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Abstract

Ker-I Ko (葛可⼀, 1950-2018) made multiple pioneering and milestone contributions to structural
complexity theory and real-number computation. His sharp perception of both discrete and con-
tinuous structures had lead him to study fundamental concepts from one-way functions [29], to
polynomial-time hierarchy [21], from integral equations [24], to real functions [28], from fractals
[27] to fixed-points [25], from optimization [20] to relativization [22], from instance complexity [36]
to real complexity [28], from NP-completeness [31] to exponential-time completeness [23]. In his
final two years, he turned his focus to game-theoretical designs for dynamic processes over social
networks [12, 33].

For this honorary book in memory of Professor Ker-I Ko, we are pleased to be able to contribute
a paper with scope intersecting the areas that drew his last attention, and with results connecting
discrete and continuous formulations of network dynamics. We prove that the complex stochas-
tic network-influence processes have a simple graph-theoretical basis: Every stochastic-cascading
influence profile can be written as a linear combination of breadth-first-search-based broadcast-
propagations over layered-graphs. This graph-theoretical basis of stochastic network influence pro-
vides us with a systematic framework for studying the following fundamental question in network
analysis:

How should one assess the centralities of nodes in an information/influence propagation
process over a social network?
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†Supported by NSF grant IIS-1814056.
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Our framework systematically extends a family of classical graph-theoretical centrality for-
mulations — including degree centrality, harmonic centrality, and various notions of “sphere-of-
influence” — to influence-based network centralities. Given that group cooperation is essential
in social influences, we further extend natural group centralities from graph models to influence
models, enabling us to assess individuals’ centralities in group influence settings by applying the
fundamental concept of Shapley value from cooperative game theory. Mathematically, using the
property that these centrality formulations are Bayesian,1 we prove an axiomatic characterization
theorem: Every influence-based centrality formulation in this family is the unique Bayesian central-
ity that conforms with its corresponding graph-theoretical centrality. Moreover, the uniqueness is
fully determined by the centrality formulation on the class of layered graphs, which is derived from
a beautiful algebraic structure of influence instances modeled by cascading sequences. We further
provide an algorithmic framework for efficient approximation of these influence-based centrality
measures.

Our study provides us with a systematic road map for comparative analyses of different
influence-based centrality formulations. The fact that layered graphs form a basis for the space of
influence-cascading-sequence profiles could also be useful in other studies of network influences.

Keywords: Network centrality; influence-based centrality; axiomatic characterization; graph-
theoretical basis.

1 In Remembrance of Ker-I Ko (葛可一)

A Gentle and Sharp Mind: Ker-I Ko was a quiet scholar with deep insight, who contributed
profoundly to the theory of computing. Through the complexity-theoretical lens, he discovered
many elegant mathematical structures:

• Some are grand, conceptually connecting computation of real functions with optimization
of discrete objectives [28, 20] , while others are intricate, meticulously separating levels of
polynomial-time hierarchy [21].

• Some are abstract, differentiating Kolmogorov complexity from instance complexity [36] and
connecting one-way functions with the Isomorphism Conjecture [29], while others are con-
crete, exploring paths in two-dimensional domains [14] and learning string/tree patterns from
examples [30].

• Some are theoretical, highlighting the “paradox” of polynomial-time computable curves with
1That is, they are linear to the convex combination of influence instances.
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nonrecursive interior measure, [26] while other are practical, addressing Pooling design (in
DNA testing) [13] and fault-tolerant computing (in wireless networks) [45].

Ker-I Ko’s journey — at times solo — covered a vast areas of TCS, and left multiple landmarks —
often at complex corners and crossroads – that helped to transform the landscape.

One Author’s First and Last Encounters with Ker-I Ko: In the early summmer of 1986,
Professor Gary Miller — my advisor at USC — invited me to join him to drive to Berkeley for
the 18th Annual ACM Symposium on Theory of Computing (STOC). At the time — in the first
decade after the joint communiqué on the establishment of diplomatic relations between the United
States and China — there were a very small number of mainland Chinese students/scholars studying
(theoretical) computer science in the United States. Gary quickly introduced me to Yanjun Zhang, a
UC Berkeley Ph.D. candidate studying parallel combinatorial search under the guidance of Professor
Dick Karp, and mentioned to him that I was a first-year student attending my first conference.
Before leaving me with Yanjun, Gary whispered to me, “To start a conversation when meeting
new people, just ask ‘what are you working on?’. Don’t be afraid if you don’t understand anything
they say.” Within an hour, Yanjun introduced me to ALL other “mainland Chinese” theoretical
computer scientists at the conference: Jin-Yi Cai (Cornell), Ding-Zhu Du (UC. Berkeley), and Ming
Li (Ohio State).

Ding-Zhu Du took me to his office at Berkeley’s Mathematical Sciences Research Institute
and introduced me to another Chinese-speaking theoretician Professor Ker-I Ko (葛可⼀). He
was a coauthor of Ding-Zhu’s STOC paper, “A note on one-way functions and polynomial-time
isomorphisms.” Ker-I was extraordinarily generous when I asked him, “what are you working
on?” Over the course of the conference, he explained to me not just about his result on the
Berman-Hartmanis Isomorphism Conjecture but also his work on computational complexity of
real functions, on circuit complexity and polynomial-time hierarchy, and on query complexity for
identifying permutations. These subjects were way beyond my scope of comprehension, and it took
years for me to acquire enough knowledge to understand the meaning of his theorems and appreciate
the significance of his results. But Ker-I’s patience with a beginner, ability to paint big pictures,
voice of encouragement, and sincerity towards a newcomer of the field had left a long-lasting mark
in my mind. After STOC’86, whenever I ran into his papers while reading journals and conference
proceedings in libraries2, I would give a genuine read without concerning whether they were directly
connected with my immediate research projects; whenever I saw him in the conferences, I would ask
him , “what are you working on?” not to start a conversation, but to enjoy informative scientific

2During the pre-Web time, I spent most of my days in libraries reading TCS papers from journals, conference
proceedings, technical reports, and books.
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exchanges. He always answered that magic question in the same manner as he did the first time
when we met: generous, patient, and elaborative.

My last extentive interaction with Ker-I was in 2008,3 when I arrived at Andy Yao’s institute
at Tsinghua University (for a sabbatical). Ker-I, who was visiting Tsinghua that day, invited me to
a dinner, “Let’s go to the Taiwanese restaurant just outside the campus”, knowing about my past
family tie with Taiwan. After we sat down and ordered traditional Taiwanese food, Ker-I pointed
to the restaurant name, “8◦1”, and said with a jovial tone, “If you can figure out what this name
stands for, the dinner will be on me.” Seeing that I was still focusing on deciphering “8◦1”, he
assured me with a smile, “The dinner is on me anyway.” He was thrilled when I finally decoded
“8◦1” as Taiwanese (Hokkien) “belly hungry (⼋⾖吆/巴⾖吆).” Geekily, he exclaimed in delight,
“8◦1 is a pretty-good pseudo-random sequence that Andy and I didn’t figure out its meaning.” I
was glad that the result of my familiarity with the Beijing dialect (hence knowing that the number
“1” in Chinese could be pronounced as both as “Yī” and “Yāo”) and my sparse knowledge of
daily-life Taiwanese dialect drew such an affirmative response from the author of, “On the notion
of infinite pseudorandom sequences.” In fact, moment before learning (on December 15, 2018) from
the ISAAC 2019 PC chair, Pinyan Lu, about the news of Ker-I’s passing, I shared this very story
with the ISAAC 2018 PC Chair, D.T. Lee and his wife, at Yilan Taiwan. I cherish the memory of
that evening for learning not just about Ker-I’s research, but also about his multifaceted life as a
computer scientist, mathematician, artist, and story writer; I cherish the opportunity of knowing
him and being impacted by his deep insight into mathematics and into life.

Dear 可⼀, Rest in Peace! by Shang-Hua Teng

Ker-I Ko’s Last Projects: Games and Influence Dynamics on Social Networks: After
his retirement from Stony Brook University in 2012, Ker-I became a global scholar, with an active
research/educational profile at King Abdulaziz University (Saudi Arabia), National Chiao Tung
University (his native Taiwan), Tsinghua University (China), and Ocean University of China. In
the process, Ker-I shifted his focus from complexity theory to approxmiation algorithms for graph-
theoretical problems, which then led him to his last project, studying game-theoretical and dynamics
processes on social networks. Working with Professor Qizhi Fang’s research team at the Ocean
University of China, he published two papers:

a Competitive Profit Maximization in Social Networks

b Centralized and Decentralized Rumor Blocking Problems
3Afterwards, I only briefly saw him once when I was visiting Taiwan to attend the NCTU Spectral Graph Theory

Workshop organized by Salil Vadhan in 2015.
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The former [33] analyzed competitive multi-player network games with individual influence max-
imization objectives. The later [12] studied a two-player decentralized rumor blocking problem,
under Kempe-Kleinberg-Tardos’ network influence models, in which each player (protector) aims
to “restrain the rumor by his own ability and maximize his own personal utility.” In both papers,
Ker-I and coauthors proved that Vetta’s valid utility system can be used to characterize these com-
petitive influence games, providing efficiency guarantees on all Nash equilibria of the underlying
network games.

The Focus of This Paper: We prove that the complex stochastic network-influence processes
have a simple graph-theoretical basis: Every stochastic-cascading influence profile can be written as
a linear combination of breadth-first-search-based broadcast-propagations over layered-graphs. This
graph-theoretical basis of stochastic network influence provides us with a systematic framework for
studying the following fundamental question in network analysis:

How should one assess the centralities of nodes in an information/influence propagation
process over a social network?

2 Introduction: Network Influence and Axiomatic Characteriza-
tions of Influence-based Centrality

Network influence is a fundamental subject in network sciences [38, 15, 18, 4]. It arises from vast
real-world backgrounds, ranging from epidemic spreading/control, to viral marketing, to innovation,
and to political campaign. It also provides a family of concrete and illustrative examples for studying
network phenomena — particularly regarding the interplay between network dynamics and graph
structures — which require solution concepts beyond traditional graph theory [7]. As a result,
network influence is a captivating subject for theoretical modeling, mathematical characterization,
and algorithmic analysis [38, 15, 18, 6].

2.1 Network Influence: Models and Influence Maximization

In contrast to some graph-theoretical processes such as random walks, network influence is
defined not solely by the static graph structures. It is fundamentally defined by the interaction
between the dynamic influence models and the static network structures. Stochastic-diffusion influ-
ence models describe how information or influence are propagated through a network. A number
of models have been well-studied (cf. [18, 6]), and among them independent cascade (IC) and linear
threshold (LT) models are most popular ones. Here, we illustrate with the triggering model4 of

4Triggering model will also be the subject of our algorithmic study.
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Kempe-Kleinberg-Tardos [18], which includes IC and LT models as special cases. In a triggering
model, the static network structure is modeled as a directed graph G = (V,E) with n = |V |. Each
node v ∈ V has a random triggering set T (v) drawn from distribution D(v) over subsets of v’s
in-neighbors N−(v). At time t = 0, triggering sets of all nodes are sampled from their distribu-
tions, and nodes in a given seed set S ⊆ V are activated. At any time t ≥ 1, a node v is activated
if some nodes in its triggering set T (v) was activated at time t − 1. The propagation continues
until no new nodes are activated in a step. Influence propagation is an important topic in network
science and network mining. One well-studied problem on influence propagation is the influence
maximization problem [16, 39, 18], which is to find k seed nodes that generate the largest influence
in the network. Influence maximization has been extensively studied for improving its efficiency or
extending it to various other settings (e.g. [19, 32, 3, 9, 10]).

Even on the same static network, different influence propagation models — such as the pop-
ular independent cascade and linear-threshold models — induce different underlying relationships
among nodes in the network. The characterization of this interplay thus requires us to reformulate
various fundamental graph-theoretical concepts such as centrality, closeness, distance, neighbor-
hood (sphere-of-influence), and clusterability, as well as to identify new concepts fundamental to
emerging network phenomena.

In this paper, we will study the following basic question in network science with focusing on
influence-based network centrality.

Is there a systematic framework to expand graph-theoretical concepts in network sci-
ences?

2.2 Network Centrality

Network centrality — a basic concept in network analysis — measures the importance and the
criticality of nodes or edges within a given network. Naturally, as network applications vary —
being Web search, internet routing, or social interactions — centrality formulations should adapt
as well. Thus, numerous centrality measures have been proposed, based on degree, closeness,
betweenness, and random-walks (e.g., PageRank) (cf. [35]) to capture the significance of nodes on
the Web, in the Internet, and within social networks. Most of these centrality measures depend
only on the static graph structures of the networks. Thus, these traditional centrality formulations
could be inadequate for many real-world applications — including social influence, viral marketing,
and epidemics control — in which static structures are only part of the network data that define
the dynamic processes. Our research will focus on the following basic questions:
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How should we summarize influence data to capture the significance of nodes in the
dynamic propagation process defined by an influence model? How should we extend
graph-theoretic centralities to the influence-based centralities? What does each cen-
trality formulation capture? How should we comparatively evaluate different centrality
formulations?

2.3 An Earlier Axiomatic Characterization of Influence-Based Centrality

At WWW’17, Chen and Teng [7] presented an axiomatic framework for characterizing influence-
based network centralities. Their work is motivated by studies in multiple disciplines, including
social-choice theory [2], cooperative game theory [41], data mining [17], and particularly by [37] on
measures of intellectual influence and [1] on PageRank. They present axiomatic characterizations
for two basic centrality measures: (a) Single Node Influence (SNI) centrality, which measures each
node’s significance by its influence spread;5 (b) Shapley Centrality, which uses the Shapley value of
the influence spread function — formulated based on a fundamental cooperative-game-theoretical
concept. Mathematically, the axioms are structured into two categories.

• Principle Axioms: The set of axioms that all desirable influenced-based centrality formu-
lations should satisfy. In [7], two principle axioms, Anonymity and Bayesian, are identified.
Anonymity is an ubiquitous and exemplary principle axiom, which states that centrality mea-
sures should be preserved under isomorphisms among influence instances. Bayesian states
that influence-based centrality is a linear measure for mixtures of influence instances.

• Choice axioms: A (minimal) set of axioms that together with the principle axioms uniquely
determine a given centrality formulation.

Such characterizations and the taxonomy of axioms precisely capture the essence of centrality
formulations as well as their fundamental differences. In particular, the choice axioms succinctly
distill the comparative differences between different centrality formulations.

To comparatively study vast different influence models under a unified axiomatic framework,
Chen and Teng consider the following basic stochastic profiles — which we refer to as the seed-target
(probabilistic) profile — resulting from the interplay between dynamic processes and static graph
structures in network influence: Each influence model induces a probability distribution of the final
influenced nodes given any initial seed set. Note that over an n node groundset V , the seed-target
(probabilistic) profile can be specified by a family of 2|V | − 1 distributions, one for each seed set

5The influence spread — as defined in [18] — of a group is the expected number of nodes this group can activate
as the initial active set, called seed set.
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in V . For each S ∈ 2V − ∅, the support of the distribution with seed set S consists of all sets
{T ⊆ V |S ⊆ T}. The seed-target profiles also introduce a basic equivalent relation among influence
models, and the axiomatic characterization of [7] respects this equivalence.

2.4 Motivations and Highlights of Our Contributions

The axiomatic characterization in [7] has two major limitations preventing it to be generalized
to study more influence-based centralities. First, the seed-target profiles upon which the axiomatic
characterization is based significantly compressed out all intermediate steps in a cascading process
and only takes the initial seed nodes and the final target nodes into account. This simplifica-
tion is enough to study centrality measures concerning the final influence spread of the diffusion
model, but is inadequate for characterizing influenced-based centrality measures that can capture
the propagation details of network influences, such as neighborhood, closeness, sphere-of-influence
centralities. Second, its choice axioms are based on a family of critical set instances, which do
not have a graph-theoretical interpretation, making it less powerful in explaining the connection
between graph-theoretical centralities and influence-based centralities.

In this paper, we address both of the above issues in [7] and significantly expand the charac-
terization of influence-based network centrality.

• Capturing Propagation Details: Mathematically, we consider more complex stochastic
cascading profiles — instead of seed-target profiles as in [7] — in order to capture propagation
details. The stochastic cascading profiles — See Section 3.1 for formal definition — are
distributions of influence activation sequences (i.e. the time-series of stochastic activations of
the influence process) generated by an influence model from all seeding sets.

• Algebraic Characterization of Network Influences: As the key technical con-
tribution of the paper, we prove that the vector space of stochastic cascading profiles has
a graph-theoretical basis. Specifically, for every influence model, its stochastic cascading
profile can be expressed as a linear combination of the (determinstic) cascading profiles of
Breadth-First-Search (BFS) cascading sequences in a simply family of directed graphs.

• Systematic Extention of Graph-Theoretical Centrality to Influence-based
Centrality: This algebraic characterization of network influences then serves as the theo-
retical foundation for systematic extention of several important measures of graph-theoretical
centrality to measures of influence-based centrality, and axiomatic characterization of influence-
based centrality.
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• Efficient Approximation of Influence-based Centrality: We further provide an al-
gorithmic framework for efficient approximation of these influence-based centrality measures.

3 An Algebraic Characterization of Network Influences

In this section, we present our main technical result — a surprising discovery during our
research — which provides a graph-theoretical characterization of the space of influence cascading
profiles. Specifically, we identify a simple set of classical graphs, and prove that when treated
as BFS propagation instances, they form a linear basis in the space of all stochastic cascading-
sequence profiles. This graph-theoretical characterization of influence models is instrumental to
our systematic characterization of a family of influence-based network centralities. Moreover, we
believe that this result is also important on its own right, and is potentially useful in other settings
studying general influence propagation models.

3.1 Profiles of Influence Processes

Both in theory and in practice, different influence models may differ in many details，par-
ticularly regarding their underlying influence logic and network structures. To analyze influence
models and formulate influence efficiency, researchers usually focus on certain profiles of the mod-
els’ influence processes rather than all details of influence logic. For example, in their celebrated
formulation of influence maximization Kempe, Kleinberg, and Tardos [18] essentially focus on the
influence-spread profile of the influence model. For an influence model I over a groundset V , its
influence-spread profile — [ σI(S) ]S∈2V −∅ — consisting of 2|V | − 1 non-negative numbers, one for
each non-empty seed set in V : For each S ∈ 2V − ∅, the influence spread σI(S) is equal to the
expected number of nodes this seed set can activate as the initial active set in the influence process.
The influence-spread profile can be viewed as the summarization another richer stochastic profile
— the seed-target (probabilistic) profile — of the underlying influence process. This profile of the
influence model can be specified by a family of 2|V | − 1 distributions, one for each seed set in V .
For each S ∈ 2V − ∅, the support of the distribution, [ PI(S → T ) ]{T⊆V |S⊆T}, with seed set S
consists of all sets {T ⊆ V |S ⊆ T}. Then the influence spread is:

σI(S) =
∑

T⊆V |S⊆T

PI(S → T ) · |T |.

In [7], the axiomatic characterization of influence-based centrality is based on the stochastic
seed-target profile of the influence process. As we discussed in introduction, the compressed nature
of stochastic seed-target profiles seriously limits the scope of influence-based centrality formulations
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to those independent of details of the influence propagation. In other words, the seed-target profile
is only suitable for centrality measures addressing the final influence spread, but is not detailed
enough to study other centrality extensions including extensions to degree, closeness, harmonic
centralities, etc.

Stochastic Cascading Profiles: In this paper, we will focus on the following stochastic cas-
cading profiles — also considered in [8] for studying the equivalence between high-order network-
influence frameworks — which records basic influence propagation information. The stochastic
cascading profile (SCP) captures (the time series of) activation sequences — rather than activation
logic — of influence processes: We say that a sequence of sets S0, S1, S2, . . . (St ⊆ V for all t ≥ 0)
is progressive if

(a) for all t ≥ 0, St ⊆ St+1;

(b) for any t ≥ 0, if St = St+1, then for all t′ > t, St′ = St; and

(c) S0 ̸= ∅.

In the above definition, St represents the set of network nodes that become active by step t

during the propagation, and ∆t = St−St−1 denotes the set of nodes newly activated at step t. Thus,
the cascading sequence (S0, S1, . . . , Sn−1) corresponds to the progress diffusion model in the liter-
ature and provides a layered structure starting from seed set S0, similar to network broadcasting.
However, unlike broadcasting, the layered cascading sequences are formed stochastically in network
influence. At this level of abstraction, an influence model can be viewed as a probabilistic mech-
anism to generate cascading sequences. In each time step, already activated nodes stochastically
activate more nodes in the next step, and this stochastic propagation ends when no new nodes are
activated in a step. Therefore, each influence model generates a stochastic cascading profile (SCP),
summarizing the probabilistic distribution over the possible cascading sequences from each seed
set. Let n = |V |. For such progressive sequences, it is clear that the influence propagation stops
within at most n− 1 steps, and thus we only need a sequence S0, S1, . . . , Sn−1 to represent it.

Definition 3.1 (Stochastic Cascading Profile). Each influence model I over a node set V (of size
n) generates a stochastic cascading profile PI , which is a mapping from every nonempty seed set
S0 ∈ 2V \ {∅} to a distribution PI,S0 over all progressive sequences (S0, S1, . . . , Sn−1) starting from
S0. That is, for every nonempty seed set S0, PI,S0(S0, S1, . . . , Sn−1) gives the probability that a
progressive sequence (S0, S1, . . . , Sn−1) is generated from the influence process starting from seed
set S0.
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Note that if (S0, S1, . . . , Sn−1) is not a valid cascading sequence, then PI,S0(S0, S1, . . . , Sn−1) =

0. Thus, PI,S0 can be viewed as a distribution over all n-step set sequences, i.e., for every S0:∑
S1,...,Sn−1

PI,S0(S0, S1, . . . , Sn−1) = 1.

We will drop the index S0 from PI,S0 when it is clear from context.
Note also that in influence propagation models, the influence-spread profile can be summarized

from the stochastic cascading profile as:

σI(S) =
∑

S1,...,Sn−1

PI,S(S, S1, . . . , Sn−1) · |Sn−1|, ∀S ∈ 2V \ {∅}.

The more coarse-grained seed-target profile discussed above is then:

PI(S → T ) =
∑

S1,...,Sn−2,T

PI,S(S, S1, . . . , Sn−2, T ), ∀S, T ∈ 2V \ {∅}.

3.2 A Graph-Theoretical Basis of Influence Profiles

Note that for any directed graph G = (V,E), we can equivalently interpret it as a (deter-
ministic) diffusion model, where the diffusion is carried out by the breadth-first search (BFS).
In particular, for any seed set S0, we have a deterministic cascading sequence (S0, S1, . . . , Sn−1),
where St is all the nodes that can be reached within t steps of BFS. Thus, the stochastic cascading
profile of this “deterministic influence instance” is such that this and only this BFS sequence has
probability 1; all other sequences starting from S0 have probability 0. We call this instance the
BFS influence instance corresponding to graph G, and denote it as I(BFS)

G .
Mathematically, each stochastic cascading profile ( as defined in Definition 3.1) can be repre-

sented as a vector of probabilities over monotonic cascading sequences. In other words, the vector
contains entries for each monotonic cascading sequences. Because for the profile of each set S0,
PI,S0 , the probability of all valid cascading sequences add up to 1, so one entry is redundant. As
our “canonical choice,” we remove the entry PI,S0(S0, S0, . . . , S0) from the “vector” of stochastic
cascading profiles, and express it implicitly. Note that the resulting vector has an exponential
number of dimensions, as there are exponential number of monotonic set sequences, and we will
use Mn to denote its dimension (we will drop the index n when clear from context).

The set of “basis” graphs are the layered graphs, as depicted in Figure 1. Formally, for a
vertex set V , for an integer t ≥ 0, and t + 1 disjoint nonempty subsets R0, R1, . . . , Rt ⊆ V , a
layered graph LV (R0, . . . , Rt) is a directed graph in which every node in Ri−1 has a directed edge
pointing to every node in Ri, for i ∈ [t], and the rest nodes in V \ ∪t

i=1Ri are isolated nodes with
no connections to and from any other nodes. We say that the BFS influence instance of the layered
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v1

v2

R0
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图 1: an example of a layered-graph instance with 4 layers (R0, R1, R2, R3) where R0 = {v1, v2},
R1 = {v3, v4, v5}, R2 = {v6, v7}, R3 = {v8, v9, v10}.

graph LV (R0, . . . , Rt), namely I(BFS)
LV (R0,...,Rt)

, is a layered-graph instance, and for convenience we also
use IV (R0, . . . , Rt) to denote this instance. When the context is clear, we ignore V in the subscript.
A trivial layered graph instance is when t = 0, in which case all nodes are isolated and there is no
edge in the graph. We call this the null influence instance, and denote it as IN (or IV (V ) to make
it consistent with the layered-graph notation). Technically, in IN , only PIN (S0, S0, . . . , S0) = 1,
and all other probability values are 0, which means its corresponding vector form is the all-zero
vector.

As a fundamental characterization of the mathematical space of influence profiles, we prove
the following theorem, which states that all nontrivial layered-graph instances form a linear basis
in the space of stochastic cascading profiles:

Theorem 3.1 (Graph-Theoretical Basis). Let L be the set of all nontrivial layered-graph instances
under node set V , i.e.,

L = {IV (R0, . . . , Rt) | t = 1, . . . , n− 1, ∅ ̸= Ri ⊆ V, all Ri’s are disjoint}.

Then, the set of vectors corresponding to the nontrivial layered-graph instances in L forms a basis
in RM .

Proof: Although the proof of this theorem is quite technical, its underlying principle is quite basic.
We first provide some intuitions. Note that M = |L|. Thus, the central argument in the proof is
to show that elements in L are independent, which we will establish using proof-by-contradiction:
Suppose the profiles corresponding to layered graphs are not independent. That is, there are not-
all-zero coefficients λI such that a linear combination (denoted by P =

∑
I∈L λIPI) of these profiles

is zero. We consider a carefully-designed inclusion-exclusion form linear combination of the entries
of P and show that this combination is exactly some λI ̸= 0, which means P ̸= 0.

Now the formal proof. Because |L| =M , to prove the theorem, it is sufficent for us to show
vectors in L are independent. Suppose not, i.e., there is a nontrivial group of {λ(R0, . . . , Rt)} such

12



that ∑
R0,...,Rt: I(R0,...,Rt)∈L

λ(R0, . . . , Rt)PI(R0,...,Rt) = 0.

Let I(R∗
0, . . . , R

∗
t∗) be a layered-graph instance

• Such that λ(R∗
0, . . . , R

∗
t∗) ̸= 0;

• Among those satisfying the condition above, with the largest number of layers (i.e. t∗);

• Among those satisfying the conditions above, with the largest number of vertices in the first
layer (i.e. |R∗

0|).

Note that fixing the seed set, the propagation on a layered-graph instance is deterministic. That
is, there is exactly one cascading sequence with the fixed seed set, which happens with probability
1. Let SeqI(R0,...,Rt)(S0) be the unique BFS sequence which happens on I(R0, . . . , Rt) with seed
set S0. We show that∑

∅≠S0⊆R∗
0

(−1)1+|S0|
∑

R0,...,Rt: I(R0,...,Rt)∈L

λ(R0, . . . , Rt)PI(R0,...,Rt)(SeqI(R∗
0 ,...,R

∗
t∗ )

(S0)) ̸= 0,

which contradicts the assumption of non-independence and thereby concludes the proof.
We now compute the left hand side of the above formula.

∑
∅≠S0⊆R∗

0

(−1)1+|S0|
∑

R0,...,Rt: I(R0,...,Rt)∈L

λ(R0, . . . , Rt)PI(R0,...,Rt)(SeqI(R∗
0 ,...,R

∗
t∗ )

(S0))

=
∑

R0,...,Rt: I(R0,...,Rt)∈L

λ(R0, . . . , Rt)
∑

∅≠S0⊆R∗
0

(−1)1+|S0|PI(R0,...,Rt)(SeqI(R∗
0 ,...,R

∗
t∗ )

(S0))

=
∑

t<t∗,R0,...,Rt: I(R0,...,Rt)∈L

λ(R0, . . . , Rt)
∑

∅≠S0⊆R∗
0

(−1)1+|S0|PI(R0,...,Rt)(SeqI(R∗
0 ,...,R

∗
t∗ )

(S0))

+
∑

t>t∗,R0,...,Rt: I(R0,...,Rt)∈L

λ(R0, . . . , Rt)
∑

∅̸=S0⊆R∗
0

(−1)1+|S0|PI(R0,...,Rt)(SeqI(R∗
0 ,...,R

∗
t∗ )

(S0))

+
∑

R0,...,Rt∗ : I(R0,...,Rt∗ )∈L

λ(R0, . . . , Rt∗)
∑

∅≠S0⊆R∗
0

(−1)1+|S0|PI(R0,...,Rt∗ )(SeqI(R∗
0 ,...,R

∗
t∗ )

(S0))

=
∑

R0,...,Rt∗ : I(R0,...,Rt∗ )∈L

λ(R0, . . . , Rt∗)
∑

∅≠S0⊆R∗
0

(−1)1+|S0|PI(R0,...,Rt∗ )(SeqI(R∗
0 ,...,R

∗
t∗ )

(S0))

=
∑

R0:R0∩R∗
0 ̸=∅, I(R0,R∗

1 ,...,R
∗
t∗ )∈L

λ(R0, R
∗
1, . . . , R

∗
t∗)

×
∑

∅≠S0⊆R∗
0

(−1)1+|S0|PI(R0,R∗
1 ,...,R

∗
t∗ )

(SeqI(R∗
0 ,...,R

∗
t∗ )

(S0)).
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Now consider the summand in the last line of the above equation. For R0 ̸= R∗
0,∑

∅≠S0⊆R∗
0

(−1)1+|S0|PI(R0,R∗
1 ,...,R

∗
t∗ )

(SeqI(R∗
0 ,...,R

∗
t∗ )

(S0))

=
∑

∅≠X⊆R∗
0∩R0

∑
Y⊆R∗

0\R0

(−1)1+|X|+|Y |PI(R0,R∗
1 ,...,R

∗
t∗ )

(SeqI(R∗
0 ,...,R

∗
t∗ )

(X ∪ Y ))

+
∑

∅≠Y⊆R∗
0\R0

(−1)1+|Y |PI(R0,R∗
1 ,...,R

∗
t∗ )

(SeqI(R∗
0 ,...,R

∗
t∗ )

(Y ))

=
∑

∅≠X⊆R∗
0∩R0

(−1)1+|X|
∑

Y⊆R∗
0\R0

(−1)|Y |

=
∑

∅≠X⊆R∗
0\R0

(−1)1+|Y | × 0

= 0.

And for R0 = R∗
0,∑

∅≠S0⊆R∗
0

(−1)1+|S0|PI(R∗
0 ,R

∗
1 ,...,R

∗
t∗ )

(SeqI(R∗
0 ,...,R

∗
t∗ )

(S0)) =
∑

∅≠S0⊆R∗
0

(−1)1+|S0| = 1.

Plugging these in, we get∑
∅≠S0⊆R∗

0

(−1)1+|S0|
∑

R0,...,Rt: I(R0,...,Rt)∈L

λ(R0, . . . , Rt)PI(R0,...,Rt)(SeqI(R∗
0 ,...,R

∗
t∗ )

(S0))

=
∑

R0:R0∩R∗
0 ̸=∅, I(R0,R∗

1 ,...,R
∗
t∗ )∈L

λ(R0, R
∗
1, . . . , R

∗
t∗)

∑
∅≠S0⊆R∗

0

(−1)1+|S0|PI(R0,R∗
1 ,...,R

∗
t∗ )

(SeqI(R∗
0 ,...,R

∗
t∗ )

(S0))

=
∑

R0:R0∩R∗
0 ̸=∅, R0 ̸=R∗

0 , I(R0,R∗
1 ,...,R

∗
t∗ )∈L

λ(R0, R
∗
1, . . . , R

∗
t∗)× 0 + λ(R∗

0, R
∗
1, . . . , R

∗
t∗)× 1

= λ(R∗
0, . . . , R

∗
t∗)

̸= 0.

4 Influence-based Centrality Characterization: A Unified Frame-
work

Recall that a graph-theoretical centrality, such as degree, distance, PageRank, and between-
ness, summarizes network data to measure the importance of each node in a network structure.
Likewise, the objective of influence-based centrality formulations is to summarize the network-
influence data in order to measure the importance of every node in influence diffusion processes.
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The stochastic cascading profiles and their graph-theoretical basis (Theorem 3.1) provides a
unified theoretical framework for extending graph-theoretical-centrality formulation to influence-
based centrality formulation and axiomatic characterization.

1. First, summarize a given influence model by its stochastic cascading profile.

2. Continue the summarization from the stochastic cascading profile to a centrality measure.

In the rest of this paper, we focus on centrality formulation as the summarization of stochastic
cascading profiles. Formally:

Definition 4.1 (Influence-based Centrality Measure). For influence processes over an n node
groundset V , an influence-based centrality measure ψ is a mapping from a stochastic cascading
profile PI to a real-valued vector (ψv(I))v∈V ∈ Rn.

The objective is to formulate network centrality measures that reflect dynamic influence propa-
gation. Theorem 3.1 lays the foundation for a systematic framework to generalize graph-theoretical
centrality formulation to network centrality measures. It allows us to connect stochastic cascading
profiles of influence-propagation with static graphs. Applying this algebraic structure of network
influences, we can systematically extend a large family of graph-theoretical centralities — such as
degree, closeness, harmonic, reachability centralities — to influence-based centrality formulations.
In the process, by applying Theorem 3.1, we establish a complete axiomatic characterization, in
Theorem 4.2, for this family of stochastic sphere-of-influence centralities. This axiomatic character-
ization illustrates that (a) our graph-theory-to-influence-dynamics extension is not only reasonable
but also the only feasible mathematical choice, and (b) layered graphs are the key family of graphs
for comparing different influence measures, since a graph-theoretical centrality measure on layered
graphs fully determines the conforming influence-based centrality measure.

In Section 4.1, we first examine a unified centrality family that are natural for layered graphs. In
Section 4.2, we then systematically lift these graph-theoretical centrality formulations to influence
models. In Section 4.3, using Theorem 3.1, we prove a representation theorem, providing an
axiomatic characterization for these influence-based centrality formulation.

4.1 A Unified Family of Sphere-of-Influence Centralities

In this subsection, we discuss a family of graph-theoretical centrality measures that contains
various forms of “sphere-of-influence” and closeness centralities. These centrality measures have a
common feature: the centrality of node v is fully determined by the distances from v to all nodes.

Consider a directed graph G = (V,E). Let N+
G (v) and N−

G (v) denote the set of out-neighbors
and in-neighbors, respectively, of a node v. Let dG(u, v) be the graph distance from u to v in G.
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If v is not reachable from u in G then we set d(u, v) = ∞. Let dG(S, v) = minu∈S dG(u, v) be the
distance from a subset S ⊆ V to node v. Let ΓG(S) be the set of nodes reachable from S ⊆ V in
G. When the context is clear, we would remove G from the subscripts in the above notations.

Recall that a graph-theoretical centrality measure is a mapping µ from a graph G to a real-
valued vector (µv(G))v∈V ∈ Rn, where µv(G) denote the centrality of v in G.

For every S ⊆ V and v ∈ V , let d⃗G(S) be the vector in Rn consisting of the distance from S

to every node u, i.e. d⃗G(S) = (d(S, u))u∈V . Let d⃗G(v) = d⃗G({v}). We use R∞ to denote R ∪ {∞}.
For each f : Rn

∞ → R, we can define:

Definition 4.2 (Distance-based Centrality). A distance-based centrality µind[f ] with function f :

Rn
∞ → R is defined as µind[f ]v(G) = f(d⃗G(v)).

Definition 4.2 is a general formulation. It includes several classical graph-theoretical centrality
formulations as special cases: (a) The degree centrality (or immediate sphere of influence), µind-deg,
is defined as the out-degree of a node v in graph G, that is, µind-degv (G) = |N+

G (v)|. It is defined by
fdeg(d⃗) = |{u ∈ V | du = 1}|. (b) The closeness centrality, µind-cls, is defined as the reciprocal of
the average distance to other nodes, µind-clsv (G) = 1∑

u̸=v dG(v,u) . It is defined by f cls(d⃗) = 1∑
u∈V du

.
If G is not strongly connected, then µind-clsv (G) = 0 for any v that cannot reach all other nodes,
and thus closeness centrality is not expressive enough for such graphs. (c) harmonic centrality,
µind-har, is defined: µind-harv (G) =

∑
u̸=v

1
dG(v,u) . It is defined by fhar(d⃗) =

∑
u∈V,du>0

1
du

. Note that
harmonic centrality is closely related with closeness centrality, and is applicable to network with
disjointed components. (d) The reachability centrality measure µind-rch: µind-rchv (G) = |ΓG({v})|,
which means the reachability centrality of v is the number of nodes v could reach in G. It is defined
by f rch(d⃗) = |{u ∈ V | du < ∞}|. (e) The sphere-of-influence centrality measure µind-SoI(δ): For a
threshold parameter δ, µind-SoI(δ)v = |{u : du ≤ δ}|. It is defined by fSoI(δ)(d⃗) = |{u ∈ V | du ≤ δ}|.
Clearly, as δ varies from 1 to n−1 (or ∞), the sphere-of-influence centrality interpolates the degree
centrality and the reachability centrality.

4.2 Stochastic Sphere-of-Influence: Lifting from Graph to Influence Models

Thus, Definition 4.2 represents a unified family of sphere-of-influence centralities for graphs.
The function f — which is usually a non-increasing function of distance profiles — captures the
scale of the impact, based on the distance of nodes from the source. By unifying these centralities
under one general centrality class, we are able to systematically derive and study their generaliza-
tion in the network-influence models. The key step is to transfer the graph distance in directed
graph to cascading distance in cascading sequences. For any cascading sequence (S0, S1, . . . , Sn−1)

starting from seed set S0, let du(S0, S1, . . . , Sn−1) = t if u ∈ ∆t = St \ St−1 (∆0 = S0), and
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du(S0, S1, . . . , Sn−1) = ∞ if u ̸∈ Sn−1. We call du(S0, S1, . . . , Sn−1) the cascading distance from
seed set S0 to node u, since it represents the number of steps needed for S0 to activate u in
the cascading sequence. Then, we define the cascading distance vector d⃗(S0, S1, . . . , Sn−1) as
(du(S0, S1, . . . , Sn−1))u∈V ∈ Rn.

In particular, when we consider a cascading sequence ({v}, S1, . . . , Sn−1) starting from a single
node v, set ∆1 = S1 \ {v} can be viewed as the out-neighbor of v, set Sn−1 can be viewed as the
all nodes reachable from v, and for every node u ∈ ∆t = St \ St−1, the distance from v to u is t.

Definition 4.3 (Individual Stochastic Sphere-of-Influence Centrality). For each function f : Rn
∞ →

R, the influence-based individual stochastic sphere-of-influence centrality ψind[f ] is defined as:

ψind[f ]v(I) = E(S1,...,Sn−1)∼PI,{v} [f(d⃗({v}, S1, . . . , Sn−1))].

Definition 4.3 systematically extends the family of graph-theoretical centralities of Definition
4.2 to influence models. Natural influence-based centralities, e.g., the single-node influence (SNI)
centrality defined in [7] (using each node v’s influence spread σI({v}) as the measure of its influence-
based centrality), can be expressed by this extension:

Proposition 4.1. ∀ influence profile I = (V,E, PI):

SNI(I) = ψind[f rch](I).

Proof: For any v ∈ V ,

SNIv(I) = σI(v)

= E(S1,...,Sn−1)∼PI

∑
u∈V

I[du ≤ ∞]

= E(S1,...,Sn−1)∼PIf
rch(d⃗({v}, S1, . . . , Sn−1))

= ψSNSSoI[f rch](I).

The influence-based centrality formulations of Definition 4.3 enjoy the following graph-theoretical
conformity property.

Definition 4.4 (Graph-Theoretical Conformity). An influence-based centrality measure ψ conforms
with a graph-theoretical centrality measure µ if for every directed graph G, ψ(I(BFS)

G ) = µ(G).

Proposition 4.2. For any function f : Rn
∞ → R, ψind[f ] conforms with µind[f ].
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Proof: For any directed graph G = (V,E) and any set v ∈ V , let ({v}, Sv
1 , . . . , S

v
n−1) be the BFS

sequence starting from v in G. Then we have

ψ[f ]v(IG) = E(S1,...,Sn−1)∼PIG ({v})[f(d⃗({v}, S1, . . . , Sn−1))]

= f(d⃗({v}, Sv
1 , . . . , S

v
n−1))

= f(d⃗G(v)) = µ[f ]v(G).

Thus the lemma holds.

4.3 Axiomatic Characterization of Influence-based Centrality Formulations

Given the multiplicity of the (potential) centrality formulations, “how should we characterize
each formulation?” and “how should we compare different formulations?” are fundamental ques-
tions in network analysis. Inspired by the pioneering work of Arrow [2] on social choice, Shapley
[41] on cooperation games and coalition, Palacios-Huerta & Volij [37] on measures of intellectual
influence, and Altman & Tennenholtz [1] on PageRank, Chen and Teng [7] proposed an axiomatic
framework for characterizing and analyzing influence-based network centrality. They identify two
principle axioms that all desirable influenced-based centrality formulations should satisfy.

4.3.1 Principle Axioms for Influenced-Based Centrality

The first axiom — ubiquitous axiom for centrality characterization, e.g. [40] — states that
labels on the nodes should have no effect on centrality measures. We state the axiom in the
framework of stochastic cascading profiles.

Axiom 4.1 (Anonymity). For any influence instance I over a groundset V , and any permutation
π of V , let π(I) denote the isomorphic instance: for any cascading sequence (S0, S1, . . . , Sn−1),
Pπ(I),Π(S0)(π(S0), π(S1), . . . , π(Sn−1)) = PI,S0(S0, S1, . . . , Sn−1). Then:

ψv(I) = ψπ(v)(π(I)), ∀v ∈ V. (1)

The second axiom concerns Bayesian social influence [7] through a given network: For any
three influence profiles I, I1, I2 over the same vertex set V , we say I is a Bayesian of I1 and I2 if
there exists α ∈ [0, 1] such that PI = αPI1 + (1− α)PI2 . In other words, I can be interpreted as a
stochastic diffusion model where we first make a random selection — with probability α of model
I1 and with probability (1− α) of model I2 — and then carry out the diffusion process according
to the selected model. We also say that I is a convex combination of I1 and I2. The axiom
reflects the linearity-of-expectation principle. If an influence instance is a convex combination of
two other influence instances, the centrality value of a vertex is the same convex combination of
the corresponding centrality values in the two other instances.
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Axiom 4.2 (Bayesian). For any α ∈ [0, 1], for any influence profiles I, I1 and I2 over common
vertex set V such that PI = αPI1 + (1− α)PI2,

ψv(I) = αψv(I1) + (1− α)ψv(I2), ∀v ∈ V. (2)

4.3.2 Characterization of Influence-Based Centrality: Single Node Perspective

Theorem 3.1 shows that all influence profiles can be represented as a linear combination of non-
trivial layered-graph instances. The result enables us to study and compare centrality measures by
looking at their instantiation in the simple layered graph instances. The Bayesian property together
with the linear basis of nontrivial layered-graph instances leads to the following characterization
theorem.

Theorem 4.1 (Uniquess). A Bayesian influence-based centrality measure is uniquely determined
by its values on layered-graph instances (including the null instance).

The proof of Theorem 4.1 relies on a general lemma about linear mapping as given in [7], as
restated below.

Lemma 4.1 (Lemma 11 of [7]). Let ψ be a mapping from a convex set D ⊆ RM to Rn satisfying
that for any vectors v⃗1, v⃗2, . . . , v⃗s ∈ D, for any α1, α2, . . . , αs ≥ 0 and

∑s
i=1 αi = 1, ψ(

∑s
i=1 αi ·

v⃗i) =
∑s

i=1 αi · ψ(v⃗i). Suppose that D contains a set of linearly independent basis vectors of RM ,
{⃗b1, b⃗2, . . . , b⃗M} and also vector 0⃗. Then for any v⃗ ∈ D, which can be represented as v⃗ =

∑M
i=1 λi · b⃗i

for some λ1, λ2, . . . , λM ∈ R, we have

ψ(v⃗) = ψ

(
M∑
i=1

λi · b⃗i

)
=

M∑
i=1

λi · ψ(⃗bi) +

(
1−

M∑
i=1

λi

)
· ψ(⃗0).

Proof: [Proof of Theorem 4.1] By the definition of the null influence instance IN (same as the
trivial layered-graph instance IV (V )), we can see that the vector representation of the null influence
instance is the all 0 vector, because the entries corresponding to PIN (S0, S0, . . . , S0) are not included
in the vector by definition. Then by Theorem 3.1 and Lemma 4.1, we know that for any Bayesian
centrality measure ψ, its value on any influence instance I, ψ(I), can be represented as a linear
combination of the I’s values on layered-graph instances (including the null instance). Thus, the
theorem holds.

We now use the consequence of Theorem 3.1 and Axioms Anonymity and Bayesian to establish
a complete characterization of the family of stochastic sphere-of-influence centralities formulated
in Definition 4.3. We prove the following axiomatic representation theorem:
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Theorem 4.2 (Characterization of Individual Centrality). For any anonymous function f : Rn
∞ →

R, ψind[f ] (defined in Definition 4.3) is the unique influence-based centrality that conforms with
µind[f ] (defined in Definition 4.2) that satisfies both Axiom Anonymity and Axiom Bayesian.

This characterization illustrates that:

(a) our extension of graph-theoretical centralities to influence-based centralities is not only rea-
sonable but the only feasible mathematical choice, and

(b) layered graphs are the key family of graphs comparing different influence measures, since
a graph-theoretical centrality measure on layered graphs fully determines the conforming
influence-based centrality measure.

Proof: [Proof of Theorem 4.2] Since layered-graph instances are all BFS instances derived from the
special class of directed graphs, by Theorem 4.1, we have that any Bayesian centrality conforming
with a classical graph-theoretical centrality is unique. The theorem then follows directly from
Proposition 4.2 and, the next two propositions (Propositions 4.3 and 4.4).

Proposition 4.3. If a function f : Rn
∞ → R is anonymous — i.e., f(d⃗) is permutation-invariant

— then ψind[f ] (as defined in Definition 4.3) satisfies Axiom Anonymity and µind[f ] (as defined in
Definition 4.2) satisfies the graph-theoretical counterpart of Axiom Anonymity.

Proof:

ψind[f ]π(v)(π(I))

= E(S1,...,Sn−1)∼Pπ(I)({π(v)})[f(d⃗({π(v)}, π(S1), . . . , π(Sn−1)))]

= E(S1,...,Sn−1)∼PI({v})[f(d⃗({v}, S1, . . . , Sn−1))]

= ψind[f ]v(I).

Proposition 4.4. For any function f : Rn
∞ → R, ψind[f ] satisfies Axiom Bayesian.

Proof: Suppose ψ[f ] is an influence-based distance-function centrality measure. Let instances
I, I1, I2 be that PI = αPI1 + (1 − α)PI2 . Then for every sequence (S1, . . . , Sn−1) drawn from
distribution PI({v}), it is equivalently drawn with probability α from PI1({v}), and with probability
1− α from PI2({v}). Therefore,

ψ[f ]v(I) = E(S1,...,Sn−1)∼PI({v})[f(d⃗({v}, S1, . . . , Sn−1))]

= α · E(S1,...,Sn−1)∼PI1 ({v})[f(d⃗({v}, S1, . . . , Sn−1))]
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+ (1− α) · E(S1,...,Sn−1)∼PI2 ({v})[f(d⃗({v}, S1, . . . , Sn−1))]

= α · ψ[f ]v(I1) + (1− α) · ψ[f ]v(I2).

Thus the proposition holds.

4.3.3 Characterization of Influence-Based Centrality: Group Perspective

As highlighted in Domingos-Richardson [38, 15] and Kempe-Kleinberg-Tardos [18], social influ-
ence propagation and viral marketing are largely group-based phenomena. Besides characterizing
individuals’ influence-based centralities, perhaps the more important task is to characterize the
influence-based centrality of groups, and individuals’ roles in group cooperation. This is the group
centrality and Shapley centrality introduced in this section. When distinction is necessary, we refer
to the centrality defined in Section 4.2 as individual centrality. Similar to individual centrality, we
provide a characterization theorem showing that influence-based group centrality is also uniquely
characterized by their values on layered-graph instances, as long as they satisfy the group version
of Axioms Anonymity and Bayesian.

Group centrality measures the importance of each group in a network. Formally,

Definition 4.5 (Influence-based Group Centrality). An influence-based group centrality measure
ψgrp is a mapping from an influence profile I = (V,E, PI) to a real-valued vector (ψgrp

S (I))S∈2V ∈
R2n.

For any function f : Rn
∞ → R, both Definition 4.2 and Definition 4.3 have a natural extension:

For S ⊆ V ,

µgrp[f ]S(G) = f(d⃗G(S)),

ψgrp[f ]S(I) = E(S1,...,Sn−1)∼PI({v})[f(d⃗(S, S1, . . . , Sn−1))].

Axioms Anonymity and Bayesian extend naturally as well as the following characterization
based on Theorem 3.1.

Theorem 4.3 (Characterization of Group Centrality). For any anonymous function f : Rn
∞ → R,

ψgrp[f ] is the unique influence-based group centrality that conforms with µgrp[f ] and satisfies both
Axiom Anonymity and Axiom Bayesian.

Proof: The Bayesian part of the proof is essentially the same as the proof of Proposition 4.4, with
subset S replacing node v. The Anonymity part of the proof is essentially the same as the proof
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of Proposition 4.3, with subset S replacing node v. The conformity part of the proof is essentially
the same as the proof of Proposition 4.2, with subset S replacing node v.

Therefore, we can again reduce the analysis of an influence-based group centrality to the
analysis of the measure on the particular layered-graph instances.

4.4 Shapley Centrality: Individuals’ Roles in Social Influence

A group centrality measure has 2n dimensions, so we further use the Shapley value [41] in
cooperative game theory to reduce it to n dimensions, and refer to it as the influence-based Shapley
centrality. The Shapley centrality of a node measures its importance when the node collaborate with
other nodes in groups. Due to the linearity of the Shapley value, we obtain the same characterization
for the Shapley centrality: it is the unique one conforming with the graph-theoretical Shapley
centrality and satisfying Axioms Anonymity and Bayesian, and the uniqueness is fully determined
by its values on layered-graph instances.

4.4.1 Cooperative Games and Shapley Value

A cooperative game [41] is defined by tuple (V, τ), where V is a set of n players, and τ : 2V → R
is called characteristic function specifying the cooperative utility of any subset of players. In
cooperative game theory, a ranking function ϕ is a mapping from a characteristic function τ to
a vector (ϕv(τ))v∈V ∈ Rn, indicating the importance of each individual in the cooperation. One
famous ranking function is the Shapley value ϕShapley [41], as defined below. Let Π be the set of all
permutations of V , and π ∼ Π denote a random permutation π drawn uniformly from set Π. For
any v ∈ V and π ∈ Π, let Sπ,v denote the set of nodes in V preceding v in permutation π. Then,
∀v ∈ V :

ϕShapleyv (τ) =
1

n!

∑
π∈Π

(τ(Sπ,v ∪ {v})− τ(Sπ,v))

=
∑

S⊆V \{v}

|S|!(n− |S| − 1)!

n!
(τ(S ∪ {v})− τ(S))

=Eπ∼Π[τ(Sπ,v ∪ {v})− τ(Sπ,v)].

The Shapley value of a player v measures the expected marginal contribution of v on the set of
players ordered before v in a random order. Shapley [41] proved a remarkable representation
theorem: The Shapley value is the unique ranking function that satisfies all the following four
conditions:

• Efficiency:
∑

v∈V ϕv(τ) = τ(V ).
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• Symmetry: For any u, v ∈ V , if τ(S ∪{u}) = τ(S ∪{v}), ∀S ⊆ V \{u, v}, then ϕu(τ) = ϕv(τ).

• Linearity: For any two characteristic functions τ and ω, for any α, β > 0, ϕ(ατ + βω) =

αϕ(τ) + βϕ(ω).

• Null Player: For any v ∈ V , if τ(S ∪ {v})− τ(S) = 0, ∀S ⊆ V \ {v}, then ϕv(τ) = 0.

Efficiency states that the total utility is fully distributed. Symmetry states that two players’
ranking values should be the same if they have the identical marginal utility profile. Linearity states
that the ranking values of the weighted sum of two coalition games is the same as the weighted
sum of their ranking values. Null Player states that a player’s ranking value should be zero if the
player has zero marginal utility to every subset.

4.4.2 Shapley Centrality of Influence Models

Shapley’s celebrated concept — as highlighted in [7] — offers a formulation for assessing in-
dividuals’ performance in group influence settings. It can be used to systematically compress
exponential-dimensional group centrality measures into n-dimensional individual centrality mea-
sures.

Definition 4.6 (Influence-based Shapley Centrality). An influence-based Shapley centrality ψShapley

is an individual centrality measure corresponding to a group centrality ψgrp:

ψShapley
v (I) = ϕShapleyv (ψgrp(I))

= Eπ∼Π[ψ
grp
Sπ,v∪{v}(I)− ψgrp

Sπ,v
(I)].

We also denote it as ψShapley = ϕShapley ◦ ψgrp.

In [7], Chen and Teng analyze the Shapley value of the influence-spread function, which is a
special case of the following “Shapley extension” of Definition 4.3.

Definition 4.7 (Shapley Centrality of Stochastic Sphere-of-Influence). For each f : Rn
∞ → R, the

Shapley centrality of Stochastic Sphere-of-Influence ψShapley[f ] is defined as:

ψShapley[f ]v(I) = ϕShapleyv (ψgrp[f ](I)).

Shapley centrality µShapley can also be defined similarly based on graph-theoretical group cen-
trality (see, for example, [34]). We will refer to the extension of Definition 4.2 as µShapley[f ]. Using
Theorem 3.1, we can establish the following characterization.
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Theorem 4.4 (Characterization of Shapley Centrality). For any anonymous function f : Rn
∞ → R,

ψShapley[f ] is the unique influence-based centrality that conforms with µShapley[f ] and satisfies both
Axiom Anonymity and Axiom Bayesian.

Proof: We first show that ψShapley[f ] is Bayesian. Let I, I1, I2 be three influence instances with
the same vertex set V , and α ∈ [0, 1], where PI = αPI1 + (1− α)PI2 . Then for every node v ∈ V ,
we have

ψShapley
v (I) = ϕShapleyv (ψgrp(I))

= ϕShapleyv (ψgrp(αPI1 + (1− α)PI2))

= ϕShapleyv (αψgrp(I1) + (1− α)ψgrp(I2))

= αϕShapleyv (ψgrp(I1)) + (1− α)ϕShapleyv (ψgrp(I2)) (3)

= αψShapley
v (I1) + (1− α)ψShapley

v (I2),

where Eq. (3) is due to the linearity of the Shapley value, which is easy to verify by the following
derivations:

ϕShapleyv (ατ1 + βτ2) = Eπ∼Π[(ατ1 + βτ2)(Sπ,v ∪ {v})− (ατ1 + βτ2)(Sπ,v)]

= αEπ∼Π[τ1(Sπ,v ∪ {v})− τ1(Sπ,v)] + βEπ∼Π[τ2(Sπ,v ∪ {v})− τ2(Sπ,v)]

= αϕShapleyv (τ1) + βϕShapleyv (τ2).

Now we show that ψShapley[f ] conforms with µShapley[f ]. For any directed graph G = (V,E) and
any node v ∈ V , let ({v}, Sv

1 , . . . , S
v
n−1) be the BFS sequence starting from v in graph G. We have

ψShapley[f ]v(IG) = ϕShapleyv (ψgrp[f ](IG))

= Eπ∼Π[ψ
grp[f ]Sπ,v∪{v}(IG)− ψgrp[f ]Sπ,v(IG)]

= Eπ∼Π[µ
grp[f ]Sπ,v∪{v}(G)− µgrp[f ]Sπ,v(G)] (4)

= ϕShapleyv (µgrp[f ](G))

= µShapley[f ](G),

where Eq. (4) is because influence-based group centrality ψgrp[f ] conforms with the structure-based
group centrality µgrp[f ] (Theorem 4.3). Anonymity follows from anonymity of group centralities
(Theorem 4.3). Uniqueness then follows from Theorem 4.1.

Theorem 4.4 systematically extends the work of [7] to all sphere-of-influence formulations. The
SNI and Shapley centrality analyzed in [7] are ψind[f rch] and ψShapley[f rch], respectively. In our
process of generalizing the work of [7], we also resolve an open question central to the axiomatic
characterization of [7], which is based on a family of critical set instances that do not correspond
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to a graph-theoretical interpretation. In fact, the influence-spread functions of these “axiomatic”
critical set instances used in [7] are not submodular. In contrast, influence-spread functions of
the popular independent cascade (IC) and linear threshold (LT) models, as well as, the trigger
models of Kempe-Kleinberg-Tardos, are submodular. The submodularity of these influence-spread
functions plays an instrumental role in influence maximization algorithms [18, 6]. Thus, it is a fun-
damental and mathematical question whether influence profiles can be characterized by “simpler”
influence instances. Our layered-graph characterization (Theorem 3.1) resolves this open question
by connecting all influence profiles with simple BFS cascading sequence in the layered graphs,
which is a special case of the IC model and possess the submodularity property. In summary, our
layered-graph characterization is instrumental to the series of characterizations we could provide in
this paper for influence-based individual, group, and Shapley centralities (Theorem 4.2, 4.3, 4.4).

4.5 A Road Map

Figure 2 summarizes our systematic extension of graph-theoretical centralities (the lower three
boxes) to influence-based centralities (the upper three boxes). Starting from the classical graph-
theoretical distance-based individual centrality (e.g. harmonic centrality), by transferring the con-
cept of graph distance to cascading distance, we could lift it to the stochastic sphere-of-influence
individual centrality (e.g. influence-based harmonic centrality). From individual centralities (ei-
ther graph-theoretical or influence-based), we could use group distance to extend them to group
centralities. From group centralities, we could apply Shapley value to obtain Shapley centrali-
ties. Therefore, Figure 2 provides a road map on how to extend many classical graph-theoretical
centralities to influence-based centralities.

5 Efficient Algorithm for Approximating Influence-based
Centrality

Besides studying the characterization of influence-based centralities, we also want to compute
these centrality measures efficiently. Accurate computation is in general infeasible (e.g. it is #P-
hard to compute influence-based reachability centrality ψind[f rch] in the triggering model [44, 11]).
Thus, we are looking into approximating centrality values. Instead of designing one algorithm
for each centrality, we borrow the algorithmic framework from [7] and show how to adapt the
framework to approximate different centralities. Same as in [7], the algorithmic framework applies
to the triggering model of influence propagation. For efficient computation, we further assume that
the distance function f is additive, i.e. f(d⃗) =

∑
u∈V g(du) for some scalar function g : R∞ → R

satisfying g(∞) = 0. The degree, harmonic, and reachability centralities all satisfy this condition.
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图 2: Road map for the systematic extension of graph-theoretical distance-based centralities to
influence-based centralities.

In particular, we have fdeg(d⃗) =
∑

u∈V g
deg(du), with gdeg(du) = 1 if du = 1 and gdeg(du) = 0

otherwise; fhar(d⃗) =
∑

u∈V g
har(du), with ghar(du) = 1/du if du > 0 and ghar(du) = 0 otherwise;

and f rch(d⃗) =
∑

u∈V g
rch(du), where grch(du) = 1 if du <∞ and grch(du) = 0 otherwise.

The algorithmic framework for estimating individual and Shapley forms of sphere-of-influence
centrality is given in Algorithm 1, and is denoted ICE-RR (for Influence-based Centrality Estimate
via RR set). The algorithm uses the approach of reverse-reachable sets (RR sets) [5, 43, 42]. An RR
set Rv is generated by randomly selecting a node v (called the root of Rv) with equal probability,
and then reverse simulating the influence propagation starting from v. In the triggering model, it
is simply sampling a random triggering set T (v) for v, putting all nodes in T (v) into Rv, and then
recursively sampling triggering sets for all nodes in T (v), until no new nodes are generated.

The algorithm has two phases. In the first phase (lines 1–22), the number θ of RR sets needed
for the estimation is computed. The mechanism for obtaining θ follows the IMM algorithm in [42]
and is also the same as in [7]. In the second phase (lines 23–34), θ RR sets are generated, and
for each RR set R, the centrality estimate of u ∈ R, estu, is updated properly depending on the
centrality type.

Comparing to the algorithm in [7], our change is in lines 8–14 and lines 26–31. First, when
generating an RR set Rv, we not only stores the nodes, but for each u ∈ Rv, we also store the
distance from u to root v in the reverse simulation paths dRv(u, v). Technically, dRv(u, v) is the
graph distance from u to v in the subgraph GRv , where GRv = (V,ERv) with ERv = {(w, u) |
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Input: Network: G = (V,E); Parameters: random triggering set distribution {T (v)}v∈V , ε > 0,
ℓ > 0, k ∈ [n], node-wise distance function g

Output: ψ̂v, ∀v ∈ V : estimated centrality value
1: {Phase 1. Estimate the number of RR sets needed }
2: LB = 1; ε′ =

√
2 · ε; θ0 = 0

3: estv = 0 for every v ∈ V

4: for i = 1 to ⌊log2 n⌋ − 1 do
5: x = n/2i

6: θi =
⌈
n·((ℓ+1) lnn+ln log2 n+ln 2)·(2+ 2

3
ε′)

ε′2·x

⌉
7: for j = 1 to θi − θi−1 do
8: generate a random RR set Rv rooted at v, and for each u ∈ Rv, record the distance

dRv(u, v) from u to v in this reverse simulation.
9: if estimating individual centrality then

10: for every u ∈ Rv, estu = estu + g(dRv(u, v))

11: else
12: {estimating Shapley centrality}
13: for every u ∈ Rv, estu = estu + ϕShapleyu (g(dRv(·, v)))
14: end if
15: end for
16: est(k) = the k-th largest value in {estv}v∈V
17: if n · est(k)/θi ≥ (1 + ε′) · x then
18: LB = n · est(k)/(θi · (1 + ε′))

19: break
20: end if
21: end for
22: θ =

⌈
n((ℓ+1) lnn+ln 4)(2+ 2

3
ε)

ε2·LB

⌉
23: {Phase 2. Estimate the centrality value}
24: estv = 0 for every v ∈ V

25: for j = 1 to θ do
26: generate a random RR set Rv rooted at v, and for each u ∈ Rv, record the distance dRv(u, v)

from u to v in this reverse simulation.
27: if estimating individual centrality then
28: for every u ∈ Rv, estu = estu + g(dRv(u, v))

29: else
30: for every u ∈ Rv, estu = estu + ϕShapleyu (g(dRv(·, v)))
31: end if
32: end for
33: for every v ∈ V , ψ̂v = n · estv/θ
34: return ψ̂v, v ∈ V

Algorithm 1: ICE-RR: Efficient estimation of sphere-of-influence centralities via RR-sets, for the
triggering model and additive distance function f(d⃗) =

∑
u∈V g(du).
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u ∈ Rv, w ∈ T (u)} is the subgraph generated by the triggering sets sampled during the reverse
simulation. Note that with this definition, for u ̸∈ Rv, we have dRv(u, v) = ∞. Next, if we are
estimating individual centrality, we simply update the estimate estu by adding g(dRv(u, v)). If
we are estimating Shapley centrality, we need to update estu by adding ϕShapleyu (g(dRv(·, v))), the
Shapley value of u on the set function g(dRv(·, v)) : S ∈ 2V 7→ g(dRv(S, v)) ∈ R. We will show below
that the computation of ϕShapleyu (g(dRv(·, v))) for all u ∈ Rv together is linear to |Rv|, so it is in
the same order of generating Rv and does not incur significant extra cost. Note that the algorithm
in [7] corresponds to our algorithm with g = grch. The correctness of the algorithm replies on the
following crucial lemma.

Lemma 5.1. Let Rv be a random RR set with root v generated in a triggering model instance
I. Then, ∀u ∈ V , u’s stochastic sphere-of-influence individual centrality with function f(d⃗) =∑

u∈V g(du) is ψ[f ]u(I) = n · E[g(dRv(u, v))], where the expectation is taking over the distribution
of RR set Rv. Similarly, u’s influence-based Shapley centrality with f is ψShapley[f ]u(I) = n ·
E[ϕShapleyu (g(dRv(·, v)))].

Proof: Consider first the influence-based distance-function centrality. We have

n · E[g(dRv(u, v))] = n ·
∑
w∈V

Pr{w = v}E[g(dRv(u, v)) | w = v]

= n ·
∑
w∈V

1

n
E[g(dRw(u,w))]

=
∑
w∈V

E(S1,...,Sn−1)∼PI({u})[g(dw({u}, S1, . . . , Sn−1))] (5)

= E(S1,...,Sn−1)∼PI({u})

[∑
w∈V

g(dw({u}, S1, . . . , Sn−1))

]
= E(S1,...,Sn−1)∼PI({u})[f(d⃗({u}, S1, . . . , Sn−1))]

= ψ[f ]u(I),

where Eq. (5) is by Lemma 5.2 below.
Next consider the influence-based distance-function Shapley centrality.

n · E[ϕShapleyu (g(dRv(·, v)))] = n ·
∑
w∈V

Pr{w = v}E[ϕShapleyu (g(dRv(·, v))) | w = v]

= n ·
∑
w∈V

1

n
E[ϕShapleyu (g(dRw(·, w)))]

= ϕShapleyu

(∑
w∈V

E[g(dRw(·, w))]

)
(6)
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= ϕShapleyu (ψgrp[f ](I)) (7)

= ψShapley[f ]u(I),

where Eq. (6) is by the linearity of the Shapley value, as already argued in the proof of Theorem 4.3,
and Eq. (7) follows the similar derivation step as in the case of individual centrality above.

Lemma 5.2. For fixed nodes u,w ∈ V , suppose we generate a random RR set Rw rooted at w,
according to a triggering model instance I. Then we have

E[g(dRw(u,w))] = E(S1,...,Sn−1)∼PI({u})[g(dw({u}, S1, . . . , Sn−1))].

Proof: We know that the triggering model is equivalent to the following live-edge graph model [18]:
for every node v ∈ V , sample its triggering set T (v) and add edges (u, v) to a live-edge graph L

for all u ∈ T (v) (these edges are called live edges). Then the diffusion from a seed set S is the
same as the BFS propagation in L from S. Since reverse simulation for generating RR set Rw also
do the same sampling of the triggering sets, we can couple the reverse simulation process with the
forward propagation by fixing a live-edge graph L. For a fixed live-edge graph L, the subgraph
GRw generated by reverse simulation from the fixed root w is simply the induced subgraph of L
induced by all nodes that can reach w in L. Thus dRw(u,w) is the fixed distance from u to w in
L, namely dL(u,w). On the other hand, with the fixed L, the cascading sequence starting from u

is the fixed BFS sequence starting from u in L. Then in this BFS sequence dw({u}, S1, . . . , Sn−1)

is the distance from u to w in this sequence, which is the same as the distance from u to w in
L. Therefore, dw({u}, S1, . . . , Sn−1) = dRw(u,w) for fixed live-edge graph L. We can then vary L
according to its distribution, and obtain

E[g(dRw(u,w))] = E(S1,...,Sn−1)∼PI({u})[g(dw({u}, S1, . . . , Sn−1))].

From Lemma 5.1, we can understand that lines 28 and 30 are simply accumulating empirical
values of g(dRv(u, v)) and ϕShapleyu (g(dRv(·, v))) for individual centrality and Shapley centrality,
respectively, and line 33 averages this cumulative value and then multiply it by n to obtain the
final centrality estimate. With the above lemma, the correctness of the algorithm ICE-RR is shown
by the following theorem.

Theorem 5.1. Let (ψv)v∈V be the true centrality value for an influence-based individual or Shapley
centrality with additive function f , and let ψ(k) be the k-th largest value in (ψv)v∈V . For any ϵ > 0,
ℓ > 0, and k ∈ [n], Algorithm ICE-RR returns the estimated centrality (ψ̂v)v∈V that satisfies (a)
unbiasedness: E[ψ̂v] = ψv, ∀v ∈ V ; and (b) robustness: under the condition that ψ(k) ≥ 1, with
probability at least 1− 1

nℓ :
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{
|ψ̂v − ψv| ≤ εψv ∀v ∈ V with ψv > ψ(k),

|ψ̂v − ψv| ≤ εψ(k) ∀v ∈ V with ψv ≤ ψ(k).
(8)

Proof: The proof follows exactly the same proof structure as the proof in [7]. All we need to
change is to use our crucial lemma connecting RR sets with centrality measures (Lemma 5.1) to
replace the corresponding lemma (Lemma 23) in [7].

In terms of time complexity, for individual centrality, lines 10 and 28 take constant time for
each u ∈ Rv, so it has the same complexity as the algorithm in [7]. For Shapley centrality, the
following lemma shows that the computation of ϕShapleyu (g(dRv(·, v))) for all v is O(|Rv|), same
as the complexity of generating Rv, so it will not add complexity to the overall running time.
Suppose Rv has ∆ levels in total (i.e., ∆ = max{dRv(u

′, v) | u′ ∈ Rv}), and let si = |{u′ | u′ ∈
Rv, dRv(u

′, v) ≥ i}|.

Lemma 5.3. For any function g : R∞ → R with g(∞) = 0,

ϕShapleyu (g(dRv(·, v))) =
1

|Rv|
g(k) +

1

|Rv|!
∑

k<i≤∆

(g(k)− g(i))

 ∑
0≤j≤si

si!

j!
−

∑
0≤j≤si+1

si+1!

j!

 .

In O(|Rv|) time we can compute this value for all nodes in Rv (assuming infinite precision). For
degree centrality, ϕShapleyu (gdeg(dRv(·, v))) = 1/|{w | dRv(w, v) = 1}| if dRv(u, v) = 1, and otherwise
it is 0. For reachability centrality, ϕShapleyu (grch(dRv(·, v))) = 1/|Rv|.

Proof: We prove only for general g. For u at the k-th level,

ϕShapleyu (g(dRv(·, v)))

=
1

|Rv|!
∑
π

(g(dRv(Sπ,u ∪ {u}, v))− g(dRv(Sπ,u, v)))

=
1

|Rv|
g(k) +

1

|Rv|!
∑
π

∑
k<i≤∆

I[dRv(Sπ,u, v) = i](g(k)− g(i))

=
1

|Rv|
g(k) +

1

|Rv|!
∑

k<i≤∆

(g(k)− g(i))
∑

1≤j≤|Rv |

[(
si

j − 1

)
(j − 1)!−

(
si+1

j − 1

)
(j − 1)!

]

=
1

|Rv|
g(k) +

1

|Rv|!
∑

k<i≤∆

(g(k)− g(i))

 ∑
1≤j≤si+1

si!

(si − j + 1)!
−

∑
1≤j≤si+1+1

si+1!

(si+1 − j + 1)!


=

1

|Rv|
g(k) +

1

|Rv|!
∑

k<i≤∆

(g(k)− g(i))

 ∑
0≤j≤si

si!

j!
−

∑
0≤j≤si+1

si+1!

j!

 .

One possible way to compute the value above is:

1. Compute x! and
∑

0≤i≤x
1
i! for all x ∈ [|Rv|] in time O(|Rv|).
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2. Now the term
∑

0≤j≤si
si!
j! can be computed in additional constant time for any i. We can

compute
1

|Rv|!
∑

k<i≤∆

(g(k)− g(i))

 ∑
0≤j≤si

si!

j!
−

∑
0≤j≤si+1

si+1!

j!


for all 0 ≤ k ≤ ∆ in additional total time O(∆) by first computing a suffix sum of

g(i)

 ∑
0≤j≤si

si!

j!
−

∑
0≤j≤si+1

si+1!

j!

 .

That is, ∑
k<i≤∆

g(i)

 ∑
0≤j≤si

si!

j!
−

∑
0≤j≤si+1

si+1!

j!

 .

for all k ∈ {0, . . . ,∆}.

3. Assign the values to vertices in each level in total time O(|Rv|).

Therefore, the time complexity follows [7]:

Theorem 5.2. Under the assumption that sampling a triggering set T (v) takes time at most
O(|N−(v)|) time, and the condition ℓ ≥ (log2 k − log2 log2 n)/ log2 n, the expected running time of
ICE-RR is O(ℓ(m+ n) logn · E[σ(ṽ)]/(ψ(k)ε2)), where E[σ(ṽ)] is the expected influence spread of a
random node ṽ drawn from V with probability proportional to the in-degree of ṽ.

Theorems 5.1 and 5.2 together show that our algorithm ICE-RR provides a framework to
efficiently estimate all individual and Shapley centralities in the family of influence-based stochastic
sphere-of-influence centralities. We further remark that, although algorithm ICE-RR is shown for
computing individual centralities and Shapley centralities, it can be easily adapted to computing
group centralities as well. Of course, a group centrality has 2n values, so it is not feasible to list
all of them. But if we consider that the algorithm is to estimate n group centrality values for
n given sets, then we only need to replace estu with estS for every S in the input, and change
the lines corresponding to individual centrality (lines 10 and 28) to “for each S in the input,
estS = estS + g(dRv(S, v))”. This change is enough for estimating n group centrality values.

6 Future Work

Many topics concerning the interaction between network centralities and influence dynamics
can be further explored. One open question is how to extend other centralities that are not cov-
ered by sphere-of-influence to influence-based centralities. For example, betweenness centrality of
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a node v is determined not only by the distance from v to other nodes, but by all-pair distances,
while PageRank and other eigenvalue centralities are determined by the entire graph structure.
Therefore, one may need to capture further aspects of the influence propagation to provide natural
extensions to these graph-theoretical centralities. Another open question is how to characterize
centrality for a class of influence profiles, e.g. all submodular influence profiles, all triggering mod-
els, etc. Empirical comparisons of different influence-based centralities, as well as studying the
applications that could utilize influence-based centralities, are all interesting and important top-
ics worth further investigation. In spirit of Ker-I Ko’s last project, how should we formulate and
characterize centrality in competitive influence model?
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