynomials in
the reference domain. From Eq. (C.1), the partial derivatives of x,, z,
with respect to the reference coordinates &, 5 can be easily computed
numerically via the use of two-dimensional spectral differentiation
matrices (Costa and Don, 2000). Furthermore the derivatives of the
inverse mapping in two-dimensions are computed as (Kopriva, 2009)

L N -
Jz 0z
where J = g; o > 0 is the Jacobian of the transformation.
Notice that both the derivatives of the inverse mapping with respect
to the physical coordinates and the Jacobian are used throughout the
computation of derivatives and integrals respectively (e.g. first left-
hand-side term of Eq. (14)). For more details regarding the computation
of the elemental stiffness and mass matrices (cf. Eq. (16)) for curvilinear
elements the reader is referred to the textbook of Deville et al. (2002).
In the context of a domain decomposition, the use of curvilinear
elements, dictated by complex computational geometries, requires a
unique mapping to the reference element £,. As such, each elemental
matrix differs from element to element, since the Jacobian of the
transformation J assumes different values per grid point (Deville et al.,
2002). Consequently, any tensor-product-based calculations for the
inversion of the self-interaction matrices H;; and Si(zlh) (see Eq. (20)) are
not in this case applicable (Huismann et al., 2019; Couzy and Deville,
1995).

(C.2)

0z 0x
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