1	Mothers' Attachment Representations and Children's Brain
2	Structure
3	
4	
5	
6	Megan H. Fitter ¹ , Jessica A. Stern ² , Martha D. Straske ¹ , Tamara Allard ³ , Jude Cassidy ¹ , Tracy
7	Riggins ³
8	
9	¹ Maryland Child and Family Development Lab, University of Maryland, College Park, MD,
10	USA
11	² BabyLab, University of Virginia, Charlottesville, VA, USA
12	³ Neurocognitive Development Lab, University of Maryland, College Park, MD, USA
13	
14	Corresponding Author: Megan H. Fitter
15	mhfitter@gmail.com
16	

17 Abstract

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Ample research demonstrates that parents' experience-based mental representations of attachment—cognitive models of close relationships—relate to their children's social-emotional development. However, no research to date has examined how parents' attachment representations relate to another crucial domain of children's development: brain development. The present study is the first to integrate the separate literatures on attachment and developmental social cognitive neuroscience to examine the link between mothers' attachment representations and three- to eight-year-old children's brain structure. We hypothesized that mothers' attachment representations would relate to individual differences in children's brain structures involved in stress regulation—specifically, amygdala and hippocampal volumes—in part via mothers' responses to children's distress. We assessed 52 mothers' attachment representations (secure base script knowledge on the Attachment Script Assessment and selfreported attachment avoidance and anxiety on the Experiences in Close Relationships scale) and children's brain structure. Mothers' secure base script knowledge was significantly related to children's smaller left amygdala volume but was unrelated to hippocampal volume; we found no indirect links via maternal responses to children's distress. Exploratory analyses showed associations between mothers' attachment representations and white matter and thalamus volumes. Together, these preliminary results suggest that mothers' attachment representations may be linked to the development of children's neural circuitry related to stress regulation. Keywords: attachment, secure base scripts, brain structure, amygdala, hippocampus, parenting, early childhood

Mothers' Attachment Representations and Children's Brain Structure 38 39 Integral to attachment theory is the claim that individuals form experience-based mental representations of attachment—cognitive models of the nature of close relationships (Bowlby, 40 41 1969/82). Those mental representations of attachment have consequences not only for 42 individuals' own development, but also for the development of their children (Jones et al., 2015; 43 Steele et al., 2014). The vast majority of research on relations between caregivers' attachment representations and children's developmental outcomes examines how parents' representations 44 45 link to caregiving behaviors (Coppola et al., 2006; Jones et al., 2015) and their children's 46 attachment security (e.g., Steele et al., 2014). However, no research to date has examined how 47 caregivers' attachment representations relate to another crucial domain of child development: 48 children's brain development. 49 Some research indirectly indicates the possibility of a link between mothers' attachment 50 representations and children's brain development. For example, abundant research demonstrates 51 that mothers' representations relate to children's attachment security (e.g., Steele et al., 2014; 52 van IJzendoorn, 1995), and an emerging body of research indicates that children's attachment 53 security is related to individual differences in brain structure (see Long and colleagues, 2020, for 54 a review; see Puhlmann et al., 2021, for evidence in adolescence, see also Ilyka et al., 2021). 55 Furthermore, in addition to the large body of research demonstrating that mothers' attachment 56 representations guide caregiving behavior (e.g., Huth-Bocks et al., 2014; Jones et al., 2015), 57 some research demonstrates that normative variation in caregiving relates to individual 58 differences in children's cortical and subcortical brain structures (Farber et al., 2020; Ilyka et al., 59 2021; Kok et al., 2015; Richmond et al., 2021; Rifkin-Graboi et al., 2015). Thus, although there 60 is some indication of a possible indirect link between mothers' attachment representations and

children's brain development, no research to date has examined the direct link or mechanisms through which this relation might occur.

The present study is the first to examine whether mothers' attachment representations relate to their children's brain structure and whether caregiving explains this link. We focus our examination of caregiving behaviors on *mothers' responses to children's distress* because such responses are a key form of co-regulation—external regulation of a child's physiological rhythms and emotions by a sensitive caregiver (Spangler et al., 1994). Effective co-regulation is thought to support a child's ability to self-regulate their own physiological and emotional responses to threat (Cassidy, 1994; George & Solomon, 2008; Hofer, 1995; Luecken & Lemery, 2004). For this reason, we focus our examination of children's brain structure on two principal regions involved in circuits that facilitate stress regulation in times of threat: the hippocampus and the amygdala (Callaghan & Tottenham, 2016a; McEwen et al., 2000). Our focus on these two brain structures (in addition to their role in stress regulation) stems from an emerging body of evidence that normative variations in attachment security (e.g., Lyons-Ruth et al., 2016; Quirin et al., 2010) and caregiving (e.g., Luby et al., 2016; Rifkin-Graboi et al., 2015) relate to individual differences in both of these brain structures.

We begin with a discussion of attachment representations. Next, in order to support the expectations of a relation between mothers' representations and children's brain structure, we discuss the abundance of evidence that mothers' attachment representations relate to their caregiving. Then, we discuss evidence that mothers' caregiving relates to children's brain structure and present the current study.

Mental representations of attachment are experience-based cognitive models that encompass individuals' beliefs about the self and others—including expectations about how they

themselves will be treated in close relationships (Bowlby, 1969/82; Bretherton & Munholland, 2016). When individuals experience sensitive care from caregivers and other close relationship partners, they develop secure attachment representations. People with secure attachment representations hold beliefs that others will be available and sensitively responsive in times of need, that they themselves are worthy of such care, and that they are capable of and effective in eliciting care when needed. In contrast, experiences of rejection or neglect in close relationships can result in insecure mental representations, characterized by mistrust of others and negative beliefs about the self (Bowlby, 1969/82).

There are multiple ways that researchers operationalize attachment representations. Two widely used constructs are secure base script knowledge and attachment style. The secure base script is a knowledge structure, or schema, consisting of a sequence of events wherein a person in distress seeks and receives care from a close other, and then the distress is resolved as a function of that care (Bretherton, 1985, 1987; Waters & Waters, 2006). The extent to which a person organizes information following this schema reflects their secure base script knowledge. The other widely used conceptualization of attachment representations is attachment style, consisting of two dimensions: attachment avoidance and attachment anxiety (Brennan et al., 1998). Attachment avoidance reflects the extent to which an individual is uncomfortable with intimacy and with depending on relationship partners for support. Attachment anxiety reflects the extent to which an individual is preoccupied with relationships and fears rejection and abandonment by relationship partners. High levels of attachment anxiety, attachment avoidance, or both indicate an insecure attachment style. Low levels of both anxiety and avoidance indicate attachment security, characterized by feelings that one is worthy of love and care, and that

relationship partners will be available and responsive in times of need (Mikulincer & Shaver, 2007).

Although secure base script knowledge and attachment style capture subtly different aspects of mental representations, the two are closely intertwined. Secure base scripts are considered to be the raw building blocks of more complex mental representations (Bretherton, 1991). According to theory (Mikulincer & Shaver, 2007), a person who has access to a secure base script is unlikely to fear either rejection and abandonment (fears that are central to anxious attachment styles) or relying on relationship partners for support (fears central to avoidant attachment styles). Secure base script knowledge mitigates these fears because such scripts are characterized by a schema of consistently responsive care and alleviation of distress as a function of that care. As such, secure base scripts lay the foundation for an individual's secure attachment style. Indeed, empirical data suggest that individuals with a secure attachment style demonstrate high secure base script knowledge (Dykas et al., 2006; Mikulincer et al., 2009).

Mothers' attachment representations (both secure base script knowledge and attachment style) relate to the quality of care they provide to their children. Ample research reveals that mothers with greater access to secure base script knowledge provide more sensitive care to their children (e.g., Coppola et al., 2006; Huth-Bocks et al., 2014; Waters et al., 2017). For instance, one study demonstrated that mothers' secure base script knowledge predicted greater positive parenting behaviors (e.g., sensitivity and positive affect) and fewer negative parenting behaviors (e.g., hostility and intrusiveness) during a free play task in the home (Huth-Bocks et al., 2014).

A separate body of evidence reveals links between parents' insecure attachment style dimensions and a wide array of negative parenting behaviors (see Jones et al., 2015, for a review). Empirical work consistently demonstrates that attachment avoidance relates to low

sensitivity and responsiveness (Mills-Koonce et al., 2011; Rholes et al., 1995), whereas links between attachment anxiety and sensitivity are more mixed (Jones et al., 2015). Nevertheless, both anxiety and avoidance are associated with mothers engaging in more frequent and harsh conflict with their children (e.g., Feeney, 2006; La Valley & Guerrero, 2012; Selcuk et al., 2010).

Examination of maternal caregiving is critical because early caregiving experiences become biologically embedded in the child and can have profound effects on development (Belsky & de Hann, 2011; McEwen et al., 2000; McLaughlin et al., 2019; Meaney & Szyf, 2005). Early experiences with caregivers predict the development of subcortical (e.g., Bernier et al., 2019; Gee, 2016; Meaney & Szyf, 2005; Rifkin-Graboi et al., 2015; Sethna et al., 2017) and cortical (e.g., Blaze et al., 2013; Kok et al., 2015) brain structures. Although abundant research demonstrates that early maltreatment and neglect relate to children's brain development (see Belsky & de Haan, 2011, and McLaughlin et al., 2019, for reviews), we focus here on normative variation in caregiving behaviors.

The hippocampus is sensitive to early stressful caregiving environments; elevated levels of stress hormones (e.g., cortisol) have particularly deleterious consequences for regions with an abundance of glucocorticoid receptors, such as the hippocampus (Conrad, 2009; McEwen et al., 2000; Sapolsky et al., 1986). As such, if caregivers cannot effectively regulate a child's distress, then it is possible that the child may experience alterations in hippocampal development. For example, a series of studies has demonstrated that maternal support in early childhood predicts greater hippocampal volume and more rapid hippocampal development in mid to late childhood (Luby et al., 2012; Luby et al., 2016). Further, Blankenship and colleagues (2019) found that positive parenting of 4-year-olds predicted greater hippocampal head volumes three years later.

There are, however, some null findings and findings in the opposite direction surrounding caregiving and the hippocampus. Some studies suggest positive caregiving experiences relate to *smaller* hippocampal volumes in infants (Rifkin-Graboi et al., 2015) and toddlers (Bernier et al., 2019), and other studies reveal no relation between maternal caregiving and hippocampal volume in early (Lee et al., 2019) and middle childhood (Kok et al., 2015). Inconsistent findings, combined with the crucial role of the hippocampus in children's cognitive and emotional well-being (e.g., Barch et al., 2019), highlight the need to continue examining relations between caregiving and the hippocampus.

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

The amygdala is another structure involved in stress-regulation (Callaghan & Tottenham, 2016a). Specifically, research suggests that the amygdala is one of several forebrain regions that plays a critical role in upregulating the HPA axis following the onset of a stressful event (Honkaniemi, et al., 1992). Research suggests that early exposure to negative environments is associated with larger amygdala volume (Roth et al., 2018; Tottenham et al., 2010)—a structural difference that has been attributed to accelerated amygdala maturation in threatening contexts (Tottenham et al., 2010). Although it is important to note that the vast majority of this research focuses on neglected and maltreated samples (Belsky & de Haan, 2011), some research corroborates these findings in typically developing community samples without histories of maltreatment or neglect. In one study, maternal sensitivity marginally related to smaller right and left amygdala volumes in infants (Rifkin-Graboi et al., 2015). Further, research found that mothers' greater punishing responses predicted young adolescents' larger amygdala volumes (Whittle et al., 2009). Moreover, one study demonstrated that maternal depression, often associated with deficits in caregiving (Lovejoy et al., 2000), was associated with larger amygdala volumes in late childhood (Lupien et al., 2011). Longitudinal research has demonstrated that

maternal sensitivity in toddlers predicted smaller right amygdala volumes in late childhood (Bernier et al., 2019), maternal sensitivity in infancy predicted boys' smaller amygdala volumes at age six (Lee et al., 2019), and positive parenting predicted less amygdala growth from early to mid-adolescence (Whittle et al., 2014). Some longitudinal work, however, has failed to demonstrate relations between parental sensitivity in early childhood and amygdala volume in middle childhood (Kok et al., 2015). Thus, further research is necessary to reconcile conflicting findings and strengthen confidence in the relations between normative variations in caregiving and children's amygdala volume.

In addition to findings in subcortical structures, some research indicates that normative variations in maternal caregiving relate to variations in the cortex. It is important to note, however, that much of this limited literature involves adolescents and young adults. For example, maternal aggression predicted greater thickening of the superior frontal gyrus and the right parietal lobe in males from early adolescence to early adulthood (Whittle et al., 2016), and mothers' punishing responses predicted greater dorsal anterior cingulate cortex and orbito-frontal cortex volumes in young adolescents (Whittle et al., 2009). Further, young adults' self-reports of maternal warmth predicted greater gray matter volume in the prefrontal cortex (Yang et al., 2018). Null findings exist as well. In one study, researchers failed to find relations between parental nurturance in early to middle childhood and cortical thickness in any brain structures in late adolescence (Avants et al., 2015).

Although limited, some research has demonstrated relations between infants' and children's cortical brain structure and normative caregiving. For example, evidence suggests that mothers' negative affect relates to infants' smaller total gray and white matter volumes (Sethna et al., 2017), and parental praise in middle childhood relates to greater gray matter volume in the

insula (Matsudaira et al., 2016). In addition, parental sensitivity in early childhood predicted greater brain volume and total gray matter volume in middle childhood (Kok et al., 2015). An intervention study, however, failed to find any effects of a parent sensitivity program on infants' total and regional gray matter volumes (Milgrom et al., 2010). Promising early research indicates that some relations between caregiving and children's cortical structures exist. Yet findings about *which* cortical structures relate to caregiving and the exact *nature* of these relations have not yet converged, possibly due to the limited number of studies. Thus, the present study aimed to help the field better understand how parenting becomes biologically embedded in the developing brain.

The present study emerged from the following: (a) compelling evidence that mothers' attachment representations relate to their caregiving behaviors, (b) sparse and somewhat inconsistent evidence that normative variation in mothers' caregiving behaviors relates to individual differences in children's brain structure, and (c) the lack of direct examination of links between mothers' attachment representations and children's brain structure. As such, the present study had two principal goals: 1) To examine relations between mothers' attachment representations and children's brain structure, and 2) to examine the indirect effect of mothers' attachment representations on children's brain structures through one aspect of mothers' caregiving, responses to children's distress. We included data from 52 children (ranging in age from 3 to 8 years) and their mothers. Mothers completed the Attachment Script Assessment (ASA; Waters & Rodrigues-Doolabh, 2001) and the Experiences in Close Relationships Scale (ECR; Brennan et al., 1998) to assess attachment representations. Mothers also completed the Coping with Children's/Toddlers' Negative Emotions Scales to assess responses to distress and children completed an Magnetic Resonance Imaging (MRI) scan.

Our pre-registered hypotheses (see https://osf.io/eckj3) were that: 1) mothers' secure base
script knowledge would relate positively to their children's hippocampal volumes and negatively
to their children's amygdala volumes, 2) mothers' attachment avoidance and attachment anxiety
would relate negatively to their children's hippocampal volumes and positively to their
children's amygdala volumes, and 3) mothers' unsupportive responses to children's distress
would facilitate indirect links between mothers' attachment representations (secure base script
knowledge, attachment avoidance, and attachment anxiety) and amygdala and hippocampal
volumes. Our pre-registered exploratory analyses examined whether: 1) mothers' attachment
representations would relate to global metrics of brain development, including children's
intracranial volume, total gray and white matter volume, subcortical gray matter volume, and
patterns of regional cortical thickness and surface area, and 2) mothers' supportive responses
towards children's distress would facilitate indirect relations between mothers' attachment
representations and children's brain structure. We had no a priori hypotheses about whole brain
metrics or regional cortical thickness and surface area due to the paucity of research and
inconsistent findings on early normative caregiving experiences and children's cortical structure.
We focused our confirmatory analyses on unsupportive, as opposed to supportive, responses
towards distress. This was due to research demonstrating the relatively greater link between
unsupportive responses and mothers' insecure attachment (Jones et al., 2014), and between
unsupportive responses and children's poor social-emotional functioning (e.g., Eisenberg et al.,
1999; Fabes et al., 2001, Perry et al., 2012, Shewark et al., 2015), both aspects of functioning
that relate to differences in brain structure (Gee, 2016). However, supportive responses were also
examined in exploratory analyses.

243 Method

Participants were drawn from two larger longitudinal studies investigating memory and brain development (see Allard et al., 2019; Botdorf & Riggins, 2018; Canada et al., 2019).

Dyads were included in the present study if the mother had completed the Attachment Script Assessment (Waters & Rodrigues-Doolabh, 2001).

Study 1

Participants

Participants were 36 mothers ($M_{age} = 33.23$, SD = 5.03) and their four- to eight-year-old children (20 males; $M_{age} = 6.66$, SD = 1.29) taken from a larger longitudinal study examining behavioral and brain development during early childhood. The majority of children (77%) identified as White, 11.5% identified as African American, and 11.5% identified as multiracial. Regarding ethnicity, 9.1% were Latinx/Hispanic. The majority of families were affluent: 79% of families had an average household income of more than \$95,000/year; 86.1% of participants had a parent with at least a college degree, and 50% of participants had a parent with a post-graduate degree (see Table 1 for more demographic information). Participants were recruited from the Baltimore-Washington metropolitan area through flyers, online advertisements, and a university-maintained database of families interested in participating in research.

Exclusionary criteria were: children's history of head trauma or brain abnormality, abnormal circadian function, neurological disorders, premature birth, diagnosis of ADHD or other learning disability, diagnosis of psychiatric disorders, history of developmental delays or disorders, family history of autism spectrum disorder, child or parent was not English-speaking, and contraindications for MRI (e.g., metal in the body).

Procedures

Mothers were provided with a personal link to complete the online questionnaires about their attachment style (anxiety and avoidance), their responses to children's distress, and demographic information. Mothers were allowed to complete this survey at home or in the lab while their child was participating in the study. Participants visited the University for two visits, typically within one week of each other. During the first visit, children participated in an MRI scan. During the second visit, mothers completed the Attachment Script Assessment (ASA; Waters & Rodrigues-Doolabh, 2001; Waters & Waters, 2006) to assess secure base script knowledge while their children participated in memory tasks unrelated to the present study. Mothers were compensated with cash and children were given a small prize for their participation.

Measures

MRI Acquisition. To prepare for MR data acquisition, participants were familiarized with the scanner environment using a mock MRI scanner. Children were provided motion feedback and practiced lying still during the mock scan. Following practice in the mock scanner, children were scanned using a Siemens 3.0T scanner (MAGNETOM Trio Tim System, Siemens Medical Solutions, Erlangen, Germany) with a 32-channel coil. Given the high possibility of movement in younger populations, additional padding was placed around each participant's head to reduce head movement. Children also watched a movie during the scan to enhance compliance. A high resolution (.9mm³) T1-weighted whole brain structural scan consisting of 176 contiguous sagittal slices (1900 ms TR; 2.32ms TE; 900ms inversion time; 9° flip angle; pixel matrix= 256 x 256) was acquired during imaging. To ensure high image quality, images were visually inspected following the scan. If the image quality was deemed low, the scan was repeated.

MRI Analysis. Preprocessing of structural T1-weighted images consisted of image registration, skull stripping, smoothing, motion correction, and subcortical segmentation via Freesurfer (v5.1, http://surfer.nmr.mgh.harvard.edu/). Hippocampal and amvgdala volumes were obtained and adjusted via the automated segmentation adapter tool (nitrc.org/projects/segadapter; Wang et al., 2011) and split into subregions using standard anatomical landmarks (Riggins et al., 2015). To obtain quality measures of cortical thickness and surface area, two trained coders checked the boundary lines separating white and pial surfaces. In the case of errors, such as slices where the gray/white matter boundary extended past the skull or the pial boundary encapsulated portions of the skull, editors corrected these boundaries. Corrections were only made if the error persisted for more than 7 contiguous slices (Botdorf & Riggins, 2018). Alterations were first made by changing the watershed value in FreeSurfer. If this step did not eliminate the error, then manual edits were made (Ducharme et al., 2016). Edits were made for approximately 58% of the sample and involved an average of 14.6 slices (range 9-100). After all corrections were made, cortical thickness and surface area were calculated using FreeSurfer (Fischl & Dale, 2000). Freesurfer was also used to extract total and subcortical gray matter volume (Fischl et al., 2002). Attachment Script Assessment (ASA; Waters & Rodrigues-Doolabh, 2001; Waters & Waters, 2006). Mothers were instructed to create a story, using a 12-to-14-word list as a guide. The procedure includes two stories about parent-child relationships (e.g., a parent and child at the doctor's office) and two stories about adult-adult relationships (e.g., a couple on a camping trip).

Stories were coded on a 7-point scale indicating the extent to which the story

demonstrates secure base script knowledge, from 7 (extensive secure base script knowledge) to 1

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

(absence of secure base script knowledge). High scores reflect stories wherein an individual becomes distressed, seeks and receives care from a supportive caregiver (in the parent-child stories) or a supportive partner (in the adult-adult stories), is comforted as a function of that care, and is able to resume activities. The four scores from each participant were averaged to create a mean score of secure base script knowledge. All stories were coded by two masked coders who were trained to reliability by a developer of the task (Harriet Waters) and demonstrated strong interrater reliability ($\alpha = .88$).

Experiences in Close Relationships scale (ECR; Brennan et al., 1998). Mothers completed the general form of the widely used 36-item self-report measure of adult attachment anxiety and avoidance; this version assesses these dimensions with respect to close relationships generally, rather than asking specifically about romantic relationships. The avoidance dimension reflects individuals' feelings of discomfort with close relationships and avoidance of intimacy or reliance on others (e.g., "I get uncomfortable when someone wants to be very close to me"), whereas the anxiety dimension reflects individuals' fear of interpersonal rejection and abandonment (e.g., "I worry about being rejected or abandoned"). Each item is rated on a 7-point scale from 1 (*strongly disagree*) to 7 (*strongly agree*), and some items are reverse-scored so that higher scores represent greater avoidance or anxiety. Mothers' attachment anxiety and avoidance were calculated by averaging responses across subscale items. Good internal consistency was evident (anxiety $\omega = .93$, avoidance, $\omega = .94$).

Coping with Children's Negative Emotions Scale (CCNES; Fabes et al., 1990). This questionnaire was used to measure mothers' unsupportive responses to child distress.

Participants rated their likelihood of engaging in each of 6 possible responses to their children's negative emotions in 12 hypothetical scenarios about a child in distress (e.g., "If my child falls

off his bike and breaks it, and then gets upset and cries, I would..."). For each scenario, caregivers rated each possible response from 1 (*very unlikely*) to 7 (*very likely*). Following Fabes and colleagues (2002), we created two indices: supportive and unsupportive responses to distress.

For each scenario, unsupportive responses include the following: (1) distress reactions (e.g., "Remain calm and not let myself get anxious" [reverse-scored]); (2) punitive reactions (e.g., "Tell my child that if he doesn't stop crying, he won't be allowed to ride his bike anytime soon"); and (3) minimizing reactions (e.g., "Tell my child that he is over-reacting").

For each scenario, supportive responses include the following: (1) expressive encouragement (e.g., "Tell my child it's OK to cry"); (2) emotion-focused reactions (e.g., "Comfort my child and try to get him to forget about the accident"); and (3) problem-focused reactions (e.g., "Help my child figure out how to get the bike fixed"). The subscales demonstrated strong reliability and construct validity in previous research (Fabes et al., 2002; Shewark et al., 2015) and strong reliability in the present sample (unsupportive ω = .92, supportive ω = .95). Reliability reported for the unsupportive subscale does not include one item from the punitive subscale ("Send my child to his or her room to cool off") because a reliability statistic could not be computed due to missingness. Subscale reliability without this item is very strong (ω = .92); as we did throughout all analyses, we utilized participant mean imputation for missing values for this item.

Study 2

Participants

Participants were 16 mothers ($M_{age} = 38$, SD = 5.21) and their three- to five-year-old children (8 males; $M_{age} = 4.81$, SD = 0.49) taken from a larger longitudinal study examining

behavioral and brain development during early childhood. All parents identified their children as White. Regarding ethnicity, 27% were Latinx/Hispanic. The majority of families were affluent. All had an average household income of more than \$95,000/year, all had a parent with at least a college degree, and 90.1% had a parent with a post-graduate degree (see Table 1 for additional demographic information). Recruitment procedures and inclusion and exclusion criteria were the same as in Study 1.

Procedure

The measures and procedures in Study 2 were identical to those in Study 1 with the following exceptions: (a) Study 2 participants completed the Coping with Toddlers' Negative Emotions Scale (CTNES; Fabes et al., 1990) due to differences in children's ages between Studies 1 and 2; (b) Study 2 participants completed the short form of the Experiences in Close Relationships scale (ECR-S, Wei et al., 2007); (c) Study 2 research sessions typically took place within two weeks of one another; (d) Study 2 mothers always completed the ASA at home, never in the lab because the child participated in the study from the home; (e) Study 2 participants received additional instructions and practice to prepare them for the scan due to their younger ages; (f) Study 2 MRI Images were analyzed using Freesurfer version 6.0.0 (surfer.nmr.mgh.harvard.edu; Fischl 2012; Fischl et al., 2002).

Measures

MRI Acquisition. In Study 2, participants completed the same MR acclimation task and data acquisition procedures as in Study 1 with one additional step. Prior to their visit, Study 2 children completed an additional at-home MR acclimation task to increase scan success rate:

Children lay in a fabric tunnel while they listened to MR noises and motion feedback from an experimenter.

MRI Analysis. Hippocampal and amygdala volumes were obtained via Freesurfer 6.0 (http://surfer.nmr.mgh.harvard.edu/) and adjusted via the automated segmentation adapter tool (nitrc.org/projects/segadapter; Wang et al., 2011). Previous research has suggested that although different versions of Freesurfer produce nominally different values for subcortical volumes and cortical thickness (e.g., Gronenschild et al., 2012), ultimately these variations do not change outcomes in correlational research (Bigler et al., 2020; Chepkoech et al., 2016). We explored the potential effects of using different versions of Freesurfer in Study 1 and 2 by re-processing the cases from Study 2 in version 5.1. We then ran correlational analyses between volumes obtained from version 5.1 and 6.0 (rs ranged from .84 - .99) and replaced values obtained from version 6.0 with values from 5.1 in analyses that yielded significant effects (i.e., thalamus and amygdala). All results were similar, supporting our conclusion that the variation in Freesurfer version was not driving the observed effects. We retained the values from 5.1 as they were subjected to a more rigorous quality control procedure that was similar across the two studies. Experiences in Close Relationships Scale—short form (ECR-S; Wei et al., 2007). Mothers completed a self-report measure of adult attachment anxiety and avoidance in close relationships (6 anxiety items, 5 avoidance items; mean scores calculated for each subscale). Each item is rated on a 7-point scale from 1 (strongly disagree) to 7 (strongly agree). ECR-S yields reliable and valid scores, with high correlations between the short and original versions for both anxiety (r = .94) and avoidance (r = .95) subscales (Wei et al., 2007). Although the ECR-S is a 12-item measure, one avoidance item was accidentally omitted ("I find that my partners don't want to get as close as I would like"); however, the measure still demonstrated good internal

consistency in the present study (anxiety, $\omega = .78$, avoidance, $\omega = .90$).

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

Coping with Toddlers' Negative Emotions Scale (CTNES; Spinrad et al., 2004). This questionnaire mirrors the CCNES and is adapted to reflect scenarios with toddlers. Following Gudmundson and Leerkes (2012), we created two indices: supportive and unsupportive responses to distress. Studies support the reliability and construct validity of the CTNES in preschool children (e.g., Gudmundson & Leerkes, 2012; Eisenberg et al., 2010), and both subscales demonstrated strong reliability in the present study (unsupportive $\omega = .93$, supportive $\omega = .96$).

Statistical Analyses

Our full data analysis plan was pre-registered (see https://osf.io/eckj3). Consistent with this plan, we first examined race (coded as White and non-White) and household income as possible empirically derived covariates. We used Kendall's Tau to explore whether household income related to amygdala or hippocampal volumes. We used independent samples t-tests to determine whether race (dichotomized as White or non-White) related to amygdala, and hippocampal volumes. None of the bivariate relations was significant (all ps > 0.05); thus, race and household income were not utilized as covariates. We included the a priori covariates of child age and sex in all of the following analyses because we expected them to relate to amygdala and hippocampal volumes; as predicted, both age and sex were significantly related to the brain measures of interest (see Table 2). Next, we used Pearson's correlations to examine whether any of our three attachment representation variables (anxiety, avoidance, and secure base script knowledge) related to intracranial volume (referred to as estimated Total Intracranial Volume or eTIV), total gray matter volume, subcortical gray matter volume, or white matter volume. None of the bivariate correlations was significant (all ps > 0.05); thus eTIV, total gray

matter, subcortical gray matter, and white matter volume were not utilized as covariates in the primary analyses.

Second, we conducted multiple regression analyses using Mplus version 5.2 (Muthén & Muthén, 1998-2007) to test our pre-registered hypotheses that mothers' attachment representations would relate to bilateral amygdala and hippocampal volumes, and to test our follow-up exploratory questions about relations among attachment representations and unilateral amygdala volumes and hippocampal subregions. Following Mueller and Hancock (2010), we utilized full information maximum likelihood estimation (FIML) to handle missing data. We used participant mean imputation to estimate scores for participants with missing item responses on a given scale, a statistically sound technique when less than 10% of item scores are missing (Parent, 2013; Schafer & Graham, 2002). To control for the potential of type 1 error, we conducted sensitivity analyses utilizing certain regions of the brain we did not expect to relate to caregiving/attachment representations (the thalamus and occipital cortex, see Humphreys et al., 2018).

Third, we conducted analyses of indirect effects using Mplus' MODEL INDIRECT procedure (Stride et al., 2015). This procedure utilizes bootstrapping methods to estimate confidence intervals around the indirect effect. As recommended by Preacher and Hayes (2008) analyses were conducted with 5,000 bootstrapped samples. We used this procedure to test our pre-registered hypotheses regarding indirect effects of mothers' attachment representations on children's bilateral hippocampal and amygdala volumes through unsupportive responses to children's distress, and to test our follow-up exploratory questions about the above indirect effects through supportive responses.

Finally, we conducted an exploratory vertex-wise whole-brain analysis in Freesurfer's Qdec application to test links between mothers' attachment representations, cortical thickness, and surface area. Monte Carlo simulations were used to correct for multiple comparisons. The final whole-brain significance threshold was set at p < .05.

452 Results

Descriptive Statistics and Missing Data

Table 2 displays bivariate correlations among all major study variables and Table 3 presents descriptive statistics for all major study variables. Out of the 52 participants, 3 were missing MRI data, 7 were missing attachment avoidance and anxiety, and 6 were missing supportive and unsupportive responses to children's distress. Missing values were handled with FIML.

Mothers' Attachment Representations and Children's Amygdala and Hippocampal

Volumes

After controlling for child age and sex, mothers' secure base script knowledge marginally predicted smaller bilateral amygdala volumes (β = -0.19, p = .060). To explore this finding further, we examined unilateral amygdala volumes. Greater secure base script knowledge predicted smaller left (β = -0.21, p = .031; see Figure 1) but not right (β = -0.13, p = .229) amygdala volumes. Neither attachment anxiety (β = -0.14, p = .252) nor attachment avoidance (β = -0.05, p = .718) predicted bilateral amygdala volumes. There were no significant relations between secure base script knowledge, anxiety, or avoidance and bilateral hippocampal volumes (all ps > .295). To explore possible associations between mothers' attachment representations and hippocampal subregions, we examined whether secure base script knowledge, anxiety, and avoidance related to hippocampal head, body, and tail volumes. There were no significant

relations between any measures of attachment representations and hippocampal head, body, or tail volumes; however, secure base scripts knowledge marginally predicted smaller hippocampal head volumes ($\beta = -0.21$, p = .078), but anxiety ($\beta = -0.18$, p = .243) and avoidance ($\beta = 0.03$, p = .876) did not.

In a pre-registered follow up sensitivity analysis to explore specificity of the associations of secure base script knowledge and amygdala volume, we examined two regions we did not expect to relate to secure base script knowledge: The occipital cortex and the thalamus (Humphreys et al., 2018). As expected, there was no relation between secure base script knowledge and occipital cortex volume ($\beta = -0.08$, p = .548). However, contrary to our expectations, greater secure base script knowledge ($\beta = -0.37$, p = .001; see Figure 2) and greater attachment anxiety ($\beta = -0.30$, p = .039) predicted smaller thalamus volume.

Indirect Effects of Mothers' Attachment Representations on Children's Brain Structure Through Responses to Distress

We tested whether mothers' self-reported caregiving in response to children's distress explained indirect relations between attachment representations and bilateral hippocampal and amygdala volumes. There were no significant indirect effects of secure base script knowledge, attachment avoidance, or attachment anxiety on bilateral amygdala volumes or hippocampal volumes through unsupportive responses to distress (all ps > .649). The same pattern held when exploring the role of supportive responses to children's distress (all ps > .232). There were also no significant direct links between bilateral hippocampal and amygdala volume and either supportive or unsupportive responses to distress (all ps > .402). Mothers' attachment anxiety predicted less supportive responses to distress ($\beta = .0.45$, $\beta = .001$). Contrary to our predictions,

neither secure base script knowledge nor attachment avoidance predicted supportive or unsupportive responses to distress (all ps > .271).

Mothers' Attachment Representations and Children's Whole Brain Measures

To explore whether mothers' attachment representations related to whole brain metrics, we tested relations among our attachment predictors and intracranial volume (eTIV), total gray matter volume (GMV), subcortical GMV, and white matter volume (WMV) controlling for age and sex. There were no significant relations between eTIV and secure base script knowledge (β = -0.19, p = .108), attachment anxiety (β = -0.02, p = .904), or attachment avoidance (β = -0.16, p = .264). There were also no significant relations between total GMV and secure base script knowledge (β = -0.19, p = .106), attachment anxiety (β = -0.16, p = .266) or attachment avoidance (β = 0, p = 1.00). No significant relations between attachment predictors and subcortical GMV emerged (all ps > .409). There was a significant negative relation between WMV and secure base script knowledge (β = -.27, β < .009; see Figure 3) but not attachment anxiety (β = -0.03, β = .788) or avoidance (β = -0.12, β = .384).

To explore whether a whole brain effect may be contributing to the relation between secure base script knowledge and left amygdala volume and thalamus volume, we added eTIV to the models predicting left amygdala volume and thalamus volume, controlling for child sex and age. When including eTIV in the model, the relation between secure base script knowledge and the left amygdala became non-significant ($\beta = -0.15$, p = .108). The relation between secure base script knowledge and thalamus volume, however, remained significant when controlling for eTIV ($\beta = -0.29$, p = .006).

Finally, consistent with our pre-registered approach, we utilized a vertex-by-vertex analysis to determine whether mothers' attachment representations related to children's cortical

thickness and surface area. The vertex-by-vertex whole brain analysis did not demonstrate any relations among our attachment predictors of interest and cortical thickness. However, greater secure base script knowledge predicted greater surface area of the right pericalcarine cortex (p < .05). This pattern of results remained the same when the 14 subjects who had the largest numbers of edits (i.e., greater than the mean or more than 15) were removed.

521 Discussion

516

517

518

519

520

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

The present study is first to our knowledge to examine links between mothers' attachment representations and children's brain structure, and to explore potential indirect effects via caregiving behavior in response to child distress. In a nonclinical sample, we examined two conceptualizations of mothers' attachment representations: self-reported attachment style and secure base script knowledge (i.e., mothers' procedural knowledge of how a secure base is provided in times of need; Waters & Waters, 2006). Mothers' greater secure base script knowledge, but not attachment style, was associated with smaller left amygdala volume in early childhood. In contrast, mothers' attachment representations were not significantly related to children's hippocampal volume. Pre-registered exploratory analyses revealed that mothers' greater secure base script knowledge was also associated with children's smaller white matter volume, smaller thalamus volume, and larger surface area of the right pericalcarine cortex, whereas maternal representations were unrelated to cortical thickness (see Figures 4 and 5 for visualizations of cortical and subcortical structures). Contrary to predictions, we observed no indirect effects via caregiving behavior in response to child distress. Findings highlight the role that parental attachment representations—particularly secure base script knowledge—may play in children's brain structure and add to a growing literature on the ways in which parental factors shape the developing brain in childhood (Belsky & de Haan, 2011; Farber et al., 2020). We discuss each finding in turn and outline directions for future research.

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

The finding that mothers' secure base script knowledge was associated with children's smaller left amygdala volume (and marginally to smaller bilateral volume) provides partial support for our hypotheses. Mothers' secure base script knowledge involves a schema for the effective co-regulation of distress and protection from potential threats in the child's environment (Waters & Waters, 2006). Children's experiences of sensitive care to help manage distress, particularly in times of threat, help them learn to self-regulate (Hofer, 1995; Köhler-Dauner et al., 2019; Luecken & Lemery, 2004). Indeed, the function of a secure base is to protect children from threat (Bowlby, 1969/1982), and experiences of secure base provision (guided by mothers' scripts) may be especially important for the development of neurobiological systems involved in threat responding, including the amygdala (Cassidy et al., 2013). In addition, mothers' secure base script knowledge has been linked to child secure attachment (e.g., Bost et al., 2006), and secure attachment is a robust predictor of self-regulation (see Calkins & Leerkes, 2011; Cassidy, 1994). Thus, maternal secure base script knowledge may be particularly important for the development of neural circuits involved in stress reactivity and self-regulation. This aligns with the theory that the extent to which sensitive caregivers can co-regulate children's distress shapes amygdala development (Callaghan & Tottenham, 2016a) and children's physiological responses to stressful situations (Köhler-Dauner et al., 2019), and with research linking negative parenting to accelerated maturation and larger amygdala volume on the one hand (Tottenham et al., 2010) and positive parenting to smaller amygdala volume on the other hand (Rifkin-Graboi et al., 2015; Whittle et al., 2014). Together, findings suggest that the full spectrum of parenting experiences—not only adversity but also normative variation in

parental characteristics—merit attention to understand ways in which the social environment is reflected in brain structure (Belsky & de Haan, 2011; Farber et al., 2020).

Although we had a priori hypotheses regarding links between amygdala volume and mothers' secure base script knowledge driven by theory (Callaghan & Tottenham, 2016a; Cassidy, 1994; George & Solomon, 2008) and empirical research (Rifkin-Graboi et al., 2015; Tottenham et al., 2010), it is important to note that our hypotheses involved *bilateral* amygdala volume; our examination of *unilateral* volumes arose from a data-driven decision to probe the marginal effect of secure base script knowledge on bilateral amygdala volume (p = .060) that was not included in our pre-registration. The exploratory nature and small effect size of secure base script knowledge on left amygdala volume led us to interpret these findings as preliminary. We encourage efforts to replicate these initial findings in larger samples.

It is also important to note that the observed association with amygdala volume became non-significant when adjusting for intracranial volume (eTIV), suggesting that effects may not be localized to the amygdala but may have more widespread effects; however, direct associations with eTIV and total gray matter volume (GMV) were not significant in the present study. Future research should consider effects on additional regions of interest, as well as metrics of global brain development and change in these measures over time.

What is not yet clear is exactly *how* parental secure base script knowledge is linked to child amygdala volume. Previous work shows that secure base script knowledge predicts greater parental sensitivity, positive affect, emotional support, and lower hostility and intrusiveness (Coppola et al., 2006; Huth-Bocks et al., 2014; Waters et al., 2017). In this study, however, secure base script knowledge was unrelated to mothers' responses to child distress, and these caregiving behaviors in turn were unrelated to amygdala volume. One explanation is that the

specific dimensions of caregiving assessed in present study—namely, mother-reported supportive and unsupportive responses to distress—may not be relevant mediators. Instead, observed parental sensitivity, secure base provision, autonomy support, positive affect, emotion regulation, emotional availability, sensitive touch, and engagement (vs. disengagement or neglect), as well as child factors such as attachment and emotion regulation, merit examination in future studies. Relatedly, it is possible that social desirability limited the extent to which true variation in maternal supportive and unsupportive responses to distress could be adequately captured via self-report, although ample previous work has linked this caregiving measure to maternal attachment representations (Jones et al., 2014) and observed caregiving behavior (e.g., Spinrad et al., 2007). In the present study, however, mother-reported supportive responses were highly negatively skewed, limiting variability. Some previous studies that find significant links between parenting and hippocampal volume have used observational measures of lab-based parent-child interactions (e.g., Blankenship et al., 2019); future work using observational assessments of parents' response to distress may reveal greater variability, with meaningful links to both parent representations and child brain development. Further, future work using observational assessments with clinical samples could leverage greater variability to assess the possibility that such links manifest only at the extreme ends of the caregiving spectrum.¹ An additional explanation for our results may be developmental timing: It is possible that

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

An additional explanation for our results may be developmental timing: It is possible that caregiver responses to child distress are more salient mediators during sensitive periods for the development of attachment and for brain development, such as infancy; indeed, much of the

 $^{^{1}}$ We conducted an exploratory post-hoc analysis to examine whether links between mothers' responses to child distress and children's brain structures differed based on mothers' levels of supportive and unsupportive responses to distress. We used median splits for supportive and unsupportive responses to distress to create groups that were high vs. low for each. When examining links within each group separately, there were still no significant associations between responses to distress and hippocampal or amygdala volumes (all ps > .05).

previous work linking parental sensitivity to amygdala volume has focused on caregiving during infancy (e.g., Bernier et al., 2019; Rifkin-Graboi et al., 2015) or beginning in infancy (e.g., Lupien et al., 2011; Tottenham et al., 2010). It is also possible that the indirect effects of mothers' representations unfold over time, such that parental secure base script knowledge predicts relative changes in caregiving, or that positive caregiving predicts relative changes in amygdala development that are best captured longitudinally, similar to findings that positive parenting predicts less relative growth of the amygdala in adolescence (Whittle, et al., 2014).

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

Contrary to hypotheses, mothers' attachment representations were not significantly related to hippocampal volume; only a marginal association was observed between secure base scripts and smaller hippocampal head volumes. To the extent that more secure representations forecast positive parenting (e.g., Coppola et al., 2006; Huth-Bocks et al., 2014), these findings contrast with some previous work linking positive parenting in early childhood to larger hippocampal volume among school-age children with and without depressive symptoms (e.g., Luby et al., 2012), and are instead more consistent with the null results reported in two studies with non-clinical samples in early childhood (Kok et al., 2015; Lee et al., 2019). Importantly, however, there was also no indirect effect of parent representations on hippocampal volume via mother-reported caregiving in response to distress, in part because response to distress was unrelated to hippocampal volume in the present sample. One possibility is that our focus on hippocampal structure is too coarse, as we did not have resolution to look at functional subfields. Future work could examine potential associations between parental mental representations and hippocampal subfields such as the dentate gyrus, building on previous work linking parental maltreatment with smaller left CA4-DG subfield volumes (Teicher et al., 2012). It may be that normative variations in caregiving are not enough to produce substantial change in the

hippocampus. Perhaps the hippocampus is only sensitive to particularly high levels of stress. This is plausible, given the other null results in normative samples in early childhood (Kok et al., 2015; Lee et al., 2019) and the possible issue of publication bias. Or perhaps no direct link exists, though there may be indirect effects via additional caregiving and child mechanisms (e.g., observed parental sensitivity, child attachment), which warrant future research.

In follow-up exploratory analyses, mothers' greater secure base script knowledge was associated with children's smaller thalamus volume, smaller white matter volume, and larger surface area of the right pericalcarine cortex; mothers' attachment anxiety was associated with children's smaller thalamus volume; and maternal representations were not associated with children's cortical thickness in any brain regions. Given their exploratory nature, we interpret them with caution.

Although not hypothesized a priori, findings regarding the thalamus are consistent with some previous work. Findings could be due to the fact that the thalamus and amygdala work together in stress-response circuitry, as demonstrated in research with animals (Penzo et al., 2015; Spencer et al., 2004; Wei et al., 2015) and humans (Öhman, 2005). For instance, one animal study found that the paraventricular nucleus of the thalamus (PVT) and the amygdala worked together in a circuit that established fear memory and facilitated fear responses during a fear conditioning task in mice (Penzo et al., 2015). Research in humans has demonstrated a link between children's disorganized attachment (a correlate of insensitive care; Moran et al., 2008) and smaller gangliothalamic ovoid (comprised of the thalamus and the basal ganglia) diameter in infancy (Tharner et al., 2011). Maternal sensitivity has also been linked to smaller subcortical gray matter volume (which includes the thalamus, as well as the caudate, putamen, and globus pallidus) in infancy (Sethna et al., 2017). It is surprising, however, that greater secure base script

knowledge (indicating secure representations) and greater attachment anxiety (indicating insecure representations) predicted thalamus volume in the *same direction*. This region warrants further investigation in studies of parenting and child brain structure.

Findings regarding white matter volume contrast with research suggesting that smaller WMV is associated with more negative parenting experiences (Belsky & de Haan, 2011). Notably, however, the majority of these studies focus on neglected and maltreated samples (but see Sethna et al., 2017 for evidence in infants from a community sample). One possibility is that a curvilinear relation exists across the spectrum of caregiving experiences, with experiences of extreme caregiving adversity linked to abnormally small volumes across a number of brain structures (e.g., McLaughlin, 2019), but normative variation in caregiving quality associated with volumes in the opposite direction (although still within typical ranges, e.g., Bernier et al., 2019; Rifkin-Graboi et al., 2015). Findings regarding the right pericalcarine cortex contrast with the broader literature about structures sensitive to caregiving experiences (Belsky & de Haan, 2011; Farber et al., 2020), and given our small sample, underscore the need for future research.

That there were no significant associations between secure base script knowledge and total gray matter volume, subcortical gray matter volume, or intracranial volume may similarly reflect different patterns of association in nonclinical samples, compared to what we know about caregiving adversity, and/or possible nonlinear associations. Although eTIV and GMV did not meet conventional thresholds for statistical significance ($ps \sim .10$), given the exploratory nature of the work, we point out these relations as an area for future investigation with a larger sample to increase power to detect potential small effects. Another interpretation is that effects may be specific to structures involved in stress regulation and are not driven by a whole brain effect. An additional possibility is that genotype plays a role in how parental characteristics relate to child

brain structure. For example, one study found that maternal acceptance was positively associated with regional gray matter volume of the left thalamus for adolescent carriers of the *FKBP5-T* allele, but negatively associated for those without this allele (Matsudaira et al., 2019). Thus, these preliminary findings may be better understood by leveraging genetic research to examine gene by caregiving interactions.

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

Across our analyses, mothers' secure base script knowledge appeared to be a more salient predictor of child brain structure, whereas maternal attachment style was largely not significant. One explanation for this difference in the predictive strength of these aspects of maternal representations is that secure base script knowledge taps scripts that reflect mothers' own early experience receiving care, whereas self-reported adult attachment style dimensions tap experiences in current close relationships—evidenced by the relatively greater link of early sensitive care to secure base script knowledge than to attachment style (Steele et al., 2014). A substantial body of research demonstrates that narrative assessments of attachment representations such as the Adult Attachment Interview and secure base script knowledge predict child outcomes such as attachment security (e.g., Verhage et al., 2015), compared to a much smaller but growing literature on parental attachment style (Jones et al., 2015). Thus, although both attachment styles and secure base script knowledge may guide parenting behavior, parents' scripts of how distress is met with sensitive care and co-regulation may be more important for child attachment security and in turn, the associated development of brain circuits that support the regulation of stress. Another reason may be that attachment style reflects emotion regulation strategies in close relationships broadly, whereas half of the secure base script stories refer specifically to parent-child relationships and may therefore tap into the caregiving system in ways more directly related to child brain development. More specifically, it is possible that

secure base script knowledge is a better indicator of the extent to which mothers are able to effectively co-regulate their child's distress, which in turn is linked to the development of neural circuits involved in children's self-regulation. We cautiously suggest that mothers' secure base script knowledge is a more relevant attachment representation than attachment style for predicting brain structure in early childhood.

Limitations & Future Directions

Strengths of the study include its novel examination of parents' attachment representations as a potential source of individual differences in child brain structure; its assessment of multiple conceptualizations of parents' representations (attachment style and secure base script knowledge), including a gold standard task-based measure of secure base script knowledge; and its focus on an important period of neurodevelopment spanning preschool to school-age.

These findings, however, should be considered along with the study's limitations. First, the small sample size and its lack of diversity limit the strength of the conclusions that can be drawn from this study, and results should be regarded as preliminary. Relatedly, we did not have adequate power to test potential moderators, such as child age, gender, race/ethnicity and exposure to discrimination, SES, or temperament. It is possible that maternal representations and/or caregiving behaviors are more strongly related to brain development among specific groups of children, such as younger children, temperamentally fearful children (who may be particularly susceptible to their caregiving environment; Belsky & Pluess, 2009), or children exposed to poverty and other stressors (i.e., reflecting a caregiving stress-buffering effect; Luby et al., 2013). Future work in larger samples across a wider age range and demographic profile could test these moderators to better characterize how factors within the child, parent, and

broader bioecological context relate to individual differences in brain development. Further, effect sizes were small and research in larger samples is crucial for testing the robustness and replicability of the findings.

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

Second, the design was cross-sectional and correlational. Thus, although our theoretical model was based on theory and previous research, full criteria for mediation were not met because all variables were assessed at the same time point. Relatedly, we cannot establish directionality or causality; it is possible that aspects of child brain development give rise to child behaviors that elicit certain caregiving responses, or that underlying shared genetic factors inform both parental characteristics and child brain development. Thus, an important direction for future longitudinal work is to examine how parental representations, caregiving, and child brain development unfold over time (e.g., using cross-lagged analyses to establish the direction of effects), whether associations change with development, and whether sensitive periods exist for parental representations and behaviors to demonstrate links with specific brain structures. Further, experimental work could examine whether parenting interventions to shift parental attachment representations have downstream effects on child brain development. One study shows that attachment-based parenting interventions such as Attachment and Biobehavioral Catch-up (ABC; Dozier & Bernard, 2019) in infancy impact brain function in middle childhood (Valadez et al., 2020). Whether such effects are predicted by intervention-related changes in maternal representations, and whether effects extend to child brain structure, are open questions.

Third, caregiving behavior was assessed via self-report, subject to reporter bias and social desirability. Thus, it will be important to incorporate observational measures of caregiving to better understand the mechanisms by which parental representations may relate to brain structure.

Finally, although we focused on brain *structure* as a starting point for future research on this topic, it is possible that mothers' attachment representations link more strongly to brain function (see Cruciani et al., 2021, for evidence of attachment-related differences in functional connectivity in the amygdala and the hippocampus). For example, research has indicated that adverse caregiving experiences can hinder the development of neural circuitry critical for stressregulation, specifically, connectivity between the amygdala and PFC (Burghy et al., 2012; Tottenham, 2015). The amygdala is particularly sensitive to threatening stimuli, and as the PFC matures, it couples with the amygdala to modulate emotional responses to threat and reduce distress (Banks et al., 2007; Tottenham, 2015). The presence of a supportive caregiver to coregulate a child's distress during sensitive periods of brain development provides the scaffolding for optimal amygdala-PFC connectivity (Callaghan & Tottenham, 2016b, Tottenham, 2015). Such scaffolding can foster the amygdala-PFC coupling necessary for children's self-regulation when a caregiver is not present (Banks et al., 2007; Dougherty et al., 2015). To the extent that mothers' attachment representations link to caregiving behaviors that co-regulate stress (Jones et al., 2014, 2015), children's amygdala-PFC connectivity could be a mechanism through which mothers' attachment representations "get under the skin" and shape the development of children's self-regulatory capacities. Studies examining links of parental representations to child brain function (e.g., amygdala-PFC connectivity, amygdala reactivity to stressors; Callaghan & Tottenham, 2016a) could be a fruitful next step.

Conclusions

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

Central to attachment theory is the idea that mental representations of close relationships guide caregiving behavior and help organize the social-emotional development of the next generation (Main et al., 1985; Steele et al., 2014). The present study integrates two caregiving

Mothers' Attachment Children's Brain Structure

literatures—one demonstrating that parents' secure mental representations support sensitive
caregiving and child social-emotional adaptation (e.g., Raby et al., 2021), particularly self-
regulation (e.g., Madigan et al., 2007; Waters et al., 2015), and another demonstrating that
parenting behaviors meaningfully shape child brain development, particularly neural structures
involved in stress regulation circuitry (e.g., the amygdala; Callaghan & Tottenham, 2016a). Our
preliminary findings highlight a possible role of parents' secure base script knowledge
specifically in predicting amygdala development in early childhood; however, substantial
questions remain regarding potential mechanisms, the role of developmental timing of caregiving
experiences, and the generalizability of these findings to other populations (e.g., non-WEIRD
samples) and ages (e.g., adolescents). Results extend findings linking mothers' secure base script
knowledge to child outcomes (e.g., Steele et al., 2014) and point to parental mental
representations as an important factor to enrich research on the caregiving correlates of child
brain development.

Conflict of Interest Statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Author Contributions:

MHF: coordinating the project, generating research questions, conducting statistical analyses, writing, editing. JAS: generating research questions, coding the Attachment Script Assessment, writing, editing. DS: coding the Attachment Script Assessment, writing, editing, generating research questions. TA: recruiting participants, collecting data, generating research questions, consulting, processing and analyzing MRI data, assisting with statistical analyses, editing. JC: generating research questions, consulting, writing, editing. TR: designing and overseeing Study 1 and Study 2, recruiting participants, collecting data, generating research questions, consulting, writing, editing.

Funding

Preparation of this manuscript was supported by a University of Maryland College of Behavioral and Social Sciences Dean's Fellowship and by summer support from the University of Maryland's Janet Johnson Fund to M. Fitter. The Eunice Kennedy Shriver National Institute of Child Health & Human Development of the National Institutes of Health (NIH) provided support to JS (Award Number F32HD102119) and TR (Award Numbers R01HD079518 and R21HD094758). In addition, the National Science Foundation provided support to TR (Award Number BCS1749280). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Acknowledgements

We thank Harriet Waters for providing training in coding the Attachment Script
Assessment. The authors also want to acknowledge members of the Neurocognitive
Development Lab for helping with data collection. Finally, the authors wish to express their
gratitude to participating families.

807 808	References
809	Allard, T., Riggins, T., Ewell, A., Weinberg, B., Lokhandwala, S., & Spencer, R. M. C. (2019).
810	Measuring neural mechanisms underlying sleep-dependent memory consolidation during
811	naps in early childhood. Journal of Visualized Experiments, (152), e60200. doi:
812	10.3791/60200
813	Avants, B. B., Hackman, D. A., Betancourt, L. M., Lawson, G. M., Hurt, H., & Farah, M. J.
814	(2015). Relation of childhood home environment to cortical thickness in late adolescence
815	Specificity of experience and timing. PloS One, 10(10), e0138217. doi:
816	10.1371/journal.pone.0138217
817	Banks, S. J., Eddy, K. T., Angstadt, M., Nathan, P. J., & Phan, K. L. (2007). Amygdala-frontal
818	connectivity during emotion regulation. Social Cognitive and Affective Neuroscience,
819	2(4), 303–312. https://doi.org/10.1093/scan/nsm029
820	Barch, D. M., Harms, M. P., Tillman, R., Hawkey, E., & Luby, J. L. (2019). Early childhood
821	depression, emotion regulation, episodic memory, and hippocampal
822	development. Journal of Abnormal Psychology, 128(1), 81-95. doi: 10.1037/abn0000392
823	Belsky, J., & De Haan, M. (2011). Annual research review: Parenting and children's brain
824	development: The end of the beginning. Journal of Child Psychology and
825	Psychiatry, 52(4), 409-428. doi: <u>10.1111/j.1469-7610.2010.02281.x</u>
826	Belsky, J., & Pluess, M. (2009). Beyond diathesis stress: Differential susceptibility to
827	environmental influences. Psychological Bulletin, 135(6), 885-908. doi:
828	10.1037/a0017376

829	Bernier, A., Dégeilh, F., Leblanc, É., Daneault, V., Bailey, H. N., & Beauchamp, M. H. (2019).
830	Mother-infant interaction and child brain morphology: A multidimensional approach to
831	maternal sensitivity. <i>Infancy</i> , 24(2), 120-138. doi: 10.1111/infa.12270
832	Bigler, E.D., Skiles, M., Wade, B.S.C. et al. FreeSurfer 5.3 versus 6.0: are volumes comparable?
833	A Chronic Effects of Neurotrauma Consortium study. Brain Imaging and
834	Behavior, 14, 1318–1327. doi: 10.1007/s11682-018-9994-x
835	Blankenship, S., Chad-Friedman, E., Riggins, T., & Dougherty, L.R. (2019). Early parenting
836	predicts hippocampal subregion volume via stress reactivity in childhood. Developmental
837	Psychobiology, 61(1), 125-140. doi: 10.1002/dev.21788
838	Blaze, J., Scheuing, L., & Roth, T. L. (2013). Differential methylation of genes in the medial
839	prefrontal cortex of developing and adult rats following exposure to maltreatment or
840	nurturing care during infancy. Developmental Neuroscience, 35(4), 306-316. doi:
841	10.1159/000350716
842	Bost, K. K., Shin, N., Mcbride, B. A., Brown, G. L., Vaughn, B. E., Coppola, G., Verísssimo,
843	M., Monteiro, L., & Korth, B. (2006). Maternal secure base scripts, children's attachment
844	security, and mother-child narrative styles. Attachment & Human Development, 8(3),
845	241-260. doi: 10.1080/14616730600856131
846	Botdorf, M., & Riggins, T. (2018). When less is more: Thinner fronto-parietal cortices are
847	associated with better forward digit span performance during early
848	childhood. Neuropsychologia, 121, 11-18. doi: 10.1016/j.neuropsychologia.2018.10.020
849	Bowlby, J. (1982). Attachment and loss: Vol. 1. Attachment (2 nd ed.). Basic Books. (Original
850	work published 1969).

851	Brennan, K. A., Clark, C. L., & Shaver, P. R. (1998). Self-report measurement of adult
852	attachment: An integrative overview. In J. A. Simpson & W. S. Rholes
853	(Eds.), Attachment theory and close relationships (pp. 46-76). Guilford Press.
854	Bretherton, I. (1985). Attachment theory: Retrospect and prospect. Monographs of the Society
855	for Research in Child Development, 50(1-2), 3-38.
856	Bretherton, I. (1987). New perspectives on attachment relations: Security, communication, and
857	internal working models. In J. D. Osofsky (Ed.), Handbook of infant development (pp.
858	1061–1100). John Wiley & Sons.
859	Bretherton, I. (1991). Pouring new wine into old bottles: The social self as internal working
860	model. In M. Gunnar & L. A. Sroufe (Eds.), Minnesota Symposium on Child Psychology:
861	Vol. 23. Self processes in development (pp. 1-41). Erlbaum.
862	Bretherton, I., & Munholland, K. A. (2016). The internal working model construct in light of
863	contemporary neuroimaging research. In J. Cassidy & P. R. Shaver (Eds.), Handbook of
864	attachment: Theory, research, and clinical applications (2nd ed., pp. 63-88). Guilford
865	Press.
866	Burghy, C. A., Stodola, D. E., Ruttle, P. L., Molloy, E. K., Armstrong, J. M., Oler, J. A., Fox, M.
867	E., Hayes, A. S., Kalin, N. H., Essex, M. J., Davidson, R. J., & Birn, R. M. (2012).
868	Developmental pathways to amygdala-prefrontal function and internalizing symptoms in
869	adolescence. Nature Neuroscience, 15(12), 1736-1741. doi: 10.1038/nn.3257
870	Callaghan, B. L., & Tottenham, N. (2016b). The neuro-environmental loop of plasticity: A cross-
871	species analysis of parental effects on emotion circuitry development following typical
872	and adverse caregiving. Neuropsychopharmacology, 41(1), 163-176.
873	doi: 10.1038/npp.2015.204

874	Callaghan, B. L., & Tottenham, N. (2016a). The stress acceleration hypothesis: Effects of early-
875	life adversity on emotion circuits and behavior. Current Opinion in Behavioral
876	Sciences, 7, 76-81. doi: 10.1016/j.cobeha.2015.11.018
877	Calkins, S. D., & Leerkes, E. M. (2011). Early attachment processes and the development of
878	emotional self-regulation. In K. D. Vohs & R. F. Baumeister (Eds.), Handbook of self-
879	regulation: Research, theory, and applications (pp. 355-373). Guilford Press.
880	Canada, K., Ngo, C.T., Newcombe, N.S., Geng, F., & Riggins, T. (2019). It's all in the details:
881	Relations between young children's developing pattern separation abilities and
882	hippocampal subfield volumes. Cerebral Cortex, 29(8), 3427-3433. doi:
883	10.1093/cercor/bhy211
884	Cassidy, J. (1994). Emotion regulation: Influences of attachment relationships. <i>Monographs of</i>
885	the Society for Research in Child Development, 59(2-3), 228-249. doi:10.1111/j.1540-
886	<u>5834.1994.tb01287.x</u>
887	Cassidy, J., Ehrlich, K. B., & Sherman, L. J. (2013). Child-parent attachment and response to
888	threat: A move from the level of representation. In M. Mikulincer & P. R. Shaver
889	(Eds.), Nature and development of social connections: From brain to group (pp. 125–
890	144). American Psychological Association.
891	Chepkoech, J. L., Walhovd, K. B., Grydeland, H., Fjell, A. M., & Alzheimer's Disease
892	Neuroimaging Initiative. (2016). Effects of change in FreeSurfer version on classification
893	accuracy of patients with Alzheimer's disease and mild cognitive impairment. Human
894	Brain Mapping, 37(5), 1831-1841. doi: 10.1002/hbm.23139

895	Conrad, C. D. (2009). Chronic stress-induced hippocampal vulnerability: The glucocorticoid
896	vulnerability hypothesis. Reviews in the Neurosciences, 19(6), 395-411. doi:
897	10.1515/revneuro.2008.19.6.395
898	Coppola, G., Vaughn, B. E., Cassibba, R., & Costantini, A. (2006). The attachment script
899	representation procedure in an Italian sample: Associations with Adult Attachment
900	Interview scales and with maternal sensitivity. Attachment & Human Development, 8(3),
901	209-219. doi: <u>10.1080/14616730600856065</u>
902	Cruciani, G., Boccia, M., Lingiardi, V., Giovanardi, G., Zingaretti, P., & Spitoni, G. F. (2021).
903	An exploratory study on resting-state functional connectivity in individuals with
904	disorganized attachment: Evidence for key regions in amygdala and hippocampus. Brain
905	Sciences, 11(11), 1539. doi: 10.3390/ brainsci11111539
906	Dougherty, L. R., Blankenship, S. L., Spechler, P. A., Padmala, S. & Pessoa, L. (2015). An fMR
907	pilot study of cognitive reappraisal in children: Divergent effects on brain and behavior.
908	Journal of Psychopathology and Behavioral Assessment, 37(4), 634–644. doi:
909	10.1007/s10862-015-9492-z
910	Dozier, M., & Bernard, K. (2019). Coaching parents of vulnerable infants: The attachment and
911	biobehavioral catch-up approach. Guilford Press.
912	Ducharme, S., Albaugh, M. D., Hudziak, J. J., Botteron, K. N., Nguyen, T. V., Truong, C.,
913	Evans, A. C., Karama, S., Ball, W. S., Byars, A. W., Schapiro, M., Bommer, W., Carr,
914	A., German, A., Dunn, S., Rivkin, M. J., Waber, D., Mulkern, R., Vajapeyam, S., &
915	O'Neill, J. (2014). Anxious/depressed symptoms are linked to right ventromedial
916	prefrontal cortical thickness maturation in healthy children and young adults. Cerebral
917	Cortex, 24(11), 2941-2950. doi: 10.1093/cercor/bht151

918	Dykas, M. J., Woodhouse, S. S., Cassidy, J., & Waters, H. S. (2006). Narrative assessment of
919	attachment representations: Links between secure base scripts and adolescent
920	attachment. Attachment & Human Development, 8(3), 221-240. doi:
921	10.1080/14616730600856099
922	Eisenberg, N., Fabes, R. A., Shepard, S. A., Guthrie, I. K., Murphy, B. C., & Reiser, M. (1999).
923	Parental reactions to children's negative emotions: Longitudinal relations to quality of
924	children's social functioning. Child Development, 70(2), 513-534. doi: 10.1111/1467-
925	<u>8624.00037</u>
926	Eisenberg, N., Spinrad, T. L., Eggum, N. D., Silva, K. M., Reiser, M., Hofer, C., Smith, C. L.,
927	Gaertner, B. M., Kupfer, A., Popp, T., & Michalik, N. (2010). Relations among maternal
928	socialization, effortful control, and maladjustment in early childhood. Development and
929	Psychopathology, 22(3), 507. doi: 10.1017/S0954579410000246
930	Fabes, R. A., Eisenberg, N., & Bernzweig, J. (1990). Coping with Children's Negative Emotions
931	Scale (CCNES): Description and scoring. Tempe, AZ: Arizona State University.
932	Fabes, R. A., Leonard, S. A., Kupanoff, K., & Martin, C. L. (2001). Parental coping with
933	children's negative emotions: Relations with children's emotional and social
934	responding. Child Development, 72(3), 907-920. doi: 10.1111/1467-8624.00323
935	Fabes, R. A., Poulin, R. E., Eisenberg, N., & Madden-Derdich, D. A. (2002). The Coping with
936	Children's Negative Emotions Scale (CCNES): Psychometric properties and relations
937	with children's emotional competence. Marriage & Family Review, 34(3-4), 285–310.
938	doi: <u>10.1300/J002v34n03_05</u>

loping
nal of
g's
, 19–
om
(20),
e, A.,
ale, A
uctures
X
s.),
. doi:
to
7(w

962	Gronenschild, E. H., Habets, P., Jacobs, H. I., Mengelers, R., Rozendaal, N., Van Os, J., &
963	Marcelis, M. (2012). The effects of FreeSurfer version, workstation type, and Macintosh
964	operating system version on anatomical volume and cortical thickness
965	measurements. PloS One, 7(6), e38234.doi: 10.1371/journal.pone.0038234
966	Gudmundson, J. A., & Leerkes, E. M. (2012). Links between mothers' coping styles, toddler
967	reactivity, and sensitivity to toddler's negative emotions. Infant Behavior &
968	Development, 35(1), 158–166. doi: 10.1016/j.infbeh.2011.07.004
969	Mueller, R. O., & Hancock, G. R. (2010). Structural equation modeling. In G. R. Hancock & R.
970	O. Mueller (Eds.), The reviewer's guide to quantitative methods in the social
971	sciences (pp. 371–383). Routledge.
972	Hofer, M. A. (1995). Hidden regulators: Implications for a new understanding of attachment,
973	separation, and loss. In S. Goldberg, R. Muir & J. Kerr (Eds.), Attachment theory: Social
974	development and clinical perspectives (pp. 203–230). Analytic Press.
975	Honkaniemi, J., Kainu, T., Ceccatelli, S., Rechardt, L., Hökfelt, T., & Pelto-Huikko, M. (1992).
976	Fos and jun in rat central amygdaloid nucleus and paraventricular nucleus after stress.
977	Neuroreport, 3(10), 849-852. doi: 10.1097/00001756-199210000-00007
978	Humphreys, K. L., King, L. S., Sacchet, M. D., Camacho, M. C., Colich, N. L., Ordaz, S. J., Ho,
979	T. C., & Gotlib, I. H. (2018). Evidence for a sensitive period in the effects of early life
980	stress on hippocampal volume. Developmental Science, 22(3), e12775. doi:
981	10.1111/desc.12775
982	Huth-Bocks, A. C., Muzik, M., Beeghly, M., Earls, L., & Stacks, A. M. (2014). Secure base
983	scripts are associated with maternal parenting behavior across contexts and reflective

984	functioning among trauma-exposed mothers. Attachment & Human Development, 16(6),
985	535-556. doi: <u>10.1080/14616734.2014.967787</u>
986	Ilyka, D., Johnson, M. H., & Lloyd-Fox, S. (2021). Infant social interactions and brain
987	development: A systematic review. Neuroscience and Biobehavioral Reviews, 130, 448-
988	469. doi: 10.1016/j.neubiorev.2021.09.001
989	Jones, J. D., Brett, B. E., Ehrlich, K. B., Lejuez, C. W., & Cassidy, J. (2014). Maternal
990	attachment style and responses to adolescents' negative emotions: The mediating role of
991	maternal emotion regulation. Parenting, 14(3-4), 235-257. doi:
992	10.1080/15295192.2014.972760
993	Jones, J. D., Cassidy, J., & Shaver, P. R. (2015). Parents' self-reported attachment styles: A
994	review of links with parenting behaviors, emotions, and cognitions. Personality and
995	Social Psychology Review, 19(1), 44-76. doi: 10.1177/1088868314541858
996	Köhler-Dauner, F., Roder, E., Krause, S., Buchheim, A., Gündel, H., Fegert, J. M., Ziegenhain,
997	U., & Waller, C. (2019). Reduced caregiving quality measured during the strange
998	situation procedure increases child's autonomic nervous system stress response. Child
999	and Adolescent Psychiatry and Mental Health, 13(1), 1-12. doi: 10.1186/s13034-019-
1000	0302-3
1001	Kok, R., Thijssen, S., Bakermans-Kranenburg, M. J., Jaddoe, V. W., Verhulst, F. C., White, T.,
1002	van Ijzendoorn, M. H., & Tiemeier, H. (2015). Normal variation in early parental
1003	sensitivity predicts child structural brain development. Journal of the American Academy
1004	of Child & Adolescent Psychiatry, 54(10), 824-831. doi: 10.1016/j.jaac.2015.07.009

1005	La Valley, A. G., & Guerrero, L. K. (2012). Perceptions of conflict behavior and relational
1006	satisfaction in adult parent-child relationships: A dyadic analysis from an attachment
1007	perspective. Communication Research, 39(1), 48-78. doi: 10.1177/0093650210391655
1008	Lee, A., Poh, J. S., Wen, D. J., Tan, H. M., Chong, Y. S., Tan, K. H., Gluckman, P. D., Fortier,
1009	M. V., Rifkin-Graboi, A., & Qiu, A. (2019). Maternal care in infancy and the course of
1010	limbic development. Developmental Cognitive Neuroscience, 40, 100714. doi:
1011	10.1016/j.dcn.2019.100714
1012	Long, M., Verbeke, W., Ein-Dor, T., & Vrtička, P. (2020). A functional neuro-anatomical model
1013	of human attachment (NAMA): Insights from first-and second-person social
1014	neuroscience. Cortex, 126, 281-321. doi: 10.1016/j.cortex.2020.01.010
1015	Lovejoy, M. C., Graczyk, P. A., O'Hare, E., & Neuman, G. (2000). Maternal depression and
1016	parenting behavior: A meta-analytic review. Clinical Psychology Review, 20(5), 561-592
1017	doi: 10.1016/S0272-7358(98)00100-7
1018	Luby, J. L., Barch, D. M., Belden, A., Gaffrey, M. S., Tillman, R., Babb, C., Nishino, T., Suzuki
1019	H., & Botteron, K. N. (2012). Maternal support in early childhood predicts larger
1020	hippocampal volumes at school age. Proceedings of the National Academy of
1021	Sciences, 109(8), 2854-2859. doi: 10.1073/pnas.1118003109
1022	Luby, J., Belden, A., Botteron, K., Marrus, N., Harms, M. P., Babb, C., Nishino, T., & Barch, D.
1023	(2013). The effects of poverty on childhood brain development: The mediating effect of
1024	caregiving and stressful life events. JAMA Pediatrics, 167(12), 1135-1142. doi:
1025	10.1001/jamapediatrics.2013.3139
1026	Luby, J. L., Belden, A., Harms, M. P., Tillman, R., & Barch, D. M. (2016). Preschool is a
1027	sensitive period for the influence of maternal support on the trajectory of hippocampal

1028	development. Proceedings of the National Academy of Sciences, 113(20), 5/42-5/4/.
1029	doi: 10.1073/pnas.1601443113
1030	Luecken, L. J., & Lemery, K. S. (2004). Early caregiving and physiological stress
1031	responses. Clinical Psychology Review, 24(2), 171–191. doi: 10.1016/j.cpr.2004.01.003
1032	Lupien, S. J., Parent, S., Evans, A. C., Tremblay, R. E., Zelazo, P. D., Corbo, V., Pruessner, J., &
1033	Séguin, J. R. (2011). Larger amygdala but no change in hippocampal volume in 10-year-
1034	old children exposed to maternal depressive symptomatology since birth. Proceedings of
1035	the National Academy of Sciences, 108(34), 14324-14329. doi:
1036	10.1073/pnas.1105371108
1037	Lyons-Ruth, K., Pechtel, P., Yoon, S. A., Anderson, C. M., & Teicher, M. H. (2016).
1038	Disorganized attachment in infancy predicts greater amygdala volume in
1039	adulthood. Behavioural Brain Research, 308, 83-93. doi: 10.1016/j.bbr.2016.03.050
1040	Madigan, S., Moran, G., Schuengel, C., Pederson, D. R., & Otten, R. (2007). Unresolved
1041	maternal attachment representations, disrupted maternal behavior and disorganized
1042	attachment in infancy: Links to toddler behavior problems. Journal of Child Psychology
1043	and Psychiatry, 48(10), 1042-1050. doi: 10.1111/j.1469-7610.2007.01805.x
1044	Main, M., Kaplan, N., & Cassidy, J. (1985). Security in infancy, childhood, and adulthood: A
1045	move to the level of representation. Monographs of the Society for Research in Child
1046	Development, 50(1-2), 66-104. doi: 10.2307/3333827
1047	Matsudaira, I., Oba, K., Takeuchi, H., Sekiguchi, A., Tomita, H., Taki, Y., & Kawashima, R.
1048	(2019). rs1360780 of the FKBP5 gene modulates the association between maternal
1049	acceptance and regional gray matter volume in the thalamus in children and
1050	adolescents. PloS One, 14(8), e0221768. doi: 10.1371/journal.pone.0221768

1051	Matsudaira, I., Yokota, S., Hashimoto, T., Takeuchi, H., Asano, K., Asano, M., Sassa, Y., Taki,
1052	Y., & Kawashima, R. (2016). Parental praise correlates with posterior insular cortex gray
1053	matter volume in children and adolescents. PLoS One, 11(4), e0154220. doi:
1054	10.1371/journal.pone.0154220
1055	McEwen, B. S. (2000). Effects of adverse experiences for brain structure and
1056	function. Biological Psychiatry, 48(8), 721-731. doi: 10.1016/S0006-3223(00)00964-1
1057	McLaughlin, K. A., Weissman, D., & Bitrán, D. (2019). Childhood adversity and neural
1058	development: A systematic review. Annual Review of Developmental Psychology, 1, 277-
1059	312. doi: <u>10.1146/annurev-devpsych-121318-084950</u>
1060	Meaney, M. J., & Szyf, M. (2005). Environmental programming of stress responses through
1061	DNA methylation: Life at the interface between a dynamic environment and a fixed
1062	genome. Dialogues in Clinical Neuroscience, 7(2), 103-123. doi:
1063	10.31887/DCNS.2005.7.2/mmeaney
1064	Mikulincer, M., & Shaver, P. R. (2007). Attachment in adulthood: Structure, dynamics, and
1065	change. Guilford Press.
1066	Milgrom, J., Newnham, C., Anderson, P. J., Doyle, L. W., Gemmill, A. W., Lee, K., Hunt, R.
1067	W., Bear, M., & Inder, T. (2010). Early sensitivity training for parents of preterm infants:
1068	Impact on the developing brain. Pediatric Research, 67, 330-335. doi:
1069	10.1203/PDR.0b013e3181cb8e2f
1070	Mikulincer, M., Shaver, P. R., Sapir-Lavid, Y., & Avihou-Kanza, N. (2009). What's inside the
1071	minds of securely and insecurely attached people? The secure-base script and its
1072	associations with attachment-style dimensions. Journal of Personality and Social
1073	Psychology, 97(4), 615-633. doi: 10.1037/a0015649

1074	Mills-Koonce, W. R., Appleyard, K., Barnett, M., Deng, M., Putallaz, M., & Cox, M. (2011).
1075	Adult attachment style and stress as risk factors for early maternal sensitivity and
1076	negativity. Infant Mental Health Journal, 32(3), 277-285. doi: 10.1002/imhj.20296
1077	Moran, G., Forbes, L., Evans, E., Tarabulsy, G. M., & Madigan, S. (2008). Both maternal
1078	sensitivity and atypical maternal behavior independently predict attachment security and
1079	disorganization in adolescent mother-infant relationships. Infant Behavior and
1080	Development, 31(2), 321-325. doi: 10.1016/j.infbeh.2007.12.012
1081	Muthén, L. K., & Muthén, B. O. (1998-2007). Mplus User's Guide. Fifth Edition. Muthén &
1082	Muthén.
1083	Öhman, A. (2005). The role of the amygdala in human fear: Automatic detection of
1084	threat. Psychoneuroendocrinology, 30(10), 953-958. doi:
1085	10.1016/j.psyneuen.2005.03.019
1086	Parent, M. C. (2013). Handling item-level missing data: Simpler is just as good. <i>The Counseling</i>
1087	Psychologist, 41(4), 568-600. doi: 10.1177/0011000012445176
1088	Penzo, M. A., Robert, V., Tucciarone, J., De Bundel, D., Wang, M., Van Aelst, L., Darvas, M.,
1089	Parada, L. F., Palmiter, R. D., He, M., Huang, Z. J., & Li, B. (2015). The paraventricular
1090	thalamus controls a central amygdala fear circuit. Nature, 519(7544), 455-459. doi:
1091	10.1038/nature13978
1092	Perry, N. B., Calkins, S. D., Nelson, J. A., Leerkes, E. M., & Marcovitch, S. (2012). Mothers'
1093	responses to children's negative emotions and child emotion regulation: The moderating
1094	role of vagal suppression. Developmental Psychobiology, 54(5), 503-513. doi:
1095	10.1002/dev.20608

1096	Preacher, K. J., & Hayes, A. F. (2008). Asymptotic and resampling strategies for assessing and
1097	comparing indirect effects in multiple mediator models. Behavior Research
1098	Methods, 40(3), 879-891. doi: 10.3758/BRM.40.3.879
1099	Puhlmann, L. M. C., Derome, M., Morosan, L., Kilicel, D., Vrtička, P., & Debbané, M. (2021).
1100	Longitudinal associations between self-reported attachment dimensions and
1101	neurostructural development from adolescence to early adulthood. Attachment and
1102	Human Development, 1-19. doi: 10.1080/14616734.2021.1993628
1103	Quirin, M., Gillath, O., Pruessner, J. C., & Eggert, L. D. (2010). Adult attachment insecurity and
1104	hippocampal cell density. Social Cognitive and Affective Neuroscience, 5(1), 39-47. doi:
1105	10.1093/scan/nsp042
1106	Raby, K., Waters, T., Tabachnick, A., Zajac, L., & Dozier, M. (2021). Increasing secure base
1107	script knowledge among parents with Attachment and Biobehavioral Catch-
1108	up. Development and Psychopathology, 33(2), 554-564. doi:
1109	<u>10.1017/S0954579420001765</u>
1110	Rholes, W. S., Simpson, J. A., & Blakely, B. S. (1995). Adult attachment styles and mothers'
1111	relationships with their young children. Personal Relationships, 2(1), 35-54. doi:
1112	10.1111/j.1475-6811.1995.tb00076.x
1113	Richmond, S., Beare, R., Johnson, K. A., Allen, N. B., Seal, M. L., & Whittle, S. (2021).
1114	Towards understanding neurocognitive mechanisms of parenting: Maternal behaviors and
1115	structural brain network organization in late childhood. Human Brain Mapping, 42(6),
1116	1845-1862. doi: 10.1002/hbm.25334
1117	Rifkin-Graboi, A., Kong, L., Sim, L. W., Sanmugam, S., Broekman, B. F. P., Chen, H., Wong,
1118	E., Kwek, K., Saw, S., Chong, Y., Gluckman, P. D., Fortier, M. V., Pederson, D.,

1119	Meaney, M. J., & Qiu, A. (2015). Maternal sensitivity, infant limbic structure volume and
1120	functional connectivity: A preliminary study. Translational Psychiatry, 5(10), e668. doi:
1121	10.1038/tp.2015.133
1122	Riggins, T., Blankenship, S. L., Mulligan, E., Rice, K., & Redcay, E. (2015). Developmental
1123	differences in relations between episodic memory and hippocampal subregion volume
1124	during early childhood. Child Development, 86(6), 1710-1718. doi: 10.1111/cdev.12445
1125	Roth, M. C., Humphreys, K. L., King, L. S., & Gotlib, I. H. (2018). Self-reported neglect,
1126	amygdala volume, and symptoms of anxiety in adolescent boys. Child Abuse and
1127	Neglect, 80, 80–89. doi: 10.1016/j.chiabu.2018.03.016
1128	Sapolsky, R. M., Krey, L. C., & McEwen, B. S. (1986). The neuroendocrinology of stress and
1129	aging: the glucocorticoid cascade hypothesis. Endocrine Reviews, 7(3), 284-301. doi:
1130	10.1210/edrv-7-3-284
1131	Schafer, J. L., & Graham, J. W. (2002). Missing data: Our view of the state of the
1132	art. Psychological Methods, 7(2), 147-177. doi: 10.1037/1082-989X.7.2.147
1133	Selcuk, E., Günaydin, G., Sumer, N., Harma, M., Salman, S., Hazan, C., Dogruyol, B., &
1134	Ozturk, A. (2010). Self-reported romantic attachment style predicts everyday maternal
1135	caregiving behavior at home. Journal of Research in Personality, 44(4), 544-549. doi:
1136	10.1016/j.jrp.2010.05.007
1137	Sethna, V., Pote, I., Wang, S., Gudbrandsen, M., Blasi, A., McCusker, C., Daly, E., Perry, E.,
1138	Adams, K. P. H., Kuklisova-Murgasova, M., Busuulwa, P., Lloyd-Fox, S., Murray, L.,
1139	Johnson, M. H., Williams, S. C. R., Murphy, D. G. M., Craig, M. C., & McAlonan, G. M.
1140	(2017). Mother-infant interactions and regional brain volumes in infancy: An MRI

1141	study. Brain Structure and Function, 222(5), 2379-2388. doi: 10.1007/s00429-016-1347-
1142	<u>1</u>
1143	Shewark, E. A., & Blandon, A. Y. (2015). Mothers' and fathers' emotion socialization and
1144	children's emotion regulation: A within-family model. Social Development, 24(2), 266-
1145	284. doi: 10.1111/sode.12095
1146	Spangler, G., Schieche, M., Ilg, U., Maier, U., & Ackermann, C. (1994). Maternal sensitivity as
1147	an external organizer for biobehavioral regulation in infancy. Developmental
1148	Psychobiology, 27(7), 425-437. doi: 10.1002/dev.420270702
1149	Spencer, S. J., Fox, J. C., & Day, T. A. (2004). Thalamic paraventricular nucleus lesions
1150	facilitate central amygdala neuronal responses to acute psychological stress. Brain
1151	Research, 997(2), 234-237. doi: 10.1016/j.brainres.2003.10.054
1152	Spinrad, T. L., Eisenberg, N., Gaertner, B., Popp, T., Smith, C. L., Kupfer, A., Greving, K.,
1153	Liew, J., & Hofer, C. (2007). Relations of maternal socialization and toddlers' effortful
1154	control to children's adjustment and social competence. Developmental Psychology,
1155	43(5), 1170-1186. doi: 10.1037/0012-1649.43.5.1170
1156	Spinrad, T. L., Eisenberg, N., Kupfer, A., Gaertner, B., & Michalik, N. (2004, May). The
1157	Coping with Toddlers' Negative Emotions Scale. Paper presented at the Biennial
1158	International Conference on Infant Studies, Chicago, IL.
1159	Steele, R. D., Waters, T. E., Bost, K. K., Vaughn, B. E., Truitt, W., Waters, H. S., Booth-
1160	LaForce, C., & Roisman, G. I. (2014). Caregiving antecedents of secure base script
1161	knowledge: A comparative analysis of young adult attachment
1162	representations. Developmental Psychology, 50(11), 2526-2538. doi: 10.1037/a0037992

1163	Stride, C. B., Gardner, S., Catley, N., & Thomas, F. (2015). Mplus code for mediation,
1164	moderation, and moderated mediation models. Available online at:
1165	http://offbeat.group.shef.ac.uk/FIO/index.htm (Accessed August 17, 2020)
1166	Teicher, M. H., Anderson, C. M., & Polcari, A. (2012). Childhood maltreatment is associated
1167	with reduced volume in the hippocampal subfields CA3, dentate gyrus, and
1168	subiculum. Proceedings of the National Academy of Sciences, 109(9), E563-E572. doi:
1169	10.1073/pnas.1115396109
1170	Tharner, A., Herba, C. M., Luijk, M. P. C. M., Van IJzendoorn, M. H., Bakermans-Kranenburg,
1171	M. J., Govaert, P. P., Roza, S. J., Jaddoe, V. W. V, Hofman, A., Verhulst, F. C. &
1172	Tiemeier, H. (2011). Subcortical structures and the neurobiology of infant attachment
1173	disorganization: A longitudinal ultrasound imaging study. Social Neuroscience, 6(4),
1174	336–347. doi: 10.1080/17470919.2010.538219
1175	Tottenham, N. (2015). Social scaffolding of human amygdala-mPFC circuit development. Social
1176	Neuroscience, 10(5), 489-499. doi: 10.1080/17470919.2015.1087424
1177	Tottenham, N., Hare, T. A., Quinn, B. T., McCarry, T. W., Nurse, M., Gilhooly, T., Millner, A.,
1178	Galvan, A., Davidson, M. C., Eigsti, I., Thomas, K. M., Freed, P. J., Booma, E. S.,
1179	Gunnar, M. R., Altemus, M., Aronson, J., & Casey, B. J. (2010). Prolonged institutional
1180	rearing is associated with atypically large amygdala volume and difficulties in emotion
1181	regulation. Developmental Science, 13(1), 46-61. doi: 10.1111/j.1467-7687.2009.00852.x
1182	Valadez, E. A., Tottenham, N., Tabachnick, A. R., & Dozier, M. (2020). Early parenting
1183	intervention effects on brain responses to maternal cues among high-risk
1184	children. American Journal of Psychiatry, 177(9), 818-826. doi:
1185	10.1176/appi.ajp.2020.20010011

1186	van IJzendoorn, M. H. (1995). Adult attachment representations, parental responsiveness, and
1187	infant attachment: A meta-analysis on the predictive validity of the Adult Attachment
1188	Interview. Psychological Bulletin, 117(3), 387–403. doi: 10.1037/0033-2909.117.3.387
1189	Verhage, M. L., Schuengel, C., Madigan, S., Fearon, R. M. P., Oosterman, M., Cassibba, R.,
1190	Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2016). Narrowing the
1191	transmission gap: A synthesis of three decades of research on intergenerational
1192	transmission of attachment. Psychological Bulletin, 142(4), 337–366. doi:
1193	10.1037/bul0000038
1194	Wang, H., Das, S. R., Suh, J. W., Altinay, M., Pluta, J., Craige, C., Avants, B., Yushkevich, P.
1195	A., & Alzheimer's Disease Neuroimaging Initiative. (2011). A learning-based wrapper
1196	method to correct systematic errors in automatic image segmentation: Consistently
1197	improved performance in hippocampus, cortex and brain
1198	segmentation. NeuroImage, 55(3), 968-985. doi: 10.1016/j.neuroimage.2011.01.006
1199	Waters, H. S., & Rodrigues-Doolabh, L. (2001, April). Are attachment scripts the building
1200	blocks of attachment representations. In biennial meeting of the Society for Research in
1201	Child Development, Washington, DC.
1202	Waters, T. E., Bosmans, G., Vandevivere, E., Dujardin, A., & Waters, H. S. (2015). Secure base
1203	representations in middle childhood across two Western cultures: Associations with
1204	parental attachment representations and maternal reports of behavior problems.
1205	Developmental Psychology, 51(8), 1013. doi: 10.1037/a0039375
1206	Waters, T. E. A., Ruiz, S. K., & Roisman, G. I. (2017). Origins of secure base script knowledge
1207	and the developmental construction of attachment representations. Child
1208	Development, 88(1), 198-209. doi: 10.1111/cdev.12571

1209	Waters, H. S., & Waters, E. (2006). The attachment working models concept: Among other
1210	things, we build script-like representations of secure base experiences. Attachment &
1211	Human Development, 8(3), 185-197. doi: 10.1080/14616730600856016
1212	Wei, P., Liu, N., Zhang, Z., Liu, X., Tang, Y., He, X., Wu, B., Zhou, Z., Liu, Y., Li, J., Zhang,
1213	Y., Zhou, X., Xu, L., Chen, L., Bi, G., Hu, X., Xu, F., & Wang, L. (2015). Processing of
1214	visually evoked innate fear by a non-canonical thalamic pathway. Nature
1215	Communications, 6(1), 1-13. doi: 10.1038/ncomms7756
1216	Wei, M., Russell, D. W., Mallinckrodt, B., & Vogel, D. L. (2007). The Experiences in Close
1217	Relationship Scale (ECR)-short form: Reliability, validity, and factor structure. Journal
1218	of Personality Assessment, 88(2), 187-204. <u>10.1080/00223890701268041</u>
1219	Whittle, S., Simmons, J. G., Dennison, M., Vijayakumar, N., Schwartz, O., Yap, M. B., Sheeber,
1220	L., & Allen, N. B. (2014). Positive parenting predicts the development of adolescent
1221	brain structure: A longitudinal study. Developmental Cognitive Neuroscience, 8, 7-17.
1222	doi: 10.1016/j.dcn.2013.10.006
1223	Whittle, S., Vijayakumar, N., Dennison, M., Schwartz, O., Simmons, J. G., Sheeber, L., & Allen,
1224	N. B. (2016). Observed measures of negative parenting predict brain development during
1225	adolescence. PloS One, 11(1), e0147774. doi: 10.1371/journal.pone.0147774
1226	Whittle, S., Yap, M. B., Yücel, M., Sheeber, L., Simmons, J. G., Pantelis, C., & Allen, N. B.
1227	(2009). Maternal responses to adolescent positive affect are associated with adolescents'
1228	reward neuroanatomy. Social Cognitive and Affective Neuroscience, 4(3), 247-256. doi:
1229	10.1093/scan/nsp012

1230	Yang, J., Wei, D., Wang, K., Yi, Z., & Qiu, J. (2018). Regional gray matter volume mediates the
1231	relationship between maternal emotional warmth and gratitude. Neuropsychologia, 109,
1232	165-172. doi: 10.1016/j.neuropsychologia.2017.12.017
1233	
1234	

Table 1Demographics of Participants in Study 1 and Study 2

	Study 1	Study 2	Total
	(n = 36)	(n = 16)	(n = 52)
	n (%) or M (<i>SD</i>)	n (%) or M (SD)	n (%) or M (SD)
Mother's age	33.23 (5.03)	38 (5.21)	34.29 (5.40)
Children's age	6.66 (1.29)	4.81 (0.49)	6.12 (1.40)
Children's sex			
Male	20 (55.6%)	8 (50%)	28 (53.8%)
Female	16 (44.4%)	8 (50%)	24 (46.2%)
Children's ethnicity			
Hispanic	3 (8.3%)	3 (18.8%)	6 (11.5%)
Non-hispanic	32 (88.9%)	8 (50.0%)	40 (76.9%)
Not reported	1 (2.8%)	5 (31.2%)	6 (11.5%)
Children's race			
White	27 (75%)	11 (68.8%)	38 (73.1%)
African American	4 (11.1%)	0 (0%)	4 (7.7%)
Multiracial	4 (11.1%)	0 (0%)	4 (7.7%)
Not reported	1 (2.8%)	5 (31.2%)	6 (11.5)
Mothers' ethnicity			
Hispanic	3 (88.9%)	3 (18.8%)	6 (11.5%)
Non-Hispanic	32 (8.3%)	8 (50.0%)	40 (76.9%)
Not reported	1 (2.8%)	5 (31.2%)	6 (11.5%)
Mothers' education			
High School	0 (0%)	0 (0%)	0 (0%)
Some College	1 (2.8%)	0 (0%)	1 (1.9%)
Technical or Associates Degree	4 (11.1%)	0 (0%)	4 (7.7%)
College	10 (27.8%)	1 (6.2%)	11 (21.2%)
Some Graduate School	3 (8.3%)	0 (0%)	3 (5.8%)
Post-Graduate Degree	18 (50%)	10 (62.5%)	28 (53.8%)
Not reported	0 (0%)	5 (31.2%)	5 (9.6%)

Table 21237 *Bivariate Correlations Among Main Study Variables*

	Variable	1	2	3	4	5	6	7	8
Child De	mographics								
	1. Sex (Male) ^a	l							
	2. Age	.40**							
Child Bra	ain Structure								
	3. Hipp	.46**	.58**						
	4. Amy	.67**	.61**	.68**					
	5. L Amy	.55**	.63**	.69**	.91**				
	6. R Amy	.66**	.49**	.56**	.93**	.70**			
	7. Thal	.45**	.31*	.48**	.55**	.52**	.49**		
	8. Lat Occ	.33	.08	.11	.27	.27	.24	.23	
	9. eTIV	.69**	.36*	.48**	.68**	.60**	.65**	.63**	.53**
	10. WMV	.63**	.57**	.57**	.81**	.75**	.73**	.67**	.42**
	11. GMV	.49**	.45**	.51**	.68**	.61**	.65**	.59**	.56**
	12. SGMV	.09	.67**	.64**	.62**	.65**	.50**	.31*	.03
Maternal	Attachment Repre	sentations a	ınd Parent	ing					
	13. SBS	.12	.01	05	15	18	09	34*	05
	14. Anx	.09	10	12	17	11	20	31*	.04
	15. Avo	.08	07	.00	08	02	12	18	.04
	16. Unsup	.04	06	09	.04	.02	.06	.07	.26
	17. Sup	01	05	12	11	09	11	.00	16

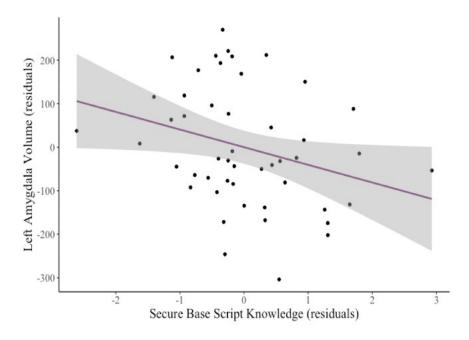
1241

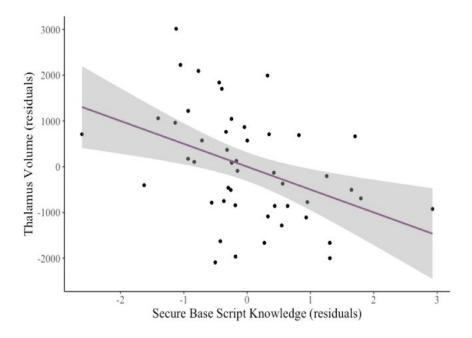
	Variable	9	10	11	12	13	14	15	16
Child Den	nographics								
	1. Sex (Male) ^a								
	2. Age								
Child Brai	n Structure								
	3. Hipp								
	4. Amy								
	5. L Amy								
	6. R Amy								
	7. Thal								
	8. Lat Occ								
	9. eTIV								
	10. WMV	.88**							
	11. GMV	.88**	.82**						
	12. SGMV	.42**	.62**	.56**					
Maternal A	Attachment Represe	entations a	nd Parent	ing					
	13. SBS	16	23	16	10				
	14. Anx	07	09	17	05	.08			
	15. Avo	13	10	06	06	.03	.50**		
	16. Unsup	.15	.08	.17	02	10	.24	.20	
	17. Sup	04	04	14	14	10	45**	24	40**

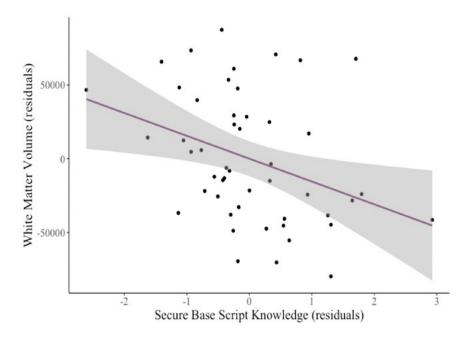
Note. Our a priori regions of interest were the hippocampus and the amygdala. ^aAll correlations with child sex (coded as 1 = Female, 2

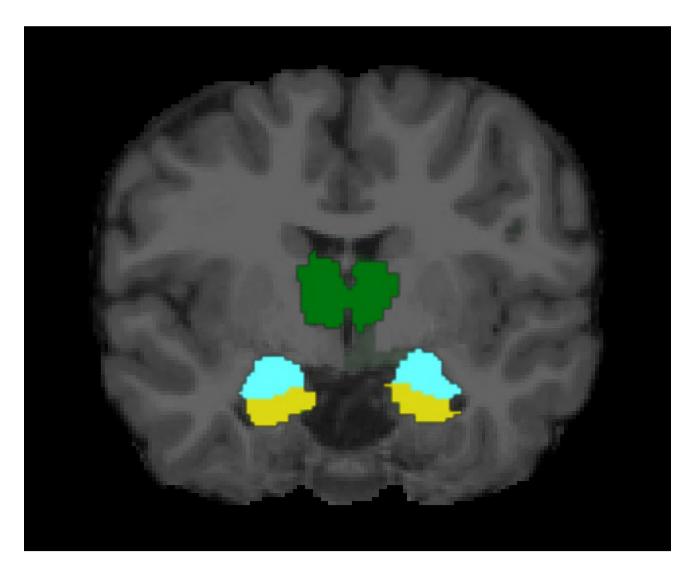
= Male) are biserial. Hipp = Hippocampal Volume; Amy = Total Amygdala Volume; L Amy = Left Amygdala Volume; R Amy = 1242 1243

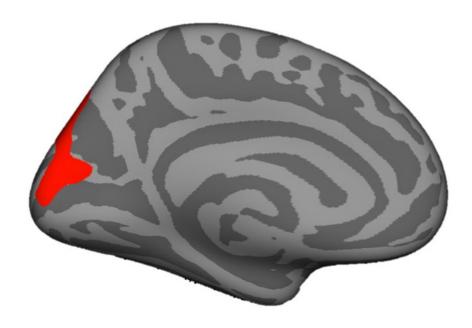
Right Amygdala Volume; Thal = Thalamus Volume; Lat Occ = Lateral Occipital Cortex Volume; eTIV = Intracranial Volume; WMV


= White Matter Volume; GMV = Gray Matter Volume; SGMV = Subcortical Gray Matter Volume; SBS = Secure Base Script 1244


1248 **Table 3**1249 *Descriptive Statistics of Main Study Variables*


Variable	N(%)	M	SD	Range	Skewness
Demographics					
Sex (Male)	28 (53.85)				
Age (years)		6.12	1.4	4.03 - 8.93	0.42
Brain Structure (mm ³)					
Hipp		6517.9	665.12	5225.0 - 8078.0	0.43
Amy		3105.88	363.76	2177.7 - 4017.0	0.20
L Amy		1478.41	186.94	1008.0 - 1839.0	-0.22
R Amy		1627.46	208.06	1169.7 - 2197.0	0.44
Thal		14085.87	1318.48	11516.0 - 16810.0	0.25
Lat Occ		29986.35	3411.55	23187.0 - 38142.0	0.47
eTIV		1379660.6	120800.4	1165227.0 - 1645938.0	0.49
WMV		415242.98	57169.16	310838.00 549534.20	0.37
GMV		787785.67	63188.96	658818.5 - 951868.2	0.34
SGMV		152868.27	65318.97	44747.0 - 234247.0	-0.78
Attachment and Parenting					
SBS		3.51	0.98	1.00 - 6.33	
Anx		2.7	1.04	1.22 - 5.11	0.29
Avo		2.34	1.00	1.00 - 4.50	0.31
Unsup		2.34	0.62	1.31 - 3.90	0.47
Sup		5.47	0.85	2.11 - 6.78	-1.35


Note. Hipp = Hippocampal Volume; Amy = Total Amygdala Volume; L Amy = Left Amygdala Volume; R Amy = Right Amygdala Volume; Thal = Thalamus Volume; Lat Occ = Lateral Occipital Cortex Volume; eTIV = Intracranial Volume; WMV = White Matter Volume; GMV = Gray Matter Volume; SGMV = Subcortical Gray Matter Volume; SBS = Secure Base Script Knowledge; Anx = Attachment Anxiety; Avo = Attachment Avoidance; Unsup = Unsupportive Responses to Distress; Sup = Supportive Responses to Distress.


1256 **Figure Captions** 1257 Figure 1. Added variable plot displaying the partial correlation between mothers' secure base script knowledge and children's left amygdala volume controlling for covariates (sex and age). The shaded region reflects the 95% confidence interval around the 1258 1259 regression line. 1260 1261 Figure 2. Added variable plot displaying the partial correlation between mothers' secure base script knowledge and children's thalamus 1262 volume controlling for covariates (sex and age). The shaded region reflects the 95% confidence interval around the regression line. 1263 1264 Figure 3. Added variable plot displaying the partial correlation between mothers' secure base script knowledge and children's white 1265 matter volume controlling for covariates (sex and age). The shaded region reflects the 95% confidence interval around the regression 1266 line. 1267 1268 Figure 4. Subcortical structures of interest in mid-coronal view. Hippocampus depicted in yellow, amygdala depicted in turquoise, and 1269 thalamus depicted in green. 1270 1271 Figure 5. Pericalcarine cortex depicted in red. 1272

